Tag Archives: National Institute of Standards and Technology

On the Security of Walls

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/on_the_security.html

Interesting history of the security of walls:

Dún Aonghasa presents early evidence of the same principles of redundant security measures at work in 13th century castles, 17th century star-shaped artillery fortifications, and even “defense in depth” security architecture promoted today by the National Institute of Standards and Technology, the Nuclear Regulatory Commission, and countless other security organizations world-wide.

Security advances throughout the centuries have been mostly technical adjustments in response to evolving weaponry. Fortification — the art and science of protecting a place by imposing a barrier between you and an enemy — is as ancient as humanity. From the standpoint of theory, however, there is very little about modern network or airport security that could not be learned from a 17th century artillery manual. That should trouble us more than it does.

Fortification depends on walls as a demarcation between attacker and defender. The very first priority action listed in the 2017 National Security Strategy states: “We will secure our borders through the construction of a border wall, the use of multilayered defenses and advanced technology, the employment of additional personnel, and other measures.” The National Security Strategy, as well as the executive order just preceding it, are just formal language to describe the recurrent and popular idea of a grand border wall as a central tool of strategic security. There’s been a lot said about the costs of the wall. But, as the American finger hovers over the Hadrian’s Wall 2.0 button, whether or not a wall will actually improve national security depends a lot on how walls work, but moreso, how they fail.

Lots more at the link.

How to Update AWS CloudHSM Devices and Client Instances to the Software and Firmware Versions Supported by AWS

Post Syndicated from Tracy Pierce original https://aws.amazon.com/blogs/security/how-to-update-aws-cloudhsm-devices-and-client-instances-to-the-software-and-firmware-versions-supported-by-aws/

As I explained in my previous Security Blog post, a hardware security module (HSM) is a hardware device designed with the security of your data and cryptographic key material in mind. It is tamper-resistant hardware that prevents unauthorized users from attempting to pry open the device, plug in any extra devices to access data or keys such as subtokens, or damage the outside housing. The HSM device AWS CloudHSM offers is the Luna SA 7000 (also called Safenet Network HSM 7000), which is created by Gemalto. Depending on the firmware version you install, many of the security properties of these HSMs will have been validated under Federal Information Processing Standard (FIPS) 140-2, a standard issued by the National Institute of Standards and Technology (NIST) for cryptography modules. These standards are in place to protect the integrity and confidentiality of the data stored on cryptographic modules.

To help ensure its continued use, functionality, and support from AWS, we suggest that you update your AWS CloudHSM device software and firmware as well as the client instance software to current versions offered by AWS. As of the publication of this blog post, the current non-FIPS-validated versions are 5.4.9/client, 5.3.13/software, and 6.20.2/firmware, and the current FIPS-validated versions are 5.4.9/client, 5.3.13/software, and 6.10.9/firmware. (The firmware version determines FIPS validation.) It is important to know your current versions before updating so that you can follow the correct update path.

In this post, I demonstrate how to update your current CloudHSM devices and client instances so that you are using the most current versions of software and firmware. If you contact AWS Support for CloudHSM hardware and application issues, you will be required to update to these supported versions before proceeding. Also, any newly provisioned CloudHSM devices will use these supported software and firmware versions only, and AWS does not offer “downgrade options.

Note: Before you perform any updates, check with your local CloudHSM administrator and application developer to verify that these updates will not conflict with your current applications or architecture.

Overview of the update process

To update your client and CloudHSM devices, you must use both update paths offered by AWS. The first path involves updating the software on your client instance, also known as a control instance. Following the second path updates the software first and then the firmware on your CloudHSM devices. The CloudHSM software must be updated before the firmware because of the firmware’s dependencies on the software in order to work appropriately.

As I demonstrate in this post, the correct update order is:

  1. Updating your client instance
  2. Updating your CloudHSM software
  3. Updating your CloudHSM firmware

To update your client instance, you must have the private SSH key you created when you first set up your client environment. This key is used to connect via SSH protocol on port 22 of your client instance. If you have more than one client instance, you must repeat this connection and update process on each of them. The following diagram shows the flow of an SSH connection from your local network to your client instances in the AWS Cloud.

Diagram that shows the flow of an SSH connection from your local network to your client instances in the AWS Cloud

After you update your client instance to the most recent software (5.3.13), you then must update the CloudHSM device software and firmware. First, you must initiate an SSH connection from any one client instance to each CloudHSM device, as illustrated in the following diagram. A successful SSH connection will have you land at the Luna shell, denoted by lunash:>. Second, you must be able to initiate a Secure Copy (SCP) of files to each device from the client instance. Because the software and firmware updates require an elevated level of privilege, you must have the Security Officer (SO) password that you created when you initialized your CloudHSM devices.

Diagram illustrating the initiation of an SSH connection from any one client instance to each CloudHSM device

After you have completed all updates, you can receive enhanced troubleshooting assistance from AWS, if you need it. When new versions of software and firmware are released, AWS performs extensive testing to ensure your smooth transition from version to version.

Detailed guidance for updating your client instance, CloudHSM software, and CloudHSM firmware

1.  Updating your client instance

Let’s start by updating your client instances. My client instance and CloudHSM devices are in the eu-west-1 region, but these steps work the same in any AWS region. Because Gemalto offers client instances in both Linux and Windows, I will cover steps to update both. I will start with Linux. Please note that all commands should be run as the “root” user.

Updating the Linux client

  1. SSH from your local network into the client instance. You can do this from Linux or Windows. Typically, you would do this from the directory where you have stored your private SSH key by using a command like the following command in a terminal or PuTTY This initiates the SSH connection by pointing to the path of your SSH key and denoting the user name and IP address of your client instance.
    ssh –i /Users/Bob/Keys/CloudHSM_SSH_Key.pem [email protected]

  1. After the SSH connection is established, you must stop all applications and services on the instance that are using the CloudHSM device. This is required because you are removing old software and installing new software in its place. After you have stopped all applications and services, you can move on to remove the existing version of the client software.
    /usr/safenet/lunaclient/bin/uninstall.sh

This command will remove the old client software, but will not remove your configuration file or certificates. These will be saved in the Chrystoki.conf file of your /etc directory and your usr/safenet/lunaclient/cert directory. Do not delete these files because you will lose the configuration of your CloudHSM devices and client connections.

  1. Download the new client software package: cloudhsm-safenet-client. Double-click it to extract the archive.
    SafeNet-Luna-client-5-4-9/linux/64/install.sh

    Make sure you choose the Luna SA option when presented with it. Because the directory where your certificates are installed is the same, you do not need to copy these certificates to another directory. You do, however, need to ensure that the Chrystoki.conf file, located at /etc/Chrystoki.conf, has the same path and name for the certificates as when you created them. (The path or names should not have changed, but you should still verify they are same as before the update.)

  1. Check to ensure that the PATH environment variable points to the directory, /usr/safenet/lunaclient/bin, to ensure no issues when you restart applications and services. The update process for your Linux client Instance is now complete.

Updating the Windows client

Use the following steps to update your Windows client instances:

  1. Use Remote Desktop Protocol (RDP) from your local network into the client instance. You can accomplish this with the RDP application of your choice.
  2. After you establish the RDP connection, stop all applications and services on the instance that are using the CloudHSM device. This is required because you will remove old software and install new software in its place or overwrite If your client software version is older than 5.4.1, you need to completely remove it and all patches by using Programs and Features in the Windows Control Panel. If your client software version is 5.4.1 or newer, proceed without removing the software. Your configuration file will remain intact in the crystoki.ini file of your C:\Program Files\SafeNet\Lunaclient\ directory. All certificates are preserved in the C:\Program Files\SafeNet\Lunaclient\cert\ directory. Again, do not delete these files, or you will lose all configuration and client connection data.
  3. After you have completed these steps, download the new client software: cloudhsm-safenet-client. Extract the archive from the downloaded file, and launch the SafeNet-Luna-client-5-4-9\win\64\Lunaclient.msi Choose the Luna SA option when it is presented to you. Because the directory where your certificates are installed is the same, you do not need to copy these certificates to another directory. You do, however, need to ensure that the crystoki.ini file, which is located at C:\Program Files\SafeNet\Lunaclient\crystoki.ini, has the same path and name for the certificates as when you created them. (The path and names should not have changed, but you should still verify they are same as before the update.)
  4. Make one last check to ensure the PATH environment variable points to the directory C:\Program Files\SafeNet\Lunaclient\ to help ensure no issues when you restart applications and services. The update process for your Windows client instance is now complete.

