Tag Archives: CloudWatch Events

How to Query Personally Identifiable Information with Amazon Macie

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/how-to-query-personally-identifiable-information-with-amazon-macie/

Amazon Macie logo

In August 2017 at the AWS Summit New York, AWS launched a new security and compliance service called Amazon Macie. Macie uses machine learning to automatically discover, classify, and protect sensitive data in AWS. In this blog post, I demonstrate how you can use Macie to help enable compliance with applicable regulations, starting with data retention.

How to query retained PII with Macie

Data retention and mandatory data deletion are common topics across compliance frameworks, so knowing what is stored and how long it has been or needs to be stored is of critical importance. For example, you can use Macie for Payment Card Industry Data Security Standard (PCI DSS) 3.2, requirement 3, “Protect stored cardholder data,” which mandates a “quarterly process for identifying and securely deleting stored cardholder data that exceeds defined retention.” You also can use Macie for ISO 27017 requirement 12.3.1, which calls for “retention periods for backup data.” In each of these cases, you can use Macie’s built-in queries to identify the age of data in your Amazon S3 buckets and to help meet your compliance needs.

To get started with Macie and run your first queries of personally identifiable information (PII) and sensitive data, follow the initial setup as described in the launch post on the AWS Blog. After you have set up Macie, walk through the following steps to start running queries. Start by focusing on the S3 buckets that you want to inventory and capture important compliance related activity and data.

To start running Macie queries:

  1. In the AWS Management Console, launch the Macie console (you can type macie to find the console).
  2. Click Dashboard in the navigation pane. This shows you an overview of the risk level and data classification type of all inventoried S3 buckets, categorized by date and type.
    Screenshot of "Dashboard" in the navigation pane
  3. Choose S3 objects by PII priority. This dashboard lets you sort by PII priority and PII types.
    Screenshot of "S3 objects by PII priority"
  4. In this case, I want to find information about credit card numbers. I choose the magnifying glass for the type cc_number (note that PII types can be used for custom queries). This view shows the events where PII classified data has been uploaded to S3. When I scroll down, I see the individual files that have been identified.
    Screenshot showing the events where PII classified data has been uploaded to S3
  5. Before looking at the files, I want to continue to build the query by only showing items with high priority. To do so, I choose the row called Object PII Priority and then the magnifying glass icon next to High.
    Screenshot of refining the query for high priority events
  6. To view the results matching these queries, I scroll down and choose any file listed. This shows vital information such as creation date, location, and object access control list (ACL).
  7. The piece I am most interested in this case is the Object PII details line to understand more about what was found in the file. In this case, I see name and credit card information, which is what caused the high priority. Scrolling up again, I also see that the query fields have updated as I interacted with the UI.
    Screenshot showing "Object PII details"

Let’s say that I want to get an alert every time Macie finds new data matching this query. This alert can be used to automate response actions by using AWS Lambda and Amazon CloudWatch Events.

  1. I choose the left green icon called Save query as alert.
    Screenshot of "Save query as alert" button
  2. I can customize the alert and change things like category or severity to fit my needs based on the alert data.
  3. Another way to find the information I am looking for is to run custom queries. To start using custom queries, I choose Research in the navigation pane.
    1. To learn more about custom Macie queries and what you can do on the Research tab, see Using the Macie Research Tab.
  4. I change the type of query I want to run from CloudTrail data to S3 objects in the drop-down list menu.
    Screenshot of choosing "S3 objects" from the drop-down list menu
  5. Because I want PII data, I start typing in the query box, which has an autocomplete feature. I choose the pii_types: query. I can now type the data I want to look for. In this case, I want to see all files matching the credit card filter so I type cc_number and press Enter. The query box now says, pii_types:cc_number. I press Enter again to enable autocomplete, and then I type AND pii_types:email to require both a credit card number and email address in a single object.
    The query looks for all files matching the credit card filter ("cc_number")
  6. I choose the magnifying glass to search and Macie shows me all S3 objects that are tagged as PII of type Credit Cards. I can further specify that I only want to see PII of type Credit Card that are classified as High priority by adding AND and pii_impact:high to the query.
    Screenshot showing narrowing the query results furtherAs before, I can save this new query as an alert by clicking Save query as alert, which will be triggered by data matching the query going forward.

Advanced tip

Try the following advanced queries using Lucene query syntax and save the queries as alerts in Macie.

  • Use a regular-expression based query to search for a minimum of 10 credit card numbers and 10 email addresses in a single object:
    • pii_explain.cc_number:/([1-9][0-9]|[0-9]{3,}) distinct Credit Card Numbers.*/ AND pii_explain.email:/([1-9][0-9]|[0-9]{3,}) distinct Email Addresses.*/
  • Search for objects containing at least one credit card, name, and email address that have an object policy enabling global access (searching for S3 AllUsers or AuthenticatedUsers permissions):
    • (object_acl.Grants.Grantee.URI:”http\://acs.amazonaws.com/groups/global/AllUsers” OR  object_acl.Grants.Grantee.URI:”http\://acs.amazonaws.com/groups/global/AllUsers”) AND (pii_types.cc_number AND pii_types.email AND pii_types.name)

These are two ways to identify and be alerted about PII by using Macie. In a similar way, you can create custom alerts for various AWS CloudTrail events by choosing a different data set on which to run the queries again. In the examples in this post, I identified credit cards stored in plain text (all data in this post is example data only), determined how long they had been stored in S3 by viewing the result details, and set up alerts to notify or trigger actions on new sensitive data being stored. With queries like these, you can build a reliable data validation program.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about how to use Macie, start a new thread on the Macie forum or contact AWS Support.

-Chad

Automating Amazon EBS Snapshot Management with AWS Step Functions and Amazon CloudWatch Events

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/automating-amazon-ebs-snapshot-management-with-aws-step-functions-and-amazon-cloudwatch-events/

Brittany Doncaster, Solutions Architect

Business continuity is important for building mission-critical workloads on AWS. As an AWS customer, you might define recovery point objectives (RPO) and recovery time objectives (RTO) for different tier applications in your business. After the RPO and RTO requirements are defined, it is up to your architects to determine how to meet those requirements.

You probably store persistent data in Amazon EBS volumes, which live within a single Availability Zone. And, following best practices, you take snapshots of your EBS volumes to back up the data on Amazon S3, which provides 11 9’s of durability. If you are following these best practices, then you’ve probably recognized the need to manage the number of snapshots you keep for a particular EBS volume and delete older, unneeded snapshots. Doing this cleanup helps save on storage costs.

Some customers also have policies stating that backups need to be stored a certain number of miles away as part of a disaster recovery (DR) plan. To meet these requirements, customers copy their EBS snapshots to the DR region. Then, the same snapshot management and cleanup has to also be done in the DR region.

All of this snapshot management logic consists of different components. You would first tag your snapshots so you could manage them. Then, determine how many snapshots you currently have for a particular EBS volume and assess that value against a retention rule. If the number of snapshots was greater than your retention value, then you would clean up old snapshots. And finally, you might copy the latest snapshot to your DR region. All these steps are just an example of a simple snapshot management workflow. But how do you automate something like this in AWS? How do you do it without servers?

One of the most powerful AWS services released in 2016 was Amazon CloudWatch Events. It enables you to build event-driven IT automation, based on events happening within your AWS infrastructure. CloudWatch Events integrates with AWS Lambda to let you execute your custom code when one of those events occurs. However, the actions to take based on those events aren’t always composed of a single Lambda function. Instead, your business logic may consist of multiple steps (like in the case of the example snapshot management flow described earlier). And you may want to run those steps in sequence or in parallel. You may also want to have retry logic or exception handling for each step.

AWS Step Functions serves just this purpose―to help you coordinate your functions and microservices. Step Functions enables you to simplify your effort and pull the error handling, retry logic, and workflow logic out of your Lambda code. Step Functions integrates with Lambda to provide a mechanism for building complex serverless applications. Now, you can kick off a Step Functions state machine based on a CloudWatch event.

In this post, I discuss how you can target Step Functions in a CloudWatch Events rule. This allows you to have event-driven snapshot management based on snapshot completion events firing in CloudWatch Event rules.

As an example of what you could do with Step Functions and CloudWatch Events, we’ve developed a reference architecture that performs management of your EBS snapshots.

Automating EBS Snapshot Management with Step Functions

This architecture assumes that you have already set up CloudWatch Events to create the snapshots on a schedule or that you are using some other means of creating snapshots according to your needs.

This architecture covers the pieces of the workflow that need to happen after a snapshot has been created.

  • It creates a CloudWatch Events rule to invoke a Step Functions state machine execution when an EBS snapshot is created.
  • The state machine then tags the snapshot, cleans up the oldest snapshots if the number of snapshots is greater than the defined number to retain, and copies the snapshot to a DR region.
  • When the DR region snapshot copy is completed, another state machine kicks off in the DR region. The new state machine has a similar flow and uses some of the same Lambda code to clean up the oldest snapshots that are greater than the defined number to retain.
  • Also, both state machines demonstrate how you can use Step Functions to handle errors within your workflow. Any errors that are caught during execution result in the execution of a Lambda function that writes a message to an SNS topic. Therefore, if any errors occur, you can subscribe to the SNS topic and get notified.

