Tag Archives: science

What’s the Diff: Programs, Processes, and Threads

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

let's talk about Threads

How often have you heard the term threading in relation to a computer program, but you weren’t exactly sure what it meant? How about processes? You likely understand that a thread is somehow closely related to a program and a process, but if you’re not a computer science major, maybe that’s as far as your understanding goes.

Knowing what these terms mean is absolutely essential if you are a programmer, but an understanding of them also can be useful to the average computer user. Being able to look at and understand the Activity Monitor on the Macintosh, the Task Manager on Windows, or Top on Linux can help you troubleshoot which programs are causing problems on your computer, or whether you might need to install more memory to make your system run better.

Let’s take a few minutes to delve into the world of computer programs and sort out what these terms mean. We’ll simplify and generalize some of the ideas, but the general concepts we cover should help clarify the difference between the terms.


First of all, you probably are aware that a program is the code that is stored on your computer that is intended to fulfill a certain task. There are many types of programs, including programs that help your computer function and are part of the operating system, and other programs that fulfill a particular job. These task-specific programs are also known as “applications,” and can include programs such as word processing, web browsing, or emailing a message to another computer.


Programs are typically stored on disk or in non-volatile memory in a form that can be executed by your computer. Prior to that, they are created using a programming language such as C, Lisp, Pascal, or many others using instructions that involve logic, data and device manipulation, recurrence, and user interaction. The end result is a text file of code that is compiled into binary form (1’s and 0’s) in order to run on the computer. Another type of program is called “interpreted,” and instead of being compiled in advance in order to run, is interpreted into executable code at the time it is run. Some common, typically interpreted programming languages, are Python, PHP, JavaScript, and Ruby.

The end result is the same, however, in that when a program is run, it is loaded into memory in binary form. The computer’s CPU (Central Processing Unit) understands only binary instructions, so that’s the form the program needs to be in when it runs.

Perhaps you’ve heard the programmer’s joke, “There are only 10 types of people in the world, those who understand binary, and those who don’t.”

Binary is the native language of computers because an electrical circuit at its basic level has two states, on or off, represented by a one or a zero. In the common numbering system we use every day, base 10, each digit position can be anything from 0 to 9. In base 2 (or binary), each position is either a 0 or a 1. (In a future blog post we might cover quantum computing, which goes beyond the concept of just 1’s and 0’s in computing.)

Decimal—Base 10 Binary—Base 2
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

How Processes Work

The program has been loaded into the computer’s memory in binary form. Now what?

An executing program needs more than just the binary code that tells the computer what to do. The program needs memory and various operating system resources that it needs in order to run. A “process” is what we call a program that has been loaded into memory along with all the resources it needs to operate. The “operating system” is the brains behind allocating all these resources, and comes in different flavors such as macOS, iOS, Microsoft Windows, Linux, and Android. The OS handles the task of managing the resources needed to turn your program into a running process.

Some essential resources every process needs are registers, a program counter, and a stack. The “registers” are data holding places that are part of the computer processor (CPU). A register may hold an instruction, a storage address, or other kind of data needed by the process. The “program counter,” also called the “instruction pointer,” keeps track of where a computer is in its program sequence. The “stack” is a data structure that stores information about the active subroutines of a computer program and is used as scratch space for the process. It is distinguished from dynamically allocated memory for the process that is known as “the heap.”

diagram of how processes work

There can be multiple instances of a single program, and each instance of that running program is a process. Each process has a separate memory address space, which means that a process runs independently and is isolated from other processes. It cannot directly access shared data in other processes. Switching from one process to another requires some time (relatively) for saving and loading registers, memory maps, and other resources.

This independence of processes is valuable because the operating system tries its best to isolate processes so that a problem with one process doesn’t corrupt or cause havoc with another process. You’ve undoubtedly run into the situation in which one application on your computer freezes or has a problem and you’ve been able to quit that program without affecting others.

How Threads Work

So, are you still with us? We finally made it to threads!

A thread is the unit of execution within a process. A process can have anywhere from just one thread to many threads.

Process vs. Thread

diagram of threads in a process over time

When a process starts, it is assigned memory and resources. Each thread in the process shares that memory and resources. In single-threaded processes, the process contains one thread. The process and the thread are one and the same, and there is only one thing happening.

In multithreaded processes, the process contains more than one thread, and the process is accomplishing a number of things at the same time (technically, it’s almost at the same time—read more on that in the “What about Parallelism and Concurrency?” section below).

diagram of single and multi-treaded process

We talked about the two types of memory available to a process or a thread, the stack and the heap. It is important to distinguish between these two types of process memory because each thread will have its own stack, but all the threads in a process will share the heap.

Threads are sometimes called lightweight processes because they have their own stack but can access shared data. Because threads share the same address space as the process and other threads within the process, the operational cost of communication between the threads is low, which is an advantage. The disadvantage is that a problem with one thread in a process will certainly affect other threads and the viability of the process itself.

Threads vs. Processes

So to review:

  1. The program starts out as a text file of programming code,
  2. The program is compiled or interpreted into binary form,
  3. The program is loaded into memory,
  4. The program becomes one or more running processes.
  5. Processes are typically independent of each other,
  6. While threads exist as the subset of a process.
  7. Threads can communicate with each other more easily than processes can,
  8. But threads are more vulnerable to problems caused by other threads in the same process.

Processes vs. Threads — Advantages and Disadvantages

Process Thread
Processes are heavyweight operations Threads are lighter weight operations
Each process has its own memory space Threads use the memory of the process they belong to
Inter-process communication is slow as processes have different memory addresses Inter-thread communication can be faster than inter-process communication because threads of the same process share memory with the process they belong to
Context switching between processes is more expensive Context switching between threads of the same process is less expensive
Processes don’t share memory with other processes Threads share memory with other threads of the same process

What about Concurrency and Parallelism?

A question you might ask is whether processes or threads can run at the same time. The answer is: it depends. On a system with multiple processors or CPU cores (as is common with modern processors), multiple processes or threads can be executed in parallel. On a single processor, though, it is not possible to have processes or threads truly executing at the same time. In this case, the CPU is shared among running processes or threads using a process scheduling algorithm that divides the CPU’s time and yields the illusion of parallel execution. The time given to each task is called a “time slice.” The switching back and forth between tasks happens so fast it is usually not perceptible. The terms parallelism (true operation at the same time) and concurrency (simulated operation at the same time), distinguish between the two type of real or approximate simultaneous operation.

diagram of concurrency and parallelism

Why Choose Process over Thread, or Thread over Process?

So, how would a programmer choose between a process and a thread when creating a program in which she wants to execute multiple tasks at the same time? We’ve covered some of the differences above, but let’s look at a real world example with a program that many of us use, Google Chrome.

When Google was designing the Chrome browser, they needed to decide how to handle the many different tasks that needed computer, communications, and network resources at the same time. Each browser window or tab communicates with multiple servers on the internet to retrieve text, programs, graphics, audio, video, and other resources, and renders that data for display and interaction with the user. In addition, the browser can open many windows, each with many tasks.

Google had to decide how to handle that separation of tasks. They chose to run each browser window in Chrome as a separate process rather than a thread or many threads, as is common with other browsers. Doing that brought Google a number of benefits. Running each window as a process protects the overall application from bugs and glitches in the rendering engine and restricts access from each rendering engine process to others and to the rest of the system. Isolating JavaScript programs in a process prevents them from running away with too much CPU time and memory, and making the entire browser non-responsive.

Google made the calculated trade-off with a multi-processing design as starting a new process for each browser window has a higher fixed cost in memory and resources than using threads. They were betting that their approach would end up with less memory bloat overall.

Using processes instead of threads provides better memory usage when memory gets low. An inactive window is treated as a lower priority by the operating system and becomes eligible to be swapped to disk when memory is needed for other processes, helping to keep the user-visible windows more responsive. If the windows were threaded, it would be more difficult to separate the used and unused memory as cleanly, wasting both memory and performance.

You can read more about Google’s design decisions on Google’s Chromium Blog or on the Chrome Introduction Comic.

The screen capture below shows the Google Chrome processes running on a MacBook Air with many tabs open. Some Chrome processes are using a fair amount of CPU time and resources, and some are using very little. You can see that each process also has many threads running as well.

activity monitor of Google Chrome

The Activity Monitor or Task Manager on your system can be a valuable ally in helping fine-tune your computer or troubleshooting problems. If your computer is running slowly, or a program or browser window isn’t responding for a while, you can check its status using the system monitor. Sometimes you’ll see a process marked as “Not Responding.” Try quitting that process and see if your system runs better. If an application is a memory hog, you might consider choosing a different application that will accomplish the same task.

Windows Task Manager view

Made it This Far?

We hope this Tron-like dive into the fascinating world of computer programs, processes, and threads has helped clear up some questions you might have had.

The next time your computer is running slowly or an application is acting up, you know your assignment. Fire up the system monitor and take a look under the hood to see what’s going on. You’re in charge now.

We love to hear from you

Are you still confused? Have questions? If so, please let us know in the comments. And feel free to suggest topics for future blog posts.

The post What’s the Diff: Programs, Processes, and Threads appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Community Profile: David Pride

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-david-pride/

This column is from The MagPi issue 55. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

David Pride’s experiences in computer education came slightly later in life. He admits to not being a grade-A student: he left school with few qualifications, unable to pursue further education at university. There was, however, a teacher who instilled in him a passion for computers and coding which would stick with him indefinitely.

David Pride The MagPi Raspberry Pi Community Profile

David joined us at the St James’s Palace community celebration, mingling with the likes of the Duke of York, plus organisers of Jams and clubs, such as Grace and Femi

Welcome to the Community

Twenty years later, back in 2012, David heard of the Raspberry Pi – a soon-to-be-released “new little marvel” that he instantly fell for, head first. Despite a lack of knowledge in Linux and Python, he experimented and had fun. He found a Raspberry Jam and, with it, Pi enthusiasts like Mike Horne and Peter Onion. The projects on display at the Jam were enough to push David further into the Raspberry Pi rabbit hole and, after working his way through several Python books, he began to take steps into the world of formal higher education.

David Pride The MagPi Raspberry Pi Community Profile

David’s determination to access and complete further education in computing has earned him a three-year PhD studentship. Not bad for a “lousy student”

Back to School

With a Mooc qualification from Rice University under his belt, he continued to improve upon his self-taught knowledge, and was fortunate enough to be accepted to study for a master’s degree in Computer Science at the University of Hertfordshire. With a distinction for his final dissertation, David completed the course with an overall distinction for his MSc, and was recently awarded a fully funded PhD studentship with The Open University’s Knowledge Media Institute.

David Pride The MagPi Raspberry Pi Community Profile

Self-playing xylophones, Wiimote air drums, Lego sorters, Pi Wars robots, and more. David is continually hacking toys, giving them new Pi-powered life

Maker of things

The portfolio of projects that helped him to achieve his many educational successes has provided regular retweet material for the Raspberry Pi Twitter account, and we’ve highlighted his fun, imaginative work on this blog before. His builds have travelled to a range of Jams and made their way to the Raspberry Pi and Code Club stands at the Bett Show, as well as to our birthday celebrations.