2.  Updating your CloudHSM software

Now that your clients are up to date with the most current software version, it’s time to move on to your CloudHSM devices. A few important notes:

  • Back up your data to a Luna SA Backup device. AWS does not sell or support the Luna SA Backup devices, but you can purchase them from Gemalto. We do, however, offer the steps to back up your data to a Luna SA Backup device. Do not update your CloudHSM devices without backing up your data first.
  • If the names of your clients used for Network Trust Link Service (NTLS) connections has a capital “T” as the eighth character, the client will not work after this update. This is because of a Gemalto naming convention. Before upgrading, ensure you modify your client names accordingly. The NTLS connection uses a two-way digital certificate authentication and SSL data encryption to protect sensitive data transmitted between your CloudHSM device and the client Instances.
  • The syslog configuration for the CloudHSM devices will be lost. After the update is complete, notify AWS Support and we will update the configuration for you.

Now on to updating the software versions. There are actually three different update paths to follow, and I will cover each. Depending on the current software versions on your CloudHSM devices, you might need to follow all three or just one.

Updating the software from version 5.1.x to 5.1.5

If you are running any version of the software older than 5.1.5, you must first update to version 5.1.5 before proceeding. To update to version 5.1.5:

  1. Stop all applications and services that access the CloudHSM device.
  2. Download the Luna SA software update package.
  3. Extract all files from the archive.
  4. Run the following command from your client instance to copy the lunasa_update-5.1.5-2.spkg file to the CloudHSM device.
    $ scp –I <private_key_file> lunasa_update-5.1.5-2.spkg [email protected]<hsm_ip_address>:

    <private_key_file> is the private portion of your SSH key pair and <hsm_ip_address> is the IP address of your CloudHSM elastic network interface (ENI). The ENI is the network endpoint that permits access to your CloudHSM device. The IP address was supplied to you when the CloudHSM device was provisioned.

  1. Use the following command to connect to your CloudHSM device and log in with your Security Officer (SO) password.
    $ ssh –I <private_key_file> [email protected]<hsm_ip_address>
    
    lunash:> hsm login

  1. Run the following commands to verify and then install the updated Luna SA software package.
    lunash:> package verify lunasa_update-5.1.5-2.spkg –authcode <auth_code>
    
    lunash:> package update lunasa_update-5.1.5-2.spkg –authcode <auth_code>

    The value you will use for <auth_code> is contained in the lunasa_update-5.1.5-2.auth file found in the 630-010165-018_reva.tar archive you downloaded in Step 2.

  1. Reboot the CloudHSM device by running the following command.
    lunash:> sysconf appliance reboot

When all the steps in this section are completed, you will have updated your CloudHSM software to version 5.1.5. You can now move on to update to version 5.3.10.

Updating the software to version 5.3.10

You can update to version 5.3.10 only if you are currently running version 5.1.5. To update to version 5.3.10:

  1. Stop all applications and services that access the CloudHSM device.
  2. Download the v 5.3.10 Luna SA software update package.
  3. Extract all files from the archive.
  4. Run the following command to copy the lunasa_update-5.3.10-7.spkg file to the CloudHSM device.
    $ scp –i <private_key_file> lunasa_update-5.3.10-7.spkg [email protected]<hsm_ip_address>:

    <private_key_file> is the private portion of your SSH key pair and <hsm_ip_address> is the IP address of your CloudHSM ENI.

  1. Run the following command to connect to your CloudHSM device and log in with your SO password.
    $ ssh –i <private_key_file> [email protected]<hsm_ip_address>
    
    lunash:> hsm login

  1. Run the following commands to verify and then install the updated Luna SA software package.
    lunash:> package verify lunasa_update-5.3.10-7.spkg –authcode <auth_code>
    
    lunash:> package update lunasa_update-5.3.10-7.spkg –authcode <auth_code>

The value you will use for <auth_code> is contained in the lunasa_update-5.3.10-7.auth file found in the SafeNet-Luna-SA-5-3-10.zip archive you downloaded in Step 2.

  1. Reboot the CloudHSM device by running the following command.
    lunash:> sysconf appliance reboot

When all the steps in this section are completed, you will have updated your CloudHSM software to version 5.3.10. You can now move on to update to version 5.3.13.

Note: Do not configure your applog settings at this point; you must first update the software to version 5.3.13 in the following step.

Updating the software to version 5.3.13

You can update to version 5.3.13 only if you are currently running version 5.3.10. If you are not already running version 5.3.10, follow the two update paths mentioned previously in this section.

To update to version 5.3.13:

  1. Stop all applications and services that access the CloudHSM device.
  2. Download the Luna SA software update package.
  3. Extract all files from the archive.
  4. Run the following command to copy the lunasa_update-5.3.13-1.spkg file to the CloudHSM device.
    $ scp –i <private_key_file> lunasa_update-5.3.13-1.spkg [email protected]<hsm_ip_address>

<private_key_file> is the private portion of your SSH key pair and <hsm_ip_address> is the IP address of your CloudHSM ENI.

  1. Run the following command to connect to your CloudHSM device and log in with your SO password.
    $ ssh –i <private_key_file> [email protected]<hsm_ip_address>
    
    lunash:> hsm login

  1. Run the following commands to verify and then install the updated Luna SA software package.
    lunash:> package verify lunasa_update-5.3.13-1.spkg –authcode <auth_code>
    
    lunash:> package update lunasa_update-5.3.13-1.spkg –authcode <auth_code>

The value you will use for <auth_code> is contained in the lunasa_update-5.3.13-1.auth file found in the SafeNet-Luna-SA-5-3-13.zip archive that you downloaded in Step 2.

  1. When updating to this software version, the option to update the firmware also is offered. If you do not require a version of the firmware validated under FIPS 140-2, accept the firmware update to version 6.20.2. If you do require a version of the firmware validated under FIPS 140-2, do not accept the firmware update and instead update by using the steps in the next section, “Updating your CloudHSM FIPS 140-2 validated firmware.”
  2. After updating the CloudHSM device, reboot it by running the following command.
    lunash:> sysconf appliance reboot

  1. Disable NTLS IP checking on the CloudHSM device so that it can operate within its VPC. To do this, run the following command.
    lunash:> ntls ipcheck disable

When all the steps in this section are completed, you will have updated your CloudHSM software to version 5.3.13. If you don’t need the FIPS 140-2 validated firmware, you will have also updated the firmware to version 6.20.2. If you do need the FIPS 140-2 validated firmware, proceed to the next section.

3.  Updating your CloudHSM FIPS 140-2 validated firmware

To update the FIPS 140-2 validated version of the firmware to 6.10.9, use the following steps:

  1. Download version 6.10.9 of the firmware package.
  2. Extract all files from the archive.
  3. Run the following command to copy the 630-010430-010_SPKG_LunaFW_6.10.9.spkg file to the CloudHSM device.
    $ scp –i <private_key_file> 630-010430-010_SPKG_LunaFW_6.10.9.spkg [email protected]<hsm_ip_address>:

<private_key_file> is the private portion of your SSH key pair, and <hsm_ip_address> is the IP address of your CloudHSM ENI.

  1. Run the following command to connect to your CloudHSM device and log in with your SO password.
    $ ssh –i <private_key_file> manager#<hsm_ip_address>
    
    lunash:> hsm login

  1. Run the following commands to verify and then install the updated Luna SA firmware package.
    lunash:> package verify 630-010430-010_SPKG_LunaFW_6.10.9.spkg –authcode <auth_code>
    
    lunash:> package update 630-010430-010_SPKG_LunaFW_6.10.9.spkg –authcode <auth_code>

The value you will use for <auth_code> is contained in the 630-010430-010_SPKG_LunaFW_6.10.9.auth file found in the 630-010430-010_SPKG_LunaFW_6.10.9.zip archive that you downloaded in Step 1.

