Tag Archives: Batch

The Truth Behind the “Kodi Boxes Can Kill Their Owners” Headlines

Post Syndicated from Andy original https://torrentfreak.com/the-truth-behind-the-kodi-boxes-can-kill-their-owners-headlines-171118/

Another week, another batch of ‘Kodi Box Armageddon’ stories. This time it hasn’t been directly about the content they can provide but the physical risks they pose to their owners.

After being primed in advance, the usual British tabloids jumped into action early Thursday, noting that following tests carried out on “illicit streaming devices” (aka Android set-top devices), 100% of them failed to meet UK national electrical safety regulations.

The tests were carried out by Electrical Safety First, a charity which was prompted into action by anti-piracy outfit Federation Against Copyright Theft.

“A series of product safety tests on popular illicit streaming devices entering the UK have found that 100% fail to meet national electrical safety regulations,” a FACT statement reads.

“The news is all the more significant as the Intellectual Property Office (IPO) estimates that more than one million of these illegal devices have been sold in the UK in the last two years, representing a significant risk to the general public.”

After reading many sensational headlines stating that “Kodi Boxes Might Kill Their Owners”, please excuse us for groaning. This story has absolutely nothing – NOTHING – to do with Kodi or any other piece of software. Quite obviously, software doesn’t catch fire.

So, suspecting that there might be more to this than meets the eye, we decided to look beyond the press releases into the actual Electrical Safety First (ESF) report. While we have no doubt that ESF is extremely competent in its field (it is, no question), the front page of its report is disappointing.

Despite the items sent for testing being straightforward Android-based media players, the ESF report clearly describes itself as examining “illicit streaming devices”. It’s terminology that doesn’t describe the subject matter from an electrical, safety or technical perspective but is pretty convenient for FACT clients Sky and the Premier League.

Nevertheless, the full picture reveals rather more than most of the headlines suggest.

First of all, it’s important to know that ESF tested just nine devices out of the million or so allegedly sold in the UK during the past two years. Even more importantly, every single one of those devices was supplied to ESF by FACT.

Now, we’re not suggesting they were hand-picked to fail but it’s clear that the samples weren’t provided from a neutral source. Also, as we’ll learn shortly, it’s possible to determine in advance if an item will fail to meet UK standards simply by looking at its packaging and casing.

But perhaps even more intriguing is that the electrical testing carried out by ESF related primarily not to the set-top boxes themselves, but to their power supplies. ESF say so themselves.

“The product review relates primarily to the switched mode power supply units for the connection to the mains supply, which were supplied with the devices, to identify any potential risks to consumers such as electric shocks, heating and resistance to fire,” ESF reports.

The set-top boxes themselves were only assessed “in terms of any faults in the marking, warnings and instructions,” the group adds.

So, what we’re really talking about here isn’t dangerous illicit streaming devices set-top boxes, but the power supply units that come with them. It might seem like a small detail but we’ll come to the vast importance of this later on.

Firstly, however, we should note that none of the equipment supplied by FACT complied with Schedule 1 of the Electrical Equipment (Safety) Regulations 1994. This means that they failed to have the “Conformité Européene” or CE logo present. That’s unacceptable.

In addition, none of them lived up the requirements of Schedule 3 of the Electrical Equipment (Safety) Regulations 1994 either, which in part requires the manufacturer’s brand name or trademark to be “clearly printed on the electrical equipment or, where that is not possible, on the packaging.” (That’s how you can tell they’ll definitely fail UK standards, before sending them for testing)

Also, none of the samples were supplied with “sufficient safety or warning information to ensure the safe and correct use, assembly, installation or maintenance of the equipment.” This represents ‘a technical breach’ of the regulations, ESF reports.

Finally, several of the samples were considered to be a potential risk to their users, either via electric shock and/or fire. That’s an important finding and people who suspect they have such devices at home should definitely take note.

However, the really important point isn’t mentioned in the tabloids, probably since it distracts from the “Kodi Armageddon” narrative which underlies the whole study and subsequent reports.

ESF says that one of the key issues is that the set-top boxes come unbranded, something which breaches safety regulations while making it difficult for consumers to assess whether they’re buying a quality product. Crucially, this is not exclusively a set-top box problem, it is much, MUCH bigger.

“Issues with power supply units or unbranded and counterfeit chargers go beyond illicit streaming devices. In the last year, issues have been reported with other consumer electrical devices, such as laptop chargers and counterfeit phone chargers,” the same ESF report reveals.

“The total annual online sales of mains plug-in chargers is estimated to be in the region of 1.8 million and according to Electrical Safety First, it is likely that most of these sales involve cheap, unbranded chargers.”

So, we looked into this issue of problem power supplies and chargers generally, to see where this report fits into the bigger picture. It transpires it’s a massive problem, all over the UK, across a wide range of products. In fact, Trading Standards reports that 99% of non-genuine Apple chargers bought online “fail a basic safety test”.

But buying from reputable High Street retailers doesn’t help either.

During the past year, Poundworld was fined for selling – wait for it – 72,000 dangerous chargers. Home Bargains was also fined for selling “thousands” of power adaptors that fail to meet UK standards.

“All samples provided failed to comply with Electrical Equipment Safety Regulations and were not marked with the manufacturer’s name,” Trading Standards reports.

That sounds familiar.

So, there you have it. Far from this being an isolated “Kodi Box Crisis” as some have proclaimed, this is a broad issue affecting imported electrical items in general. On this basis, one can’t help but think the tabloids missed a trick here. Think of the power of this headline:

ALL UNBRANDED ELECTRICAL EQUIPMENT CAN KILL, DISCONNECT EVERYTHING

or, alternatively:

PIRATES URGED TO SWITCH TO BRANDED AMAZON FIRESTICKS, SAFER FOR KODI

Perhaps not….

The ESF report can be found here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

HiveMQ 3.2.8 released

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/hivemq-3-2-8-released/

The HiveMQ team is pleased to announce the availability of HiveMQ 3.2.8. This is a maintenance release for the 3.2 series and brings the following improvements:

  • Improved performance for payload disk persistence
  • Improved performance for subscription disk persistence
  • Improved exception handling in OnSubscribeCallback when an Exception is not caught by a plugin
  • Fixed an issue where the metric for discarded messages “QoS 0 Queue not empty” was increased when a client is offline
  • Fixed an issue where the convenience methods for a SslCertificate might return null for certain extensions
  • Fixed an issue which could lead to the OnPubackReceivedCallback being executed when inflight queue is full
  • Fixed an issue where a scheduled background cleanup job could cause an error in the logs
  • Fixed an issue which could lead to an IllegalArgumentException when sending a QoS 0 message in a rare edge-case
  • Fixed an issue where a error “Exception while handling batched publish request” was logged without reason

You can download the new HiveMQ version here.

We recommend to upgrade if you are an HiveMQ 3.2.x user.

Have a great day,
The HiveMQ Team

Resume AWS Step Functions from Any State

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/


Yash Pant, Solutions Architect, AWS


Aaron Friedman, Partner Solutions Architect, AWS

When we discuss how to build applications with customers, we often align to the Well Architected Framework pillars of security, reliability, performance efficiency, cost optimization, and operational excellence. Designing for failure is an essential component to developing well architected applications that are resilient to spurious errors that may occur.

There are many ways you can use AWS services to achieve high availability and resiliency of your applications. For example, you can couple Elastic Load Balancing with Auto Scaling and Amazon EC2 instances to build highly available applications. Or use Amazon API Gateway and AWS Lambda to rapidly scale out a microservices-based architecture. Many AWS services have built in solutions to help with the appropriate error handling, such as Dead Letter Queues (DLQ) for Amazon SQS or retries in AWS Batch.