David Pride The MagPi Raspberry Pi Community Profile

“Pi & Chips – with a little extra source”

His website, the pun-tastic Pi and Chips, is home to the majority of his work; David also links to YouTube videos and walk-throughs of his projects, and relates his experiences at various events. If you’ve followed any of the action across the Raspberry Pi social media channels – or indeed read any previous issues of The MagPi magazine – you’ll no doubt have seen a couple of David’s projects.

David Pride The MagPi Raspberry Pi Community Profile 4-Bot

Many readers will have come across the wonderful 4-Bot before, and it has even made an appearance alongside David in a recent Bloomberg interview. Considering the trillions of possible game positions, David made a compromise and, if you’re lucky, you may just be able to beat it

The 4-Bot, a robotic second player for the family game Connect Four, allows people to go head to head with a Pi-powered robotic arm. Using a Python imaging library, the 4-Bot splits the game grid into 42 squares, and recognises them as being red, yellow, or empty by reading the RGB value of the space. Using the minimax algorithm, 4-Bot is able to play each move within 25 seconds. Believe us when we say that it’s not as easy to beat as you’d hope. Then there’s his more recent air drum kit, which uses an old toy found at a car boot sale together with a Wiimote to make a functional air drum that showcases David’s toy-hacking abilities… and his complete lack of rhythm. He does fare much better on his homemade laser harp, though!

The post Community Profile: David Pride appeared first on Raspberry Pi.

The CNC Wood Burner turning heads (and wood, obviously)

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/cnc-wood-burner/

Why stick to conventional laser cutters or CNC machines for creating images on wood, when you can build a device to do the job that is a beautiful piece of art in itself? Mechanical and Computer Science student and Imgur user Tucker Shannon has created a wonderful-looking CNC Wood Burner using a Raspberry Pi and stepper motors. His project has a great vinyl-turntable-like design.

Raspberry Pi CNC Wood Burner

Tucker’s somewhat hypnotic build burns images into wood using a Raspberry Pi and stepper motors
GIF c/o Tucker Shannon

A CNC Wood Burner?

Sure! Why not? Tucker had already put the knowledge he acquired while studying at Oregon State University to good use by catching a bike thief in action with the help of a Raspberry Pi. Thus it’s obvious he has the skills he needed to incorporate our little computer into a project. Moreover, his Skittles portrait of Bill Nye is evidence of his artistic flare, so it’s not surprising that he wanted to make something a little different, and pretty, using code.

Tucker Shannon

“Bill Nye, the Skittles Guy”
Image c/o Tucker Shannon

With an idea in mind and sketches drawn, Tucker first considered using an old record player as the base of his build. Having a rotating deck and arm already in place would have made building his project easier. However, he reports on Imgur:

I thought about that! I couldn’t find any at local thrift shops though. Apparently, they’ve become pretty popular…

We can’t disagree with him. Since his search was unsuccessful, Tucker ended up creating the CNC Wood Burner from scratch.

Raspberry Pi CNC Wood Burner

Concept designs
Image c/o Tucker Shannon

Taking into consideration the lumps and bumps of the wood he would be using as a ‘canvas’, Tucker decided to incorporate a pivot to allow the arm to move smoothly over the rough surface.

The code for the make is currently in ‘spaghetti form’, though Tucker is set to release it, as well as full instructions for the build, in the near future.

The build

Tucker laser-cut the pieces for the wood burner’s box and gear out of birch and pine wood. As the motors require 12v power, the standard Raspberry Pi supply wasn’t going to be enough. Therefore, Tucker scavenged for old computer parts , and ended up rescuing a PSU (power supply unit). He then fitted the PSU and the Raspberry Pi within the box.

Raspberry Pi CNC Wood Burner

The cannibalised PSU, stepper motor controller, and Raspberry Pi fit nicely into Tucker’s handmade pine box.
Image c/o Tucker Shannon

Next, he got to work building runners for the stepper motor controlling the position of the ‘pen thing’ that would scorch the image into the wood.

Raspberry Pi CNC Wood Burner

Initial tests on paper help to align the pen
Image c/o Tucker Shannon

After a few test runs using paper, the CNC Wood Burner was good to go!

The results

Tucker has used his CNC Wood Burner to create some wonderful pieces of art. The few examples he’s shared on Imgur have impressed us with their precision. We’re looking forward to seeing what else he is going to make with it!

Raspberry Pi CNC Wood Burner

The build burns wonderfully clean-lined images into wood
Image c/o Tucker Shannon

Your turn

Image replication using Raspberry Pis and stepper motors isn’t a new thing – though doing it using a wood-burning device may be! We’ve seen some great builds in which makers set up motors and a marker pen to create massive works of art. Are you one of those makers? Or have you been planning a build similar to Tucker’s project, possibly with a new twist?

Share your project with us below, whether it is complete or still merely sketches in a notebook. We’d love to see what you’re getting up to!

The post The CNC Wood Burner turning heads (and wood, obviously) appeared first on Raspberry Pi.

Introducing the GameDay Essentials Show on AWS Twitch Channel

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/game-day-essentials-show-on-twitch/

Imagine if you will, you have obtained a new position at Unicorn.Rentals, a company that specializes in LARM, Legendary Animal Rental Market. Given the chance, what child wouldn’t happily exchange anything for the temporary use of a unicorn? What parent could refuse the opportunity to make their children happy? Let’s estimate the year to be 2017 and Unicorn.Rentals continues to dominate in the animal rental market.

You are about to enter another dimension, a dimension as vast as space and as timeless as infinity. It is the middle ground between light and shadow, between science and superstition, and lies at the beginning of man’s cloud knowledge. This is a journey into a wondrous land of imagination, a land of both shadow and substance. You are crossing over into the GameDay Essentials Zone.

Well, maybe not another dimension but almost as cool. Maybe, kinda? Either way, I am very excited to introduce the newest show on the AWS Twitch Channel named GameDay Essentials. The GameDay Essentials show is a  “new hire training program” for the aforementioned Unicorn.Rentals company scenario. You will step into the shoes of a new employee being ramped up and trained on cloud computing in order to work successfully for a company using Amazon Web Services.


With the GameDay Essentials show, you will get hands-on computing experience to help with the growth of the Unicorn.Rentals startup. The first episode, Recon, premiered on July 25th and provided information on logging services with CloudTrail and Cloudwatch, as well as, how to assess the configuration and identify existing inventory resources in an AWS Account. You can check out the recording of Episode 1–Recon here. The rest of season one for this six-part series airs on Tuesdays at 11:30 AM PT, the next three episodes discussing the following topics:

  • Episode 2 – Scaling: Learn how to scale your application infrastructure by diving into the how to of implementing scaling techniques and auto scaling groups. Airing on August 1 
  • Episode 3 – Changes: Winston Churchill is quoted saying “To improve is to change; to be perfect is to change often”. This GameDay episode is all about managing change as a key component to success. You will learn how to use native AWS security and deployment tools to track and manage change and discuss how to handle changes in team dynamics. Airing on August 8th
  • Episode 4 – Decoupling: Most people in the technology industry understand that you should avoid creating tightly coupled systems. Therefore, you will discover how loosely coupled systems operate and gain knowledge on how to diagnose any failures that may occur with these systems. Airing on August 15th 


Our latest show, GameDay Essentials is designed to help you “get into the game” and learn more about cloud computing and the AWS Platform. GameDay Essentials joins our other live coding shows already featured each week on the AWS Twitch Channel: Live Coding with AWS and AWS Maker Studio.

Tune in each week to the AWS Twitch channel to visit another dimension: a dimension of sound, a dimension of sight, a dimension of cloud. This is the dimension of imagination. It is an area, which we call the GameDay Essentials Zone. Get it, like the Twilight Zone, still no? Oh well, check out the GameDay Essentials show on Twitch on the AWS Channel, it is a great resource for interactive learning about cloud computing with AWS, so enjoy the ride.


AWS Hot Startups – July 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-july-2017/

Welcome back to another month of Hot Startups! Every day, startups are creating innovative and exciting businesses, applications, and products around the world. Each month we feature a handful of startups doing cool things using AWS.

July is all about learning! These companies are focused on providing access to tools and resources to expand knowledge and skills in different ways.

This month’s startups:

  • CodeHS – provides fun and accessible computer science curriculum for middle and high schools.
  • Insight – offers intensive fellowships to grow technical talent in Data Science.
  • iTranslate – enables people to read, write, and speak in over 90 languages, anywhere in the world.

CodeHS (San Francisco, CA)

In 2012, Stanford students Zach Galant and Jeremy Keeshin were computer science majors and TAs for introductory classes when they noticed a trend among their peers. Many wished that they had been exposed to computer science earlier in life. In their senior year, Zach and Jeremy launched CodeHS to give middle and high schools the opportunity to provide a fun, accessible computer science education to students everywhere. CodeHS is a web-based curriculum pathway complete with teacher resources, lesson plans, and professional development opportunities. The curriculum is supplemented with time-saving teacher tools to help with lesson planning, grading and reviewing student code, and managing their classroom.

CodeHS aspires to empower all students to meaningfully impact the future, and believe that coding is becoming a new foundational skill, along with reading and writing, that allows students to further explore any interest or area of study. At the time CodeHS was founded in 2012, only 10% of high schools in America offered a computer science course. Zach and Jeremy set out to change that by providing a solution that made it easy for schools and districts to get started. With CodeHS, thousands of teachers have been trained and are teaching hundreds of thousands of students all over the world. To use CodeHS, all that’s needed is the internet and a web browser. Students can write and run their code online, and teachers can immediately see what the students are working on and how they are doing.

Amazon EC2, Amazon RDS, Amazon ElastiCache, Amazon CloudFront, and Amazon S3 make it possible for CodeHS to scale their site to meet the needs of schools all over the world. CodeHS also relies on AWS to compile and run student code in the browser, which is extremely important when teaching server-side languages like Java that powers the AP course. Since usage rises and falls based on school schedules, Amazon CloudWatch and ELBs are used to easily scale up when students are running code so they have a seamless experience.

Be sure to visit the CodeHS website, and to learn more about bringing computer science to your school, click here!

Insight (Palo Alto, CA)

Insight was founded in 2012 to create a new educational model, optimize hiring for data teams, and facilitate successful career transitions among data professionals. Over the last 5 years, Insight has kept ahead of market trends and launched a series of professional training fellowships including Data Science, Health Data Science, Data Engineering, and Artificial Intelligence. Finding individuals with the right skill set, background, and culture fit is a challenge for big companies and startups alike, and Insight is focused on developing top talent through intensive 7-week fellowships. To date, Insight has over 1,000 alumni at over 350 companies including Amazon, Google, Netflix, Twitter, and The New York Times.