  1. Run the following command to update the firmware of the CloudHSM devices.
    lunash:> hsm update firmware

  1. After you have updated the firmware, reboot the CloudHSM devices to complete the installation.
    lunash:> sysconf appliance reboot

Summary

In this blog post, I walked you through how to update your existing CloudHSM devices and clients so that they are using supported client, software, and firmware versions. Per AWS Support and CloudHSM Terms and Conditions, your devices and clients must use the most current supported software and firmware for continued troubleshooting assistance. Software and firmware versions regularly change based on customer use cases and requirements. Because AWS tests and validates all updates from Gemalto, you must install all updates for firmware and software by using our package links described in this post and elsewhere in our documentation.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions about implementing this solution, please start a new thread on the CloudHSM forum.

– Tracy

New Whitepaper: Aligning to the NIST Cybersecurity Framework in the AWS Cloud

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/new-whitepaper-aligning-to-the-nist-cybersecurity-framework-in-the-aws-cloud/

NIST logo

Today, we released the Aligning to the NIST Cybersecurity Framework in the AWS Cloud whitepaper. Both public and commercial sector organizations can use this whitepaper to assess the AWS environment against the National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) and improve the security measures they implement and operate (also known as security in the cloud). The whitepaper also provides a third-party auditor letter attesting to the AWS Cloud offering’s conformance to NIST CSF risk management practices (also known as security of the cloud), allowing organizations to properly protect their data across AWS.

In February 2014, NIST published the Framework for Improving Critical Infrastructure Cybersecurity in response to Presidential Executive Order 13636, “Improving Critical Infrastructure Cybersecurity,” which called for the development of a voluntary framework to help organizations improve the cybersecurity, risk management, and resilience of their systems. The Cybersecurity Enhancement Act of 2014 reinforced the legitimacy and authority of the NIST CSF by codifying it and its voluntary adoption into law, and federal agency Federal Information Security Modernization Act (FISMA) reporting metrics now align to the NIST CSF. Though it is intended for adoption by the critical infrastructure sector, the foundational set of security disciplines in the NIST CSF has been endorsed by government and industry as a recommended baseline for use by any organization, regardless of its sector or size.

We recognize the additional level of effort an organization has to expend for each new security assurance framework it implements. To reduce that burden, we provide a detailed breakout of AWS Cloud offerings and associated customer and AWS responsibilities to facilitate alignment with the NIST CSF. Organizations ranging from federal and state agencies to regulated entities to large enterprises can use this whitepaper as a guide for implementing AWS solutions to achieve the risk management outcomes in the NIST CSF.

Security, compliance, and customer data protection are our top priorities, and we will continue to provide the resources and services for you to meet your desired outcomes while integrating security best practices in the AWS environment. When you use AWS solutions, you can be confident that we protect your data with a level of assurance that meets, if not exceeds, your requirements and needs, and gives you the resources to secure your AWS environment. To request support for implementing the NIST CSF in your organization by using AWS services, contact your AWS account manager.

– Chris Gile, Senior Manager, Security Assurance

AWS Achieves FedRAMP Authorization for New Services in the AWS GovCloud (US) Region

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/aws-achieves-fedramp-authorization-for-a-wide-array-of-services/

Today, we’re pleased to announce an array of AWS services that are available in the AWS GovCloud (US) Region and have achieved Federal Risk and Authorization Management Program (FedRAMP) High authorizations. The FedRAMP Joint Authorization Board (JAB) has issued Provisional Authority to Operate (P-ATO) approvals, which are effective immediately. If you are a federal or commercial customer, you can use these services to process and store your critical workloads in the AWS GovCloud (US) Region’s authorization boundary with data up to the high impact level.

The services newly available in the AWS GovCloud (US) Region include database, storage, data warehouse, security, and configuration automation solutions that will help you increase your ability to manage data in the cloud. For example, with AWS CloudFormation, you can deploy AWS resources by automating configuration processes. AWS Key Management Service (KMS) enables you to create and control the encryption keys used to secure your data. Amazon Redshift enables you to analyze all your data cost effectively by using existing business intelligence tools to automate common administrative tasks for managing, monitoring, and scaling your data warehouse.

Our federal and commercial customers can now leverage our FedRAMP P-ATO to access the following services:

  • CloudFormation – CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion. You can use sample templates in CloudFormation, or create your own templates to describe the AWS resources and any associated dependencies or run-time parameters required to run your application.
  • Amazon DynamoDBAmazon DynamoDB is a fast and flexible NoSQL database service for all applications that need consistent, single-digit-millisecond latency at any scale. It is a fully managed cloud database and supports both document and key-value store models.
  • Amazon EMRAmazon EMR provides a managed Hadoop framework that makes it efficient and cost effective to process vast amounts of data across dynamically scalable Amazon EC2 instances. You can also run other popular distributed frameworks such as Apache Spark, HBase, Presto, and Flink in EMR, and interact with data in other AWS data stores such as Amazon S3 and DynamoDB.
  • Amazon GlacierAmazon Glacier is a secure, durable, and low-cost cloud storage service for data archiving and long-term backup. Customers can reliably store large or small amounts of data for as little as $0.004 per gigabyte per month, a significant savings compared to on-premises solutions.
  • KMS – KMS is a managed service that makes it easier for you to create and control the encryption keys used to encrypt your data, and uses Hardware Security Modules (HSMs) to protect the security of your keys. KMS is integrated with other AWS services to help you protect the data you store with these services. For example, KMS is integrated with CloudTrail to provide you with logs of all key usage and help you meet your regulatory and compliance needs.
  • Redshift – Redshift is a fast, fully managed, petabyte-scale data warehouse that makes it simple and cost effective to analyze all your data by using your existing business intelligence tools.
  • Amazon Simple Notification Service (SNS)Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or “fan out” messages to large numbers of recipients. SNS makes it simple and cost effective to send push notifications to mobile device users and email recipients or even send messages to other distributed services.
  • Amazon Simple Queue Service (SQS)Amazon SQS is a fully-managed message queuing service for reliably communicating among distributed software components and microservices—at any scale. Using SQS, you can send, store, and receive messages between software components at any volume, without losing messages or requiring other services to be always available.
  • Amazon Simple Workflow Service (SWF)Amazon SWF helps developers build, run, and scale background jobs that have parallel or sequential steps. SWF is a fully managed state tracker and task coordinator in the cloud.

AWS works closely with the FedRAMP Program Management Office (PMO), National Institute of Standards and Technology (NIST), and other federal regulatory and compliance bodies to ensure that we provide you with the cutting-edge technology you need in a secure and compliant fashion. We are working with our authorizing officials to continue to expand the scope of our authorized services, and we are fully committed to ensuring that AWS GovCloud (US) continues to offer government customers the most comprehensive mix of functionality and security.

– Chad

That "Commission on Enhancing Cybersecurity" is absurd

Post Syndicated from Robert Graham original http://blog.erratasec.com/2016/12/that-commission-on-enhancing.html

An Obama commission has publish a report on how to “Enhance Cybersecurity”. It’s promoted as having been written by neutral, bipartisan, technical experts. Instead, it’s almost entirely dominated by special interests and the Democrat politics of the outgoing administration.

In this post, I’m going through a random list of some of the 53 “action items” proposed by the documents. I show how they are policy issues, not technical issues. Indeed, much of the time the technical details are warped to conform to special interests.

IoT passwords

The recommendations include such things as Action Item 2.1.4:

Initial best practices should include requirements to mandate that IoT devices be rendered unusable until users first change default usernames and passwords. 

This recommendation for changing default passwords is repeated many times. It comes from the way the Mirai worm exploits devices by using hardcoded/default passwords.

But this is a misunderstanding of how these devices work. Take, for example, the infamous Xiongmai camera. It has user accounts on the web server to control the camera. If the user forgets the password, the camera can be reset to factory defaults by pressing a button on the outside of the camera.

But here’s the deal with security cameras. They are placed at remote sites miles away, up on the second story where people can’t mess with them. In order to reset them, you need to put a ladder in your truck and drive 30 minutes out to the site, then climb the ladder (an inherently dangerous activity). Therefore, Xiongmai provides a RESET.EXE utility for remotely resetting them. That utility happens to connect via Telnet using a hardcoded password.