The following is an architecture diagram of the reference architecture:

Creating the Lambda functions and Step Functions state machines

First, pull the code from GitHub and use the AWS CLI to create S3 buckets for the Lambda code in the primary and DR regions. For this example, assume that the primary region is us-west-2 and the DR region is us-east-2. Run the following commands, replacing the italicized text in <> with your own unique bucket names.

git clone https://github.com/awslabs/aws-step-functions-ebs-snapshot-mgmt.git

cd aws-step-functions-ebs-snapshot-mgmt/

aws s3 mb s3://<primary region bucket name> --region us-west-2

aws s3 mb s3://<DR region bucket name> --region us-east-2

Next, use the Serverless Application Model (SAM), which uses AWS CloudFormation to deploy the Lambda functions and Step Functions state machines in the primary and DR regions. Replace the italicized text in <> with the S3 bucket names that you created earlier.

aws cloudformation package --template-file PrimaryRegionTemplate.yaml --s3-bucket <primary region bucket name>  --output-template-file tempPrimary.yaml --region us-west-2

aws cloudformation deploy --template-file tempPrimary.yaml --stack-name ebsSnapshotMgmtPrimary --capabilities CAPABILITY_IAM --region us-west-2

aws cloudformation package --template-file DR_RegionTemplate.yaml --s3-bucket <DR region bucket name> --output-template-file tempDR.yaml  --region us-east-2

aws cloudformation deploy --template-file tempDR.yaml --stack-name ebsSnapshotMgmtDR --capabilities CAPABILITY_IAM --region us-east-2

CloudWatch event rule verification

The CloudFormation templates deploy the following resources:

  • The Lambda functions that are coordinated by Step Functions
  • The Step Functions state machine
  • The SNS topic
  • The CloudWatch Events rules that trigger the state machine execution

So, all of the CloudWatch event rules have been created for you by performing the preceding commands. The next section demonstrates how you could create the CloudWatch event rule manually. To jump straight to testing the workflow, see the “Testing in your Account” section. Otherwise, you begin by setting up the CloudWatch event rule in the primary region for the createSnapshot event and also the CloudWatch event rule in the DR region for the copySnapshot command.

First, open the CloudWatch console in the primary region.

Choose Create Rule and create a rule for the createSnapshot command, with your newly created Step Function state machine as the target.

For Event Source, choose Event Pattern and specify the following values:

  • Service Name: EC2
  • Event Type: EBS Snapshot Notification
  • Specific Event: createSnapshot

For Target, choose Step Functions state machine, then choose the state machine created by the CloudFormation commands. Choose Create a new role for this specific resource. Your completed rule should look like the following:

Choose Configure Details and give the rule a name and description.

Choose Create Rule. You now have a CloudWatch Events rule that triggers a Step Functions state machine execution when the EBS snapshot creation is complete.

Now, set up the CloudWatch Events rule in the DR region as well. This looks almost same, but is based off the copySnapshot event instead of createSnapshot.

In the upper right corner in the console, switch to your DR region. Choose CloudWatch, Create Rule.

For Event Source, choose Event Pattern and specify the following values:

  • Service Name: EC2
  • Event Type: EBS Snapshot Notification
  • Specific Event: copySnapshot

For Target, choose Step Functions state machine, then select the state machine created by the CloudFormation commands. Choose Create a new role for this specific resource. Your completed rule should look like in the following:

As in the primary region, choose Configure Details and then give this rule a name and description. Complete the creation of the rule.

Testing in your account

To test this setup, open the EC2 console and choose Volumes. Select a volume to snapshot. Choose Actions, Create Snapshot, and then create a snapshot.

This results in a new execution of your state machine in the primary and DR regions. You can view these executions by going to the Step Functions console and selecting your state machine.

From there, you can see the execution of the state machine.

Primary region state machine:

DR region state machine:

I’ve also provided CloudFormation templates that perform all the earlier setup without using git clone and running the CloudFormation commands. Choose the Launch Stack buttons below to launch the primary and DR region stacks in Dublin and Ohio, respectively. From there, you can pick up at the Testing in Your Account section above to finish the example. All of the code for this example architecture is located in the aws-step-functions-ebs-snapshot-mgmt AWSLabs repo.

Launch EBS Snapshot Management into Ireland with CloudFormation
Primary Region eu-west-1 (Ireland)

Launch EBS Snapshot Management into Ohio with CloudFormation
DR Region us-east-2 (Ohio)

Summary

This reference architecture is just an example of how you can use Step Functions and CloudWatch Events to build event-driven IT automation. The possibilities are endless:

  • Use this pattern to perform other common cleanup type jobs such as managing Amazon RDS snapshots, old versions of Lambda functions, or old Amazon ECR images—all triggered by scheduled events.
  • Use Trusted Advisor events to identify unused EC2 instances or EBS volumes, then coordinate actions on them, such as alerting owners, stopping, or snapshotting.

Happy coding and please let me know what useful state machines you build!

Automate Your IT Operations Using AWS Step Functions and Amazon CloudWatch Events

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/automate-your-it-operations-using-aws-step-functions-and-amazon-cloudwatch-events/


Rob Percival, Associate Solutions Architect

Are you interested in reducing the operational overhead of your AWS Cloud infrastructure? One way to achieve this is to automate the response to operational events for resources in your AWS account.

Amazon CloudWatch Events provides a near real-time stream of system events that describe the changes and notifications for your AWS resources. From this stream, you can create rules to route specific events to AWS Step Functions, AWS Lambda, and other AWS services for further processing and automated actions.

In this post, learn how you can use Step Functions to orchestrate serverless IT automation workflows in response to CloudWatch events sourced from AWS Health, a service that monitors and generates events for your AWS resources. As a real-world example, I show automating the response to a scenario where an IAM user access key has been exposed.

Serverless workflows with Step Functions and Lambda

Step Functions makes it easy to develop and orchestrate components of operational response automation using visual workflows. Building automation workflows from individual Lambda functions that perform discrete tasks lets you develop, test, and modify the components of your workflow quickly and seamlessly. As serverless services, Step Functions and Lambda also provide the benefits of more productive development, reduced operational overhead, and no costs incurred outside of when the workflows are actively executing.

Example workflow

As an example, this post focuses on automating the response to an event generated by AWS Health when an IAM access key has been publicly exposed on GitHub. This is a diagram of the automation workflow:

AWS proactively monitors popular code repository sites for IAM access keys that have been publicly exposed. Upon detection of an exposed IAM access key, AWS Health generates an AWS_RISK_CREDENTIALS_EXPOSED event in the AWS account related to the exposed key. A configured CloudWatch Events rule detects this event and invokes a Step Functions state machine. The state machine then orchestrates the automated workflow that deletes the exposed IAM access key, summarizes the recent API activity for the exposed key, and sends the summary message to an Amazon SNS topic to notify the subscribers―in that order.

The corresponding Step Functions state machine diagram of this automation workflow can be seen below:

While this particular example focuses on IT automation workflows in response to the AWS_RISK_CREDENTIALS_EXPOSEDevent sourced from AWS Health, it can be generalized to integrate with other events from these services, other event-generating AWS services, and even run on a time-based schedule.

Walkthrough

To follow along, use the code and resources found in the aws-health-tools GitHub repo. The code and resources include an AWS CloudFormation template, in addition to instructions on how to use it.

Launch Stack into N. Virginia with CloudFormation

The Step Functions state machine execution starts with the exposed keys event details in JSON, a sanitized example of which is provided below:

{
    "version": "0",
    "id": "121345678-1234-1234-1234-123456789012",
    "detail-type": "AWS Health Event",
    "source": "aws.health",
    "account": "123456789012",
    "time": "2016-06-05T06:27:57Z",
    "region": "us-east-1",
    "resources": [],
    "detail": {
        "eventArn": "arn:aws:health:us-east-1::event/AWS_RISK_CREDENTIALS_EXPOSED_XXXXXXXXXXXXXXXXX",
        "service": "RISK",
        "eventTypeCode": "AWS_RISK_CREDENTIALS_EXPOSED",
        "eventTypeCategory": "issue",
        "startTime": "Sat, 05 Jun 2016 15:10:09 GMT",
        "eventDescription": [
            {
                "language": "en_US",
                "latestDescription": "A description of the event is provided here"
            }
        ],
        "affectedEntities": [
            {
                "entityValue": "ACCESS_KEY_ID_HERE"
            }
        ]
    }
}

After it’s invoked, the state machine execution proceeds as follows.

Step 1: Delete the exposed IAM access key pair

The first thing you want to do when you determine that an IAM access key has been exposed is to delete the key pair so that it can no longer be used to make API calls. This Step Functions task state deletes the exposed access key pair detailed in the incoming event, and retrieves the IAM user associated with the key to look up API activity for the user in the next step. The user name, access key, and other details about the event are passed to the next step as JSON.

This state contains a powerful error-handling feature offered by Step Functions task states called a catch configuration. Catch configurations allow you to reroute and continue state machine invocation at new states depending on potential errors that occur in your task function. In this case, the catch configuration skips to Step 3. It immediately notifies your security team that errors were raised in the task function of this step (Step 1), when attempting to look up the corresponding IAM user for a key or delete the user’s access key.

Note: Step Functions also offers a retry configuration for when you would rather retry a task function that failed due to error, with the option to specify an increasing time interval between attempts and a maximum number of attempts.

Step 2: Summarize recent API activity for key

After you have deleted the access key pair, you’ll want to have some immediate insight into whether it was used for malicious activity in your account. Another task state, this step uses AWS CloudTrail to look up and summarize the most recent API activity for the IAM user associated with the exposed key. The summary is in the form of counts for each API call made and resource type and name affected. This summary information is then passed to the next step as JSON. This step requires information that you obtained in Step 1. Step Functions ensures the successful completion of Step 1 before moving to Step 2.

