Tag Archives: Apple

iPhone Apps Stealing Clipboard Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/06/iphone_apps_ste.html

iOS apps are repeatedly reading clipboard data, which can include all sorts of sensitive information.

While Haj Bakry and Mysk published their research in March, the invasive apps made headlines again this week with the developer beta release of iOS 14. A novel feature Apple added provides a banner warning every time an app reads clipboard contents. As large numbers of people began testing the beta release, they quickly came to appreciate just how many apps engage in the practice and just how often they do it.

This YouTube video, which has racked up more than 87,000 views since it was posted on Tuesday, shows a small sample of the apps triggering the new warning.

Contact Tracing COVID-19 Infections via Smartphone Apps

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/04/contact_tracing.html

Google and Apple have announced a joint project to create a privacy-preserving COVID-19 contact tracing app. (Details, such as we have them, are here.) It’s similar to the app being developed at MIT, and similar to others being described and developed elsewhere. It’s nice seeing the privacy protections; they’re well thought out.

I was going to write a long essay about the security and privacy concerns, but Ross Anderson beat me to it. (Note that some of his comments are UK-specific.)

First, it isn’t anonymous. Covid-19 is a notifiable disease so a doctor who diagnoses you must inform the public health authorities, and if they have the bandwidth they call you and ask who you’ve been in contact with. They then call your contacts in turn. It’s not about consent or anonymity, so much as being persuasive and having a good bedside manner.

I’m relaxed about doing all this under emergency public-health powers, since this will make it harder for intrusive systems to persist after the pandemic than if they have some privacy theater that can be used to argue that the whizzy new medi-panopticon is legal enough to be kept running.

Second, contact tracers have access to all sorts of other data such as public transport ticketing and credit-card records. This is how a contact tracer in Singapore is able to phone you and tell you that the taxi driver who took you yesterday from Orchard Road to Raffles has reported sick, so please put on a mask right now and go straight home. This must be controlled; Taiwan lets public-health staff access such material in emergencies only.

Third, you can’t wait for diagnoses. In the UK, you only get a test if you’re a VIP or if you get admitted to hospital. Even so the results take 1-3 days to come back. While the VIPs share their status on twitter or facebook, the other diagnosed patients are often too sick to operate their phones.

Fourth, the public health authorities need geographical data for purposes other than contact tracing – such as to tell the army where to build more field hospitals, and to plan shipments of scarce personal protective equipment. There are already apps that do symptom tracking but more would be better. So the UK app will ask for the first three characters of your postcode, which is about enough to locate which hospital you’d end up in.

Fifth, although the cryptographers – and now Google and Apple – are discussing more anonymous variants of the Singapore app, that’s not the problem. Anyone who’s worked on abuse will instantly realise that a voluntary app operated by anonymous actors is wide open to trolling. The performance art people will tie a phone to a dog and let it run around the park; the Russians will use the app to run service-denial attacks and spread panic; and little Johnny will self-report symptoms to get the whole school sent home.

I recommend reading his essay in full. Also worth reading are this EFF essay, and this ACLU white paper.

To me, the real problems aren’t around privacy and security. The efficacy of any app-based contact tracing is still unproven. A “contact” from the point of view of an app isn’t the same as an epidemiological contact. And the ratio of infections to contacts is high. We would have to deal with the false positives (being close to someone else, but separated by a partition or other barrier) and the false negatives (not being close to someone else, but contracting the disease through a mutually touched object). And without cheap, fast, and accurate testing, the information from any of these apps isn’t very useful. So I agree with Ross that this is primarily an exercise in that false syllogism: Something must be done. This is something. Therefore, we must do it. It’s techies proposing tech solutions to what is primarily a social problem.

EDITED TO ADD: Susan Landau on contact tracing apps and how they’re being oversold. And Farzad Mostashari, former coordinator for health IT at the Department of Health and Human Services, on contact tracing apps.

As long as 1) every contact does not result in an infection, and 2) a large percentage of people with the disease are asymptomatic and don’t realize they have it, I can’t see how this sort of app is valuable. If we had cheap, fast, and accurate testing for everyone on demand…maybe. But I still don’t think so.

EDITED TO ADD (4/15): More details from Apple and Google.