The Data Engineering team at Insight is well-versed in the current ecosystem of open source tools and technologies and provides mentorship on the best practices in this space. The technical teams are continually working with external groups in a variety of data advisory and mentorship capacities, but the majority of Insight partners participate in professional sessions. Companies visit the Insight office to speak with fellows in an informal setting and provide details on the type of work they are doing and how their teams are growing. These sessions have proved invaluable as fellows experience a significantly better interview process and companies yield engaged and enthusiastic new team members.

An important aspect of Insight’s fellowships is the opportunity for hands-on work, focusing on everything from building big-data pipelines to contributing novel features to industry-standard open source efforts. Insight provides free AWS resources for all fellows to use, in addition to mentorships from the Data Engineering team. Fellows regularly utilize Amazon S3, Amazon EC2, Amazon Kinesis, Amazon EMR, AWS Lambda, Amazon Redshift, Amazon RDS, among other services. The experience with AWS gives fellows a solid skill set as they transition into the industry. Fellowships are currently being offered in Boston, New York, Seattle, and the Bay Area.

Check out the Insight blog for more information on trends in data infrastructure, artificial intelligence, and cutting-edge data products.


iTranslate (Austria)

When the App Store was introduced in 2008, the founders of iTranslate saw an opportunity to be part of something big. The group of four fully believed that the iPhone and apps were going to change the world, and together they brainstormed ideas for their own app. The combination of translation and mobile devices seemed a natural fit, and by 2009 iTranslate was born. iTranslate’s mission is to enable travelers, students, business professionals, employers, and medical staff to read, write, and speak in all languages, anywhere in the world. The app allows users to translate text, voice, websites and more into nearly 100 languages on various platforms. Today, iTranslate is the leading player for conversational translation and dictionary apps, with more than 60 million downloads and 6 million monthly active users.

iTranslate is breaking language barriers through disruptive technology and innovation, enabling people to translate in real time. The app has a variety of features designed to optimize productivity including offline translation, website and voice translation, and language auto detection. iTranslate also recently launched the world’s first ear translation device in collaboration with Bragi, a company focused on smart earphones. The Dash Pro allows people to communicate freely, while having a personal translator right in their ear.

iTranslate started using Amazon Polly soon after it was announced. CEO Alexander Marktl said, “As the leading translation and dictionary app, it is our mission at iTranslate to provide our users with the best possible tools to read, write, and speak in all languages across the globe. Amazon Polly provides us with the ability to efficiently produce and use high quality, natural sounding synthesized speech.” The stable and simple-to-use API, low latency, and free caching allow iTranslate to scale as they continue adding features to their app. Customers also enjoy the option to change speech rate and change between male and female voices. To assure quality, speed, and reliability of their products, iTranslate also uses Amazon EC2, Amazon S3, and Amazon Route 53.

To get started with iTranslate, visit their website here.


Thanks for reading!


Run Common Data Science Packages on Anaconda and Oozie with Amazon EMR

Post Syndicated from John Ohle original https://aws.amazon.com/blogs/big-data/run-common-data-science-packages-on-anaconda-and-oozie-with-amazon-emr/

In the world of data science, users must often sacrifice cluster set-up time to allow for complex usability scenarios. Amazon EMR allows data scientists to spin up complex cluster configurations easily, and to be up and running with complex queries in a matter of minutes.

Data scientists often use scheduling applications such as Oozie to run jobs overnight. However, Oozie can be difficult to configure when you are trying to use popular Python packages (such as “pandas,” “numpy,” and “statsmodels”), which are not included by default.

One such popular platform that contains these types of packages (and more) is Anaconda. This post focuses on setting up an Anaconda platform on EMR, with an intent to use its packages with Oozie. I describe how to run jobs using a popular open source scheduler like Oozie.


For this post, you walk through the following tasks:

  • Create an EMR cluster.
  • Download Anaconda on your master node.
  • Configure Oozie.
  • Test the steps.

Create an EMR cluster

Spin up an Amazon EMR cluster using the console or the AWS CLI. Use the latest release, and include Apache Hadoop, Apache Spark, Apache Hive, and Oozie.

To create a three-node cluster in the us-east-1 region, issue an AWS CLI command such as the following. This command must be typed as one line, as shown below. It is shown here separated for readability purposes only.

aws emr create-cluster \ 
--release-label emr-5.7.0 \ 
 --name '<YOUR-CLUSTER-NAME>' \
 --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive \ 
 --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' \ 
 --use-default-roles \ 
 --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

One-line version for reference:

aws emr create-cluster --release-label emr-5.7.0 --name '<YOUR-CLUSTER-NAME>' --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' --use-default-roles --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

Download Anaconda

SSH into your EMR master node instance and download the official Anaconda installer:

wget https://repo.continuum.io/archive/Anaconda2-4.4.0-Linux-x86_64.sh

At the time of publication, Anaconda 4.4 is the most current version available. For the download link location for the latest Python 2.7 version (Python 3.6 may encounter issues), see https://www.continuum.io/downloads.  Open the context (right-click) menu for the Python 2.7 download link, choose Copy Link Location, and use this value in the previous wget command.

This post used the Anaconda 4.4 installation. If you have a later version, it is shown in the downloaded filename:  “anaconda2-<version number>-Linux-x86_64.sh”.

Run this downloaded script and follow the on-screen installer prompts.

chmod u+x Anaconda2-4.4.0-Linux-x86_64.sh

For an installation directory, select somewhere with enough space on your cluster, such as “/mnt/anaconda/”.

The process should take approximately 1–2 minutes to install. When prompted if you “wish the installer to prepend the Anaconda2 install location”, select the default option of [no].

After you are done, export the PATH to include this new Anaconda installation:

export PATH=/mnt/anaconda/bin:$PATH

Zip up the Anaconda installation:

cd /mnt/anaconda/
zip -r anaconda.zip .

The zip process may take 4–5 minutes to complete.

(Optional) Upload this anaconda.zip file to your S3 bucket for easier inclusion into future EMR clusters. This removes the need to repeat the previous steps for future EMR clusters.

Configure Oozie

Next, you configure Oozie to use Pyspark and the Anaconda platform.

Get the location of your Oozie sharelibupdate folder. Issue the following command and take note of the “sharelibDirNew” value:

oozie admin -sharelibupdate

For this post, this value is “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136”.

Pass in the required Pyspark files into Oozies sharelibupdate location. The following files are required for Oozie to be able to run Pyspark commands:

  • pyspark.zip
  • py4j-0.10.4-src.zip

These are located on the EMR master instance in the location “/usr/lib/spark/python/lib/”, and must be put into the Oozie sharelib spark directory. This location is the value of the sharelibDirNew parameter value (shown above) with “/spark/” appended, that is, “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/”.

To do this, issue the following commands:

hdfs dfs -put /usr/lib/spark/python/lib/py4j-0.10.4-src.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/
hdfs dfs -put /usr/lib/spark/python/lib/pyspark.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/

After you’re done, Oozie can use Pyspark in its processes.

Pass the anaconda.zip file into HDFS as follows:

hdfs dfs -put /mnt/anaconda/anaconda.zip /tmp/myLocation/anaconda.zip

(Optional) Verify that it was transferred successfully with the following command:

hdfs dfs -ls /tmp/myLocation/

On your master node, execute the following command:

export PYSPARK_PYTHON=/mnt/anaconda/bin/python

Set the PYSPARK_PYTHON environment variable on the executor nodes. Put the following configurations in your “spark-opts” values in your Oozie workflow.xml file:

–conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
–conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python

This is referenced from the Oozie job in the following line in your workflow.xml file, also included as part of your “spark-opts”:

--archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote

Your Oozie workflow.xml file should now look something like the following:

<workflow-app name="spark-wf" xmlns="uri:oozie:workflow:0.5">
<start to="start_spark" />
<action name="start_spark">
    <spark xmlns="uri:oozie:spark-action:0.1">
            <delete path="/tmp/test/spark_oozie_test_out3"/>
        <spark-opts>--queue default
            --conf spark.ui.view.acls=*
            --executor-memory 2G --num-executors 2 --executor-cores 2 --driver-memory 3g
            --conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote
    <ok to="end"/>
    <error to="kill"/>
        <kill name="kill">
                <message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
        <end name="end"/>

Test steps

To test this out, you can use the following job.properties and myPysparkProgram.py file, along with the following steps:


masterNode ip-xxx-xxx-xxx-xxx.us-east-1.compute.internal
nameNode hdfs://${masterNode}:8020
jobTracker ${masterNode}:8032
master yarn
mode cluster
queueName default
oozie.libpath ${nameNode}/user/oozie/share/lib
oozie.use.system.libpath true
oozie.wf.application.path ${nameNode}/user/oozie/apps/

Note: You can get your master node IP address (denoted as “ip-xxx-xxx-xxx-xxx” here) from the value for the sharelibDirNew parameter noted earlier.


from pyspark import SparkContext, SparkConf
import numpy
import sys

conf = SparkConf().setAppName('myPysparkProgram')
sc = SparkContext(conf=conf)

rdd = sc.textFile("/user/hadoop/input.txt")

x = numpy.sum([3,4,5]) #total = 12

rdd = rdd.map(lambda line: line + str(x))

Put the “myPysparkProgram.py” into the location mentioned between the “<jar>xxxxx</jar>” tags in your workflow.xml. In this example, the location is “hdfs:///user/oozie/apps/”. Use the following command to move the “myPysparkProgram.py” file to the correct location:

hdfs dfs -put myPysparkProgram.py /user/oozie/apps/

Put the above workflow.xml file into the “/user/oozie/apps/” location in hdfs:

hdfs dfs –put workflow.xml /user/oozie/apps/

Note: The job.properties file is run locally from the EMR master node.

Create a sample input.txt file with some data in it. For example:


This is a sentence.
So is this. 
This is also a sentence.

Put this file into hdfs:

hdfs dfs -put input.txt /user/hadoop/

Execute the job in Oozie with the following command. This creates an Oozie job ID.

oozie job -config job.properties -run

You can check the Oozie job state with the command:

oozie job -info <Oozie job ID>

  1. When the job is successfully finished, the results are located at:

  1. Run the following commands to view the output:
hdfs dfs -cat /user/hadoop/output/part-00000
hdfs dfs -cat /user/hadoop/output/part-00001

The output will be:

This is a sentence. 12
So is this 12
This is also a sentence 12


The myPysparkProgram.py has successfully imported the numpy library from the Anaconda platform and has produced some output with it. If you tried to run this using standard Python, you’d encounter the following error:

Now when your Python job runs in Oozie, any imported packages that are implicitly imported by your Pyspark script are imported into your job within Oozie directly from the Anaconda platform. Simple!

If you have questions or suggestions, please leave a comment below.

Additional Reading

Learn how to use Apache Oozie workflows to automate Apache Spark jobs on Amazon EMR.