Step 3: Notify security

The summary information gathered in the last step can provide immediate insight into any malicious activity on your account made by the exposed key. To determine this and further secure your account if necessary, you must notify your security team with the gathered summary information.

This final task state generates an email message providing in-depth detail about the event using the API activity summary, and publishes the message to an SNS topic subscribed to by the members of your security team.

If the catch configuration of the task state in Step 1 was triggered, then the security notification email instead directs your security team to log in to the console and navigate to the Personal Health Dashboard to view more details on the incident.

Lessons learned

When implementing this use case with Step Functions and Lambda, consider the following:

  • One of the most important parts of implementing automation in response to operational events is to ensure visibility into the response and resolution actions is retained. Step Functions and Lambda enable you to orchestrate your granular response and resolution actions that provides direct visibility into the state of the automation workflow.
  • This basic workflow currently executes these steps serially with a catch configuration for error handling. More sophisticated workflows can leverage the parallel execution, branching logic, and time delay functionality provided by Step Functions.
  • Catch and retry configurations for task states allow for orchestrating reliable workflows while maintaining the granularity of each Lambda function. Without leveraging a catch configuration in Step 1, you would have had to duplicate code from the function in Step 3 to ensure that your security team was notified on failure to delete the access key.
  • Step Functions and Lambda are serverless services, so there is no cost for these services when they are not running. Because this IT automation workflow only runs when an IAM access key is exposed for this account (which is hopefully rare!), the total monthly cost for this workflow is essentially $0.

Conclusion

Automating the response to operational events for resources in your AWS account can free up the valuable time of your engineers. Step Functions and Lambda enable granular IT automation workflows to achieve this result while gaining direct visibility into the orchestration and state of the automation.

For more examples of how to use Step Functions to automate the operations of your AWS resources, or if you’d like to see how Step Functions can be used to build and orchestrate serverless applications, visit Getting Started on the Step Functions website.

AWS Summit New York – Summary of Announcements

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-summit-new-york-summary-of-announcements/

Whew – what a week! Tara, Randall, Ana, and I have been working around the clock to create blog posts for the announcements that we made at the AWS Summit in New York. Here’s a summary to help you to get started:

Amazon Macie – This new service helps you to discover, classify, and secure content at scale. Powered by machine learning and making use of Natural Language Processing (NLP), Macie looks for patterns and alerts you to suspicious behavior, and can help you with governance, compliance, and auditing. You can read Tara’s post to see how to put Macie to work; you select the buckets of interest, customize the classification settings, and review the results in the Macie Dashboard.

AWS GlueRandall’s post (with deluxe animated GIFs) introduces you to this new extract, transform, and load (ETL) service. Glue is serverless and fully managed, As you can see from the post, Glue crawls your data, infers schemas, and generates ETL scripts in Python. You define jobs that move data from place to place, with a wide selection of transforms, each expressed as code and stored in human-readable form. Glue uses Development Endpoints and notebooks to provide you with a testing environment for the scripts you build. We also announced that Amazon Athena now integrates with Amazon Glue, as does Apache Spark and Hive on Amazon EMR.

AWS Migration Hub – This new service will help you to migrate your application portfolio to AWS. My post outlines the major steps and shows you how the Migration Hub accelerates, tracks,and simplifies your migration effort. You can begin with a discovery step, or you can jump right in and migrate directly. Migration Hub integrates with tools from our migration partners and builds upon the Server Migration Service and the Database Migration Service.

CloudHSM Update – We made a major upgrade to AWS CloudHSM, making the benefits of hardware-based key management available to a wider audience. The service is offered on a pay-as-you-go basis, and is fully managed. It is open and standards compliant, with support for multiple APIs, programming languages, and cryptography extensions. CloudHSM is an integral part of AWS and can be accessed from the AWS Management Console, AWS Command Line Interface (CLI), and through API calls. Read my post to learn more and to see how to set up a CloudHSM cluster.

Managed Rules to Secure S3 Buckets – We added two new rules to AWS Config that will help you to secure your S3 buckets. The s3-bucket-public-write-prohibited rule identifies buckets that have public write access and the s3-bucket-public-read-prohibited rule identifies buckets that have global read access. As I noted in my post, you can run these rules in response to configuration changes or on a schedule. The rules make use of some leading-edge constraint solving techniques, as part of a larger effort to use automated formal reasoning about AWS.

CloudTrail for All Customers – Tara’s post revealed that AWS CloudTrail is now available and enabled by default for all AWS customers. As a bonus, Tara reviewed the principal benefits of CloudTrail and showed you how to review your event history and to deep-dive on a single event. She also showed you how to create a second trail, for use with CloudWatch CloudWatch Events.

Encryption of Data at Rest for EFS – When you create a new file system, you now have the option to select a key that will be used to encrypt the contents of the files on the file system. The encryption is done using an industry-standard AES-256 algorithm. My post shows you how to select a key and to verify that it is being used.

Watch the Keynote
My colleagues Adrian Cockcroft and Matt Wood talked about these services and others on the stage, and also invited some AWS customers to share their stories. Here’s the video:

Jeff;

 

New – API & CloudFormation Support for Amazon CloudWatch Dashboards

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-api-cloudformation-support-for-amazon-cloudwatch-dashboards/

We launched CloudWatch Dashboards a couple of years ago. In the post that I wrote for the launch, I showed you how to interactively create a dashboard that displayed chosen CloudWatch metrics in graphical form. After the launch, we added additional features including a full screen mode, a dark theme, control over the range of the Y axis, simplified renaming, persistent storage, and new visualization options.

New API & CLI
While console support is wonderful for interactive use, many customers have asked us to support programmatic creation and manipulation of dashboards and the widgets within. They would like to dynamically build and maintain dashboards, adding and removing widgets as the corresponding AWS resources are created and destroyed. Other customers are interested in setting up and maintaining a consistent set of dashboards across two or more AWS accounts.

I am happy to announce that API, CLI, and AWS CloudFormation support for CloudWatch Dashboards is available now and that you can start using it today!

There are four new API functions (and equivalent CLI commands):

ListDashboards / aws cloudwatch list-dashboards – Fetch a list of all dashboards within an account, or a subset that share a common prefix.

GetDashboard / aws cloudwatch get-dashboard – Fetch details for a single dashboard.

PutDashboard / aws cloudwatch put-dashboard – Create a new dashboard or update an existing one.

DeleteDashboards / aws cloudwatch delete-dashboards – Delete one or more dashboards.

Dashboard Concepts
I want to show you how to use these functions and commands. Before I dive in, I should review a couple of important dashboard concepts and attributes.

Global – Dashboards are part of an AWS account, and are not associated with a specific AWS Region. Each account can have up to 500 dashboards.

Named – Each dashboard has a name that is unique within the AWS account. Names can be up to 255 characters long.

Grid Model – Each dashboard is composed of a grid of cells. The grid is 24 cells across and as tall as necessary. Each widget on the dashboard is positioned at a particular set of grid coordinates, and has a size that spans an integral number of grid cells.

Widgets (Visualizations) – Each widget can display text or a set of CloudWatch metrics. Text is specified using Markdown; metrics can be displayed as single values, line charts, or stacked area charts. Each dashboard can have up to 100 widgets. Widgets that display metrics can also be associated with a CloudWatch Alarm.

Dashboards have a JSON representation that you can now see and edit from within the console. Simply click on the Action menu and choose View/edit source:

Here’s the source for my dashboard:

You can use this JSON as a starting point for your own applications. As you can see, there’s an entry in the widgets array for each widget on the dashboard; each entry describes one widget, starting with its type, position, and size.

Creating a Dashboard Using the API
Let’s say I want to create a dashboard that has a widget for each of my EC2 instances in a particular region. I’ll use Python and the AWS SDK for Python, and start as follows (excuse the amateur nature of my code):

import boto3
import json

cw  = boto3.client("cloudwatch")
ec2 = boto3.client("ec2")

x, y          = [0, 0]
width, height = [3, 3]
max_width     = 12
widgets       = []

Then I simply iterate over the instances, creating a widget dictionary for each one, and appending it to the widgets array:

instances = ec2.describe_instances()
for r in instances['Reservations']:
    for i in r['Instances']:

        widget = {'type'      : 'metric',
                  'x'         : x,
                  'y'         : y,
                  'height'    : height,
                  'width'     : width,
                  'properties': {'view'    : 'timeSeries',
                                 'stacked' : False,
                                 'metrics' : [['AWS/EC2', 'NetworkIn', 'InstanceId', i['InstanceId']],
                                              ['.',       'NetworkOut', '.',         '.']
                                             ],
                                 'period'  : 300,
                                 'stat'    : 'Average',
                                 'region'  : 'us-east-1',
                                 'title'   : i['InstanceId']
                                }
                 }

        widgets.append(widget)

I update the position (x and y) within the loop, and form a grid (if I don’t specify positions, the widgets will be laid out left to right, top to bottom):

        x += width
        if (x + width > max_width):
            x = 0
            y += height

After I have processed all of the instances, I create a JSON version of the widget array:

body   = {'widgets' : widgets}
body_j = json.dumps(body)

And I create or update my dashboard:

cw.put_dashboard(DashboardName = "EC2_Networking",
                 DashboardBody = body_j)

I run the code, and get the following dashboard:

The CloudWatch team recommends that dashboards created programmatically include a text widget indicating that the dashboard was generated automatically, along with a link to the source code or CloudFormation template that did the work. This will discourage users from making manual, out-of-band changers to the dashboards.