Hacking Voice Assistants with Ultrasonic Waves

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/03/hacking_voice_a_1.html

I previously wrote about hacking voice assistants with lasers. Turns you can do much the same thing with ultrasonic waves:

Voice assistants — the demo targeted Siri, Google Assistant, and Bixby — are designed to respond when they detect the owner’s voice after noticing a trigger phrase such as ‘Ok, Google’.

Ultimately, commands are just sound waves, which other researchers have already shown can be emulated using ultrasonic waves which humans can’t hear, providing an attacker has a line of sight on the device and the distance is short.

What SurfingAttack adds to this is the ability to send the ultrasonic commands through a solid glass or wood table on which the smartphone was sitting using a circular piezoelectric disc connected to its underside.

Although the distance was only 43cm (17 inches), hiding the disc under a surface represents a more plausible, easier-to-conceal attack method than previous techniques.

Research paper. Demonstration video.

Companies that Scrape Your Email

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/02/companies_that_.html

Motherboard has a long article on apps — Edison, Slice, and Cleanfox — that spy on your email by scraping your screen, and then sell that information to others:

Some of the companies listed in the J.P. Morgan document sell data sourced from “personal inboxes,” the document adds. A spokesperson for J.P. Morgan Research, the part of the company that created the document, told Motherboard that the research “is intended for institutional clients.”

That document describes Edison as providing “consumer purchase metrics including brand loyalty, wallet share, purchase preferences, etc.” The document adds that the “source” of the data is the “Edison Email App.”

[…]

A dataset obtained by Motherboard shows what some of the information pulled from free email app users’ inboxes looks like. A spreadsheet containing data from Rakuten’s Slice, an app that scrapes a user’s inbox so they can better track packages or get their money back once a product goes down in price, contains the item that an app user bought from a specific brand, what they paid, and an unique identification code for each buyer.

Apple’s Tracking-Prevention Feature in Safari has a Privacy Bug

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/02/apples_tracking.html

Last month, engineers at Google published a very curious privacy bug in Apple’s Safari web browser. Apple’s Intelligent Tracking Prevention, a feature designed to reduce user tracking, has vulnerabilities that themselves allow user tracking. Some details:

ITP detects and blocks tracking on the web. When you visit a few websites that happen to load the same third-party resource, ITP detects the domain hosting the resource as a potential tracker and from then on sanitizes web requests to that domain to limit tracking. Tracker domains are added to Safari’s internal, on-device ITP list. When future third-party requests are made to a domain on the ITP list, Safari will modify them to remove some information it believes may allow tracking the user (such as cookies).

[…]

The details should come as a surprise to everyone because it turns out that ITP could effectively be used for:

  • information leaks: detecting websites visited by the user (web browsing history hijacking, stealing a list of visited sites)
  • tracking the user with ITP, making the mechanism function like a cookie
  • fingerprinting the user: in ways similar to the HSTS fingerprint, but perhaps a bit better

I am sure we all agree that we would not expect a privacy feature meant to protect from tracking to effectively enable tracking, and also accidentally allowing any website out there to steal its visitors’ web browsing history. But web architecture is complex, and the consequence is that this is exactly the case.

Apple fixed this vulnerability in December, a month before Google published.

If there’s any lesson here, it’s that privacy is hard — and that privacy engineering is even harder. It’s not that we shouldn’t try, but we should recognize that it’s easy to get it wrong.

Apple Abandoned Plans for Encrypted iCloud Backup after FBI Complained

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/01/apple_abandoned.html

This is new from Reuters:

More than two years ago, Apple told the FBI that it planned to offer users end-to-end encryption when storing their phone data on iCloud, according to one current and three former FBI officials and one current and one former Apple employee.

Under that plan, primarily designed to thwart hackers, Apple would no longer have a key to unlock the encrypted data, meaning it would not be able to turn material over to authorities in a readable form even under court order.

In private talks with Apple soon after, representatives of the FBI’s cyber crime agents and its operational technology division objected to the plan, arguing it would deny them the most effective means for gaining evidence against iPhone-using suspects, the government sources said.