AWS Step Functions is an AWS service that makes it easy for you to coordinate the components of distributed applications and microservices. Step Functions allows you to easily design for failure, by incorporating features such as error retries and custom error handling from AWS Lambda exceptions. These features allow you to programmatically handle many common error modes and build robust, reliable applications.

In some rare cases, however, your application may fail in an unexpected manner. In these situations, you might not want to duplicate in a repeat execution those portions of your state machine that have already run. This is especially true when orchestrating long-running jobs or executing a complex state machine as part of a microservice. Here, you need to know the last successful state in your state machine from which to resume, so that you don’t duplicate previous work. In this post, we present a solution to enable you to resume from any given state in your state machine in the case of an unexpected failure.

Resuming from a given state

To resume a failed state machine execution from the state at which it failed, you first run a script that dynamically creates a new state machine. When the new state machine is executed, it resumes the failed execution from the point of failure. The script contains the following two primary steps:

  1. Parse the execution history of the failed execution to find the name of the state at which it failed, as well as the JSON input to that state.
  2. Create a new state machine, which adds an additional state to failed state machine, called "GoToState". "GoToState" is a choice state at the beginning of the state machine that branches execution directly to the failed state, allowing you to skip states that had succeeded in the previous execution.

The full script along with a CloudFormation template that creates a demo of this is available in the aws-sfn-resume-from-any-state GitHub repo.

Diving into the script

In this section, we walk you through the script and highlight the core components of its functionality. The script contains a main function, which adds a command line parameter for the failedExecutionArn so that you can easily call the script from the command line:

python gotostate.py --failedExecutionArn '<Failed_Execution_Arn>'

Identifying the failed state in your execution

First, the script extracts the name of the failed state along with the input to that state. It does so by using the failed state machine execution history, which is identified by the Amazon Resource Name (ARN) of the execution. The failed state is marked in the execution history, along with the input to that state (which is also the output of the preceding successful state). The script is able to parse these values from the log.

The script loops through the execution history of the failed state machine, and traces it backwards until it finds the failed state. If the state machine failed in a parallel state, then it must restart from the beginning of the parallel state. The script is able to capture the name of the parallel state that failed, rather than any substate within the parallel state that may have caused the failure. The following code is the Python function that does this.


def parseFailureHistory(failedExecutionArn):

    '''
    Parses the execution history of a failed state machine to get the name of failed state and the input to the failed state:
    Input failedExecutionArn = A string containing the execution ARN of a failed state machine y
    Output = A list with two elements: [name of failed state, input to failed state]
    '''
    failedAtParallelState = False
    try:
        #Get the execution history
        response = client.get\_execution\_history(
            executionArn=failedExecutionArn,
            reverseOrder=True
        )
        failedEvents = response['events']
    except Exception as ex:
        raise ex
    #Confirm that the execution actually failed, raise exception if it didn't fail.
    try:
        failedEvents[0]['executionFailedEventDetails']
    except:
        raise('Execution did not fail')
        
    '''
    If you have a 'States.Runtime' error (for example, if a task state in your state machine attempts to execute a Lambda function in a different region than the state machine), get the ID of the failed state, and use it to determine the failed state name and input.
    '''
    
    if failedEvents[0]['executionFailedEventDetails']['error'] == 'States.Runtime':
        failedId = int(filter(str.isdigit, str(failedEvents[0]['executionFailedEventDetails']['cause'].split()[13])))
        failedState = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['name']
        failedInput = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['input']
        return (failedState, failedInput)
        
    '''
    You need to loop through the execution history, tracing back the executed steps.
    The first state you encounter is the failed state. If you failed on a parallel state, you need the name of the parallel state rather than the name of a state within a parallel state that it failed on. This is because you can only attach goToState to the parallel state, but not a substate within the parallel state.
    This loop starts with the ID of the latest event and uses the previous event IDs to trace back the execution to the beginning (id 0). However, it returns as soon it finds the name of the failed state.
    '''

    currentEventId = failedEvents[0]['id']
    while currentEventId != 0:
        #multiply event ID by -1 for indexing because you're looking at the reversed history
        currentEvent = failedEvents[-1 \* currentEventId]
        
        '''
        You can determine if the failed state was a parallel state because it and an event with 'type'='ParallelStateFailed' appears in the execution history before the name of the failed state
        '''

        if currentEvent['type'] == 'ParallelStateFailed':
            failedAtParallelState = True

        '''
        If the failed state is not a parallel state, then the name of failed state to return is the name of the state in the first 'TaskStateEntered' event type you run into when tracing back the execution history
        '''

        if currentEvent['type'] == 'TaskStateEntered' and failedAtParallelState == False:
            failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)

        '''
        If the failed state was a parallel state, then you need to trace execution back to the first event with 'type'='ParallelStateEntered', and return the name of the state
        '''

        if currentEvent['type'] == 'ParallelStateEntered' and failedAtParallelState:
            failedState = failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)
        #Update the ID for the next execution of the loop
        currentEventId = currentEvent['previousEventId']
        

Create the new state machine

The script uses the name of the failed state to create the new state machine, with "GoToState" branching execution directly to the failed state.

To do this, the script requires the Amazon States Language (ASL) definition of the failed state machine. It modifies the definition to append "GoToState", and create a new state machine from it.

The script gets the ARN of the failed state machine from the execution ARN of the failed state machine. This ARN allows it to get the ASL definition of the failed state machine by calling the DesribeStateMachine API action. It creates a new state machine with "GoToState".

When the script creates the new state machine, it also adds an additional input variable called "resuming". When you execute this new state machine, you specify this resuming variable as true in the input JSON. This tells "GoToState" to branch execution to the state that had previously failed. Here’s the function that does this:

def attachGoToState(failedStateName, stateMachineArn):

    '''
    Given a state machine ARN and the name of a state in that state machine, create a new state machine that starts at a new choice state called 'GoToState'. "GoToState" branches to the named state, and sends the input of the state machine to that state, when a variable called "resuming" is set to True.
    Input failedStateName = A string with the name of the failed state
          stateMachineArn = A string with the ARN of the state machine
    Output response from the create_state_machine call, which is the API call that creates a new state machine
    '''

    try:
        response = client.describe\_state\_machine(
            stateMachineArn=stateMachineArn
        )
    except:
        raise('Could not get ASL definition of state machine')
    roleArn = response['roleArn']
    stateMachine = json.loads(response['definition'])
    #Create a name for the new state machine
    newName = response['name'] + '-with-GoToState'
    #Get the StartAt state for the original state machine, because you point the 'GoToState' to this state
    originalStartAt = stateMachine['StartAt']

    '''
    Create the GoToState with the variable $.resuming.
    If new state machine is executed with $.resuming = True, then the state machine skips to the failed state.
    Otherwise, it executes the state machine from the original start state.
    '''

    goToState = {'Type':'Choice', 'Choices':[{'Variable':'$.resuming', 'BooleanEquals':False, 'Next':originalStartAt}], 'Default':failedStateName}
    #Add GoToState to the set of states in the new state machine
    stateMachine['States']['GoToState'] = goToState
    #Add StartAt
    stateMachine['StartAt'] = 'GoToState'
    #Create new state machine
    try:
        response = client.create_state_machine(
            name=newName,
            definition=json.dumps(stateMachine),
            roleArn=roleArn
        )
    except:
        raise('Failed to create new state machine with GoToState')
    return response

Testing the script

Now that you understand how the script works, you can test it out.

The following screenshot shows an example state machine that has failed, called "TestMachine". This state machine successfully completed "FirstState" and "ChoiceState", but when it branched to "FirstMatchState", it failed.