As I mentioned earlier, each metric widget can also be associated with a CloudWatch Alarm. You can create the alarms programmatically or by using a CloudFormation template such as the Sample CPU Utilization Alarm. If you decide to do this, the alarm threshold will be displayed in the widget. To learn more about this, read Tara Walker’s recent post, Amazon CloudWatch Launches Alarms on Dashboards.

Going one step further, I could use CloudWatch Events and a Lamba Function to track the creation and deletion of certain resources and update a dashboard in concert with the changes. To learn how to do this, read Keeping CloudWatch Dashboards up to Date Using AWS Lambda.

Accessing a Dashboard Using the CLI
I can also access and manipulate my dashboards from the command line. For example, I can generate a simple list:

$ aws cloudwatch list-dashboards --output table
----------------------------------------------
|               ListDashboards               |
+--------------------------------------------+
||             DashboardEntries             ||
|+-----------------+----------------+-------+|
||  DashboardName  | LastModified   | Size  ||
|+-----------------+----------------+-------+|
||  Disk-Metrics   |  1496405221.0  |  316  ||
||  EC2_Networking |  1498090434.0  |  2830 ||
||  Main-Metrics   |  1498085173.0  |  234  ||
|+-----------------+----------------+-------+|

And I can get rid of the Disk-Metrics dashboard:

$ aws cloudwatch delete-dashboards --dashboard-names Disk-Metrics

I can also retrieve the JSON that defines a dashboard:

Creating a Dashboard Using CloudFormation
Dashboards can also be specified in CloudFormation templates. Here’s a simple template in YAML (the DashboardBody is still specified in JSON):

Resources:
  MyDashboard:
    Type: "AWS::CloudWatch::Dashboard"
    Properties:
      DashboardName: SampleDashboard
      DashboardBody: '{"widgets":[{"type":"text","x":0,"y":0,"width":6,"height":6,"properties":{"markdown":"Hi there from CloudFormation"}}]}'

I place the template in a file and then create a stack using the console or the CLI:

$ aws cloudformation create-stack --stack-name MyDashboard --template-body file://dash.yaml
{
    "StackId": "arn:aws:cloudformation:us-east-1:xxxxxxxxxxxx:stack/MyDashboard/a2a3fb20-5708-11e7-8ffd-500c21311262"
}

Here’s the dashboard:

Available Now
This feature is available now and you can start using it today. You can create 3 dashboards with up to 50 metrics per dashboard at no charge; additional dashboards are priced at $3 per month, as listed on the CloudWatch Pricing page. You can make up to 1 million calls to the new API functions each month at no charge; beyond that you pay $.01 for every 1,000 calls.

Jeff;

New – Cross-Account Delivery of CloudWatch Events

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-cross-account-delivery-of-cloudwatch-events/

CloudWatch Events allow you to track and respond to changes in your AWS resources. You get a near real-time stream of events that you can route to one or more targets (AWS Lambda functions, Amazon Kinesis streams, Amazon SNS topics, and more) using rules. The events that are generated depend on the particular AWS service. For example, here are the events generated for EC2 instances:

Or for S3 (CloudTrail must be enabled in order to create rules that use these events):

See the CloudWatch Event Types list to see which services and events are available.

New Cross-Account Event Delivery
Our customers have asked us to extend CloudWatch Events to handle some interesting & powerful use cases that span multiple AWS accounts, and we are happy to oblige. Today we are adding support for controlled, cross-account delivery of CloudWatch Events. As you will see, you can now arrange to route events from one AWS account to another. As is the case with the existing event delivery model, you can use CloudWatch Events rules to specify which events you would like to send to another account.

Here are some of the use cases that have been shared with us:

Separation of Concerns – Customers would like to handle and respond to events in a separate account in order to implement advanced security schemes.

Rollup – Customers are using AWS Organizations and would like to track certain types of events across the entire organization, across a multitude of AWS accounts.

Each AWS account uses a resource event bus to distribute events. This object dates back to the introduction of CloudWatch Events, but has never been formally called out as such. AWS services, the PutEvents function, and other accounts can publish events to it.

The event bus (currently one per account, with plans to allow more in the future) now has an associated access policy. This policy specifies the set of AWS accounts that are allowed to send events to the bus. You can add one or more accounts, or you can specify that any account is allowed to send events.

You can create event distribution topologies that work on a fan-in or a fan-out basis. A fan-in model allows you to handle events from multiple accounts in one place. A fan-out model allows you to route different types of events to distinct locations and accounts.

In order to avoid the possibility of creating a loop, events that are sent from one account to another will not be sent to a third one. You should take this in to account when you are planning your cross-account implementation.

Using Cross-Account Event Delivery
In order to test this new feature, I made use of my work and my personal AWS accounts. I log in to my personal account and went to the CloudWatch Console. Then I select Event Buses, clicked on Add Permission, and enter the Account ID of my work account:

I can see all of my buses (just one is allowed right now) and permissions in one place:

Next, I log in to my work account and create a rule that will send events to the event bus in my personal account. In this case my personal account is interested in changes of state for EC2 instances running in my work account:

Back in my personal account, I create a rule that will fire on any EC2 event, targeting it at an SNS topic that is configured to send email:

After testing this rule with an EC2 instance launched in my personal account, I launch an instance in my work account and wait for the email message:

The account and resources fields in the message are from the source (work) account.

Things to Know
This functionality is available in all AWS Regions where CloudWatch Events is available and you can start using it today. It is also accessible from the CloudWatch Events APIs and the AWS Command Line Interface (CLI).

Events forwarded from one account to another are considered custom events. The sending account is charged $1 for every million events (see the CloudWatch Pricing page for more info).

Jeff;

PS – AWS CloudFormation support is in the works and coming soon!

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

 
In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:

Requirements

 
To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.

Technologies

 
In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

 
We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

 
Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

.
├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

 
While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

...
phases:
  ...
  build:
    commands:
      ...
      - ./packer build -color=false packer_cis.json | tee build.log
  post_build:
    commands:
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
      ...
artifacts:
  files:
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

 
CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

[
        {
            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]
        }
]

Cloudwatch Events rule

{
  "detail-type": [
    "AmiBuilder"
  ],
  "source": [
    "com.ami.builder"
  ],
  "detail": {
    "AmiStatus": [
      "Created"
    ]
  }
}

Example SNS message sent in email

{
    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"
    }
}

Packer Implementation Details

 
In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.

Variables

  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  },
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.

Builders

  "builders": [{
    ...
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    },
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    },
    ...
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"
  }],

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.

Provisioners

  "provisioners": [
    {
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        ]
    }, 
    {
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
            "ansible/roles/common"
        ],
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
    },
    {
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"
      ]
    }

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

 
Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

---
- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
  vars:
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    cis_level_1_exclusions:
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
      - 4.2.1.4
      - 4.2.2.4
      - 4.2.2.5
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
    logs:
      - file: /var/log/messages
        group_name: "system_logs"
  roles:
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

 
Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.

Summary

 
We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

 
Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

Visualize and Monitor Amazon EC2 Events with Amazon CloudWatch Events and Amazon Kinesis Firehose

Post Syndicated from Karan Desai original https://aws.amazon.com/blogs/big-data/visualize-and-monitor-amazon-ec2-events-with-amazon-cloudwatch-events-and-amazon-kinesis-firehose/

Monitoring your AWS environment is important for security, performance, and cost control purposes. For example, by monitoring and analyzing API calls made to your Amazon EC2 instances, you can trace security incidents and gain insights into administrative behaviors and access patterns. The kinds of events you might monitor include console logins, Amazon EBS snapshot creation/deletion/modification, VPC creation/deletion/modification, and instance reboots, etc.

In this post, I show you how to build a near real-time API monitoring solution for EC2 events using Amazon CloudWatch Events and Amazon Kinesis Firehose. Please be sure to have Amazon CloudTrail enabled in your account.

  • CloudWatch Events offers a near real-time stream of system events that describe changes in AWS resources. CloudWatch Events now supports Kinesis Firehose as a target.
  • Kinesis Firehose is a fully managed service for continuously capturing, transforming, and delivering data in minutes to storage and analytics destinations such as Amazon S3, Amazon Kinesis Analytics, Amazon Redshift, and Amazon Elasticsearch Service.

Walkthrough

For this walkthrough, you create a CloudWatch event rule that matches specific EC2 events such as:

  • Starting, stopping, and terminating an instance
  • Creating and deleting VPC route tables
  • Creating and deleting a security group
  • Creating, deleting, and modifying instance volumes and snapshots

Your CloudWatch event target is a Kinesis Firehose delivery stream that delivers this data to an Elasticsearch cluster, where you set up Kibana for visualization. Using this solution, you can easily load and visualize EC2 events in minutes without setting up complicated data pipelines.

Set up the Elasticsearch cluster

Create the Amazon ES domain in the Amazon ES console, or by using the create-elasticsearch-domain command in the AWS CLI.

This example uses the following configuration:

  • Domain Name: esLogSearch
  • Elasticsearch Version: 1
  • Instance Count: 2
  • Instance type:elasticsearch
  • Enable dedicated master: true
  • Enable zone awareness: true
  • Restrict Amazon ES to an IP-based access policy

Other settings are left as the defaults.