When Apple spoke privately to the FBI about its work on phone security the following year, the end-to-end encryption plan had been dropped, according to the six sources. Reuters could not determine why exactly Apple dropped the plan.

ToTok Is an Emirati Spying Tool

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/12/totok_is_an_emi.html

The smartphone messaging app ToTok is actually an Emirati spying tool:

But the service, ToTok, is actually a spying tool, according to American officials familiar with a classified intelligence assessment and a New York Times investigation into the app and its developers. It is used by the government of the United Arab Emirates to try to track every conversation, movement, relationship, appointment, sound and image of those who install it on their phones.

ToTok, introduced only months ago, was downloaded millions of times from the Apple and Google app stores by users throughout the Middle East, Europe, Asia, Africa and North America. While the majority of its users are in the Emirates, ToTok surged to become one of the most downloaded social apps in the United States last week, according to app rankings and App Annie, a research firm.

Apple and Google have removed it from their app stores. If you have it on your phone, delete it now.

Fooling Voice Assistants with Lasers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/11/fooling_voice_a.html

Interesting:

Siri, Alexa, and Google Assistant are vulnerable to attacks that use lasers to inject inaudible­ — and sometimes invisible­ — commands into the devices and surreptitiously cause them to unlock doors, visit websites, and locate, unlock, and start vehicles, researchers report in a research paper published on Monday. Dubbed Light Commands, the attack works against Facebook Portal and a variety of phones.

Shining a low-powered laser into these voice-activated systems allows attackers to inject commands of their choice from as far away as 360 feet (110m). Because voice-controlled systems often don’t require users to authenticate themselves, the attack can frequently be carried out without the need of a password or PIN. Even when the systems require authentication for certain actions, it may be feasible to brute force the PIN, since many devices don’t limit the number of guesses a user can make. Among other things, light-based commands can be sent from one building to another and penetrate glass when a vulnerable device is kept near a closed window.

Massive iPhone Hack Targets Uyghurs

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/09/massive_iphone_.html

China is being blamed for a massive surveillance operation that targeted Uyghur Muslims. This story broke in waves, the first wave being about the iPhone.

Earlier this year, Google’s Project Zero found a series of websites that have been using zero-day vulnerabilities to indiscriminately install malware on iPhones that would visit the site. (The vulnerabilities were patched in iOS 12.1.4, released on February 7.)

Earlier this year Google’s Threat Analysis Group (TAG) discovered a small collection of hacked websites. The hacked sites were being used in indiscriminate watering hole attacks against their visitors, using iPhone 0-day.

There was no target discrimination; simply visiting the hacked site was enough for the exploit server to attack your device, and if it was successful, install a monitoring implant. We estimate that these sites receive thousands of visitors per week.

TAG was able to collect five separate, complete and unique iPhone exploit chains, covering almost every version from iOS 10 through to the latest version of iOS 12. This indicated a group making a sustained effort to hack the users of iPhones in certain communities over a period of at least two years.

Four more news stories.

This upends pretty much everything we know about iPhone hacking. We believed that it was hard. We believed that effective zero-day exploits cost $2M or $3M, and were used sparingly by governments only against high-value targets. We believed that if an exploit was used too frequently, it would be quickly discovered and patched.

None of that is true here. This operation used fourteen zero-days exploits. It used them indiscriminately. And it remained undetected for two years. (I waited before posting this because I wanted to see if someone would rebut this story, or explain it somehow.)

Google’s announcement left out of details, like the URLs of the sites delivering the malware. That omission meant that we had no idea who was behind the attack, although the speculation was that it was a nation-state.

Subsequent reporting added that malware against Android phones and the Windows operating system were also delivered by those websites. And then that the websites were targeted at Uyghurs. Which leads us all to blame China.

So now this is a story of a large, expensive, indiscriminate, Chinese-run surveillance operation against an ethnic minority in their country. And the politics will overshadow the tech. But the tech is still really impressive.

EDITED TO ADD: New data on the value of smartphone exploits:

According to the company, starting today, a zero-click (no user interaction) exploit chain for Android can get hackers and security researchers up to $2.5 million in rewards. A similar exploit chain impacting iOS is worth only $2 million.

EDITED TO ADD (9/6): Apple disputes some of the claims Google made about the extent of the vulnerabilities and the attack.