Use the script to create a new state machine that allows you to rerun this state machine, but skip the "FirstState" and the "ChoiceState" steps that already succeeded. You can do this by calling the script as follows:

python gotostate.py --failedExecutionArn 'arn:aws:states:us-west-2:<AWS_ACCOUNT_ID>:execution:TestMachine-with-GoToState:b2578403-f41d-a2c7-e70c-7500045288595

This creates a new state machine called "TestMachine-with-GoToState", and returns its ARN, along with the input that had been sent to "FirstMatchState". You can then inspect the input to determine what caused the error. In this case, you notice that the input to "FirstMachState" was the following:

{
"foo": 1,
"Message": true
}

However, this state machine expects the "Message" field of the JSON to be a string rather than a Boolean. Execute the new "TestMachine-with-GoToState" state machine, change the input to be a string, and add the "resuming" variable that "GoToState" requires:

{
"foo": 1,
"Message": "Hello!",
"resuming":true
}

When you execute the new state machine, it skips "FirstState" and "ChoiceState", and goes directly to "FirstMatchState", which was the state that failed:

Look at what happens when you have a state machine with multiple parallel steps. This example is included in the GitHub repository associated with this post. The repo contains a CloudFormation template that sets up this state machine and provides instructions to replicate this solution.

The following state machine, "ParallelStateMachine", takes an input through two subsequent parallel states before doing some final processing and exiting, along with the JSON with the ASL definition of the state machine.

{
  "Comment": "An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
  "StartAt": "Parallel",
  "States": {
    "Parallel": {
      "Type": "Parallel",
      "ResultPath":"$.output",
      "Next": "Parallel 2",
      "Branches": [
        {
          "StartAt": "Parallel Step 1, Process 1",
          "States": {
            "Parallel Step 1, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 1, Process 2",
          "States": {
            "Parallel Step 1, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        }
      ]
    },
    "Parallel 2": {
      "Type": "Parallel",
      "Next": "Final Processing",
      "Branches": [
        {
          "StartAt": "Parallel Step 2, Process 1",
          "States": {
            "Parallel Step 2, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 2, Process 2",
          "States": {
            "Parallel Step 2, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        }
      ]
    },
    "Final Processing": {
      "Type": "Task",
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
      "End": true
    }
  }
}

First, use an input that initially fails:

{
  "Message": "Hello!"
}

This fails because the state machine expects you to have a variable in the input JSON called "foo" in the second parallel state to run "Parallel Step 2, Process 1" and "Parallel Step 2, Process 2". Instead, the original input gets processed by the first parallel state and produces the following output to pass to the second parallel state:

{
"output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
}

Run the script on the failed state machine to create a new state machine that allows it to resume directly at the second parallel state instead of having to redo the first parallel state. This creates a new state machine called "ParallelStateMachine-with-GoToState". The following JSON was created by the script to define the new state machine in ASL. It contains the "GoToState" value that was attached by the script.

{
   "Comment":"An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
   "States":{
      "Final Processing":{
         "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
         "End":true,
         "Type":"Task"
      },
      "GoToState":{
         "Default":"Parallel 2",
         "Type":"Choice",
         "Choices":[
            {
               "Variable":"$.resuming",
               "BooleanEquals":false,
               "Next":"Parallel"
            }
         ]
      },
      "Parallel":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 1, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 1"
            },
            {
               "States":{
                  "Parallel Step 1, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 2"
            }
         ],
         "ResultPath":"$.output",
         "Type":"Parallel",
         "Next":"Parallel 2"
      },
      "Parallel 2":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 2, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 1"
            },
            {
               "States":{
                  "Parallel Step 2, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 2"
            }
         ],
         "Type":"Parallel",
         "Next":"Final Processing"
      }
   },
   "StartAt":"GoToState"
}

You can then execute this state machine with the correct input by adding the "foo" and "resuming" variables:

{
  "foo": 1,
  "output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
  "resuming": true
}

This yields the following result. Notice that this time, the state machine executed successfully to completion, and skipped the steps that had previously failed.


Conclusion

When you’re building out complex workflows, it’s important to be prepared for failure. You can do this by taking advantage of features such as automatic error retries in Step Functions and custom error handling of Lambda exceptions.

Nevertheless, state machines still have the possibility of failing. With the methodology and script presented in this post, you can resume a failed state machine from its point of failure. This allows you to skip the execution of steps in the workflow that had already succeeded, and recover the process from the point of failure.

To see more examples, please visit the Step Functions Getting Started page.

If you have questions or suggestions, please comment below.

Swedish Data Authority Investigates Piracy Settlement Letters

Post Syndicated from Andy original https://torrentfreak.com/swedish-data-authority-investigates-piracy-settlement-letters-171115/

Companies that aim to turn piracy into profit have been in existence for more than a decade but still the controversy around their practices continues.

Most, known colloquially as ‘copyright trolls’, monitor peer-to-peer networks such as BitTorrent, collecting IP addresses and other data in order to home in on a particular Internet account. From there, ISPs are sued to hand over that particular subscriber’s personal details. Once they’re obtained, the pressure begins.

At this point, trolls are in direct contact with the public, usually by letter. Their tone is almost always semi-aggressive, warning account holders that their actions are undermining entire industries. However, as if by magic, all the harm can be undone if they pay up few hundred dollars, euros, or pounds – quickly.

That’s the case in Sweden, where law firm Njord Law is representing the well-known international copyright trolls behind the movies CELL, IT, London Has Fallen, Mechanic: Resurrection, Criminal, and September of Shiraz.

“Have you, or other people with access to the aforementioned IP address, such as children living at home, viewed or tried to watch [a pirate movie] at the specified time?” Njord Law now writes in its letters to alleged pirates.

“If so, the case can be terminated by paying 4,500 SEK [$550].”

It’s clear that the companies involved are diving directly for cash. Indeed, letter recipients are told they have just two weeks to pay up or face further issues. The big question now is whether these demands are permissible under law, not necessarily from a copyright angle but due to the way they are presented to the alleged pirates.

The Swedish Data Protection Authority (Datainspektionen) is a public authority tasked with protecting the privacy of the individual in the information society. Swedish Radio reports that it has received several complaints from Swedes who have received cash demands and as a result is investigating whether the letters are legal.

As a result, the authority now has to determine whether the letters can be regarded as a debt collection measure. If so, they will have to comply with special laws and would also require special permission.

“They have not classified this as a debt collection fee, but it is not that element that is crucial. A debt collection measure is determined by whether there is any kind of pressure on the recipient to make a payment. Then there is the question of whether such pressure can be considered a debt collection measure,” says lawyer Camilla Sparr.

Of course, the notion that the letters exist for the purposes of collecting a debt is rejected by Njord Law. Lawyer Jeppe Brogaard Clausen says that his company has had no problems in this respect in other jurisdictions.

“We have encountered the same issue in Denmark and Finland and it was judged by the authorities that there is no talk about a debt collection letter,” Clausen told SR.

A lot hinges on the investigation of the Data Protection Authority. Njord Law has already obtained permission to find out the identities behind tens of thousands of IP addresses, including a single batch where 25,000 customers of ISP Telia were targeted.

At least 5,000 letters demanding payment have been sent out already and another 5,000 are lined up for the next few months. Clausen says their purpose is to change Swedes’ attitude towards illegal file sharing but there’s a broad belief that they’re part of a global network of companies whose aims are to generate profit from piracy.

But while the Data Protection Authority does its work, there is plenty of advice for letter recipients who don’t want to cave into demands for cash. Last month, Copyright Professor Sanna Wolk advised them to ignore the letters entirely.