Create a Kinesis Firehose delivery stream

In the Kinesis Firehose console, create a new delivery stream with Amazon ES as the destination. For detailed steps, see Create a Kinesis Firehose Delivery Stream to Amazon Elasticsearch Service.

Set up CloudWatch Events

Create a rule, and configure the event source and target. You can choose to configure multiple event sources with several AWS resources, along with options to specify specific or multiple event types.

In the CloudWatch console, choose Events.

For Service Name, choose EC2.

In Event Pattern Preview, choose Edit and copy the pattern below. For this walkthrough, I selected events that are specific to the EC2 API, but you can modify it to include events for any of your AWS resources.

 

{
	"source": [
		"aws.ec2"
	],
	"detail-type": [
		"AWS API Call via CloudTrail"
	],
	"detail": {
		"eventSource": [
			"ec2.amazonaws.com"
		],
		"eventName": [
			"RunInstances",
			"StopInstances",
			"StartInstances",
			"CreateFlowLogs",
			"CreateImage",
			"CreateNatGateway",
			"CreateVpc",
			"DeleteKeyPair",
			"DeleteNatGateway",
			"DeleteRoute",
			"DeleteRouteTable",
"CreateSnapshot",
"DeleteSnapshot",
			"DeleteVpc",
			"DeleteVpcEndpoints",
			"DeleteSecurityGroup",
			"ModifyVolume",
			"ModifyVpcEndpoint",
			"TerminateInstances"
		]
	}
}

The following screenshot shows what your event looks like in the console.

Next, choose Add target and select the delivery stream that you just created.

Set up Kibana on the Elasticsearch cluster

Amazon ES provides a default installation of Kibana with every Amazon ES domain. You can find the Kibana endpoint on your domain dashboard in the Amazon ES console. You can restrict Amazon ES access to an IP-based access policy.

In the Kibana console, for Index name or pattern, type log. This is the name of the Elasticsearch index.

For Time-field name, choose @time.

To view the events, choose Discover.

The following chart demonstrates the API operations and the number of times that they have been triggered in the past 12 hours.

Summary

In this post, you created a continuous, near real-time solution to monitor various EC2 events such as starting and shutting down instances, creating VPCs, etc. Likewise, you can build a continuous monitoring solution for all the API operations that are relevant to your daily AWS operations and resources.

With Kinesis Firehose as a new target for CloudWatch Events, you can retrieve, transform, and load system events to the storage and analytics destination of your choice in minutes, without setting up complicated data pipelines.

If you have any questions or suggestions, please comment below.


Additional Reading

Learn how to build a serverless architecture to analyze Amazon CloudFront access logs using AWS Lambda, Amazon Athena, and Amazon Kinesis Analytics

 

 

 

Amazon EC2 Container Service – Launch Recap, Customer Stories, and Code

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-ec2-container-service-launch-recap-customer-stories-and-code/

Today seems like a good time to recap some of the features that we have added to Amazon EC2 Container Service over the last year or so, and to share some customer success stories and code with you! The service makes it easy for you to run any number of Docker containers across a managed cluster of EC2 instances, with full console, API, CloudFormation, CLI, and PowerShell support. You can store your Linux and Windows Docker images in the EC2 Container Registry for easy access.

Launch Recap
Let’s start by taking a look at some of the newest ECS features and some helpful how-to blog posts that will show you how to use them:

Application Load Balancing – We added support for the application load balancer last year. This high-performance load balancing option runs at the application level and allows you to define content-based routing rules. It provides support for dynamic ports and can be shared across multiple services, making it easier for you to run microservices in containers. To learn more, read about Service Load Balancing.

IAM Roles for Tasks – You can secure your infrastructure by assigning IAM roles to ECS tasks. This allows you to grant permissions on a fine-grained, per-task basis, customizing the permissions to the needs of each task. Read IAM Roles for Tasks to learn more.

Service Auto Scaling – You can define scaling policies that scale your services (tasks) up and down in response to changes in demand. You set the desired minimum and maximum number of tasks, create one or more scaling policies, and Service Auto Scaling will take care of the rest. The documentation for Service Auto Scaling will help you to make use of this feature.

Blox – Scheduling, in a container-based environment, is the process of assigning tasks to instances. ECS gives you three options: automated (via the built-in Service Scheduler), manual (via the RunTask function), and custom (via a scheduler that you provide). Blox is an open source scheduler that supports a one-task-per-host model, with room to accommodate other models in the future. It monitors the state of the cluster and is well-suited to running monitoring agents, log collectors, and other daemon-style tasks.

Windows – We launched ECS with support for Linux containers and followed up with support for running Windows Server 2016 Base with Containers.

Container Instance Draining – From time to time you may need to remove an instance from a running cluster in order to scale the cluster down or to perform a system update. Earlier this year we added a set of lifecycle hooks that allow you to better manage the state of the instances. Read the blog post How to Automate Container Instance Draining in Amazon ECS to see how to use the lifecycle hooks and a Lambda function to automate the process of draining existing work from an instance while preventing new work from being scheduled for it.

CI/CD Pipeline with Code* – Containers simplify software deployment and are an ideal target for a CI/CD (Continuous Integration / Continuous Deployment) pipeline. The post Continuous Deployment to Amazon ECS using AWS CodePipeline, AWS CodeBuild, Amazon ECR, and AWS CloudFormation shows you how to build and operate a CI/CD pipeline using multiple AWS services.

CloudWatch Logs Integration – This launch gave you the ability to configure the containers that run your tasks to send log information to CloudWatch Logs for centralized storage and analysis. You simply install the Amazon ECS Container Agent and enable the awslogs log driver.

CloudWatch Events – ECS generates CloudWatch Events when the state of a task or a container instance changes. These events allow you to monitor the state of the cluster using a Lambda function. To learn how to capture the events and store them in an Elasticsearch cluster, read Monitor Cluster State with Amazon ECS Event Stream.

Task Placement Policies – This launch provided you with fine-grained control over the placement of tasks on container instances within clusters. It allows you to construct policies that include cluster constraints, custom constraints (location, instance type, AMI, and attribute), placement strategies (spread or bin pack) and to use them without writing any code. Read Introducing Amazon ECS Task Placement Policies to see how to do this!

EC2 Container Service in Action
Many of our customers from large enterprises to hot startups and across all industries, such as financial services, hospitality, and consumer electronics, are using Amazon ECS to run their microservices applications in production. Companies such as Capital One, Expedia, Okta, Riot Games, and Viacom rely on Amazon ECS.

Mapbox is a platform for designing and publishing custom maps. The company uses ECS to power their entire batch processing architecture to collect and process over 100 million miles of sensor data per day that they use for powering their maps. They also optimize their batch processing architecture on ECS using Spot Instances. The Mapbox platform powers over 5,000 apps and reaches more than 200 million users each month. Its backend runs on ECS allowing it to serve more than 1.3 billion requests per day. To learn more about their recent migration to ECS, read their recent blog post, We Switched to Amazon ECS, and You Won’t Believe What Happened Next.

Travel company Expedia designed their backends with a microservices architecture. With the popularization of Docker, they decided they would like to adopt Docker for its faster deployments and environment portability. They chose to use ECS to orchestrate all their containers because it had great integration with the AWS platform, everything from ALB to IAM roles to VPC integration. This made ECS very easy to use with their existing AWS infrastructure. ECS really reduced the heavy lifting of deploying and running containerized applications. Expedia runs 75% of all apps on AWS in ECS allowing it to process 4 billion requests per hour. Read Kuldeep Chowhan‘s blog post, How Expedia Runs Hundreds of Applications in Production Using Amazon ECS to learn more.

Realtor.com provides home buyers and sellers with a comprehensive database of properties that are currently for sale. Their move to AWS and ECS has helped them to support business growth that now numbers 50 million unique monthly users who drive up to 250,000 requests per second at peak times. ECS has helped them to deploy their code more quickly while increasing utilization of their cloud infrastructure. Read the Realtor.com Case Study to learn more about how they use ECS, Kinesis, and other AWS services.

Instacart talks about how they use ECS to power their same-day grocery delivery service:

Capital One talks about how they use ECS to automate their operations and their infrastructure management:

Code
Clever developers are using ECS as a base for their own work. For example:

Rack is an open source PaaS (Platform as a Service). It focuses on infrastructure automation, runs in an isolated VPC, and uses a single-tenant build service for security.

Empire is also an open source PaaS. It provides a Heroku-like workflow and is targeted at small and medium sized startups, with an emphasis on microservices.

Cloud Container Cluster Visualizer (c3vis) helps to visualize resource utilization within ECS clusters:

Stay Tuned
We have plenty of new features in the works for ECS, so stay tuned!

Jeff;

 

Querying OpenStreetMap with Amazon Athena

Post Syndicated from Seth Fitzsimmons original https://aws.amazon.com/blogs/big-data/querying-openstreetmap-with-amazon-athena/

This is a guest post by Seth Fitzsimmons, member of the 2017 OpenStreetMap US board of directors. Seth works with clients including the Humanitarian OpenStreetMap Team, Mapzen, the American Red Cross, and World Bank to craft innovative geospatial solutions.

OpenStreetMap (OSM) is a free, editable map of the world, created and maintained by volunteers and available for use under an open license. Companies and non-profits like Mapbox, Foursquare, Mapzen, the World Bank, the American Red Cross and others use OSM to provide maps, directions, and geographic context to users around the world.