About the Author

John Ohle is an AWS BigData Cloud Support Engineer II for the BigData team in Dublin. He works to provide advice and solutions to our customers on their Big Data projects and workflows on AWS. In his spare time, he likes to play music, learn, develop tools and write documentation to further help others – both colleagues and customers alike.




Teaching with Raspberry Pis and PiNet

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/teaching-pinet/

Education is our mission at the Raspberry Pi Foundation, so of course we love tools that help teachers and other educators use Raspberry Pis in a classroom setting. PiNet, which allows teachers to centrally manage a whole classroom’s worth of Pis, makes administrating a fleet of Pis easier. Set up individual student accounts, install updates and software, share files – PiNet helps you do all of this!

Caleb VinCross on Twitter

The new PiNet lab up and running. 30 raspberry pi 3’s running as fat clients for 600 + students. Much thanks to the PiNet team! @PiNetDev.

PiNet developer Andrew

PiNet was built and is maintained by Andrew Mulholland, who started work on this project when he was 15, and who is also one of the organisers of the Northern Ireland Raspberry Jam. Check out what he says about PiNet’s capabilities in his guest post here.

PiNet in class

PiNet running in a classroom

PiNet, teacher’s pet

PiNet has been available for about two years now, and the teachers using it are over the moon. Here’s what a few of them say about their experience:

We wanted a permanently set up classroom with 30+ Raspberry Pis to teach programming. Students wanted their work to be secure and backed up and we needed a way to keep the Pis up to date. PiNet has made both possible and the classroom now required little or no maintenance. PiNet was set up in a single day and was so successful we set up a second Pi room. We now have 60 Raspberry Pis which are used by our students every day. – Rob Jones, Secondary School Teacher, United Kingdom

AKS Computing on Twitter

21xRaspPi+dedicated network+PiNet server+3 geeks = success! Ready to test with a full class.

I teach Computer Science at middle school, so I have 4 classes per day in my lab, sharing 20 Raspberry Pis. PiNet gives each student separate storage space. Any changes to the Raspbian image can be done from my dashboard. We use Scratch, Minecraft Pi, Sonic Pi, and do physical computing. And when I have had issues, or have wanted to try something a little crazy, the support has been fabulous. – Bob Irving, Middle School Teacher, USA

Wolf Math on Twitter

We’re starting our music unit with @deejaydoc. My CS students are going through the @Sonic_Pi turorial on @PiNetDev.

I teach computer classes for about 600 students between the ages of 5 and 13. PiNet has really made it possible to expand our technology curriculum beyond the simple web-based applications that our Chromebooks were limited to. I’m now able to use Arduino boards to do basic physical computing with LEDs and sensors. None of this could have happened without PiNet making it easy to have an affordable, stable, and maintainable way of managing 30 Linux computers in our lab. – Caleb VinCross, Primary School Teacher, USA

More for educators

If you’re involved in teaching computing, be that as a professional or as a volunteer, check out the new free magazine Hello World, brought to you by Computing At School, BCS Academy of Computing, and Raspberry Pi working in partnership. It is written by educators for educators, and available in print and as a PDF download. And if you’d like to keep up to date with what we are offering to educators and learners, sign up for our education newsletter here.

Are you a teacher who uses Raspberry Pis in the classroom, or another kind of educator who has used them in a group setting? Tell us about your experience in the comments below.

The post Teaching with Raspberry Pis and PiNet appeared first on Raspberry Pi.

AWS HIPAA Eligibility Update (July 2017) – Eight Additional Services

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-hipaa-eligibility-update-july-2017-eight-additional-services/

It is time for an update on our on-going effort to make AWS a great host for healthcare and life sciences applications. As you can see from our Health Customer Stories page, Philips, VergeHealth, and Cambia (to choose a few) trust AWS with Protected Health Information (PHI) and Personally Identifying Information (PII) as part of their efforts to comply with HIPAA and HITECH.

In May we announced that we added Amazon API Gateway, AWS Direct Connect, AWS Database Migration Service, and Amazon Simple Queue Service (SQS) to our list of HIPAA eligible services and discussed our how customers and partners are putting them to use.

Eight More Eligible Services
Today I am happy to share the news that we are adding another eight services to the list:

Amazon CloudFront can now be utilized to enhance the delivery and transfer of Protected Health Information data to applications on the Internet. By providing a completely secure and encryptable pathway, CloudFront can now be used as a part of applications that need to cache PHI. This includes applications for viewing lab results or imaging data, and those that transfer PHI from Healthcare Information Exchanges (HIEs).

AWS WAF can now be used to protect applications running on AWS which operate on PHI such as patient care portals, patient scheduling systems, and HIEs. Requests and responses containing encrypted PHI and PII can now pass through AWS WAF.

AWS Shield can now be used to protect web applications such as patient care portals and scheduling systems that operate on encrypted PHI from DDoS attacks.

Amazon S3 Transfer Acceleration can now be used to accelerate the bulk transfer of large amounts of research, genetics, informatics, insurance, or payer/payment data containing PHI/PII information. Transfers can take place between a pair of AWS Regions or from an on-premises system and an AWS Region.

Amazon WorkSpaces can now be used by researchers, informaticists, hospital administrators and other users to analyze, visualize or process PHI/PII data using on-demand Windows virtual desktops.

AWS Directory Service can now be used to connect the authentication and authorization systems of organizations that use or process PHI/PII to their resources in the AWS Cloud. For example, healthcare providers operating hybrid cloud environments can now use AWS Directory Services to allow their users to easily transition between cloud and on-premises resources.

Amazon Simple Notification Service (SNS) can now be used to send notifications containing encrypted PHI/PII as part of patient care, payment processing, and mobile applications.

Amazon Cognito can now be used to authenticate users into mobile patient portal and payment processing applications that use PHI/PII identifiers for accounts.

Additional HIPAA Resources
Here are some additional resources that will help you to build applications that comply with HIPAA and HITECH:

Keep in Touch
In order to make use of any AWS service in any manner that involves PHI, you must first enter into an AWS Business Associate Addendum (BAA). You can contact us to start the process.


How To Get Your First 1,000 Customers

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/how-to-get-your-first-1000-customers/

PR for getting your first 1000 customers

If you launch your startup and no one knows, did you actually launch? As mentioned in my last post, our initial launch target was to get a 1,000 people to use our service. But how do you get even 1,000 people to sign up for your service when no one knows who you are?

There are a variety of methods to attract your first 1,000 customers, but launching with the press is my favorite. I’ll explain why and how to do it below.

Paths to Attract Your First 1,000 Customers

Social following: If you have a massive social following, those people are a reasonable target for what you’re offering. In particular if your relationship with them is one where they would buy something you recommend, this can be one of the easiest ways to get your initial customers. However, building this type of following is non-trivial and often is done over several years.

Press not only provides awareness and customers, but credibility and SEO benefits as well

Paid advertising: The advantage of paid ads is you have control over when they are presented and what they say. The primary disadvantage is they tend to be expensive, especially before you have your positioning, messaging, and funnel nailed.

Viral: There are certainly examples of companies that launched with a hugely viral video, blog post, or promotion. While fantastic if it happens, even if you do everything right, the likelihood of massive virality is miniscule and the conversion rate is often low.

Press: As I said, this is my favorite. You don’t need to pay a PR agency and can go from nothing to launched in a couple weeks. Press not only provides awareness and customers, but credibility and SEO benefits as well.

How to Pitch the Press

It’s easy: Have a compelling story, find the right journalists, make their life easy, pitch and follow-up. Of course, each one of those has some nuance, so let’s dig in.

Have a compelling story

How to Get Attention When you’ve been working for months on your startup, it’s easy to get lost in the minutiae when talking to others. Stories that a journalist will write about need to be something their readers will care about. Knowing what story to tell and how to tell it is part science and part art. Here’s how you can get there:

The basics of your story

Ask yourself the following questions, and write down the answers:

  • What are we doing? What product service are we offering?
  • Why? What problem are we solving?
  • What is interesting or unique? Either about what we’re doing, how we’re doing it, or for who we’re doing it.

“But my story isn’t that exciting”

Neither was announcing a data backup company, believe me. Look for angles that make it compelling. Here are some:

  • Did someone on your team do something major before? (build a successful company/product, create some innovation, market something we all know, etc.)
  • Do you have an interesting investor or board member?
  • Is there a personal story that drove you to start this company?
  • Are you starting it in a unique place?
  • Did you come upon the idea in a unique way?
  • Can you share something people want to know that’s not usually shared?
  • Are you partnered with a well-known company?
  • …is there something interesting/entertaining/odd/shocking/touching/etc.?

It doesn’t get much less exciting than, “We’re launching a company that will backup your data.” But there were still a lot of compelling stories:

  • Founded by serial entrepreneurs, bootstrapped a capital-intensive company, committed to each other for a year without salary.
  • Challenging the way that every backup company before was set up by not asking customers to pick and choose files to backup.
  • Designing our own storage system.
  • Etc. etc.

For the initial launch, we focused on “unlimited for $5/month” and statistics from a survey we ran with Harris Interactive that said that 94% of people did not regularly backup their data.

It’s an old adage that “Everyone has a story.” Regardless of what you’re doing, there is always something interesting to share. Dig for that.

The headline

Once you’ve captured what you think the interesting story is, you’ve got to boil it down. Yes, you need the elevator pitch, but this is shorter…it’s the headline pitch. Write the headline that you would love to see a journalist write.

Regardless of what you’re doing, there is always something interesting to share. Dig for that.

Now comes the part where you have to be really honest with yourself: if you weren’t involved, would you care?

The “Techmeme Test”

One way I try to ground myself is what I call the “Techmeme Test”. Techmeme lists the top tech articles. Read the headlines. Imagine the headline you wrote in the middle of the page. If you weren’t involved, would you click on it? Is it more or less compelling than the others. Much of tech news is dominated by the largest companies. If you want to get written about, your story should be more compelling. If not, go back above and explore your story some more.

Embargoes, exclusives and calls-to-action

Journalists write about news. Thus, if you’ve already announced something and are then pitching a journalist to cover it, unless you’re giving her something significant that hasn’t been said, it’s no longer news. As a result, there are ‘embargoes’ and ‘exclusives’.


    • : An embargo simply means that you are sharing news with a journalist that they need to keep private until a certain date and time.

If you’re Apple, this may be a formal and legal document. In our case, it’s as simple as saying, “Please keep embargoed until 4/13/17 at 8am California time.” in the pitch. Some sites explicitly will not keep embargoes; for example The Information will only break news. If you want to launch something later, do not share information with journalists at these sites. If you are only working with a single journalist for a story, and your announcement time is flexible, you can jointly work out a date and time to announce. However, if you have a fixed launch time or are working with a few journalists, embargoes are key.

Exclusives: An exclusive means you’re giving something specifically to that journalist. Most journalists love an exclusive as it means readers have to come to them for the story. One option is to give a journalist an exclusive on the entire story. If it is your dream journalist, this may make sense. Another option, however, is to give exclusivity on certain pieces. For example, for your launch you could give an exclusive on funding detail & a VC interview to a more finance-focused journalist and insight into the tech & a CTO interview to a more tech-focused journalist.