“Do not pay. You do not even have to answer it,” Wolk told people receiving a letter.

“In the end, it’s the court that will decide whether you have to pay or not. We have seen this type of letter in the past, and only very few times those in charge of the claims have taken it to court.”

Of course, should copyright holders actually take a matter to court, then recipients must contest the claim since failure to do so could result in a default judgment. This means they lose the case without even having had the opportunity to mount a defense.

Importantly, one such defense could be that the individual didn’t carry out the offense, perhaps because their WiFi isn’t password protected or that they share their account with others.

“Someone who has an open network cannot be held responsible for copyright violations – such as downloading movies – if they provide others with access to their internet connection. This has been decided in a European Court ruling last year,” Wolk noted.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

[$] Block layer introduction part 2: the request layer

Post Syndicated from corbet original https://lwn.net/Articles/738449/rss

The Linux block layer provides an upstream interface to filesystems and
block-special devices allowing them to access a multitude of storage
backends in a uniform manner. It also provides downstream interfaces to device
drivers and driver-support frameworks that allow those drivers and
frameworks to receive requests in a manner most suitable to each. Some
drivers do not benefit from preliminary handling and just use the thin “bio
layer” that we met previously. Other
drivers benefit
from some preprocessing that might detect batches of consecutive requests,
may reorder requests based on various criteria, and which presents the
requests as one or more well-defined streams. To service these drivers,
there exists a section of the block layer that I refer to as the request
layer.

Subscribers can read on below for guest author Neil Brown’s article that
will appear in next week’s edition.

Now Available – Compute-Intensive C5 Instances for Amazon EC2

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-available-compute-intensive-c5-instances-for-amazon-ec2/

I’m thrilled to announce that the new compute-intensive C5 instances are available today in six sizes for launch in three AWS regions!

These instances designed for compute-heavy applications like batch processing, distributed analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. The new instances offer a 25% price/performance improvement over the C4 instances, with over 50% for some workloads. They also have additional memory per vCPU, and (for code that can make use of the new AVX-512 instructions), twice the performance for vector and floating point workloads.

Over the years we have been working non-stop to provide our customers with the best possible networking, storage, and compute performance, with a long-term focus on offloading many types of work to dedicated hardware designed and built by AWS. The C5 instance type incorporates the latest generation of our hardware offloads, and also takes another big step forward with the addition of a new hypervisor that runs hand-in-glove with our hardware. The new hypervisor allows us to give you access to all of the processing power provided by the host hardware, while also making performance even more consistent and further raising the bar on security. We’ll be sharing many technical details about it at AWS re:Invent.

The New Instances
The C5 instances are available in six sizes:

Instance Name vCPUs
RAM
EBS Bandwidth Network Bandwidth
c5.large 2 4 GiB Up to 2.25 Gbps Up to 10 Gbps
c5.xlarge 4 8 GiB Up to 2.25 Gbps Up to 10 Gbps
c5.2xlarge 8 16 GiB Up to 2.25 Gbps Up to 10 Gbps
c5.4xlarge 16 32 GiB 2.25 Gbps Up to 10 Gbps
c5.9xlarge 36 72 GiB 4.5 Gbps 10 Gbps
c5.18xlarge 72 144 GiB 9 Gbps 25 Gbps

Each vCPU is a hardware hyperthread on a 3.0 GHz Intel Xeon Platinum 8000-series processor. This custom processor, optimized for EC2, allows you have full control over the C-states on the two largest sizes, allowing you to run a single core at up to 3.5 GHz using Intel Turbo Boost Technology.

As you can see from the table, the four smallest instance sizes offer substantially more EBS and network bandwidth than the previous generation of compute-intensive instances.

Because all networking and storage functionality is implemented in hardware, C5 instances require HVM AMIs that include drivers for the Elastic Network Adapter (ENA) and NVMe. The latest Amazon Linux, Microsoft Windows, Ubuntu, RHEL, CentOS, SLES, Debian, and FreeBSD AMIs all support C5 instances. If you are doing machine learning inferencing, or other compute-intensive work, be sure to check out the most recent version of the Intel Math Kernel Library. It has been optimized for the Intel® Xeon® Platinum processor and has the potential to greatly accelerate your work.

In order to remain compatible with instances that use the Xen hypervisor, the device names for EBS volumes will continue to use the existing /dev/sd and /dev/xvd prefixes. The device name that you provide when you attach a volume to an instance is not used because the NVMe driver assigns its own device name (read Amazon EBS and NVMe to learn more):

The nvme command displays additional information about each volume (install it using sudo yum -y install nvme-cli if necessary):

The SN field in the output can be mapped to an EBS volume ID by inserting a “-” after the “vol” prefix (sadly, the NVMe SN field is not long enough to store the entire ID). Here’s a simple script that uses this information to create an EBS snapshot of each attached volume:

$ sudo nvme list | \
  awk '/dev/ {print(gensub("vol", "vol-", 1, $2))}' | \
  xargs -n 1 aws ec2 create-snapshot --volume-id

With a little more work (and a lot of testing), you could create a script that expands EBS volumes that are getting full.

Getting to C5
As I mentioned earlier, our effort to offload work to hardware accelerators has been underway for quite some time. Here’s a recap:

CC1 – Launched in 2010, the CC1 was designed to support scale-out HPC applications. It was the first EC2 instance to support 10 Gbps networking and one of the first to support HVM virtualization. The network fabric that we designed for the CC1 (based on our own switch hardware) has become the standard for all AWS data centers.

C3 – Launched in 2013, the C3 introduced Enhanced Networking and uses dedicated hardware accelerators to support the software defined network inside of each Virtual Private Cloud (VPC). Hardware virtualization removes the I/O stack from the hypervisor in favor of direct access by the guest OS, resulting in higher performance and reduced variability.

C4 – Launched in 2015, the C4 instances are EBS Optimized by default via a dedicated network connection, and also offload EBS processing (including CPU-intensive crypto operations for encrypted EBS volumes) to a hardware accelerator.

C5 – Launched today, the hypervisor that powers the C5 instances allow practically all of the resources of the host CPU to be devoted to customer instances. The ENA networking and the NVMe interface to EBS are both powered by hardware accelerators. The instances do not require (or support) the Xen paravirtual networking or block device drivers, both of which have been removed in order to increase efficiency.

Going forward, we’ll use this hypervisor to power other instance types and plan to share additional technical details in a set of AWS re:Invent sessions.

Launch a C5 Today
You can launch C5 instances today in the US East (Northern Virginia), US West (Oregon), and EU (Ireland) Regions in On-Demand and Spot form (Reserved Instances are also available), with additional Regions in the works.

One quick note before I go: The current NVMe driver is not optimized for high-performance sequential workloads and we don’t recommend the use of C5 instances in conjunction with sc1 or st1 volumes. We are aware of this issue and have been working to optimize the driver for this important use case.

Jeff;

AWS HIPAA Eligibility Update (October 2017) – Sixteen Additional Services

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-hipaa-eligibility-post-update-october-2017-sixteen-additional-services/

Our Health Customer Stories page lists just a few of the many customers that are building and running healthcare and life sciences applications that run on AWS. Customers like Verge Health, Care Cloud, and Orion Health trust AWS with Protected Health Information (PHI) and Personally Identifying Information (PII) as part of their efforts to comply with HIPAA and HITECH.