In the 12 years of OSM’s existence, editors have created and modified several billion features (physical things on the ground like roads or buildings). The main PostgreSQL database that powers the OSM editing interface is now over 2TB and includes historical data going back to 2007. As new users join the open mapping community, more and more valuable data is being added to OpenStreetMap, requiring increasingly powerful tools, interfaces, and approaches to explore its vastness.

This post explains how anyone can use Amazon Athena to quickly query publicly available OSM data stored in Amazon S3 (updated weekly) as an AWS Public Dataset. Imagine that you work for an NGO interested in improving knowledge of and access to health centers in Africa. You might want to know what’s already been mapped, to facilitate the production of maps of surrounding villages, and to determine where infrastructure investments are likely to be most effective.

Note: If you run all the queries in this post, you will be charged approximately $1 based on the number of bytes scanned. All queries used in this post can be found in this GitHub gist.

What is OpenStreetMap?

As an open content project, regular OSM data archives are made available to the public via planet.openstreetmap.org in a few different formats (XML, PBF). This includes both snapshots of the current state of data in OSM as well as historical archives.

Working with “the planet” (as the data archives are referred to) can be unwieldy. Because it contains data spanning the entire world, the size of a single archive is on the order of 50 GB. The format is bespoke and extremely specific to OSM. The data is incredibly rich, interesting, and useful, but the size, format, and tooling can often make it very difficult to even start the process of asking complex questions.

Heavy users of OSM data typically download the raw data and import it into their own systems, tailored for their individual use cases, such as map rendering, driving directions, or general analysis. Now that OSM data is available in the Apache ORC format on Amazon S3, it’s possible to query the data using Athena without even downloading it.

How does Athena help?

You can use Athena along with data made publicly available via OSM on AWS. You don’t have to learn how to install, configure, and populate your own server instances and go through multiple steps to download and transform the data into a queryable form. Thanks to AWS and partners, a regularly updated copy of the planet file (available within hours of OSM’s weekly publishing schedule) is hosted on S3 and made available in a format that lends itself to efficient querying using Athena.

Asking questions with Athena involves registering the OSM planet file as a table and making SQL queries. That’s it. Nothing to download, nothing to configure, nothing to ingest. Athena distributes your queries and returns answers within seconds, even while querying over 9 years and billions of OSM elements.

You’re in control. S3 provides high availability for the data and Athena charges you per TB of data scanned. Plus, we’ve gone through the trouble of keeping scanning charges as small as possible by transcoding OSM’s bespoke format as ORC. All the hard work of transforming the data into something highly queryable and making it publicly available is done; you just need to bring some questions.

Registering Tables

The OSM Public Datasets consist of three tables:

  • planet
    Contains the current versions of all elements present in OSM.
  • planet_history
    Contains a historical record of all versions of all elements (even those that have been deleted).
  • changesets
    Contains information about changesets in which elements were modified (and which have a foreign key relationship to both the planet and planet_history tables).

To register the OSM Public Datasets within your AWS account so you can query them, open the Athena console (make sure you are using the us-east-1 region) to paste and execute the following table definitions:

planet

CREATE EXTERNAL TABLE planet (
  id BIGINT,
  type STRING,
  tags MAP<STRING,STRING>,
  lat DECIMAL(9,7),
  lon DECIMAL(10,7),
  nds ARRAY<STRUCT<ref: BIGINT>>,
  members ARRAY<STRUCT<type: STRING, ref: BIGINT, role: STRING>>,
  changeset BIGINT,
  timestamp TIMESTAMP,
  uid BIGINT,
  user STRING,
  version BIGINT
)
STORED AS ORCFILE
LOCATION 's3://osm-pds/planet/';

planet_history

CREATE EXTERNAL TABLE planet_history (
    id BIGINT,
    type STRING,
    tags MAP<STRING,STRING>,
    lat DECIMAL(9,7),
    lon DECIMAL(10,7),
    nds ARRAY<STRUCT<ref: BIGINT>>,
    members ARRAY<STRUCT<type: STRING, ref: BIGINT, role: STRING>>,
    changeset BIGINT,
    timestamp TIMESTAMP,
    uid BIGINT,
    user STRING,
    version BIGINT,
    visible BOOLEAN
)
STORED AS ORCFILE
LOCATION 's3://osm-pds/planet-history/';

changesets

CREATE EXTERNAL TABLE changesets (
    id BIGINT,
    tags MAP<STRING,STRING>,
    created_at TIMESTAMP,
    open BOOLEAN,
    closed_at TIMESTAMP,
    comments_count BIGINT,
    min_lat DECIMAL(9,7),
    max_lat DECIMAL(9,7),
    min_lon DECIMAL(10,7),
    max_lon DECIMAL(10,7),
    num_changes BIGINT,
    uid BIGINT,
    user STRING
)
STORED AS ORCFILE
LOCATION 's3://osm-pds/changesets/';

 

Under the Hood: Extract, Transform, Load

So, what happens behind the scenes to make this easier for you? In a nutshell, the data is transcoded from the OSM PBF format into Apache ORC.

There’s an AWS Lambda function (running every 15 minutes, triggered by CloudWatch Events) that watches planet.openstreetmap.org for the presence of weekly updates (using rsync). If that function detects that a new version has become available, it submits a set of AWS Batch jobs to mirror, transcode, and place it as the “latest” version. Code for this is available at osm-pds-pipelines GitHub repo.

To facilitate the transcoding into a format appropriate for Athena, we have produced an open source tool, OSM2ORC. The tool also includes an Osmosis plugin that can be used with complex filtering pipelines and outputs an ORC file that can be uploaded to S3 for use with Athena, or used locally with other tools from the Hadoop ecosystem.

What types of questions can OpenStreetMap answer?

There are many uses for OpenStreetMap data; here are three major ones and how they may be addressed using Athena.

Case Study 1: Finding Local Health Centers in West Africa

When the American Red Cross mapped more than 7,000 communities in West Africa in areas affected by the Ebola epidemic as part of the Missing Maps effort, they found themselves in a position where collecting a wide variety of data was both important and incredibly beneficial for others. Accurate maps play a critical role in understanding human communities, especially for populations at risk. The lack of detailed maps for West Africa posed a problem during the 2014 Ebola crisis, so collecting and producing data around the world has the potential to improve disaster responses in the future.

As part of the data collection, volunteers collected locations and information about local health centers, something that will facilitate treatment in future crises (and, more importantly, on a day-to-day basis). Combined with information about access to markets and clean drinking water and historical experiences with natural disasters, this data was used to create a vulnerability index to select communities for detailed mapping.

For this example, you find all health centers in West Africa (many of which were mapped as part of Missing Maps efforts). This is something that healthsites.io does for the public (worldwide and editable, based on OSM data), but you’re working with the raw data.

Here’s a query to fetch information about all health centers, tagged as nodes (points), in Guinea, Sierra Leone, and Liberia:

SELECT * from planet
WHERE type = 'node'
  AND tags['amenity'] IN ('hospital', 'clinic', 'doctors')
  AND lon BETWEEN -15.0863 AND -7.3651
  AND lat BETWEEN 4.3531 AND 12.6762;

Buildings, as “ways” (polygons, in this case) assembled from constituent nodes (points), can also be tagged as medical facilities. In order to find those, you need to reassemble geometries. Here you’re taking the average of all nodes that make up a building (which will be the approximate center point, which is close enough for this purpose). Here is a query that finds both buildings and points that are tagged as medical facilities:

-- select out nodes and relevant columns
WITH nodes AS (
  SELECT
    type,
    id,
    tags,
    lat,
    lon
  FROM planet
  WHERE type = 'node'
),
-- select out ways and relevant columns
ways AS (
  SELECT
    type,
    id,
    tags,
    nds
  FROM planet
  WHERE type = 'way'
    AND tags['amenity'] IN ('hospital', 'clinic', 'doctors')
),
-- filter nodes to only contain those present within a bounding box
nodes_in_bbox AS (
  SELECT *
  FROM nodes
  WHERE lon BETWEEN -15.0863 AND -7.3651
    AND lat BETWEEN 4.3531 AND 12.6762
)
-- find ways intersecting the bounding box
SELECT
  ways.type,
  ways.id,
  ways.tags,
  AVG(nodes.lat) lat,
  AVG(nodes.lon) lon
FROM ways
CROSS JOIN UNNEST(nds) AS t (nd)
JOIN nodes_in_bbox nodes ON nodes.id = nd.ref
GROUP BY (ways.type, ways.id, ways.tags)
UNION ALL
SELECT
  type,
  id,
  tags,
  lat,
  lon
FROM nodes_in_bbox
WHERE tags['amenity'] IN ('hospital', 'clinic', 'doctors');

You could go a step further and query for additional tags included with these (for example, opening_hours) and use that as a metric for measuring “completeness” of the dataset and to focus on additional data to collect (and locations to fill out).

Case Study 2: Generating statistics about mapathons

OSM has a history of holding mapping parties. Mapping parties are events where interested people get together and wander around outside, gathering and improving information about sites (and sights) that they pass. Another form of mapping party is the mapathon, which brings together armchair and desk mappers to focus on improving data in another part of the world.

Mapathons are a popular way of enlisting volunteers for Missing Maps, a collaboration between many NGOs, education institutions, and civil society groups that aims to map the most vulnerable places in the developing world to support international and local NGOs and individuals. One common way that volunteers participate is to trace buildings and roads from aerial imagery, providing baseline data that can later be verified by Missing Maps staff and volunteers working in the areas being mapped.