EDITED TO ADD (9/7): More on Apple’s pushbacks.

Bypassing Apple FaceID’s Liveness Detection Feature

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/08/bypassing_apple.html

Apple’s FaceID has a liveness detection feature, which prevents someone from unlocking a victim’s phone by putting it in front of his face while he’s sleeping. That feature has been hacked:

Researchers on Wednesday during Black Hat USA 2019 demonstrated an attack that allowed them to bypass a victim’s FaceID and log into their phone simply by putting a pair of modified glasses on their face. By merely placing tape carefully over the lenses of a pair glasses and placing them on the victim’s face the researchers demonstrated how they could bypass Apple’s FaceID in a specific scenario. The attack itself is difficult, given the bad actor would need to figure out how to put the glasses on an unconscious victim without waking them up.

Cellebrite Claims It Can Unlock Any iPhone

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/cellebrite_clai.html

The digital forensics company Cellebrite now claims it can unlock any iPhone.

I dithered before blogging this, not wanting to give the company more publicity. But I decided that everyone who wants to know already knows, and that Apple already knows. It’s all of us that need to know.

iPhone Apps Surreptitiously Communicated with Unknown Servers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/iphone_apps_sur.html

Long news article (alternate source) on iPhone privacy, specifically the enormous amount of data your apps are collecting without your knowledge. A lot of this happens in the middle of the night, when you’re probably not otherwise using your phone:

IPhone apps I discovered tracking me by passing information to third parties ­ just while I was asleep ­ include Microsoft OneDrive, Intuit’s Mint, Nike, Spotify, The Washington Post and IBM’s the Weather Channel. One app, the crime-alert service Citizen, shared personally identifiable information in violation of its published privacy policy.

And your iPhone doesn’t only feed data trackers while you sleep. In a single week, I encountered over 5,400 trackers, mostly in apps, not including the incessant Yelp traffic.

How Apple’s "Find My" Feature Works

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/how_apples_find.html

Matthew Green intelligently speculates about how Apple’s new “Find My” feature works.

If you haven’t already been inspired by the description above, let me phrase the question you ought to be asking: how is this system going to avoid being a massive privacy nightmare?

Let me count the concerns:

  • If your device is constantly emitting a BLE signal that uniquely identifies it, the whole world is going to have (yet another) way to track you. Marketers already use WiFi and Bluetooth MAC addresses to do this: Find My could create yet another tracking channel.
  • It also exposes the phones who are doing the tracking. These people are now going to be sending their current location to Apple (which they may or may not already be doing). Now they’ll also be potentially sharing this information with strangers who “lose” their devices. That could go badly.

  • Scammers might also run active attacks in which they fake the location of your device. While this seems unlikely, people will always surprise you.

The good news is that Apple claims that their system actually does provide strong privacy, and that it accomplishes this using clever cryptography. But as is typical, they’ve declined to give out the details how they’re going to do it. Andy Greenberg talked me through an incomplete technical description that Apple provided to Wired, so that provides many hints. Unfortunately, what Apple provided still leaves huge gaps. It’s into those gaps that I’m going to fill in my best guess for what Apple is actually doing.

Fingerprinting iPhones

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/05/fingerprinting_7.html

This clever attack allows someone to uniquely identify a phone when you visit a website, based on data from the accelerometer, gyroscope, and magnetometer sensors.

We have developed a new type of fingerprinting attack, the calibration fingerprinting attack. Our attack uses data gathered from the accelerometer, gyroscope and magnetometer sensors found in smartphones to construct a globally unique fingerprint. Overall, our attack has the following advantages:

  • The attack can be launched by any website you visit or any app you use on a vulnerable device without requiring any explicit confirmation or consent from you.
  • The attack takes less than one second to generate a fingerprint.
  • The attack can generate a globally unique fingerprint for iOS devices.
  • The calibration fingerprint never changes, even after a factory reset.
  • The attack provides an effective means to track you as you browse across the web and move between apps on your phone.

* Following our disclosure, Apple has patched this vulnerability in iOS 12.2.

Research paper.

iPhone FaceTime Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/iphone_facetime.html

This is kind of a crazy iPhone vulnerability: it’s possible to call someone on FaceTime and listen on their microphone — and see from their camera — before they accept the call.