Sixteen More Services
In my last HIPAA Eligibility Update I shared the news that we added eight additional services to our list of HIPAA eligible services. Today I am happy to let you know that we have added another sixteen services to the list, bringing the total up to 46. Here are the newest additions, along with some short descriptions and links to some of my blog posts to jog your memory:

Amazon Aurora with PostgreSQL Compatibility – This brand-new addition to Amazon Aurora allows you to encrypt your relational databases using keys that you create and manage through AWS Key Management Service (KMS). When you enable encryption for an Amazon Aurora database, the underlying storage is encrypted, as are automated backups, read replicas, and snapshots. Read New – Encryption at Rest for Amazon Aurora to learn more.

Amazon CloudWatch Logs – You can use the logs to monitor and troubleshoot your systems and applications. You can monitor your existing system, application, and custom log files in near real-time, watching for specific phrases, values, or patterns. Log data can be stored durably and at low cost, for as long as needed. To learn more, read Store and Monitor OS & Application Log Files with Amazon CloudWatch and Improvements to CloudWatch Logs and Dashboards.

Amazon Connect – This self-service, cloud-based contact center makes it easy for you to deliver better customer service at a lower cost. You can use the visual designer to set up your contact flows, manage agents, and track performance, all without specialized skills. Read Amazon Connect – Customer Contact Center in the Cloud and New – Amazon Connect and Amazon Lex Integration to learn more.

Amazon ElastiCache for Redis – This service lets you deploy, operate, and scale an in-memory data store or cache that you can use to improve the performance of your applications. Each ElastiCache for Redis cluster publishes key performance metrics to Amazon CloudWatch. To learn more, read Caching in the Cloud with Amazon ElastiCache and Amazon ElastiCache – Now With a Dash of Redis.

Amazon Kinesis Streams – This service allows you to build applications that process or analyze streaming data such as website clickstreams, financial transactions, social media feeds, and location-tracking events. To learn more, read Amazon Kinesis – Real-Time Processing of Streaming Big Data and New: Server-Side Encryption for Amazon Kinesis Streams.

Amazon RDS for MariaDB – This service lets you set up scalable, managed MariaDB instances in minutes, and offers high performance, high availability, and a simplified security model that makes it easy for you to encrypt data at rest and in transit. Read Amazon RDS Update – MariaDB is Now Available to learn more.

Amazon RDS SQL Server – This service lets you set up scalable, managed Microsoft SQL Server instances in minutes, and also offers high performance, high availability, and a simplified security model. To learn more, read Amazon RDS for SQL Server and .NET support for AWS Elastic Beanstalk and Amazon RDS for Microsoft SQL Server – Transparent Data Encryption (TDE) to learn more.

Amazon Route 53 – This is a highly available Domain Name Server. It translates names like www.example.com into IP addresses. To learn more, read Moving Ahead with Amazon Route 53.

AWS Batch – This service lets you run large-scale batch computing jobs on AWS. You don’t need to install or maintain specialized batch software or build your own server clusters. Read AWS Batch – Run Batch Computing Jobs on AWS to learn more.

AWS CloudHSM – A cloud-based Hardware Security Module (HSM) for key storage and management at cloud scale. Designed for sensitive workloads, CloudHSM lets you manage your own keys using FIPS 140-2 Level 3 validated HSMs. To learn more, read AWS CloudHSM – Secure Key Storage and Cryptographic Operations and AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads.

AWS Key Management Service – This service makes it easy for you to create and control the encryption keys used to encrypt your data. It uses HSMs to protect your keys, and is integrated with AWS CloudTrail in order to provide you with a log of all key usage. Read New AWS Key Management Service (KMS) to learn more.

AWS Lambda – This service lets you run event-driven application or backend code without thinking about or managing servers. To learn more, read AWS Lambda – Run Code in the Cloud, AWS Lambda – A Look Back at 2016, and AWS Lambda – In Full Production with New Features for Mobile Devs.

[email protected] – You can use this new feature of AWS Lambda to run Node.js functions across the global network of AWS locations without having to provision or manager servers, in order to deliver rich, personalized content to your users with low latency. Read [email protected] – Intelligent Processing of HTTP Requests at the Edge to learn more.

AWS Snowball Edge – This is a data transfer device with 100 terabytes of on-board storage as well as compute capabilities. You can use it to move large amounts of data into or out of AWS, as a temporary storage tier, or to support workloads in remote or offline locations. To learn more, read AWS Snowball Edge – More Storage, Local Endpoints, Lambda Functions.

AWS Snowmobile – This is an exabyte-scale data transfer service. Pulled by a semi-trailer truck, each Snowmobile packs 100 petabytes of storage into a ruggedized 45-foot long shipping container. Read AWS Snowmobile – Move Exabytes of Data to the Cloud in Weeks to learn more (and to see some of my finest LEGO work).

AWS Storage Gateway – This hybrid storage service lets your on-premises applications use AWS cloud storage (Amazon Simple Storage Service (S3), Amazon Glacier, and Amazon Elastic File System) in a simple and seamless way, with storage for volumes, files, and virtual tapes. To learn more, read The AWS Storage Gateway – Integrate Your Existing On-Premises Applications with AWS Cloud Storage and File Interface to AWS Storage Gateway.

And there you go! Check out my earlier post for a list of resources that will help you to build applications that comply with HIPAA and HITECH.

Jeff;

 

AWS Online Tech Talks – November 2017

Post Syndicated from Sara Rodas original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-november-2017/

Leaves are crunching under my boots, Halloween is tomorrow, and pumpkin is having its annual moment in the sun – it’s fall everybody! And just in time to celebrate, we have whipped up a fresh batch of pumpkin spice Tech Talks. Grab your planner (Outlook calendar) and pencil these puppies in. This month we are covering re:Invent, serverless, and everything in between.

November 2017 – Schedule

Noted below are the upcoming scheduled live, online technical sessions being held during the month of November. Make sure to register ahead of time so you won’t miss out on these free talks conducted by AWS subject matter experts.

Webinars featured this month are:

Monday, November 6

Compute

9:00 – 9:40 AM PDT: Set it and Forget it: Auto Scaling Target Tracking Policies

Tuesday, November 7

Big Data

9:00 – 9:40 AM PDT: Real-time Application Monitoring with Amazon Kinesis and Amazon CloudWatch

Compute

10:30 – 11:10 AM PDT: Simplify Microsoft Windows Server Management with Amazon Lightsail

Mobile

12:00 – 12:40 PM PDT: Deep Dive on Amazon SES What’s New

Wednesday, November 8

Databases

10:30 – 11:10 AM PDT: Migrating Your Oracle Database to PostgreSQL

Compute

12:00 – 12:40 PM PDT: Run Your CI/CD Pipeline at Scale for a Fraction of the Cost

Thursday, November 9

Databases

10:30 – 11:10 AM PDT: Migrating Your Oracle Database to PostgreSQL

Containers

9:00 – 9:40 AM PDT: Managing Container Images with Amazon ECR

Big Data

12:00 – 12:40 PM PDT: Amazon Elasticsearch Service Security Deep Dive

Monday, November 13

re:Invent

10:30 – 11:10 AM PDT: AWS re:Invent 2017: Know Before You Go

5:00 – 5:40 PM PDT: AWS re:Invent 2017: Know Before You Go

Tuesday, November 14

AI

9:00 – 9:40 AM PDT: Sentiment Analysis Using Apache MXNet and Gluon

10:30 – 11:10 AM PDT: Bringing Characters to Life with Amazon Polly Text-to-Speech

IoT

12:00 – 12:40 PM PDT: Essential Capabilities of an IoT Cloud Platform

Enterprise

2:00 – 2:40 PM PDT: Everything you wanted to know about licensing Windows workloads on AWS, but were afraid to ask