(Image and data from the American Red Cross)

Data collected during these events lends itself to a couple different types of questions. People like competition, so Missing Maps has developed a set of leaderboards that allow people to see where they stand relative to other mappers and how different groups compare. To facilitate this, hashtags (such as #missingmaps) are included in OSM changeset comments. To do similar ad hoc analysis, you need to query the list of changesets, filter by the presence of certain hashtags in the comments, and group things by username.

Now, find changes made during Missing Maps mapathons at George Mason University (using the #gmu hashtag):

SELECT *
FROM changesets
WHERE regexp_like(tags['comment'], '(?i)#gmu');

This includes all tags associated with a changeset, which typically include a mapper-provided comment about the changes made (often with additional hashtags corresponding to OSM Tasking Manager projects) as well as information about the editor used, imagery referenced, etc.

If you’re interested in the number of individual users who have mapped as part of the Missing Maps project, you can write a query such as:

SELECT COUNT(DISTINCT uid)
FROM changesets
WHERE regexp_like(tags['comment'], '(?i)#missingmaps');

25,610 people (as of this writing)!

Back at GMU, you’d like to know who the most prolific mappers are:

SELECT user, count(*) AS edits
FROM changesets
WHERE regexp_like(tags['comment'], '(?i)#gmu')
GROUP BY user
ORDER BY count(*) DESC;

Nice job, BrokenString!

It’s also interesting to see what types of features were added or changed. You can do that by using a JOIN between the changesets and planet tables:

SELECT planet.*, changesets.tags
FROM planet
JOIN changesets ON planet.changeset = changesets.id
WHERE regexp_like(changesets.tags['comment'], '(?i)#gmu');


Using this as a starting point, you could break down the types of features, highlight popular parts of the world, or do something entirely different.

Case Study 3: Building Condition

With building outlines having been produced by mappers around (and across) the world, local Missing Maps volunteers (often from local Red Cross / Red Crescent societies) go around with Android phones running OpenDataKit  and OpenMapKit to verify that the buildings in question actually exist and to add additional information about them, such as the number of stories, use (residential, commercial, etc.), material, and condition.

This data can be used in many ways: it can provide local geographic context (by being included in map source data) as well as facilitate investment by development agencies such as the World Bank.

Here are a collection of buildings mapped in Dhaka, Bangladesh:

(Map and data © OpenStreetMap contributors)

For NGO staff to determine resource allocation, it can be helpful to enumerate and show buildings in varying conditions. Building conditions within an area can be a means of understanding where to focus future investments.

Querying for buildings is a bit more complicated than working with points or changesets. Of the three core OSM element types—node, way, and relation, only nodes (points) have geographic information associated with them. Ways (lines or polygons) are composed of nodes and inherit vertices from them. This means that ways must be reconstituted in order to effectively query by bounding box.

This results in a fairly complex query. You’ll notice that this is similar to the query used to find buildings tagged as medical facilities above. Here you’re counting buildings in Dhaka according to building condition:

-- select out nodes and relevant columns
WITH nodes AS (
  SELECT
    id,
    tags,
    lat,
    lon
  FROM planet
  WHERE type = 'node'
),
-- select out ways and relevant columns
ways AS (
  SELECT
    id,
    tags,
    nds
  FROM planet
  WHERE type = 'way'
),
-- filter nodes to only contain those present within a bounding box
nodes_in_bbox AS (
  SELECT *
  FROM nodes
  WHERE lon BETWEEN 90.3907 AND 90.4235
    AND lat BETWEEN 23.6948 AND 23.7248
),
-- fetch and expand referenced ways
referenced_ways AS (
  SELECT
    ways.*,
    t.*
  FROM ways
  CROSS JOIN UNNEST(nds) WITH ORDINALITY AS t (nd, idx)
  JOIN nodes_in_bbox nodes ON nodes.id = nd.ref
),
-- fetch *all* referenced nodes (even those outside the queried bounding box)
exploded_ways AS (
  SELECT
    ways.id,
    ways.tags,
    idx,
    nd.ref,
    nodes.id node_id,
    ARRAY[nodes.lat, nodes.lon] coordinates
  FROM referenced_ways ways
  JOIN nodes ON nodes.id = nd.ref
  ORDER BY ways.id, idx
)
-- query ways matching the bounding box
SELECT
  count(*),
  tags['building:condition']
FROM exploded_ways
GROUP BY tags['building:condition']
ORDER BY count(*) DESC;


Most buildings are unsurveyed (125,000 is a lot!), but of those that have been, most are average (as you’d expect). If you were to further group these buildings geographically, you’d have a starting point to determine which areas of Dhaka might benefit the most.

Conclusion

OSM data, while incredibly rich and valuable, can be difficult to work with, due to both its size and its data model. In addition to the time spent downloading large files to work with locally, time is spent installing and configuring tools and converting the data into more queryable formats. We think Amazon Athena combined with the ORC version of the planet file, updated on a weekly basis, is an extremely powerful and cost-effective combination. This allows anyone to start querying billions of records with simple SQL in no time, giving you the chance to focus on the analysis, not the infrastructure.

To download the data and experiment with it using other tools, the latest OSM ORC-formatted file is available via OSM on AWS at s3://osm-pds/planet/planet-latest.orcs3://osm-pds/planet-history/history-latest.orc, and s3://osm-pds/changesets/changesets-latest.orc.

We look forward to hearing what you find out!

Meet the Amazon EMR Team this Friday at a Tech Talk & Networking Event in Mountain View

Post Syndicated from Jonathan Fritz original https://aws.amazon.com/blogs/big-data/meet-the-amazon-emr-team-this-friday-at-a-tech-talk-networking-event-in-mountain-view/

Want to change the world with Big Data and Analytics? Come join us on the Amazon EMR team in Amazon Web Services!

Meet the Amazon EMR team this Friday April 7th from 5:00 – 7:30 PM at Michael’s at Shoreline in Mountain View. We’ll feature short tech talks by EMR leadership who will talk about the past, present, and future of Apache Hadoop and Spark ecosystem and EMR. You’ll also meet EMR engineers who are eager to discuss the challenges and opportunities involved in building the EMR service and running the latest open-source big data frameworks like Spark and Presto at massive scale. We’ll give out several door prizes, including an Amazon Echo with an Amazon Dot, Kindle, and Fire TV Stick!

Amazon EMR is a web service which enables customers to run massive clusters with distributed big data frameworks like Apache Hadoop, Hive, Tez, Flink, Spark, Presto, HBase and more, with the ability to effortlessly scale up and down as needed. We run a large number of customer clusters, enabling processing on vast datasets.

We are developing innovative new features including our next-generation cluster management system, improvements for real-time processing of big data, and ways to enable customers to more easily interact with their data. We’re looking for top engineers to build them from the ground up.

Here are sample features that we have recently delivered:

Interested? We hope you can make it! Please RSVP on Eventbrite.

Scaling Your Desktop Application Streams with Amazon AppStream 2.0

Post Syndicated from Bryan Liston original https://aws.amazon.com/blogs/compute/scaling-your-desktop-application-streams-with-amazon-appstream-2-0/

Want to stream desktop applications to a web browser, without rewriting them? Amazon AppStream 2.0 is a fully managed, secure, application streaming service. An easy way to learn what the service does is to try out the end-user experience, at no cost.

In this post, I describe how you can scale your AppStream 2.0 environment, and achieve some cost optimizations. I also add some setup and monitoring tips.

AppStream 2.0 workflow

You import your applications into AppStream 2.0 using an image builder. The image builder allows you to connect to a desktop experience from within the AWS Management Console, and then install and test your apps. Then, create an image that is a snapshot of the image builder.

After you have an image containing your applications, select an instance type and launch a fleet of streaming instances. Each instance in the fleet is used by only one user, and you match the instance type used in the fleet to match the needed application performance. Finally, attach the fleet to a stack to set up user access. The following diagram shows the role of each resource in the workflow.

Figure 1: Describing an AppStream 2.0 workflow

appstreamscaling_1.png

Setting up AppStream 2.0

To get started, set up an example AppStream 2.0 stack or use the Quick Links on the console. For this example, I named my stack ds-sample, selected a sample image, and chose the stream.standard.medium instance type. You can explore the resources that you set up in the AWS console, or use the describe-stacks and describe-fleets commands as follows:

Figure 2: Describing an AppStream 2.0 stack

appstreamscaling_1.png

Figure 3: Describing an AppStream 2.0 fleet

appstreamscaling_2.43%20AM

To set up user access to your streaming environment, you can use your existing SAML 2.0 compliant directory. Your users can then use their existing credentials to log in. Alternatively, to quickly test a streaming connection, or to start a streaming session from your own website, you can create a streaming URL. In the console, choose Stacks, Actions, Create URL, or call create-streaming-url as follows:

Figure 4: Creating a streaming URL

appstreamscaling_3.png

You can paste the streaming URL into a browser, and open any of the displayed applications.

appstreamscaling_4.30%20PM

Now that you have a sample environment set up, here are a few tips on scaling.