Call-to-Action: With our launch we gave TechCrunch, Ars Technica, and SimplyHelp URLs that gave the first few hundred of their readers access to the private beta. Once those first few hundred users from each site downloaded, the beta would be turned off.

Thus, we used a combination of embargoes, exclusives, and a call-to-action during our initial launch to be able to brief journalists on the news before it went live, give them something they could announce as exclusive, and provide a time-sensitive call-to-action to the readers so that they would actually sign up and not just read and go away.

How to Find the Most Authoritative Sites / Authors

“If a press release is published and no one sees it, was it published?” Perhaps the time existed when sending a press release out over the wire meant journalists would read it and write about it. That time has long been forgotten. Over 1,000 unread press releases are published every day. If you want your compelling story to be covered, you need to find the handful of journalists that will care.

Determine the publications

Find the publications that cover the type of story you want to share. If you’re in tech, Techmeme has a leaderboard of publications ranked by leadership and presence. This list will tell you which publications are likely to have influence. Visit the sites and see if your type of story appears on their site. But, once you’ve determined the publication do NOT send a pitch their [email protected] or [email protected] email addresses. In all the times I’ve done that, I have never had a single response. Those email addresses are likely on every PR, press release, and spam list and unlikely to get read. Instead…

Determine the journalists

Once you’ve determined which publications cover your area, check which journalists are doing the writing. Skim the articles and search for keywords and competitor names.

Over 1,000 unread press releases are published every day.

Identify one primary journalist at the publication that you would love to have cover you, and secondary ones if there are a few good options. If you’re not sure which one should be the primary, consider a few tests:

  • Do they truly seem to care about the space?
  • Do they write interesting/compelling stories that ‘get it’?
  • Do they appear on the Techmeme leaderboard?
  • Do their articles get liked/tweeted/shared and commented on?
  • Do they have a significant social presence?

Leveraging Google

Google author search by date

In addition to Techmeme or if you aren’t in the tech space Google will become a must have tool for finding the right journalists to pitch. Below the search box you will find a number of tabs. Click on Tools and change the Any time setting to Custom range. I like to use the past six months to ensure I find authors that are actively writing about my market. I start with the All results. This will return a combination of product sites and articles depending upon your search term.

Scan for articles and click on the link to see if the article is on topic. If it is find the author’s name. Often if you click on the author name it will take you to a bio page that includes their Twitter, LinkedIn, and/or Facebook profile. Many times you will find their email address in the bio. You should collect all the information and add it to your outreach spreadsheet. Click here to get a copy. It’s always a good idea to comment on the article to start building awareness of your name. Another good idea is to Tweet or Like the article.

Next click on the News tab and set the same search parameters. You will get a different set of results. Repeat the same steps. Between the two searches you will have a list of authors that actively write for the websites that Google considers the most authoritative on your market.

How to find the most socially shared authors

Buzzsumo search for most shared by date

Your next step is to find the writers whose articles get shared the most socially. Go to Buzzsumo and click on the Most Shared tab. Enter search terms for your market as well as competitor names. Again I like to use the past 6 months as the time range. You will get a list of articles that have been shared the most across Facebook, LinkedIn, Twitter, Pinterest, and Google+. In addition to finding the most shared articles and their authors you can also see some of the Twitter users that shared the article. Many of those Twitter users are big influencers in your market so it’s smart to start following and interacting with them as well as the authors.

How to Find Author Email Addresses

Some journalists publish their contact info right on the stories. For those that don’t, a bit of googling will often get you the email. For example, TechCrunch wrote a story a few years ago where they published all of their email addresses, which was in response to this new service that charges a small fee to provide journalist email addresses. Sometimes visiting their twitter pages will link to a personal site, upon which they will share an email address.

Of course all is not lost if you don’t find an email in the bio. There are two good services for finding emails, https://app.voilanorbert.com/ and https://hunter.io/. For Voila Norbert enter the author name and the website you found their article on. The majority of the time you search for an author on a major publication Norbert will return an accurate email address. If it doesn’t try Hunter.io.

On Hunter.io enter the domain name and click on Personal Only. Then scroll through the results to find the author’s email. I’ve found Norbert to be more accurate overall but between the two you will find most major author’s email addresses.

Email, by the way, is not necessarily the best way to engage a journalist. Many are avid Twitter users. Follow them and engage – that means read/retweet/favorite their tweets; reply to their questions, and generally be helpful BEFORE you pitch them. Later when you email them, you won’t be just a random email address.

Don’t spam

Now that you have all these email addresses (possibly thousands if you purchased a list) – do NOT spam. It is incredibly tempting to think “I could try to figure out which of these folks would be interested, but if I just email all of them, I’ll save myself time and be more likely to get some of them to respond.” Don’t do it.

Follow them and engage – that means read/retweet/favorite their tweets; reply to their questions, and generally be helpful BEFORE you pitch them.

First, you’ll want to tailor your pitch to the individual. Second, it’s a small world and you’ll be known as someone who spams – reputation is golden. Also, don’t call journalists. Unless you know them or they’ve said they’re open to calls, you’re most likely to just annoy them.

Build a relationship

Build Trust with reporters Play the long game. You may be focusing just on the launch and hoping to get this one story covered, but if you don’t quickly flame-out, you will have many more opportunities to tell interesting stories that you’ll want the press to cover. Be honest and don’t exaggerate.
When you have 500 users it’s tempting to say, “We’ve got thousands!” Don’t. The good journalists will see through it and it’ll likely come back to bite you later. If you don’t know something, say “I don’t know but let me find out for you.” Most journalists want to write interesting stories that their readers will appreciate. Help them do that. Build deeper relationships with 5 – 10 journalists, rather than spamming thousands.

Stay organized

It doesn’t need to be complicated, but keep a spreadsheet that includes the name, publication, and contact info of the journalists you care about. Then, use it to keep track of who you’ve pitched, who’s responded, whether you’ve sent them the materials they need, and whether they intend to write/have written.

Make their life easy

Journalists have a million PR people emailing them, are actively engaging with readers on Twitter and in the comments, are tracking their metrics, are working their sources…and all the while needing to publish new articles. They’re busy. Make their life easy and they’re more likely to engage with yours.

Get to know them

Before sending them a pitch, know what they’ve written in the space. If you tell them how your story relates to ones they’ve written, it’ll help them put the story in context, and enable them to possibly link back to a story they wrote before.

Prepare your materials

Journalists will need somewhere to get more info (prepare a fact sheet), a URL to link to, and at least one image (ideally a few to choose from.) A fact sheet gives bite-sized snippets of information they may need about your startup or product: what it is, how big the market is, what’s the pricing, who’s on the team, etc. The URL is where their reader will get the product or more information from you. It doesn’t have to be live when you’re pitching, but you should be able to tell what the URL will be. The images are ones that they could embed in the article: a product screenshot, a CEO or team photo, an infographic. Scan the types of images included in their articles. Don’t send any of these in your pitch, but have them ready. Studies, stats, customer/partner/investor quotes are also good to have.


A pitch has to be short and compelling.

Subject Line

Think back to the headline you want. Is it really compelling? Can you shorten it to a subject line? Include what’s happening and when. For Mike Arrington at Techcrunch, our first subject line was “Startup doing an ‘online time machine’”. Later I would include, “launching June 6th”.

For John Timmer at ArsTechnica, it was “Demographics data re: your 4/17 article”. Why? Because he wrote an article titled “WiFi popular with the young people; backups, not so much”. Since we had run a demographics survey on backups, I figured as a science editor he’d be interested in this additional data.


A few key things about the body of the email. It should be short and to the point, no more than a few sentences. Here was my actual, original pitch email to John:

Hey John,

We’re launching Backblaze next week which provides a Time Machine-online type of service. As part of doing some research I read your article about backups not being popular with young people and that you had wished Accenture would have given you demographics. In prep for our invite-only launch I sponsored Harris Interactive to get demographic data on who’s doing backups and if all goes well, I should have that data on Friday.

Next week starts Backup Awareness Month (and yes, probably Clean Your House Month and Brush Your Teeth Month)…but nonetheless…good time to remind readers to backup with a bit of data?

Would you be interested in seeing/talking about the data when I get it?

Would you be interested in getting a sneak peak at Backblaze? (I could give you some invite codes for your readers as well.)

Gleb Budman        

CEO and Co-Founder

Backblaze, Inc.

Automatic, Secure, High-Performance Online Backup


The Good: It said what we’re doing, why this relates to him and his readers, provides him information he had asked for in an article, ties to something timely, is clearly tailored for him, is pitched by the CEO and Co-Founder, and provides my cell.

The Bad: It’s too long.

I got better later. Here’s an example:

Subject: Does temperature affect hard drive life?

Hi Peter, there has been much debate about whether temperature affects how long a hard drive lasts. Following up on the Backblaze analyses of how long do drives last & which drives last the longest (that you wrote about) we’ve now analyzed the impact of heat on the nearly 40,000 hard drives we have and found that…

We’re going to publish the results this Monday, 5/12 at 5am California-time. Want a sneak peak of the analysis?


A common question is “When should I launch?” What day, what time? I prefer to launch on Tuesday at 8am California-time. Launching earlier in the week gives breathing room for the news to live longer. While your launch may be a single article posted and that’s that, if it ends up a larger success, earlier in the week allows other journalists (including ones who are in other countries) to build on the story. Monday announcements can be tough because the journalists generally need to have their stories finished by Friday, and while ideally everything is buttoned up beforehand, startups sometimes use the weekend as overflow before a launch.

The 8am California-time is because it allows articles to be published at the beginning of the day West Coast and around lunch-time East Coast. Later and you risk it being past publishing time for the day. We used to launch at 5am in order to be morning for the East Coast, but it did not seem to have a significant benefit in coverage or impact, but did mean that the entire internal team needed to be up at 3am or 4am. Sometimes that’s critical, but I prefer to not burn the team out when it’s not.

Finally, try to stay clear of holidays, major announcements and large conferences. If Apple is coming out with their next iPhone, many of the tech journalists will be busy at least a couple days prior and possibly a week after. Not always obvious, but if you can, find times that are otherwise going to be slow for news.


There is a fine line between persistence and annoyance. I once had a journalist write me after we had an announcement that was covered by the press, “Why didn’t you let me know?! I would have written about that!” I had sent him three emails about the upcoming announcement to which he never responded.

My general rule is 3 emails.

Ugh. However, my takeaway from this isn’t that I should send 10 emails to every journalist. It’s that sometimes these things happen.

My general rule is 3 emails. If I’ve identified a specific journalist that I think would be interested and have a pitch crafted for her, I’ll send her the email ideally 2 weeks prior to the announcement. I’ll follow-up a week later, and one more time 2 days prior. If she ever says, “I’m not interested in this topic,” I note it and don’t email her on that topic again.