Wednesday, November 15

Security & Identity

9:00 – 9:40 AM PDT: How to Integrate AWS Directory Service with Office365

Storage

10:30 – 11:10 AM PDT: Disaster Recovery Options with AWS

Hands on Lab

12:30 – 2:00 PM PDT: Hands on Lab: Windows Workloads

Thursday, November 16

Serverless

9:00 – 9:40 AM PDT: Building Serverless Websites with [email protected]

Hands on Lab

12:30 – 2:00 PM PDT: Hands on Lab: Deploy .NET Code to AWS from Visual Studio

– Sara

dirsearch – Website Directory Scanner For Files & Structure

Post Syndicated from Darknet original https://www.darknet.org.uk/2017/10/dirsearch-website-directory-scanner-files-structure/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

dirsearch – Website Directory Scanner For Files & Structure

dirsearch is a Python-based command-line website directory scanner designed to brute force site structure including directories and files in websites.

dirsearch Website Directory Scanner Features

dirsearch supports the following:

  • Multithreaded
  • Keep alive connections
  • Support for multiple extensions (-e|–extensions asp,php)
  • Reporting (plain text, JSON)
  • Heuristically detects invalid web pages
  • Recursive brute forcing
  • HTTP proxy support
  • User agent randomization
  • Batch processing
  • Request delaying

dirsearch Web Directory Structure Scanner & Wordlists

Dictionaries must be text files.

Read the rest of dirsearch – Website Directory Scanner For Files & Structure now! Only available at Darknet.

Copyright Professor: Don’t Pay Those File-Sharing ‘Fines’

Post Syndicated from Ernesto original https://torrentfreak.com/copyright-professor-dont-pay-those-file-sharing-fines-171027/

In recent years, file-sharers around the world have been pressured to pay significant settlement fees, or face legal repercussions.

Sweden is not spared from these practices. A recent wave of threatening letters, sent out on behalf of film distributors including those behind the zombie movie Cell, targets thousands of local Internet users.

The campaign is coordinated by Danish law firm Njord Law. The company accuses people of downloading the movie without permission and demands a settlement, as is common with these copyright troll schemes.

The scope of the latest campaign is enormous as 20,000 new IP-addresses were collected. Swedish courts can order ISPs to uncover the identities of thousands of IP addresses, in a single batch. That’s quite a lot compared to the US, where the same filmmakers can target only a dozen Internet accounts at a time.

While recipients of these letters can be easily scared by the legal language and proposed 4,500 SEK [$550] settlement, not all experts are impressed.

Sanna Wolk, Intellectual Property Professor at Uppsala University, recommends people to ignore the letters entirely.

“Do not pay. You do not even have to answer it. In the end, it’s the court that will decide whether you have to pay or not. We have seen this type of letter in the past, and only very few times those in charge of the claims have taken it to court,” Wolk tells Ny Teknik.

However, if the case does indeed move beyond a threat and goes to court then it’s important for the accused to contest the claim.

Njord Law says that it will follow up on their ‘promise’ and take people to court if they ignore their settlement requests.

Whether they have the resources to sue thousands of people is questionable though. Similarly, it remains to be seen how good an IP-address is as evidence, since it doesn’t identify a single person, just a connection.

The law firm also highlights that subscribers can be held liable even if someone else used their connection to download the film. However, professor Wolk stresses that this isn’t necessarily true.

“Someone who has an open network cannot be held responsible for copyright violations – such as downloading movies – if they provide others with access to their internet connection. This has been decided in a European Court ruling last year,” she states.

The Copyright Professor refers to the McFadden vs Sony Music ruling where the EU Court of Justice found that the operator of an open WiFi network can’t be held liable for infringements carried out by his users.

National courts have some leeway and could order someone to protect his or her WiFi connection, but this doesn’t mean that they are liable for past infringements.

It’s doubtful that Njord Law and their clients will change their tune. Not all people will read the professor’s comments and their scheme generally thrives on the easily threatened and uninformed. Still, most of the accused will probably sleep better after reading it.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Copyright Trolls Hit Thousands of Swedish ‘Pirates’ With $550 ‘Fines’

Post Syndicated from Andy original https://torrentfreak.com/copyright-trolls-hit-thousands-of-swedish-pirates-with-550-fines-171023/

In 2016, mass ‘copyright-trolling’ hit Sweden for the first time. An organization calling itself Spridningskollen (Distribution Check) claimed its new initiative would save the entertainment industries and educate the masses.

Following a huge backlash, however, the operation shut up shop and retreated, tail between its legs. But for those who expected the trolls to disappear altogether, bad news was just around the corner.

In February 2017, Danish law firm Njord Law was found to be at the helm of a new troll operation targeting the subscribers of several ISPs, including Telia, Tele2 and Bredbandsbolaget. Some 42-pages of court documents revealed that thousands of IP addresses had been harvested, potentially linking to thousands of subscribers.

After receiving permission from the courts to obtain the personal details of alleged pirates, things went a little quiet. However, according to local news outlet IDG, the floodgates have now been opened, with several thousand ISP subscribers receiving cash demands from Njord Law in recent weeks.

“We have sent out a few thousand letters, but we have been given the right to obtain information behind many more IP addresses that we are waiting to receive from the telecom operators. So there are more, ” lawyer Jeppe Brogaard Clausen told the publication.

Indeed, an indication of the scale of the operation can be found in the order obtained to target customers of ISP Telia. In that batch alone the court granted permission for Njord Law to obtain the identities behind 25,000 IP addresses.

Earlier this year, Clausen said that after identifying the subscribers he wanted to “enter into non-aggressive dialogue” with them. As we predicted, this apparently friendly introduction would simply lead to inevitable demands for cash.

“Have you, or other people with access to the aforementioned IP address, such as children living at home, viewed or tried to watch [a pirate movie] at the specified time?” Njord Law now writes in its letters to alleged pirates.

“If so, the case can be terminated by paying 4,500 SEK [$550].”

According to IDG, lots of movies are involved, both from local and international distributors. Earlier this year, CELL, IT, London Has Fallen, Mechanic: Resurrection, Criminal and September of Shiraz were named as possible titles.

The inclusion of these titles come as no surprise since several have turned up in similar trolling cases all over Europe and the United States. In common with schemes elsewhere, BitTorrent tracking was carried out by MaverickEye, a German-based company that is part of the notorious Guardaley trolling operation.

Like most ‘trolling’ cases, figures on how many people are paying up in Sweden are hard to come by. Clausen won’t say how many have parted with cash, but the lawyer says that 60% of the letters have elicited some kind of response. In previous similar projects in the UK, around a fifth of targets paid some sort of settlement, with no contested cases reaching the courts.

Njord Law insists, however, that those who don’t pay in Sweden may have to face the legal system.

“Yes, we will [go to court],” says Clausen. “We wish to resolve matters as much as possible through education and dialogue without the assistance of the court though. It is very expensive both for the rights holders and for plaintiffs if we go to court.”

While it’s impossible to predict how these cases will go, the usual tactic is to attack the low-hanging fruit first. People who admit some form of guilt can expect the most pressure while those who deny the allegations flat out (subscribers aren’t necessarily infringers) are likely to be placed in a file to be dealt with last, if at all.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Manufacturing Astro Pi case replicas

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/astro-pi-case-guest-post/

Tim Rowledge produces and sells wonderful replicas of the cases which our Astro Pis live in aboard the International Space Station. Here is the story of how he came to do this. Over to you, Tim!

When the Astro Pi case was first revealed a couple of years ago, the collective outpouring of ‘Squee!’ it elicited may have been heard on board the ISS itself. People wanted to buy it or build it at home, and someone wanted to know whether it would blend. (There’s always one.)