The above report misunderstands what’s going on here. It sees Telnet and a hardcoded password, and makes assumptions. Some people assume that this is the normal user account — it’s not, it’s unrelated to the user accounts on the web server portion of the device. Requiring the user to change the password on the web service would have no effect on the Telnet service. Other people assume the Telnet service is accidental, that good security hygiene would remove it. Instead, it’s an intended feature of the product, to remotely reset the device. Fixing the “password” issue as described in the above recommendations would simply mean the manufacturer would create a different, custom backdoor that hackers would eventually reverse engineer, creating MiraiV2 botnet. Instead of security guides banning backdoors, they need to come up with standard for remote reset.

That characterization of Mirai as an IoT botnet is wrong. Mirai is a botnet of security cameras. Security cameras are fundamentally different from IoT devices like toasters and fridges because they are often exposed to the public Internet. To stream video on your phone from your security camera, you need a port open on the Internet. Non-camera IoT devices, however, are overwhelmingly protected by a firewall, with no exposure to the public Internet. While you can create a botnet of Internet cameras, you cannot create a botnet of Internet toasters.

The point I’m trying to demonstrate here is that the above report was written by policy folks with little grasp of the technical details of what’s going on. They use Mirai to justify several of their “Action Items”, none of which actually apply to the technical details of Mirai. It has little to do with IoT, passwords, or hygiene.

Public-private partnerships

Action Item 1.2.1: The President should create, through executive order, the National Cybersecurity Private–Public Program (NCP 3 ) as a forum for addressing cybersecurity issues through a high-level, joint public–private collaboration.

We’ve had public-private partnerships to secure cyberspace for over 20 years, such as the FBI InfraGuard partnership. President Clinton’s had a plan in 1998 to create a public-private partnership to address cyber vulnerabilities. President Bush declared public-private partnerships the “cornerstone of his 2003 plan to secure cyberspace.

Here we are 20 years later, and this document is full of new naive proposals for public-private partnerships There’s no analysis of why they have failed in the past, or a discussion of which ones have succeeded.

The many calls for public-private programs reflects the left-wing nature of this supposed “bipartisan” document, that sees government as a paternalistic entity that can help. The right-wing doesn’t believe the government provides any value in these partnerships. In my 20 years of experience with government private-partnerships in cybersecurity, I’ve found them to be a time waster at best and at worst, a way to coerce “voluntary measures” out of companies that hurt the public’s interest.

Build a wall and make China pay for it

Action Item 1.3.1: The next Administration should require that all Internet-based federal government services provided directly to citizens require the use of appropriately strong authentication.

This would cost at least $100 per person, for 300 million people, or $30 billion. In other words, it’ll cost more than Trump’s wall with Mexico.

Hardware tokens are cheap. Blizzard (a popular gaming company) must deal with widespread account hacking from “gold sellers”, and provides second factor authentication to its gamers for $6 each. But that ignores the enormous support costs involved. How does a person prove their identity to the government in order to get such a token? To replace a lost token? When old tokens break? What happens if somebody’s token is stolen?

And that’s the best case scenario. Other options, like using cellphones as a second factor, are non-starters.

This is actually not a bad recommendation, as far as government services are involved, but it ignores the costs and difficulties involved.

But then the recommendations go on to suggest this for private sector as well:

Specifically, private-sector organizations, including top online retailers, large health insurers, social media companies, and major financial institutions, should use strong authentication solutions as the default for major online applications.

No, no, no. There is no reason for a “top online retailer” to know your identity. I lie about my identity. Amazon.com thinks my name is “Edward Williams”, for example.

They get worse with:

Action Item 1.3.3: The government should serve as a source to validate identity attributes to address online identity challenges.

In other words, they are advocating a cyber-dystopic police-state wet-dream where the government controls everyone’s identity. We already see how this fails with Facebook’s “real name” policy, where everyone from political activists in other countries to LGBTQ in this country get harassed for revealing their real names.

Anonymity and pseudonymity are precious rights on the Internet that we now enjoy — rights endangered by the radical policies in this document. This document frequently claims to promote security “while protecting privacy”. But the government doesn’t protect privacy — much of what we want from cybersecurity is to protect our privacy from government intrusion. This is nothing new, you’ve heard this privacy debate before. What I’m trying to show here is that the one-side view of privacy in this document demonstrates how it’s dominated by special interests.

Cybersecurity Framework

Action Item 1.4.2: All federal agencies should be required to use the Cybersecurity Framework. 

The “Cybersecurity Framework” is a bunch of a nonsense that would require another long blogpost to debunk. It requires months of training and years of experience to understand. It contains things like “DE.CM-4: Malicious code is detected”, as if that’s a thing organizations are able to do.

All the while it ignores the most common cyber attacks (SQL/web injections, phishing, password reuse, DDoS). It’s a typical example where organizations spend enormous amounts of money following process while getting no closer to solving what the processes are attempting to solve. Federal agencies using the Cybersecurity Framework are no safer from my pentests than those who don’t use it.

It gets even crazier:

Action Item 1.5.1: The National Institute of Standards and Technology (NIST) should expand its support of SMBs in using the Cybersecurity Framework and should assess its cost-effectiveness specifically for SMBs.

Small businesses can’t even afford to even read the “Cybersecurity Framework”. Simply reading the doc, trying to understand it, would exceed their entire IT/computer budget for the year. It would take a high-priced consultant earning $500/hour to tell them that “DE.CM-4: Malicious code is detected” means “buy antivirus and keep it up to date”.

Software liability is a hoax invented by the Chinese to make our IoT less competitive

Action Item 2.1.3: The Department of Justice should lead an interagency study with the Departments of Commerce and Homeland Security and work with the Federal Trade Commission, the Consumer Product Safety Commission, and interested private sector parties to assess the current state of the law with regard to liability for harm caused by faulty IoT devices and provide recommendations within 180 days. 

For over a decade, leftists in the cybersecurity industry have been pushing the concept of “software liability”. Every time there is a major new development in hacking, such as the worms around 2003, they come out with documents explaining why there’s a “market failure” and that we need liability to punish companies to fix the problem. Then the problem is fixed, without software liability, and the leftists wait for some new development to push the theory yet again.

It’s especially absurd for the IoT marketspace. The harm, as they imagine, is DDoS. But the majority of devices in Mirai were sold by non-US companies to non-US customers. There’s no way US regulations can stop that.

What US regulations will stop is IoT innovation in the United States. Regulations are so burdensome, and liability lawsuits so punishing, that it will kill all innovation within the United States. If you want to get rich with a clever IoT Kickstarter project, forget about it: you entire development budget will go to cybersecurity. The only companies that will be able to afford to ship IoT products in the United States will be large industrial concerns like GE that can afford the overhead of regulation/liability.

Liability is a left-wing policy issue, not one supported by technical analysis. Software liability has proven to be immaterial in any past problem and current proponents are distorting the IoT market to promote it now.

Cybersecurity workforce

Action Item 4.1.1: The next President should initiate a national cybersecurity workforce program to train 100,000 new cybersecurity practitioners by 2020. 

The problem in our industry isn’t the lack of “cybersecurity practitioners”, but the overabundance of “insecurity practitioners”.

Take “SQL injection” as an example. It’s been the most common way hackers break into websites for 15 years. It happens because programmers, those building web-apps, blinding paste input into SQL queries. They do that because they’ve been trained to do it that way. All the textbooks on how to build webapps teach them this. All the examples show them this.

So you have government programs on one hand pushing tech education, teaching kids to build web-apps with SQL injection. Then you propose to train a second group of people to fix the broken stuff the first group produced.

The solution to SQL/website injections is not more practitioners, but stopping programmers from creating the problems in the first place. The solution to phishing is to use the tools already built into Windows and networks that sysadmins use, not adding new products/practitioners. These are the two most common problems, and they happen not because of a lack of cybersecurity practitioners, but because the lack of cybersecurity as part of normal IT/computers.

I point this to demonstrate yet against that the document was written by policy people with little or no technical understanding of the problem.