This is definitely an embarrassment, and Apple was right to disable Group FaceTime until it’s fixed. But it’s hard to imagine how an adversary can operationalize this in any useful way.

New York governor Andrew M. Cuomo wrote: “The FaceTime bug is an egregious breach of privacy that puts New Yorkers at risk.” Kinda, I guess.

EDITED TO ADD (1/30): This bug/vulnerability was first discovered by a 14-year-old, whose mother tried to alert Apple with no success.

iOS 12.1 Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/11/ios_121_vulnera.html

This is really just to point out that computer security is really hard:

Almost as soon as Apple released iOS 12.1 on Tuesday, a Spanish security researcher discovered a bug that exploits group Facetime calls to give anyone access to an iPhone users’ contact information with no need for a passcode.

[…]

A bad actor would need physical access to the phone that they are targeting and has a few options for viewing the victim’s contact information. They would need to either call the phone from another iPhone or have the phone call itself. Once the call connects they would need to:

  • Select the Facetime icon
  • Select “Add Person”
  • Select the plus icon
  • Scroll through the contacts and use 3D touch on a name to view all contact information that’s stored.

Making the phone call itself without entering a passcode can be accomplished by either telling Siri the phone number or, if they don’t know the number, they can say “call my phone.” We tested this with both the owners’ voice and a strangers voice, in both cases, Siri initiated the call.

Defeating the iPhone Restricted Mode

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/07/defeating_the_i.html

Recently, Apple introduced restricted mode to protect iPhones from attacks by companies like Cellebrite and Greyshift, which allow attackers to recover information from a phone without the password or fingerprint. Elcomsoft just announced that it can easily bypass it.

There is an important lesson in this: security is hard. Apple Computer has one of the best security teams on the planet. This feature was not tossed out in a day; it was designed and implemented with a lot of thought and care. If this team could make a mistake like this, imagine how bad a security feature is when implemented by a team without this kind of expertise.

This is the reason actual cryptographers and security engineers are very skeptical when a random company announces that their product is “secure.” We know that they don’t have the requisite security expertise to design and implement security properly. We know they didn’t take the time and care. We know that their engineers think they understand security, and designed to a level that they couldn’t break.

Getting security right is hard for the best teams on the world. It’s impossible for average teams.

Bypassing Passcodes in iOS

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/bypassing_passc.html

Last week, a story was going around explaining how to brute-force an iOS password. Basically, the trick was to plug the phone into an external keyboard and trying every PIN at once:

We reported Friday on Hickey’s findings, which claimed to be able to send all combinations of a user’s possible passcode in one go, by enumerating each code from 0000 to 9999, and concatenating the results in one string with no spaces. He explained that because this doesn’t give the software any breaks, the keyboard input routine takes priority over the device’s data-erasing feature.

I didn’t write about it, because it seemed too good to be true. A few days later, Apple pushed back on the findings — and it seems that it doesn’t work.

This isn’t to say that no one can break into an iPhone. We know that companies like Cellebrite and Grayshift are renting/selling iPhone unlock tools to law enforcement — which means governments and criminals can do the same thing — and that Apple is releasing a new feature called “restricted mode” that may make those hacks obsolete.

Grayshift is claiming that its technology will still work.

Former Apple security engineer Braden Thomas, who now works for a company called Grayshift, warned customers who had bought his GrayKey iPhone unlocking tool that iOS 11.3 would make it a bit harder for cops to get evidence and data out of seized iPhones. A change in the beta didn’t break GrayKey, but would require cops to use GrayKey on phones within a week of them being last unlocked.

“Starting with iOS 11.3, iOS saves the last time a device has been unlocked (either with biometrics or passcode) or was connected to an accessory or computer. If a full seven days (168 hours) elapse [sic] since the last time iOS saved one of these events, the Lightning port is entirely disabled,” Thomas wrote in a blog post published in a customer-only portal, which Motherboard obtained. “You cannot use it to sync or to connect to accessories. It is basically just a charging port at this point. This is termed USB Restricted Mode and it affects all devices that support iOS 11.3.”

Whether that’s real or marketing, we don’t know.