If a journalist wrote, I read the article and engage in the comments (or someone on our team, such as our social guy, @YevP does). We’ll often promote the story through our social channels and email our employees who may choose to share the story as well. This helps us, but also helps the journalist get their story broader reach. Again, the goal is to build a relationship with the journalists your space. If there’s something relevant to your customers that the journalist wrote, you’re providing a service to your customers AND helping the journalist get the word out about the article.

At times the stories also end up shared on sites such as Hacker News, Reddit, Slashdot, or become active conversations on Twitter. Again, we try to engage there and respond to questions (when we do, we are always clear that we’re from Backblaze.)

And finally, I’ll often send a short thank you to the journalist.

Getting Your First 1,000 Customers With Press

As I mentioned at the beginning, there is more than one way to get your first 1,000 customers. My favorite is working with the press to share your story. If you figure out your compelling story, find the right journalists, make their life easy, pitch and follow-up, you stand a high likelyhood of getting coverage and customers. Better yet, that coverage will provide credibility for your company, and if done right, will establish you as a resource for the press for the future.

Like any muscle, this process takes working out. The first time may feel a bit daunting, but just take the steps one at a time. As you do this a few times, the process will be easier and you’ll know who to reach out and quickly determine what stories will be compelling.

The post How To Get Your First 1,000 Customers appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Taking the first step on the journey

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/taking-first-step-journey/

This column is from The MagPi issue 58. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

About five years ago was the first time I unboxed a Raspberry Pi. I hooked it up to our living room television and made space on the TV stand for an old USB keyboard and mouse. Watching the $35 computer boot up for the first time impressed me, and I had a feeling it was a big deal, but I’ll admit that I had no idea how much of a phenomenon Raspberry Pi would become. I had no idea how large the community would grow. I had no idea how much my life would be changed from that moment on. And it all started with a simple first step: booting it up.

Matt Richardson on Twitter

Finally a few minutes to experiment with @Raspberry_Pi! So far, I’m rather impressed!

The key to the success of Raspberry Pi as a computer – and, in turn, a community and a charitable foundation – is that there’s a low barrier to the first step you take with it. The low price is a big reason for that. Whether or not to try Raspberry Pi is not a difficult decision. Since it’s so affordable, you can just give it a go, and see how you get along.

The pressure is off

Linus Torvalds, the creator of the Linux operating system kernel, talked about this in a BBC News interview in 2012. He explained that a lot of people might take the first step with Raspberry Pi, but not everyone will carry on with it. But getting more people to take that first step of turning it on means there are more people who potentially will be impacted by the technology. Torvalds said:

I find things like Raspberry Pi to be an important thing: trying to make it possible for a wider group of people to tinker with computers. And making the computers cheap enough that you really can not only afford the hardware at a big scale, but perhaps more important, also afford failure.

In other words, if things don’t work out with you and your Raspberry Pi, it’s not a big deal, since it’s such an affordable computer.

In this together

Of course, we hope that more and more people who boot up a Raspberry Pi for the first time will decide to continue experimenting, creating, and learning with it. Thanks to improvements to the hardware, the Raspbian operating system, and free software packages, it’s constantly becoming easier to do many amazing things with this little computer. And our continually growing community means you’re not alone on this journey. These improvements and growth over the past few years hopefully encourage more people who boot up Raspberry Pis to keep exploring.
raspberry pi first step

The first step

However, the important thing is that people are given the opportunity to take that first step, especially young people. Young learners are at a critical age, and something like the Raspberry Pi can have an enormously positive impact on the rest of their lives. It’s a major reason why our free resources are aimed at young learners. It’s also why we train educators all over the world for free. And encouraging youngsters to take their first step with Raspberry Pi could not only make a positive difference in their lives, but also in society at large.

With the affordable computational power, excellent software, supportive community, and free resources, you’re given everything you need to make a big impact in the world when you boot up a Raspberry Pi for the first time. That moment could be step one of ten, or one of ten thousand, but it’s up to you to take that first step.

Now you!

Learning and making things with the Pi is incredibly easy, and we’ve created numerous resources and tutorials to help you along. First of all, check out our hardware guide to make sure you’re all set up. Next, you can try out Scratch and Python, our favourite programming languages. Feeling creative? Learn to code music with Sonic Pi, or make visual art with Processing. Ready to control the real world with your Pi? Create a reaction game, or an LED adornment for your clothing. Maybe you’d like to do some science with the help of our Sense HAT, or become a film maker with our camera?

You can do all this with the Raspberry Pi, and so much more. The possibilities are as limitless as your imagination. So where do you want to start?

The post Taking the first step on the journey appeared first on Raspberry Pi.

Book Review: Twitter and Tear Gas, by Zeynep Tufekci

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/book_review_twi.html

There are two opposing models of how the Internet has changed protest movements. The first is that the Internet has made protesters mightier than ever. This comes from the successful revolutions in Tunisia (2010-11), Egypt (2011), and Ukraine (2013). The second is that it has made them more ineffectual. Derided as “slacktivism” or “clicktivism,” the ease of action without commitment can result in movements like Occupy petering out in the US without any obvious effects. Of course, the reality is more nuanced, and Zeynep Tufekci teases that out in her new book Twitter and Tear Gas.

Tufekci is a rare interdisciplinary figure. As a sociologist, programmer, and ethnographer, she studies how technology shapes society and drives social change. She has a dual appointment in both the School of Information Science and the Department of Sociology at University of North Carolina at Chapel Hill, and is a Faculty Associate at the Berkman Klein Center for Internet and Society at Harvard University. Her regular New York Times column on the social impacts of technology is a must-read.

Modern Internet-fueled protest movements are the subjects of Twitter and Tear Gas. As an observer, writer, and participant, Tufekci examines how modern protest movements have been changed by the Internet­ — and what that means for protests going forward. Her book combines her own ethnographic research and her usual deft analysis, with the research of others and some big data analysis from social media outlets. The result is a book that is both insightful and entertaining, and whose lessons are much broader than the book’s central topic.

“The Power and Fragility of Networked Protest” is the book’s subtitle. The power of the Internet as a tool for protest is obvious: it gives people newfound abilities to quickly organize and scale. But, according to Tufekci, it’s a mistake to judge modern protests using the same criteria we used to judge pre-Internet protests. The 1963 March on Washington might have culminated in hundreds of thousands of people listening to Martin Luther King Jr. deliver his “I Have a Dream” speech, but it was the culmination of a multi-year protest effort and the result of six months of careful planning made possible by that sustained effort. The 2011 protests in Cairo came together in mere days because they could be loosely coordinated on Facebook and Twitter.

That’s the power. Tufekci describes the fragility by analogy. Nepalese Sherpas assist Mt. Everest climbers by carrying supplies, laying out ropes and ladders, and so on. This means that people with limited training and experience can make the ascent, which is no less dangerous — to sometimes disastrous results. Says Tufekci: “The Internet similarly allows networked movements to grow dramatically and rapidly, but without prior building of formal or informal organizational and other collective capacities that could prepare them for the inevitable challenges they will face and give them the ability to respond to what comes next.” That makes them less able to respond to government counters, change their tactics­ — a phenomenon Tufekci calls “tactical freeze” — make movement-wide decisions, and survive over the long haul.

Tufekci isn’t arguing that modern protests are necessarily less effective, but that they’re different. Effective movements need to understand these differences, and leverage these new advantages while minimizing the disadvantages.

To that end, she develops a taxonomy for talking about social movements. Protests are an example of a “signal” that corresponds to one of several underlying “capacities.” There’s narrative capacity: the ability to change the conversation, as Black Lives Matter did with police violence and Occupy did with wealth inequality. There’s disruptive capacity: the ability to stop business as usual. An early Internet example is the 1999 WTO protests in Seattle. And finally, there’s electoral or institutional capacity: the ability to vote, lobby, fund raise, and so on. Because of various “affordances” of modern Internet technologies, particularly social media, the same signal — a protest of a given size — reflects different underlying capacities.

This taxonomy also informs government reactions to protest movements. Smart responses target attention as a resource. The Chinese government responded to 2015 protesters in Hong Kong by not engaging with them at all, denying them camera-phone videos that would go viral and attract the world’s attention. Instead, they pulled their police back and waited for the movement to die from lack of attention.

If this all sounds dry and academic, it’s not. Twitter and Tear Gasis infused with a richness of detail stemming from her personal participation in the 2013 Gezi Park protests in Turkey, as well as personal on-the-ground interviews with protesters throughout the Middle East — particularly Egypt and her native Turkey — Zapatistas in Mexico, WTO protesters in Seattle, Occupy participants worldwide, and others. Tufekci writes with a warmth and respect for the humans that are part of these powerful social movements, gently intertwining her own story with the stories of others, big data, and theory. She is adept at writing for a general audience, and­despite being published by the intimidating Yale University Press — her book is more mass-market than academic. What rigor is there is presented in a way that carries readers along rather than distracting.

The synthesist in me wishes Tufekci would take some additional steps, taking the trends she describes outside of the narrow world of political protest and applying them more broadly to social change. Her taxonomy is an important contribution to the more-general discussion of how the Internet affects society. Furthermore, her insights on the networked public sphere has applications for understanding technology-driven social change in general. These are hard conversations for society to have. We largely prefer to allow technology to blindly steer society or — in some ways worse — leave it to unfettered for-profit corporations. When you’re reading Twitter and Tear Gas, keep current and near-term future technological issues such as ubiquitous surveillance, algorithmic discrimination, and automation and employment in mind. You’ll come away with new insights.

Tufekci twice quotes historian Melvin Kranzberg from 1985: “Technology is neither good nor bad; nor is it neutral.” This foreshadows her central message. For better or worse, the technologies that power the networked public sphere have changed the nature of political protest as well as government reactions to and suppressions of such protest.

I have long characterized our technological future as a battle between the quick and the strong. The quick — dissidents, hackers, criminals, marginalized groups — are the first to make use of a new technology to magnify their power. The strong are slower, but have more raw power to magnify. So while protesters are the first to use Facebook to organize, the governments eventually figure out how to use Facebook to track protesters. It’s still an open question who will gain the upper hand in the long term, but Tufekci’s book helps us understand the dynamics at work.

This essay originally appeared on Vice Motherboard.

The book on Amazon.com.

Journey into Deep Learning with AWS

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/journey-into-deep-learning-with-aws/

If you are anything like me, Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning are completely fascinating and exciting topics. As AI, ML, and Deep Learning become more widely used, for me it means that the science fiction written by Dr. Issac Asimov, the robotics and medical advancements in Star Wars, and the technologies that enabled Captain Kirk and his Star Trek crew “to boldly go where no man has gone before” can become achievable realities.