Nutritional label

Action Item 3.1.1: To improve consumers’ purchasing decisions, an independent organization should develop the equivalent of a cybersecurity “nutritional label” for technology products and services—ideally linked to a rating system of understandable, impartial, third-party assessment that consumers will intuitively trust and understand. 

This can’t be done. Grab some IoT devices, like my thermostat, my car, or a Xiongmai security camera used in the Mirai botnet. These devices are so complex that no “nutritional label” can be made from them.

One of the things you’d like to know is all the software dependencies, so that if there’s a bug in OpenSSL, for example, then you know your device is vulnerable. Unfortunately, that requires a nutritional label with 10,000 items on it.

Or, one thing you’d want to know is that the device has no backdoor passwords. But that would miss the Xiongmai devices. The web service has no backdoor passwords. If you caught the Telnet backdoor password and removed it, then you’d miss the special secret backdoor that hackers would later reverse engineer.

This is a policy position chasing a non-existent technical issue push by Pieter Zatko, who has gotten hundreds of thousands of dollars from government grants to push the issue. It’s his way of getting rich and has nothing to do with sound policy.

Cyberczars and ambassadors

Various recommendations call for the appointment of various CISOs, Assistant to the President for Cybersecurity, and an Ambassador for Cybersecurity. But nowhere does it mention these should be technical posts. This is like appointing a Surgeon General who is not a doctor.

Government’s problems with cybersecurity stems from the way technical knowledge is so disrespected. The current cyberczar prides himself on his lack of technical knowledge, because that helps him see the bigger picture.

Ironically, many of the other Action Items are about training cybersecurity practitioners, employees, and managers. None of this can happen as long as leadership is clueless. Technical details matter, as I show above with the Mirai botnet. Subtlety and nuance in technical details can call for opposite policy responses.

Conclusion

This document is promoted as being written by technical experts. However, nothing in the document is neutral technical expertise. Instead, it’s almost entirely a policy document dominated by special interests and left-wing politics. In many places it makes recommendations to the incoming Republican president. His response should be to round-file it immediately.

I only chose a few items, as this blogpost is long enough as it is. I could pick almost any of of the 53 Action Items to demonstrate how they are policy, special-interest driven rather than reflecting technical expertise.

In Case You Missed These: AWS Security Blog Posts from June, July, and August

Post Syndicated from Craig Liebendorfer original https://blogs.aws.amazon.com/security/post/Tx3KVD6T490MM47/In-Case-You-Missed-These-AWS-Security-Blog-Posts-from-June-July-and-August

In case you missed any AWS Security Blog posts from June, July, and August, they are summarized and linked to below. The posts are shown in reverse chronological order (most recent first), and the subject matter ranges from a tagging limit increase to recording SSH sessions established through a bastion host.

August

August 16: Updated Whitepaper Available: AWS Best Practices for DDoS Resiliency
We recently released the 2016 version of the AWS Best Practices for DDoS Resiliency Whitepaper, which can be helpful if you have public-facing endpoints that might attract unwanted distributed denial of service (DDoS) activity.

August 15: Now Organize Your AWS Resources by Using up to 50 Tags per Resource
Tagging AWS resources simplifies the way you organize and discover resources, allocate costs, and control resource access across services. Many of you have told us that as the number of applications, teams, and projects running on AWS increases, you need more than 10 tags per resource. Based on this feedback, we now support up to 50 tags per resource. You do not need to take additional action—you can begin applying as many as 50 tags per resource today.

August 11: New! Import Your Own Keys into AWS Key Management Service
Today, we are happy to announce the launch of the new import key feature that enables you to import keys from your own key management infrastructure (KMI) into AWS Key Management Service (KMS). After you have exported keys from your existing systems and imported them into KMS, you can use them in all KMS-integrated AWS services and custom applications.

August 2: Customer Update: Amazon Web Services and the EU-US Privacy Shield
Recently, the European Commission and the US Government agreed on a new framework called the EU-US Privacy Shield, and on July 12, the European Commission formally adopted it. AWS welcomes this new framework for transatlantic data flow. As the EU-US Privacy Shield replaces Safe Harbor, we understand many of our customers have questions about what this means for them. The security of our customers’ data is our number one priority, so I wanted to take a few moments to explain what this all means.

August 2: How to Remove Single Points of Failure by Using a High-Availability Partition Group in Your AWS CloudHSM Environment
In this post, I will walk you through steps to remove single points of failure in your AWS CloudHSM environment by setting up a high-availability (HA) partition group. Single points of failure occur when a single CloudHSM device fails in a non-HA configuration, which can result in the permanent loss of keys and data. The HA partition group, however, allows for one or more CloudHSM devices to fail, while still keeping your environment operational.

July

July 28: Enable Your Federated Users to Work in the AWS Management Console for up to 12 Hours
AWS Identity and Access Management (IAM) supports identity federation, which enables external identities, such as users in your corporate directory, to sign in to the AWS Management Console via single sign-on (SSO). Now with a small configuration change, your AWS administrators can allow your federated users to work in the AWS Management Console for up to 12 hours, instead of having to reauthenticate every 60 minutes. In addition, administrators can now revoke active federated user sessions. In this blog post, I will show how to configure the console session duration for two common federation use cases: using Security Assertion Markup Language (SAML) 2.0 and using a custom federation broker that leverages the sts:AssumeRole* APIs (see this downloadable sample of a federation proxy). I will wrap up this post with a walkthrough of the new session revocation process.

July 28: Amazon Cognito Your User Pools is Now Generally Available
Amazon Cognito makes it easy for developers to add sign-up, sign-in, and enhanced security functionality to mobile and web apps. With Amazon Cognito Your User Pools, you get a simple, fully managed service for creating and maintaining your own user directory that can scale to hundreds of millions of users.

July 27: How to Audit Cross-Account Roles Using AWS CloudTrail and Amazon CloudWatch Events
In this blog post, I will walk through the process of auditing access across AWS accounts by a cross-account role. This process links API calls that assume a role in one account to resource-related API calls in a different account. To develop this process, I will use AWS CloudTrail, Amazon CloudWatch Events, and AWS Lambda functions. When complete, the process will provide a full audit chain from end user to resource access across separate AWS accounts.

July 25: AWS Becomes First Cloud Service Provider to Adopt New PCI DSS 3.2
We are happy to announce the availability of the Amazon Web Services PCI DSS 3.2 Compliance Package for the 2016/2017 cycle. AWS is the first cloud service provider (CSP) to successfully complete the assessment against the newly released PCI Data Security Standard (PCI DSS) version 3.2, 18 months in advance of the mandatory February 1, 2018, deadline. The AWS Attestation of Compliance (AOC), available upon request, now features 26 PCI DSS certified services, including the latest additions of Amazon EC2 Container Service (ECS), AWS Config, and AWS WAF (a web application firewall). We at AWS are committed to this international information security and compliance program, and adopting the new standard as early as possible once again demonstrates our commitment to information security as our highest priority. Our customers (and customers of our customers) can operate confidently as they store and process credit card information (and any other sensitive data) in the cloud knowing that AWS products and services are tested against the latest and most mature set of PCI compliance requirements.

July 20: New AWS Compute Blog Post: Help Secure Container-Enabled Applications with IAM Roles for ECS Tasks
Amazon EC2 Container Service (ECS) now allows you to specify an IAM role that can be used by the containers in an ECS task, as a new AWS Compute Blog post explains. 

July 14: New Whitepaper Now Available: The Security Perspective of the AWS Cloud Adoption Framework
Today, AWS released the Security Perspective of the AWS Cloud Adoption Framework (AWS CAF). The AWS CAF provides a framework to help you structure and plan your cloud adoption journey, and build a comprehensive approach to cloud computing throughout the IT lifecycle. The framework provides seven specific areas of focus or Perspectives: business, platform, maturity, people, process, operations, and security.