The complete Astro Pi

The Sense HAT and its Pi tucked snugly in the original Astro Pi flight case — gorgeous, isn’t it?

Replicating the Astro Pi case

Some months later the STL files for printing your own Astro Pi case were released, and people jumped at the chance to use them. Soon reports appeared saying you had to make quite a few attempts before getting a good print — normal for any complex 3D-printing project. A fellow member of my local makerspace successfully made a couple of cases, but it took a lot of time, filament, and post-print finishing work. And of course, a plastic Astro Pi case simply doesn’t look or feel like the original made of machined aluminium — or ‘aluminum’, as they tend to say over here in North America.

Batch of tops of Astro Pi case replicas by Tim Rowledge

A batch of tops designed by Tim

I wanted to build an Astro Pi case which would more closely match the original. Fortunately, someone else at my makerspace happens to have some serious CNC machining equipment at his small manufacturing company. Therefore, I focused on creating a case design that could be produced with his three-axis device. This meant simplifying some parts to avoid expensive, slow, complex multi-fixture work. It took us a while, but we ended up with a design we can efficiently make using his machine.

Lasered Astro Pi case replica by Tim Rowledge

Tim’s first lasered case

And the resulting case looks really, really like the original — in fact, upon receiving one of the final prototypes, Eben commented:

“I have to say, at first glance they look spectacular: unless you hold them side by side with the originals, it’s hard to pinpoint what’s changed. I’m looking forward to seeing one built up and then seeing them in the wild.”

Inside the Astro Pi case

Making just the bare case is nice, but there are other parts required to recreate a complete Astro Pi unit. Thus I got my local electronics company to design a small HAT to provide much the same support the mezzanine board offers: an RTC and nice, clean connections to the six buttons. We also added well-labelled, grouped pads for all the other GPIO lines, along with space for an ADC. If you’re making your own Astro Pi replica, you might like the Switchboard.

The electronics supply industry just loves to offer *some* of what you need, so that one supplier never has everything: we had to obtain the required stand-offs, screws, spacers, and JST wires from assorted other sources. Jeff at my nearby Industrial Paint & Plastics took on the laser engraving of our cases, leaving out copyrighted logos etcetera.

Lasering the top of an Astro Pi case replica by Tim Rowledge

Lasering the top of a case

Get your own Astro Pi case

Should you like to buy one of our Astro Pi case kits, pop over to www.astropicase.com, and we’ll get it on its way to you pronto. If you’re an institutional or corporate customer, the fully built option might make more sense for you — ordering the Pi and other components, and having a staff member assemble it all, may well be more work than is sensible.

Astro Pi case replica Tim Rowledge

Tim’s first full Astro Pi case replica, complete with shiny APEM buttons

To put the kit together yourself, all you need to do is add a Pi, Sense HAT, Camera Module, and RTC battery, and choose your buttons. An illustrated manual explains the process step by step. Our version of the Astro Pi case uses the same APEM buttons as the units in orbit, and whilst they are expensive, just clicking them is a source of great joy. It comes in a nice travel case too.

Tim Rowledge holding up a PCB

This is Tim. Thanks, Tim!

Take part in Astro Pi

If having an Astro Pi replica is not enough for you, this is your chance: the 2017-18 Astro Pi challenge is open! Do you know a teenager who might be keen to design a experiment to run on the Astro Pis in space? Are you one yourself? You have until 29 October to send us your Mission Space Lab entry and become part of the next generation of space scientists? Head over to the Astro Pi website to find out more.

The post Manufacturing Astro Pi case replicas appeared first on Raspberry Pi.

Open Sourcing Vespa, Yahoo’s Big Data Processing and Serving Engine

Post Syndicated from ris original https://lwn.net/Articles/734926/rss

Oath, parent company of Yahoo, has announced
that it has released Vespa as an open source
project on GitHub.
Building applications increasingly means dealing with huge amounts of data. While developers can use the the Hadoop stack to store and batch process big data, and Storm to stream-process data, these technologies do not help with serving results to end users. Serving is challenging at large scale, especially when it is necessary to make computations quickly over data while a user is waiting, as with applications that feature search, recommendation, and personalization.

By releasing Vespa, we are making it easy for anyone to build applications
that can compute responses to user requests, over large datasets, at real
time and at internet scale – capabilities that up until now, have been
within reach of only a few large companies.” (Thanks to Paul Wise)

New – Per-Second Billing for EC2 Instances and EBS Volumes

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/

Back in the old days, you needed to buy or lease a server if you needed access to compute power. When we launched EC2 back in 2006, the ability to use an instance for an hour, and to pay only for that hour, was big news. The pay-as-you-go model inspired our customers to think about new ways to develop, test, and run applications of all types.

Today, services like AWS Lambda prove that we can do a lot of useful work in a short time. Many of our customers are dreaming up applications for EC2 that can make good use of a large number of instances for shorter amounts of time, sometimes just a few minutes.

Per-Second Billing for EC2 and EBS
Effective October 2nd, usage of Linux instances that are launched in On-Demand, Reserved, and Spot form will be billed in one-second increments. Similarly, provisioned storage for EBS volumes will be billed in one-second increments.

Per-second billing also applies to Amazon EMR and AWS Batch:

Amazon EMR – Our customers add capacity to their EMR clusters in order to get their results more quickly. With per-second billing for the EC2 instances in the clusters, adding nodes is more cost-effective than ever.

AWS Batch – Many of the batch jobs that our customers run complete in less than an hour. AWS Batch already launches and terminates Spot Instances; with per-second billing batch processing will become even more economical.

Some of our more sophisticated customers have built systems to get the most value from EC2 by strategically choosing the most advantageous target instances when managing their gaming, ad tech, or 3D rendering fleets. Per-second billing obviates the need for this extra layer of instance management, and brings the costs savings to all customers and all workloads.

While this will result in a price reduction for many workloads (and you know we love price reductions), I don’t think that’s the most important aspect of this change. I believe that this change will inspire you to innovate and to think about your compute-bound problems in new ways. How can you use it to improve your support for continuous integration? Can it change the way that you provision transient environments for your dev and test workloads? What about your analytics, batch processing, and 3D rendering?

One of the many advantages of cloud computing is the elastic nature of provisioning or deprovisioning resources as you need them. By billing usage down to the second we will enable customers to level up their elasticity, save money, and customers will be positioned to take advantage of continuing advances in computing.

Things to Know
This change is effective in all AWS Regions and will be effective October 2, for all Linux instances that are newly launched or already running. Per-second billing is not currently applicable to instances running Microsoft Windows or Linux distributions that have a separate hourly charge. There is a 1 minute minimum charge per-instance.

List prices and Spot Market prices are still listed on a per-hour basis, but bills are calculated down to the second, as is Reserved Instance usage (you can launch, use, and terminate multiple instances within an hour and get the Reserved Instance Benefit for all of the instances). Also, bills will show times in decimal form, like this:

The Dedicated Per Region Fee, EBS Snapshots, and products in AWS Marketplace are still billed on an hourly basis.

Jeff;

 

AWS IAM Policy Summaries Now Help You Identify Errors and Correct Permissions in Your IAM Policies

Post Syndicated from Joy Chatterjee original https://aws.amazon.com/blogs/security/iam-policy-summaries-now-help-you-identify-errors-and-correct-permissions-in-your-iam-policies/

In March, we made it easier to view and understand the permissions in your AWS Identity and Access Management (IAM) policies by using IAM policy summaries. Today, we updated policy summaries to help you identify and correct errors in your IAM policies. When you set permissions using IAM policies, for each action you specify, you must match that action to supported resources or conditions. Now, you will see a warning if these policy elements (Actions, Resources, and Conditions) defined in your IAM policy do not match.