Most people interested in the aforementioned topics are familiar with the AI and ML solutions enabled by Deep Learning, such as Convolutional Neural Networks for Image and Video Classification, Speech Recognition, Natural Language interfaces, and Recommendation Engines. However, it is not always an easy task setting up the infrastructure, environment, and tools to enable data scientists, machine learning practitioners, research scientists, and deep learning hobbyists/advocates to dive into these technologies. Most developers desire to go quickly from getting started with deep learning to training models and developing solutions using deep learning technologies.

For these reasons, I would like to share some resources that will help to quickly build deep learning solutions whether you are an experienced data scientist or a curious developer wanting to get started.

Deep Learning Resources

The Apache MXNet is Amazon’s deep learning framework of choice. With the power of Apache MXNet framework and NVIDIA GPU computing, you can launch your scalable deep learning projects and solutions easily on the AWS Cloud. As you get started on your MxNet deep learning quest, there are a variety of self-service tutorials and datasets available to you:

  • Launch an AWS Deep Learning AMI: This guide walks you through the steps to launch the AWS Deep Learning AMI with Ubuntu
  • MXNet – Create a computer vision application: This hands-on tutorial uses a pre-built notebook to walk you through using neural networks to build a computer vision application to identify handwritten digits
  • AWS Machine Learning Datasets: AWS hosts datasets for Machine Learning on the AWS Marketplace that you can access for free. These large datasets are available for anyone to analyze the data without requiring the data to be downloaded or stored.
  • Predict and Extract – Learn to use pre-trained models for predictions: This hands-on tutorial will walk you through how to use pre-trained model for predicting and feature extraction using the full Imagenet dataset.


AWS Deep Learning AMIs

AWS offers Amazon Machine Images (AMIs) for use on Amazon EC2 for quick deployment of an infrastructure needed to start your deep learning journey. The AWS Deep Learning AMIs are pre-configured with popular deep learning frameworks built using Amazon EC2 instances on Amazon Linux, and Ubuntu that can be launched for AI targeted solutions and models. The deep learning frameworks supported and pre-configured on the deep learning AMI are:

  • Apache MXNet
  • TensorFlow
  • Microsoft Cognitive Toolkit (CNTK)
  • Caffe
  • Caffe2
  • Theano
  • Torch
  • Keras

Additionally, the AWS Deep Learning AMIs install preconfigured libraries for Jupyter notebooks with Python 2.7/3.4, AWS SDK for Python, and other data science related python packages and dependencies. The AMIs also come with NVIDIA CUDA and NVIDIA CUDA Deep Neural Network (cuDNN) libraries preinstalled with all the supported deep learning frameworks and the Intel Math Kernel Library is installed for Apache MXNet framework. You can launch any of the Deep Learning AMIs by visiting the AWS Marketplace using the Try the Deep Learning AMIs link.


It is a great time to dive into Deep Learning. You can accelerate your work in deep learning by using the AWS Deep Learning AMIs running on the AWS cloud to get your deep learning environment running quickly or get started learning more about Deep Learning on AWS with MXNet using the AWS self-service resources.  Of course, you can learn even more information about Deep Learning, Machine Learning, and Artificial Intelligence on AWS by reviewing the AWS Deep Learning page, the Amazon AI product page, and the AWS AI Blog.

May the Deep Learning Force be with you all.


OctaPi: cluster computing and cryptography

Post Syndicated from Laura Sach original https://www.raspberrypi.org/blog/octapi/

When I was a teacher, a question I was constantly asked by curious students was, “Can you teach us how to hack?” Turning this idea on its head, and teaching the techniques behind some of our most important national cyber security measures, is an excellent way of motivating students to do good. This is why the Raspberry Pi Foundation and GCHQ have been working together to bring you exciting new resources!

More computing power with the OctaPi

You may have read about GCHQ’s OctaPi computer in Issue 58 of the MagPi. The OctaPi is a cluster computer joining together the power of eight Raspberry Pis (i.e. 32 cores) in a distributed computer system to execute computations much faster than a single Pi could perform them.

OctaPi cluster

Can you feel the power?

We have created a brand-new tutorial on how to build your own OctaPi at home. Don’t have eight Raspberry Pis lying around? Build a TetraPi (4) or a HexaPi (6) instead! You could even build the OctaPi with Pi Zero Ws if you wish. You will be able to run any programs you like on your new cluster computer, as it has all the software of a regular Pi, but is more powerful.

OctaPi at the Cheltenham Science Festival

Understanding cryptography

You probably use public key cryptography online every day without even realising it, but now you can use your OctaPi to understand exactly how it keeps your data safe. Our new OctaPi: public key cryptography resource walks you through the invention of this type of encryption (spoiler: Diffie and Hellman weren’t the first to invent it!). In it, you’ll also learn how a public key is created, whether a brute force attack using the OctaPi could be used to find out a public key, and you will be able to try breaking an encryption example yourself.

These resources are some our most advanced educational materials yet, and fit in with the “Maker” level of the Raspberry Pi Foundation Digital Making Curriculum. The projects are ideal for older students, perhaps those looking to study Computer Science at university. And there’s more to come: we have two other OctaPi resources in the pipeline to make use of the OctaPi’s full capabilities, so watch this space!

The post OctaPi: cluster computing and cryptography appeared first on Raspberry Pi.

State Dept, MPAA, RIAA “Fake Twitter Feud” Plan Backfires

Post Syndicated from Andy original https://torrentfreak.com/state-dept-mpaa-riaa-fake-twitter-feud-plan-backfires-170706/

By the first quarter of 2017, Twitter had 328 million users. It’s the perfect platform to give anyone a voice online and when like-minded people act together to make something “trend”, stories and ideas can go viral.

When this happens organically, through sharing based on a genuine appreciation of topics and ideas, it can be an awe-inspiring thing to behold. However, the mechanism doesn’t have to be spontaneous to reach a large audience, if it’s organized properly.

That was the plan of the US State Department when it sent an email to Stanford Law School. With the Office of Intellectual Property Enforcement involved, the State Department’s Bureau of Economic Affairs asked the law school to participate in a “fake Twitter feud” to promote Intellectual Property protection.

Leaked by a Stanford law professor to Mike Masnick at Techdirt, the email outlines the aims of the looming online war.

“This summer, we want to activate an audience of young professionals – the kind of folks who are interested in foreign policy, but who aren’t aware that intellectual property protection touches every part of their lives. I think the law school students at your institution may be the type of community that we would like to engage,” the email reads.

“The Bureau of Economic and Business Affairs wants to start a fake Twitter feud. For this feud, we would like to invite you and other similar academic institutions to participate and throw in your own ideas!” the email reads.

The plan clearly has some momentum. According to the email, big names in IP protection are already on board, including the US Patent and Trademark Office, the powerful Copyright Alliance, not to mention the Motion Picture Association of America and the Recording Industry Association of America.

The above groups can call on thousands of individuals to get involved so participation could be significant. Helpfully, the email also suggests how the ‘conflict’ should play out, suggesting various topics and important figures to fire up the debate.

“The week after the 4th of July, when everyone gets back from vacation but will still feel patriotic and summery, we want to tweet an audacious statement like, ‘Bet you couldn’t see the Independence Day fireworks without bifocals; first American diplomat Ben Franklin invented them #bestIPmoment @StateDept’,” the email reads.

As one of the Founding Fathers of the United States, Benjamin Franklin is indeed one of the most important figures in US history. And, as the inventor of not only bifocals, the lighting rod, and myriad other useful devices, his contribution to science and society is unquestionable.

Attaching him to this campaign, however, is a huge faux pas.

Despite inventing swim fins, the Franklin stove, the flexible catheter, a 24-hour three-wheel clock, a long-arm device to reach books from a high shelf, and becoming the first person to use the words “positive” and “negative” to describe electricity,
Franklin refused to patent any of his inventions.

“As we benefit from the inventions of others, we should be glad to share our own…freely and gladly,” he wrote in his autobiography.

It’s abundantly clear that using Franklin as the seed for an IP protection campaign is problematic, to say the least. His inventions have enriched the lives of millions due to his kindness and desire to share.

Who knows what might have happened if patents for bifocals and lightning rods had been aggressively enforced. Certainly, the groups already committed to this campaign wouldn’t have given up such valuable Intellectual Property so easily.

To be fair to the Bureau of Economic and Business Affairs, the decision to use the term “fake Twitter feud” seems more misguided than malicious and it seems unlikely that any conflict could have broken out when all participants are saying the same thing.

That being said, with the Copyright Alliance, MPAA and RIAA on board, the complexion changes somewhat. All three have an extremely tough stance on IP enforcement so will have a key interest in influencing how the “feud” develops and who gets sucked in.

The big question now, however, is if this campaign will now go ahead as laid out in the email. The suggested hashtags (#MostAmericanIP and #BestIPMoment) have little traction so far and now everyone will know that far from being a spontaneous event, the whole thing will have been coordinated. That probably isn’t the best look.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Bicrophonic Research Institute and the Sonic Bike

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/sonic-bike/

The Bicrophonic Sonic Bike, created by British sound artist Kaffe Matthews, utilises a Raspberry Pi and GPS signals to map location data and plays music and sound in response to the places you take it on your cycling adventures.

What is Bicrophonics?

Bicrophonics is about the mobility of sound, experienced and shared within a moving space, free of headphones and free of the internet. Music made by the journey you take, played with the space that you move through. The Bicrophonic Research Institute (BRI) http://sonicbikes.net

Cycling and music

I’m sure I wasn’t the only teen to go for bike rides with a group of friends and a radio. Spurred on by our favourite movie, the mid-nineties classic Now and Then, we’d hook up a pair of cheap portable speakers to our handlebars, crank up the volume, and sing our hearts out as we cycled aimlessly down country lanes in the cool light evenings of the British summer.

While Sonic Bikes don’t belt out the same classics that my precariously attached speakers provided, they do give you the same sense of connection to your travelling companions via sound. Linked to GPS locations on the same preset map of zones, each bike can produce the same music, creating a cloud of sound as you cycle.

Sonic Bikes

The Sonic Bike uses five physical components: a Raspberry Pi, power source, USB GPS receiver, rechargeable speakers, and subwoofer. Within the Raspberry Pi, the build utilises mapping software to divide a map into zones and connect each zone with a specific music track.

Sonic Bikes Raspberry Pi

Custom software enables the Raspberry Pi to locate itself among the zones using the USB GPS receiver. Then it plays back the appropriate track until it registers a new zone.

Bicrophonic Research Institute

The Bicrophonic Research Institute is a collective of artists and coders with the shared goal of creating sound directed by people and places via Sonic Bikes. In their own words:

Bicrophonics is about the mobility of sound, experienced and shared within a moving space, free of headphones and free of the internet. Music made by the journey you take, played with the space that you move through.

Their technology has potential beyond the aims of the BRI. The Sonic Bike software could be useful for navigation, logging data and playing beats to indicate when to alter speed or direction. You could even use it to create a guided cycle tour, including automatically reproduced information about specific places on the route.

For the creators of Sonic Bike, the project is ever-evolving, and “continues to be researched and developed to expand the compositional potentials and unique listening experiences it creates.”