July 14: New Amazon Inspector Blog Post on the AWS Blog
On the AWS Blog yesterday, Jeff Barr published a new security-related blog post written by AWS Principal Security Engineer Eric Fitzgerald. Here’s the beginning of the post, which is entitled, Scale Your Security Vulnerability Testing with Amazon Inspector:

July 12: How to Use AWS CloudFormation to Automate Your AWS WAF Configuration with Example Rules and Match Conditions
We recently announced AWS CloudFormation support for all current features of AWS WAF. This enables you to leverage CloudFormation templates to configure, customize, and test AWS WAF settings across all your web applications. Using CloudFormation templates can help you reduce the time required to configure AWS WAF. In this blog post, I will show you how to use CloudFormation to automate your AWS WAF configuration with example rules and match conditions.

July 11: How to Restrict Amazon S3 Bucket Access to a Specific IAM Role
In this blog post, I show how you can restrict S3 bucket access to a specific IAM role or user within an account using Conditions instead of with the NotPrincipal element. Even if another user in the same account has an Admin policy or a policy with s3:*, they will be denied if they are not explicitly listed. You can use this approach, for example, to configure a bucket for access by instances within an Auto Scaling group. You can also use this approach to limit access to a bucket with a high-level security need.

July 7: How to Use SAML to Automatically Direct Federated Users to a Specific AWS Management Console Page
In this blog post, I will show you how to create a deep link for federated users via the SAML 2.0 RelayState parameter in Active Directory Federation Services (AD FS). By using a deep link, your users will go directly to the specified console page without additional navigation.

July 6: How to Prevent Uploads of Unencrypted Objects to Amazon S3
In this blog post, I will show you how to create an S3 bucket policy that prevents users from uploading unencrypted objects, unless they are using server-side encryption with S3–managed encryption keys (SSE-S3) or server-side encryption with AWS KMS–managed keys (SSE-KMS).

June

June 30: The Top 20 AWS IAM Documentation Pages so Far This Year
The following 20 pages have been the most viewed AWS Identity and Access Management (IAM) documentation pages so far this year. I have included a brief description with each link to give you a clearer idea of what each page covers. Use this list to see what other people have been viewing and perhaps to pique your own interest about a topic you’ve been meaning to research. 

June 29: The Most Viewed AWS Security Blog Posts so Far in 2016
The following 10 posts are the most viewed AWS Security Blog posts that we published during the first six months of this year. You can use this list as a guide to catch up on your blog reading or even read a post again that you found particularly useful.

June 25: AWS Earns Department of Defense Impact Level 4 Provisional Authorization
I am pleased to share that, for our AWS GovCloud (US) Region, AWS has received a Defense Information Systems Agency (DISA) Provisional Authorization (PA) at Impact Level 4 (IL4). This will allow Department of Defense (DoD) agencies to use the AWS Cloud for production workloads with export-controlled data, privacy information, and protected health information as well as other controlled unclassified information. This new authorization continues to demonstrate our advanced work in the public sector space; you might recall AWS was the first cloud service provider to obtain an Impact Level 4 PA in August 2014, paving the way for DoD pilot workloads and applications in the cloud. Additionally, we recently achieved a FedRAMP High provisional Authorization to Operate (P-ATO) from the Joint Authorization Board (JAB), also for AWS GovCloud (US), and today’s announcement allows DoD mission owners to continue to leverage AWS for critical production applications.

June 23: AWS re:Invent 2016 Registration Is Now Open
Register now for the fifth annual AWS re:Invent, the largest gathering of the global cloud computing community. Join us in Las Vegas for opportunities to connect, collaborate, and learn about AWS solutions. This year we are offering all-new technical deep-dives on topics such as security, IoT, serverless computing, and containers. We are also delivering more than 400 sessions, more hands-on labs, bootcamps, and opportunities for one-on-one engagements with AWS experts.

June 23: AWS Achieves FedRAMP High JAB Provisional Authorization
We are pleased to announce that AWS has received a FedRAMP High JAB Provisional Authorization to Operate (P-ATO) from the Joint Authorization Board (JAB) for the AWS GovCloud (US) Region. The new Federal Risk and Authorization Management Program (FedRAMP) High JAB Provisional Authorization is mapped to more than 400 National Institute of Standards and Technology (NIST) security controls. This P-ATO recognizes AWS GovCloud (US) as a secure environment on which to run highly sensitive government workloads, including Personally Identifiable Information (PII), sensitive patient records, financial data, law enforcement data, and other Controlled Unclassified Information (CUI).

June 22: AWS IAM Service Last Accessed Data Now Available for South America (Sao Paulo) and Asia Pacific (Seoul) Regions
In December, AWS IAM released service last accessed data, which helps you identify overly permissive policies attached to an IAM entity (a user, group, or role). Today, we have extended service last accessed data to support two additional regions: South America (Sao Paulo) and Asia Pacific (Seoul). With this release, you can now view the date when an IAM entity last accessed an AWS service in these two regions. You can use this information to identify unnecessary permissions and update policies to remove access to unused services.

June 20: New Twitter Handle Now Live: @AWSSecurityInfo
Today, we launched a new Twitter handle: @AWSSecurityInfo. The purpose of this new handle is to share security bulletins, security whitepapers, compliance news and information, and other AWS security-related and compliance-related information. The scope of this handle is broader than that of @AWSIdentity, which focuses primarily on Security Blog posts. However, feel free to follow both handles!

June 15: Announcing Two New AWS Quick Start Reference Deployments for Compliance
As part of the Professional Services Enterprise Accelerator – Compliance program, AWS has published two new Quick Start reference deployments to assist federal government customers and others who need to meet National Institute of Standards and Technology (NIST) SP 800-53 (Revision 4) security control requirements, including those at the high-impact level. The new Quick Starts are AWS Enterprise Accelerator – Compliance: NIST-based Assurance Frameworks and AWS Enterprise Accelerator – Compliance: Standardized Architecture for NIST High-Impact Controls Featuring Trend Micro Deep Security. These Quick Starts address many of the NIST controls at the infrastructure layer. Furthermore, for systems categorized as high impact, AWS has worked with Trend Micro to incorporate its Deep Security product into a Quick Start deployment in order to address many additional high-impact controls at the workload layer (app, data, and operating system). In addition, we have worked with Telos Corporation to populate security control implementation details for each of these Quick Starts into the Xacta product suite for customers who rely upon that suite for governance, risk, and compliance workflows.

June 14: Now Available: Get Even More Details from Service Last Accessed Data
In December, AWS IAM released service last accessed data, which shows the time when an IAM entity (a user, group, or role) last accessed an AWS service. This provided a powerful tool to help you grant least privilege permissions. Starting today, it’s easier to identify where you can reduce permissions based on additional service last accessed data.

June 14: How to Record SSH Sessions Established Through a Bastion Host
A bastion host is a server whose purpose is to provide access to a private network from an external network, such as the Internet. Because of its exposure to potential attack, a bastion host must minimize the chances of penetration. For example, you can use a bastion host to mitigate the risk of allowing SSH connections from an external network to the Linux instances launched in a private subnet of your Amazon Virtual Private Cloud (VPC). In this blog post, I will show you how to leverage a bastion host to record all SSH sessions established with Linux instances. Recording SSH sessions enables auditing and can help in your efforts to comply with regulatory requirements.

June 14: AWS Granted Authority to Operate for Department of Commerce and NOAA
AWS already has a number of federal agencies onboarded to the cloud, including the Department of Energy, The Department of the Interior, and NASA. Today we are pleased to announce the addition of two more ATOs (authority to operate) for the Department of Commerce (DOC) and the National Oceanic and Atmospheric Administration (NOAA). Specifically, the DOC will be utilizing AWS for their Commerce Data Service, and NOAA will be leveraging the cloud for their “Big Data Project." According to NOAA, the goal of the Big Data Project is to “create a sustainable, market-driven ecosystem that lowers the cost barrier to data publication. This project will create a new economic space for growth and job creation while providing the public far greater access to the data created with its tax dollars.”

June 2: How to Set Up DNS Resolution Between On-Premises Networks and AWS by Using Unbound
In previous AWS Security Blog posts, Drew Dennis covered two options for establishing DNS connectivity between your on-premises networks and your Amazon Virtual Private Cloud (Amazon VPC) environments. His first post explained how to use Simple AD to forward DNS requests originating from on-premises networks to an Amazon Route 53 private hosted zone. His second post showed how you can use Microsoft Active Directory (also provisioned with AWS Directory Service) to provide the same DNS resolution with some additional forwarding capabilities. In this post, I will explain how you can set up DNS resolution between your on-premises DNS with Amazon VPC by using Unbound, an open-source, recursive DNS resolver. This solution is not a managed solution like Microsoft AD and Simple AD, but it does provide the ability to route DNS requests between on-premises environments and an Amazon VPC–provided DNS.