When working with policies, you may find that although the policy has valid JSON syntax, it does not grant or deny the desired permissions because the Action element does not have an applicable Resource element or Condition element defined in the policy. For example, you may want to create a policy that allows users to view a specific Amazon EC2 instance. To do this, you create a policy that specifies ec2:DescribeInstances for the Action element and the Amazon Resource Name (ARN) of the instance for the Resource element. When testing this policy, you find AWS denies this access because ec2:DescribeInstances does not support resource-level permissions and requires access to list all instances. Therefore, to grant access to this Action element, you need to specify a wildcard (*) in the Resource element of your policy for this Action element in order for the policy to function correctly.

To help you identify and correct permissions, you will now see a warning in a policy summary if the policy has either of the following:

  • An action that does not support the resource specified in a policy.
  • An action that does not support the condition specified in a policy.

In this blog post, I walk through two examples of how you can use policy summaries to help identify and correct these types of errors in your IAM policies.

How to use IAM policy summaries to debug your policies

Example 1: An action does not support the resource specified in a policy

Let’s say a human resources (HR) representative, Casey, needs access to the personnel files stored in HR’s Amazon S3 bucket. To do this, I create the following policy to grant all actions that begin with s3:List. In addition, I grant access to s3:GetObject in the Action element of the policy. To ensure that Casey has access only to a specific bucket and not others, I specify the bucket ARN in the Resource element of the policy.

Note: This policy does not grant the desired permissions.

This policy does not work. Do not copy.
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "ThisPolicyDoesNotGrantAllListandGetActions",
            "Effect": "Allow",
            "Action": ["s3:List*",
                       "s3:GetObject"],
            "Resource": ["arn:aws:s3:::HumanResources"]
        }
    ]
}

After I create the policy, HRBucketPermissions, I select this policy from the Policies page to view the policy summary. From here, I check to see if there are any warnings or typos in the policy. I see a warning at the top of the policy detail page because the policy does not grant some permissions specified in the policy, which is caused by a mismatch among the actions, resources, or conditions.

Screenshot showing the warning at the top of the policy

To view more details about the warning, I choose Show remaining so that I can understand why the permissions do not appear in the policy summary. As shown in the following screenshot, I see no access to the services that are not granted by the IAM policy in the policy, which is expected. However, next to S3, I see a warning that one or more S3 actions do not have an applicable resource.

Screenshot showing that one or more S3 actions do not have an applicable resource

To understand why the specific actions do not have a supported resource, I choose S3 from the list of services and choose Show remaining. I type List in the filter to understand why some of the list actions are not granted by the policy. As shown in the following screenshot, I see these warnings:

  • This action does not support resource-level permissions. This means the action does not support resource-level permissions and requires a wildcard (*) in the Resource element of the policy.
  • This action does not have an applicable resource. This means the action supports resource-level permissions, but not the resource type defined in the policy. In this example, I specified an S3 bucket for an action that supports only an S3 object resource type.

From these warnings, I see that s3:ListAllMyBuckets, s3:ListBucketMultipartUploadsParts3:ListObjects , and s3:GetObject do not support an S3 bucket resource type, which results in Casey not having access to the S3 bucket. To correct the policy, I choose Edit policy and update the policy with three statements based on the resource that the S3 actions support. Because Casey needs access to view and read all of the objects in the HumanResources bucket, I add a wildcard (*) for the S3 object path in the Resource ARN.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "TheseActionsSupportBucketResourceType",
            "Effect": "Allow",
            "Action": ["s3:ListBucket",
                       "s3:ListBucketByTags",
                       "s3:ListBucketMultipartUploads",
                       "s3:ListBucketVersions"],
            "Resource": ["arn:aws:s3:::HumanResources"]
        },{
            "Sid": "TheseActionsRequireAllResources",
            "Effect": "Allow",
            "Action": ["s3:ListAllMyBuckets",
                       "s3:ListMultipartUploadParts",
                       "s3:ListObjects"],
            "Resource": [ "*"]
        },{
            "Sid": "TheseActionsRequireSupportsObjectResourceType",
            "Effect": "Allow",
            "Action": ["s3:GetObject"],
            "Resource": ["arn:aws:s3:::HumanResources/*"]
        }
    ]
}

After I make these changes, I see the updated policy summary and see that warnings are no longer displayed.

Screenshot of the updated policy summary that no longer shows warnings

In the previous example, I showed how to identify and correct permissions errors that include actions that do not support a specified resource. In the next example, I show how to use policy summaries to identify and correct a policy that includes actions that do not support a specified condition.

Example 2: An action does not support the condition specified in a policy

For this example, let’s assume Bob is a project manager who requires view and read access to all the code builds for his team. To grant him this access, I create the following JSON policy that specifies all list and read actions to AWS CodeBuild and defines a condition to limit access to resources in the us-west-2 Region in which Bob’s team develops.

This policy does not work. Do not copy. 
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "ListReadAccesstoCodeServices",
            "Effect": "Allow",
            "Action": [
                "codebuild:List*",
                "codebuild:BatchGet*"
            ],
            "Resource": ["*"], 
             "Condition": {
                "StringEquals": {
                    "ec2:Region": "us-west-2"
                }
            }
        }
    ]	
}

After I create the policy, PMCodeBuildAccess, I select this policy from the Policies page to view the policy summary in the IAM console. From here, I check to see if the policy has any warnings or typos. I see an error at the top of the policy detail page because the policy does not grant any permissions.

Screenshot with an error showing the policy does not grant any permissions

To view more details about the error, I choose Show remaining to understand why no permissions result from the policy. I see this warning: One or more conditions do not have an applicable action. This means that the condition is not supported by any of the actions defined in the policy.

From the warning message (see preceding screenshot), I realize that ec2:Region is not a supported condition for any actions in CodeBuild. To correct the policy, I separate the list actions that do not support resource-level permissions into a separate Statement element and specify * as the resource. For the remaining CodeBuild actions that support resource-level permissions, I use the ARN to specify the us-west-2 Region in the project resource type.

CORRECT POLICY 
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "TheseActionsSupportAllResources",
            "Effect": "Allow",
            "Action": [
                "codebuild:ListBuilds",
                "codebuild:ListProjects",
                "codebuild:ListRepositories",
                "codebuild:ListCuratedEnvironmentImages",
                "codebuild:ListConnectedOAuthAccounts"
            ],
            "Resource": ["*"] 
        }, {
            "Sid": "TheseActionsSupportAResource",
            "Effect": "Allow",
            "Action": [
                "codebuild:ListBuildsForProject",
                "codebuild:BatchGet*"
            ],
            "Resource": ["arn:aws:codebuild:us-west-2:123456789012:project/*"] 
        }

    ]	
}

After I make the changes, I view the updated policy summary and see that no warnings are displayed.

Screenshot showing the updated policy summary with no warnings

When I choose CodeBuild from the list of services, I also see that for the actions that support resource-level permissions, the access is limited to the us-west-2 Region.

Screenshow showing that for the Actions that support resource-level permissions, the access is limited to the us-west-2 region.

Conclusion

Policy summaries make it easier to view and understand the permissions and resources in your IAM policies by displaying the permissions granted by the policies. As I’ve demonstrated in this post, you can also use policy summaries to help you identify and correct your IAM policies. To understand the types of warnings that policy summaries support, you can visit Troubleshoot IAM Policies. To view policy summaries in your AWS account, sign in to the IAM console and navigate to any policy on the Policies page of the IAM console or the Permissions tab on a user’s page.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or suggestions for this solution, start a new thread on the IAM forum or contact AWS Support.

– Joy