Sensory Bike

A good example of this evolution is the Sensory Bike. This offshoot of the Sonic Bike idea plays sounds guided by the cyclist’s own movements – it acts like a two-wheeled musical instrument!

lean to go up, slow to go loud,

a work for Sensory Bikes, the Berlin wall and audience to ride it. ‘ lean to go up, slow to go loud ‘ explores freedom and celebrates escape. Celebrating human energy to find solutions, hot air balloons take off, train lines sing, people cheer and nature continues to grow.

Sensors on the wheels, handlebars, and brakes, together with a Sense HAT at the rear, register the unique way in which the rider navigates their location. The bike produces output based on these variables. Its creators at BRI say:

The Sensory Bike becomes a performative instrument – with riders choosing to go slow, go fast, to hop, zigzag, or circle, creating their own unique sound piece that speeds, reverses, and changes pitch while they dance on their bicycle.

Build your own Sonic Bike

As for many wonderful Raspberry Pi-based builds, the project’s code is available on GitHub, enabling makers to recreate it. All the BRI team ask is that you contact them so they can learn more of your plans and help in any way possible. They even provide code to create your own Sonic Kayak using GPS zones, temperature sensors, and an underwater microphone!

Sonic Kayaks explained

Sonic Kayaks are musical instruments for expanding our senses and scientific instruments for gathering marine micro-climate data. Made by foAm_Kernow with the Bicrophonic Research Institute (BRI), two were first launched at the British Science Festival in Swansea Bay September 6th 2016 and used by the public for 2 days.

The post Bicrophonic Research Institute and the Sonic Bike appeared first on Raspberry Pi.

Pi-powered hands-on statistical model at the Royal Society

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/royal-society-galton-board/

Physics! Particles! Statistical modelling! Quantum theory! How can non-scientists understand any of it? Well, students from Durham University are here to help you wrap your head around it all – and to our delight, they’re using the power of the Raspberry Pi to do it!

At the Royal Society’s Summer Science Exhibition, taking place in London from 4-9 July, the students are presenting a Pi-based experiment demonstrating the importance of statistics in their field of research.

Modelling the invisible – Summer Science Exhibition 2017

The Royal Society Summer Science Exhibition 2017 features 22 exhibits of cutting-edge, hands-on UK science , along with special events and talks. You can meet the scientists behind the research. Find out more about the exhibition at our website: https://royalsociety.org/science-events-and-lectures/2017/summer-science-exhibition/

Ramona, Matthew, and their colleagues are particle physicists keen to bring their science to those of us whose heads start to hurt as soon as we hear the word ‘subatomic’. In their work, they create computer models of subatomic particles to make predictions about real-world particles. Their models help scientists to design better experiments and to improve sensor calibrations. If this doesn’t sound straightforward to you, never fear – this group of scientists has set out to show exactly how statistical models are useful.

The Galton board model

They’ve built a Pi-powered Galton board, also called a bean machine (much less intimidating, I think). This is an upright board, shaped like an upside-down funnel, with nails hammered into it. Drop a ball in at the top, and it will randomly bounce off the nails on its way down. How the nails are spread out determines where a ball is most likely to land at the bottom of the board.

If you’re having trouble picturing this, you can try out an online Galton board. Go ahead, I’ll wait.

You’re back? All clear? Great!

Now, if you drop 100 balls down the board and collect them at the bottom, the result might look something like this:

Galton board

By Antoine Taveneaux CC BY-SA 3.0

The distribution of the balls is determined by the locations of the nails in the board. This means that, if you don’t know where the nails are, you can look at the distribution of balls to figure out where they are most likely to be located. And you’ll be able to do all this using … statistics!!!

Statistical models

Similarly, how particles behave is determined by the laws of physics – think of the particles as balls, and laws of physics as nails. Physicists can observe the behaviour of particles to learn about laws of physics, and create statistical models simulating the laws of physics to predict the behaviour of particles.

I can hear you say, “Alright, thanks for the info, but how does the Raspberry Pi come into this?” Don’t worry – I’m getting to that.

Modelling the invisible – the interactive exhibit

As I said, Ramona and the other physicists have not created a regular old Galton board. Instead, this one records where the balls land using a Raspberry Pi, and other portable Pis around the exhibition space can access the records of the experimental results. These Pis in turn run Galton board simulators, and visitors can use them to recreate a virtual Galton board that produces the same results as the physical one. Then, they can check whether their model board does, in fact, look like the one the physicists built. In this way, people directly experience the relationship between statistical models and experimental results.

Hurrah for science!

The other exhibit the Durham students will be showing is a demo dark matter detector! So if you decide to visit the Summer Science Exhibition, you will also have the chance to learn about the very boundaries of human understanding of the cosmos.

The Pi in museums

At the Raspberry Pi Foundation, education is our mission, and of course we love museums. It is always a pleasure to see our computers incorporated into exhibits: the Pi-powered visual theremin teaches visitors about music; the Museum in a Box uses Pis to engage people in hands-on encounters with exhibits; and this Pi is itself a museum piece! If you want to learn more about Raspberry Pis and museums, you can listen to this interview with Pi Towers’ social media maestro Alex Bate.

It’s amazing that our tech is used to educate people in areas beyond computer science. If you’ve created a pi-powered educational project, please share it with us in the comments.

The post Pi-powered hands-on statistical model at the Royal Society appeared first on Raspberry Pi.

New Lawsuit Demands ISP Blockades Against ‘Pirate’ Site Sci-Hub

Post Syndicated from Ernesto original https://torrentfreak.com/new-lawsuit-demands-isp-blockades-against-pirate-site-sci-hub-170629/

Founded more than 140 years ago, the American Chemical Society (ACS) is a leading source of academic publications in the field of chemistry.

The non-profit organization has around 157,000 members and researchers publish tens of thousands of articles a year in its peer-reviewed journals.

ACS derives a significant portion of its revenue from its publishing work, which is in large part behind a paywall. As such, it is not happy with websites that offer their copyrighted articles for free, such as Sci-Hub.

The deviant ‘pirate site’ believes that all scientific articles should be open to the public, as that’s in the best interest of science. While some academics are sympathetic to the goal, publishers share a different view.

Just last week Sci-Hub lost its copyright infringement case against Elsevier, and now ACS is following suit with a separate case. In a complaint filed in a Virginia District Court, the scientific society demands damages for Sci-Hub’s copyright and trademark infringements.

According to the filing, Sci-Hub has “stolen Plaintiff’s copyright-protected scientific articles and reproduced and distributed them on the Internet without permission.”

ACS points out that Sci-Hub is operating two websites that are nearly identical to the organization’s official site, located at pubs.acs.org.sci-hub.cc and acs.org.secure.sci-hub.cc. These are confusing to the public, they claim, and also an infringement of its copyrights and trademarks.

“The Pirated/Spoofed Site appears to almost completely replicate the content of Plaintiff’s website. For example, the Pirated/Spoofed Site replicates webpages on ACS’s history, purpose, news, scholarship opportunities, and budget,” the complaint (pdf) reads.

“Each of these pages on the Pirated/Spoofed Site contains ACS’s Copyrighted Works and the ACS Marks, creating the impression that the Pirated/Spoofed Site is associated with ACS.”

From the ACS complaint

By offering its articles for free and mimicking the ACS website, Sci-Hub is in direct competition with the scientific society. As a result, ACS claims to lose revenue.

“Defendants are attempting to divert users and revenues away from ACS by replicating and distributing ACS’s Copyrighted Works without authorization,” the complaint reads.

With the lawsuit, ACS hopes to recoup the money it claims to have lost. It’s likely that the total damages amount will run in the millions. However, if the defendants stay out of reach, this might be hard to collect.

Perhaps this is why the current lawsuit has included a request for a broader injunction against Sci-Hub. Not only does it ask for domain name seizures, but the scientific society also wants search engines, web hosting companies and general Internet providers to block access to the site.

“That those in privity with Defendants and those with notice of the injunction, including any Internet search engines, web hosting and Internet service providers, domain name registrars, and domain name registries cease facilitating access to any or all domain names and websites through which Defendants engage in unlawful access to, use, reproduction, and distribution of the ACS Marks or ACS’s Copyrighted Works,” it reads.

If granted, it would mean that Internet providers such as Comcast would have to block users from accessing Sci-Hub. That’s a big deal since pirate site blockades are not common in the United States.

It might very well be that ACS is not expecting any compensation for the alleged copyright and trademark infringements, but that the broad injunction is their main goal. If that is the case, this case could turn out to be more crucial than it looks at first sight.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

MagPi 59: the Raspberry Pi PC Challenge

Post Syndicated from Lucy Hattersley original https://www.raspberrypi.org/blog/magpi-59/

Hey everyone, Lucy here! I’m standing in for Rob this month to introduce The MagPi 59, the latest edition of the official Raspberry Pi magazine.

The MagPi 59

Ever wondered whether a Pi could truly replace your home computer? Looking for inspiration for a Pi-powered project you can make and use in the sunshine? Interested in winning a Raspberry Pi that’s a true collector’s item?

Then we’ve got you covered in Issue 59, out in stores today!

The MagPi 59

Shiny and new

The Raspberry Pi PC challenge

This month’s feature is fascinating! We set the legendary Rob Zwetsloot a challenge: use no other computer but a Raspberry Pi for a week, and let us know how it goes – for science!

Is there anything you can’t do with a $35 computer? To find out, you just have to read the magazine.

12 summer projects

We’re bringing together some of the greatest outdoor projects for the Raspberry Pi in this MagPi issue. From a high-altitude balloon, to aerial photography, to bike computers and motorised skateboards, there’s plenty of bright ideas in The MagPi 59.

12 Summer Projects in The MagPi 59

Maybe your Pi will ripen in the sun?

The best of the rest in The MagPi 59

We’ve got a fantastic collection of community projects this month. Ingmar Stapel shows off Big Rob, his SatNav-guided robot, while Eric Page demonstrates his Dog Treat Dispenser. There are also interesting tutorials on building a GPS tracker, controlling a Raspberry Pi with an Android app and Bluetooth, and building an electronic wind chime with magnetometers.

You can even enter our give-away of 10 ultra-rare ‘Raspberry Pi 3 plus official case’ kits signed by none other than Eben Upton, co-creator of the Raspberry Pi. Win one and be the envy of the entire Raspberry Pi community!

Electronic Wind Chimes - MagPi 59


You can find The MagPi 59 in the UK right now, at WHSmith, Sainsbury’s, Asda, and Tesco. Copies will be arriving in US stores including Barnes & Noble and Micro Center very soon. You can also get a copy online from our store or via our Android or iOS app. And don’t forget: there’s always the free PDF as well.

Get reading, get making, and enjoy the new issue!

Rob isn’t here to add his signature Picard GIF, but we’ve sorted it for him. He loves a good pun, so he does! – Janina & Alex

The post MagPi 59: the Raspberry Pi PC Challenge appeared first on Raspberry Pi.