June 1: How to Manage Secrets for Amazon EC2 Container Service–Based Applications by Using Amazon S3 and Docker
In this blog post, I will show you how to store secrets on Amazon S3, and use AWS IAM roles to grant access to those stored secrets using an example WordPress application deployed as a Docker image using ECS. Using IAM roles means that developers and operations staff do not have the credentials to access secrets. Only the application and staff who are responsible for managing the secrets can access them. The deployment model for ECS ensures that tasks are run on dedicated EC2 instances for the same AWS account and are not shared between customers, which gives sufficient isolation between different container environments.

If you have comments  about any of these posts, please add your comments in the "Comments" section of the appropriate post. If you have questions about or issues implementing the solutions in any of these posts, please start a new thread on the AWS IAM forum.

– Craig

In Case You Missed These: AWS Security Blog Posts from June, July, and August

Post Syndicated from Craig Liebendorfer original https://aws.amazon.com/blogs/security/in-case-you-missed-these-aws-security-blog-posts-from-june-july-and-august/

In case you missed any AWS Security Blog posts from June, July, and August, they are summarized and linked to below. The posts are shown in reverse chronological order (most recent first), and the subject matter ranges from a tagging limit increase to recording SSH sessions established through a bastion host.

August

August 16: Updated Whitepaper Available: AWS Best Practices for DDoS Resiliency
We recently released the 2016 version of the AWS Best Practices for DDoS Resiliency Whitepaper, which can be helpful if you have public-facing endpoints that might attract unwanted distributed denial of service (DDoS) activity.

August 15: Now Organize Your AWS Resources by Using up to 50 Tags per Resource
Tagging AWS resources simplifies the way you organize and discover resources, allocate costs, and control resource access across services. Many of you have told us that as the number of applications, teams, and projects running on AWS increases, you need more than 10 tags per resource. Based on this feedback, we now support up to 50 tags per resource. You do not need to take additional action—you can begin applying as many as 50 tags per resource today.

August 11: New! Import Your Own Keys into AWS Key Management Service
Today, we are happy to announce the launch of the new import key feature that enables you to import keys from your own key management infrastructure (KMI) into AWS Key Management Service (KMS). After you have exported keys from your existing systems and imported them into KMS, you can use them in all KMS-integrated AWS services and custom applications.

August 2: Customer Update: Amazon Web Services and the EU-US Privacy Shield
Recently, the European Commission and the US Government agreed on a new framework called the EU-US Privacy Shield, and on July 12, the European Commission formally adopted it. AWS welcomes this new framework for transatlantic data flow. As the EU-US Privacy Shield replaces Safe Harbor, we understand many of our customers have questions about what this means for them. The security of our customers’ data is our number one priority, so I wanted to take a few moments to explain what this all means.

August 2: How to Remove Single Points of Failure by Using a High-Availability Partition Group in Your AWS CloudHSM Environment
In this post, I will walk you through steps to remove single points of failure in your AWS CloudHSM environment by setting up a high-availability (HA) partition group. Single points of failure occur when a single CloudHSM device fails in a non-HA configuration, which can result in the permanent loss of keys and data. The HA partition group, however, allows for one or more CloudHSM devices to fail, while still keeping your environment operational.

July

July 28: Enable Your Federated Users to Work in the AWS Management Console for up to 12 Hours
AWS Identity and Access Management (IAM) supports identity federation, which enables external identities, such as users in your corporate directory, to sign in to the AWS Management Console via single sign-on (SSO). Now with a small configuration change, your AWS administrators can allow your federated users to work in the AWS Management Console for up to 12 hours, instead of having to reauthenticate every 60 minutes. In addition, administrators can now revoke active federated user sessions. In this blog post, I will show how to configure the console session duration for two common federation use cases: using Security Assertion Markup Language (SAML) 2.0 and using a custom federation broker that leverages the sts:AssumeRole* APIs (see this downloadable sample of a federation proxy). I will wrap up this post with a walkthrough of the new session revocation process.

July 28: Amazon Cognito Your User Pools is Now Generally Available
Amazon Cognito makes it easy for developers to add sign-up, sign-in, and enhanced security functionality to mobile and web apps. With Amazon Cognito Your User Pools, you get a simple, fully managed service for creating and maintaining your own user directory that can scale to hundreds of millions of users.

July 27: How to Audit Cross-Account Roles Using AWS CloudTrail and Amazon CloudWatch Events
In this blog post, I will walk through the process of auditing access across AWS accounts by a cross-account role. This process links API calls that assume a role in one account to resource-related API calls in a different account. To develop this process, I will use AWS CloudTrail, Amazon CloudWatch Events, and AWS Lambda functions. When complete, the process will provide a full audit chain from end user to resource access across separate AWS accounts.

July 25: AWS Becomes First Cloud Service Provider to Adopt New PCI DSS 3.2
We are happy to announce the availability of the Amazon Web Services PCI DSS 3.2 Compliance Package for the 2016/2017 cycle. AWS is the first cloud service provider (CSP) to successfully complete the assessment against the newly released PCI Data Security Standard (PCI DSS) version 3.2, 18 months in advance of the mandatory February 1, 2018, deadline. The AWS Attestation of Compliance (AOC), available upon request, now features 26 PCI DSS certified services, including the latest additions of Amazon EC2 Container Service (ECS), AWS Config, and AWS WAF (a web application firewall). We at AWS are committed to this international information security and compliance program, and adopting the new standard as early as possible once again demonstrates our commitment to information security as our highest priority. Our customers (and customers of our customers) can operate confidently as they store and process credit card information (and any other sensitive data) in the cloud knowing that AWS products and services are tested against the latest and most mature set of PCI compliance requirements.

July 20: New AWS Compute Blog Post: Help Secure Container-Enabled Applications with IAM Roles for ECS Tasks
Amazon EC2 Container Service (ECS) now allows you to specify an IAM role that can be used by the containers in an ECS task, as a new AWS Compute Blog post explains.

July 14: New Whitepaper Now Available: The Security Perspective of the AWS Cloud Adoption Framework
Today, AWS released the Security Perspective of the AWS Cloud Adoption Framework (AWS CAF). The AWS CAF provides a framework to help you structure and plan your cloud adoption journey, and build a comprehensive approach to cloud computing throughout the IT lifecycle. The framework provides seven specific areas of focus or Perspectives: business, platform, maturity, people, process, operations, and security.

July 14: New Amazon Inspector Blog Post on the AWS Blog
On the AWS Blog yesterday, Jeff Barr published a new security-related blog post written by AWS Principal Security Engineer Eric Fitzgerald. Here’s the beginning of the post, which is entitled, Scale Your Security Vulnerability Testing with Amazon Inspector:

July 12: How to Use AWS CloudFormation to Automate Your AWS WAF Configuration with Example Rules and Match Conditions
We recently announced AWS CloudFormation support for all current features of AWS WAF. This enables you to leverage CloudFormation templates to configure, customize, and test AWS WAF settings across all your web applications. Using CloudFormation templates can help you reduce the time required to configure AWS WAF. In this blog post, I will show you how to use CloudFormation to automate your AWS WAF configuration with example rules and match conditions.

July 11: How to Restrict Amazon S3 Bucket Access to a Specific IAM Role
In this blog post, I show how you can restrict S3 bucket access to a specific IAM role or user within an account using Conditions instead of with the NotPrincipal element. Even if another user in the same account has an Admin policy or a policy with s3:*, they will be denied if they are not explicitly listed. You can use this approach, for example, to configure a bucket for access by instances within an Auto Scaling group. You can also use this approach to limit access to a bucket with a high-level security need.

July 7: How to Use SAML to Automatically Direct Federated Users to a Specific AWS Management Console Page
In this blog post, I will show you how to create a deep link for federated users via the SAML 2.0 RelayState parameter in Active Directory Federation Services (AD FS). By using a deep link, your users will go directly to the specified console page without additional navigation.

July 6: How to Prevent Uploads of Unencrypted Objects to Amazon S3
In this blog post, I will show you how to create an S3 bucket policy that prevents users from uploading unencrypted objects, unless they are using server-side encryption with S3–managed encryption keys (SSE-S3) or server-side encryption with AWS KMS–managed keys (SSE-KMS).

June

June 30: The Top 20 AWS IAM Documentation Pages so Far This Year
The following 20 pages have been the most viewed AWS Identity and Access Management (IAM) documentation pages so far this year. I have included a brief description with each link to give you a clearer idea of what each page covers. Use this list to see what other people have been viewing and perhaps to pique your own interest about a topic you’ve been meaning to research.

June 29: The Most Viewed AWS Security Blog Posts so Far in 2016
The following 10 posts are the most viewed AWS Security Blog posts that we published during the first six months of this year. You can use this list as a guide to catch up on your blog reading or even read a post again that you found particularly useful.

June 25: AWS Earns Department of Defense Impact Level 4 Provisional Authorization
I am pleased to share that, for our AWS GovCloud (US) Region, AWS has received a Defense Information Systems Agency (DISA) Provisional Authorization (PA) at Impact Level 4 (IL4). This will allow Department of Defense (DoD) agencies to use the AWS Cloud for production workloads with export-controlled data, privacy information, and protected health information as well as other controlled unclassified information. This new authorization continues to demonstrate our advanced work in the public sector space; you might recall AWS was the first cloud service provider to obtain an Impact Level 4 PA in August 2014, paving the way for DoD pilot workloads and applications in the cloud. Additionally, we recently achieved a FedRAMP High provisional Authorization to Operate (P-ATO) from the Joint Authorization Board (JAB), also for AWS GovCloud (US), and today’s announcement allows DoD mission owners to continue to leverage AWS for critical production applications.

June 23: AWS re:Invent 2016 Registration Is Now Open
Register now for the fifth annual AWS re:Invent, the largest gathering of the global cloud computing community. Join us in Las Vegas for opportunities to connect, collaborate, and learn about AWS solutions. This year we are offering all-new technical deep-dives on topics such as security, IoT, serverless computing, and containers. We are also delivering more than 400 sessions, more hands-on labs, bootcamps, and opportunities for one-on-one engagements with AWS experts.

June 23: AWS Achieves FedRAMP High JAB Provisional Authorization
We are pleased to announce that AWS has received a FedRAMP High JAB Provisional Authorization to Operate (P-ATO) from the Joint Authorization Board (JAB) for the AWS GovCloud (US) Region. The new Federal Risk and Authorization Management Program (FedRAMP) High JAB Provisional Authorization is mapped to more than 400 National Institute of Standards and Technology (NIST) security controls. This P-ATO recognizes AWS GovCloud (US) as a secure environment on which to run highly sensitive government workloads, including Personally Identifiable Information (PII), sensitive patient records, financial data, law enforcement data, and other Controlled Unclassified Information (CUI).

June 22: AWS IAM Service Last Accessed Data Now Available for South America (Sao Paulo) and Asia Pacific (Seoul) Regions
In December, AWS IAM released service last accessed data, which helps you identify overly permissive policies attached to an IAM entity (a user, group, or role). Today, we have extended service last accessed data to support two additional regions: South America (Sao Paulo) and Asia Pacific (Seoul). With this release, you can now view the date when an IAM entity last accessed an AWS service in these two regions. You can use this information to identify unnecessary permissions and update policies to remove access to unused services.

June 20: New Twitter Handle Now Live: @AWSSecurityInfo
Today, we launched a new Twitter handle: @AWSSecurityInfo. The purpose of this new handle is to share security bulletins, security whitepapers, compliance news and information, and other AWS security-related and compliance-related information. The scope of this handle is broader than that of @AWSIdentity, which focuses primarily on Security Blog posts. However, feel free to follow both handles!

June 15: Announcing Two New AWS Quick Start Reference Deployments for Compliance
As part of the Professional Services Enterprise Accelerator – Compliance program, AWS has published two new Quick Start reference deployments to assist federal government customers and others who need to meet National Institute of Standards and Technology (NIST) SP 800-53 (Revision 4) security control requirements, including those at the high-impact level. The new Quick Starts are AWS Enterprise Accelerator – Compliance: NIST-based Assurance Frameworks and AWS Enterprise Accelerator – Compliance: Standardized Architecture for NIST High-Impact Controls Featuring Trend Micro Deep Security. These Quick Starts address many of the NIST controls at the infrastructure layer. Furthermore, for systems categorized as high impact, AWS has worked with Trend Micro to incorporate its Deep Security product into a Quick Start deployment in order to address many additional high-impact controls at the workload layer (app, data, and operating system). In addition, we have worked with Telos Corporation to populate security control implementation details for each of these Quick Starts into the Xacta product suite for customers who rely upon that suite for governance, risk, and compliance workflows.

June 14: Now Available: Get Even More Details from Service Last Accessed Data
In December, AWS IAM released service last accessed data, which shows the time when an IAM entity (a user, group, or role) last accessed an AWS service. This provided a powerful tool to help you grant least privilege permissions. Starting today, it’s easier to identify where you can reduce permissions based on additional service last accessed data.

June 14: How to Record SSH Sessions Established Through a Bastion Host
A bastion host is a server whose purpose is to provide access to a private network from an external network, such as the Internet. Because of its exposure to potential attack, a bastion host must minimize the chances of penetration. For example, you can use a bastion host to mitigate the risk of allowing SSH connections from an external network to the Linux instances launched in a private subnet of your Amazon Virtual Private Cloud (VPC). In this blog post, I will show you how to leverage a bastion host to record all SSH sessions established with Linux instances. Recording SSH sessions enables auditing and can help in your efforts to comply with regulatory requirements.

June 14: AWS Granted Authority to Operate for Department of Commerce and NOAA
AWS already has a number of federal agencies onboarded to the cloud, including the Department of Energy, The Department of the Interior, and NASA. Today we are pleased to announce the addition of two more ATOs (authority to operate) for the Department of Commerce (DOC) and the National Oceanic and Atmospheric Administration (NOAA). Specifically, the DOC will be utilizing AWS for their Commerce Data Service, and NOAA will be leveraging the cloud for their “Big Data Project.” According to NOAA, the goal of the Big Data Project is to “create a sustainable, market-driven ecosystem that lowers the cost barrier to data publication. This project will create a new economic space for growth and job creation while providing the public far greater access to the data created with its tax dollars.”

June 2: How to Set Up DNS Resolution Between On-Premises Networks and AWS by Using Unbound
In previous AWS Security Blog posts, Drew Dennis covered two options for establishing DNS connectivity between your on-premises networks and your Amazon Virtual Private Cloud (Amazon VPC) environments. His first post explained how to use Simple AD to forward DNS requests originating from on-premises networks to an Amazon Route 53 private hosted zone. His second post showed how you can use Microsoft Active Directory (also provisioned with AWS Directory Service) to provide the same DNS resolution with some additional forwarding capabilities. In this post, I will explain how you can set up DNS resolution between your on-premises DNS with Amazon VPC by using Unbound, an open-source, recursive DNS resolver. This solution is not a managed solution like Microsoft AD and Simple AD, but it does provide the ability to route DNS requests between on-premises environments and an Amazon VPC–provided DNS.

June 1: How to Manage Secrets for Amazon EC2 Container Service–Based Applications by Using Amazon S3 and Docker
In this blog post, I will show you how to store secrets on Amazon S3, and use AWS IAM roles to grant access to those stored secrets using an example WordPress application deployed as a Docker image using ECS. Using IAM roles means that developers and operations staff do not have the credentials to access secrets. Only the application and staff who are responsible for managing the secrets can access them. The deployment model for ECS ensures that tasks are run on dedicated EC2 instances for the same AWS account and are not shared between customers, which gives sufficient isolation between different container environments.

If you have comments  about any of these posts, please add your comments in the “Comments” section of the appropriate post. If you have questions about or issues implementing the solutions in any of these posts, please start a new thread on the AWS IAM forum.

– Craig