Scaling and cost optimization for AppStream 2.0

To provide an instant-on streaming connection, the instances in an AppStream 2.0 fleet are always running. You are charged for running instances, and each running instance can serve exactly one user at any time. To optimize your costs, match the number of running instances to the number of users who want to stream apps concurrently. This section walks through three options for doing this:

  • Fleet Auto Scaling
  • Fixed fleets based on a schedule
  • Fleet Auto Scaling with schedules

Fleet Auto Scaling

To dynamically update the number of running instances, you can use Fleet Auto Scaling. This feature allows you to scale the size of the fleet automatically between a minimum and maximum value based on demand. This is useful if you have user demand that changes constantly, and you want to scale your fleet automatically to match this demand. For examples about setting up and managing scaling policies, see Fleet Auto Scaling.

You can trigger changes to the fleet through the available Amazon CloudWatch metrics:

  • CapacityUtilization – the percentage of running instances already used.
  • AvailableCapacity – the number of instances that are unused and can receive connections from users.
  • InsufficientCapacityError – an error that is triggered when there is no available running instance to match a user’s request.

You can create and attach scaling policies using the AWS SDK or AWS Management Console. I find it convenient to set up the policies using the console. Use the following steps:

  1. In the AWS Management Console, open AppStream 2.0.
  2. Choose Fleets, select a fleet, and choose Scaling Policies.
  3. For Minimum capacity and Maximum capacity, enter values for the fleet.

Figure 5: Fleets tab for setting scaling policies

appstreamscaling_5.png

  1. Create scale out and scale in policies by choosing Add Policy in each section.

Figure 6: Adding a scale out policy

appstreamscaling_6.png

Figure 7: Adding a scale in policy

appstreamscaling_7.png

After you create the policies, they are displayed as part of your fleet details.

appstreamscaling_8.png

The scaling policies are triggered by CloudWatch alarms. These alarms are automatically created on your behalf when you create the scaling policies using the console. You can view and modify the alarms via the CloudWatch console.

Figure 8: CloudWatch alarms for triggering fleet scaling

appstreamscaling_9.png

Fixed fleets based on a schedule

An alternative option to optimize costs and respond to predictable demand is to fix the number of running instances based on the time of day or day of the week. This is useful if you have a fixed number of users signing in at different times of the day― scenarios such as a training classes, call center shifts, or school computer labs. You can easily set the number of instances that are running using the AppStream 2.0 update-fleet command. Update the Desired value for the compute capacity of your fleet. The number of Running instances changes to match the Desired value that you set, as follows:

Figure 9: Updating desired capacity for your fleet

appstreamscaling_10.png

Set up a Lambda function to update your fleet size automatically. Follow the example below to set up your own functions. If you haven’t used Lambda before, see Step 2: Create a HelloWorld Lambda Function and Explore the Console.

To create a function to change the fleet size

  1. In the Lambda console, choose Create a Lambda function.
  2. Choose the Blank Function blueprint. This gives you an empty blueprint to which you can add your code.
  3. Skip the trigger section for now. Later on, you can add a trigger based on time, or any other input.
  4. In the Configure function section:
    1. Provide a name and description.
    2. For Runtime, choose Node.js 4.3.
    3. Under Lambda function handler and role, choose Create a custom role.
    4. In the IAM wizard, enter a role name, for example Lambda-AppStream-Admin. Leave the defaults as is.
    5. After the IAM role is created, attach an AppStream 2.0 managed policy “AmazonAppStreamFullAccess” to the role. For more information, see Working with Managed Policies. This allows Lambda to call the AppStream 2.0 API on your behalf. You can edit and attach your own IAM policy, to limit access to only actions you would like to permit. To learn more, see Controlling Access to Amazon AppStream 2.0.
    6. Leave the default values for the rest of the fields, and choose Next, Create function.
  5. To change the AppStream 2.0 fleet size, choose Code and add some sample code, as follows:
    'use strict';
    
    /**
    This AppStream2 Update-Fleet blueprint sets up a schedule for a streaming fleet
    **/
    
    const AWS = require('aws-sdk');
    const appstream = new AWS.AppStream();
    const fleetParams = {
      Name: 'ds-sample-fleet', /* required */
      ComputeCapacity: {
        DesiredInstances: 1 /* required */
    
      }
    };
    
    exports.handler = (event, context, callback) => {
        console.log('Received event:', JSON.stringify(event, null, 2));
    
        var resource = event.resources[0];
        var increase = resource.includes('weekday-9am-increase-capacity')
    
        try {
            if (increase) {
                fleetParams.ComputeCapacity.DesiredInstances = 3
            } else {
                fleetParams.ComputeCapacity.DesiredInstances = 1
            }
            appstream.updateFleet(fleetParams, (error, data) => {
                if (error) {
                    console.log(error, error.stack);
                    return callback(error);
                }
                console.log(data);
                return callback(null, data);
            });
        } catch (error) {
            console.log('Caught Error: ', error);
            callback(error);
        }
    };

  6. Test the code. Choose Test and use the “Hello World” test template. The first time you do this, choose Save and Test. Create a test input like the following to trigger the scaling update.

    appstreamscaling_11.png

  7. You see output text showing the result of the update-fleet call. You can also use the CLI to check the effect of executing the Lambda function.

Next, to set up a time-based schedule, set a trigger for invoking the Lambda function.

To set a trigger for the Lambda function

  1. Choose Triggers, Add trigger.
  2. Choose CloudWatch Events – Schedule.
  3. Enter a rule name, such as “weekday-9am-increase-capacity”, and a description. For Schedule expression, choose cron. You can edit the value for the cron later.
  4. After the trigger is created, open the event weekday-9am-increase-capacity.
  5. In the CloudWatch console, edit the event details. To scale out the fleet at 9 am on a weekday, you can adjust the time to be: 00 17 ? * MON-FRI *. (If you’re not in Seattle (Pacific Time Zone), change this to another specific time zone).
  6. You can also add another event that triggers at the end of a weekday.

appstreamscaling_12.png

This setup now triggers scale-out and scale-in automatically, based on the time schedule that you set.

Fleet Auto Scaling with schedules

You can choose to combine both the fleet scaling and time-based schedule approaches to manage more complex scenarios. This is useful to manage the number of running instances based on business and non-business hours, and still respond to changes in demand. You could programmatically change the minimum and maximum sizes for your fleet based on time of day or day of week, and apply the default scale-out or scale-in policies. This allows you to respond to predictable minimum demand based on a schedule.

For example, at the start of a work day, you might expect a certain number of users to request streaming connections at one time. You wouldn’t want to wait for the fleet to scale out and meet this requirement. However, during the course of the day, you might expect the demand to scale in or out, and would want to match the fleet size to this demand.

To achieve this, set up the scaling polices via the console, and create a Lambda function to trigger changes to the minimum, maximum, and desired capacity for your fleet based on a schedule. Replace the code for the Lambda function that you created earlier with the following code:

'use strict';

/**
This AppStream2 Update-Fleet function sets up a schedule for a streaming fleet
**/

const AWS = require('aws-sdk');
const appstream = new AWS.AppStream();
const applicationAutoScaling = new AWS.ApplicationAutoScaling();

const fleetParams = {
  Name: 'ds-sample-fleet', /* required */
  ComputeCapacity: {
    DesiredInstances: 1 /* required */
  }
};

var scalingParams = {
  ResourceId: 'fleet/ds-sample-fleet', /* required - fleet name*/
  ScalableDimension: 'appstream:fleet:DesiredCapacity', /* required */
  ServiceNamespace: 'appstream', /* required */
  MaxCapacity: 1,
  MinCapacity: 6,
  RoleARN: 'arn:aws:iam::659382443255:role/service-role/ApplicationAutoScalingForAmazonAppStreamAccess'
};

exports.handler = (event, context, callback) => {
    
    console.log('Received this event now:', JSON.stringify(event, null, 2));
    
    var resource = event.resources[0];
    var increase = resource.includes('weekday-9am-increase-capacity')

    try {
        if (increase) {
            //usage during business hours - start at capacity of 10 and scale
            //if required. This implies at least 10 users can connect instantly. 
            //More users can connect as the scaling policy triggers addition of
            //more instances. Maximum cap is 20 instances - fleet will not scale
            //beyond 20. This is the cap for number of users.
            fleetParams.ComputeCapacity.DesiredInstances = 10
            scalingParams.MinCapacity = 10
            scalingParams.MaxCapacity = 20
        } else {
            //usage during non-business hours - start at capacity of 1 and scale
            //if required. This implies only 1 user can connect instantly. 
            //More users can connect as the scaling policy triggers addition of
            //more instances. 
            fleetParams.ComputeCapacity.DesiredInstances = 1
            scalingParams.MinCapacity = 1
            scalingParams.MaxCapacity = 10
        }
        
        //Update minimum and maximum capacity used by the scaling policies
        applicationAutoScaling.registerScalableTarget(scalingParams, (error, data) => {
             if (error) console.log(error, error.stack); 
             else console.log(data);                     
            });
            
        //Update the desired capacity for the fleet. This sets 
        //the number of running instances to desired number of instances
        appstream.updateFleet(fleetParams, (error, data) => {
            if (error) {
                console.log(error, error.stack);
                return callback(error);
            }

            console.log(data);
            return callback(null, data);
        });
            
    } catch (error) {
        console.log('Caught Error: ', error);
        callback(error);
    }
};

Note: To successfully execute this code, you need to add IAM policies to the role used by the Lambda function. The policies allow Lambda to call the Application Auto Scaling service on your behalf.

Figure 10: Inline policies for using Application Auto Scaling with Lambda

{
"Version": "2012-10-17",
"Statement": [
   {
      "Effect": "Allow", 
         "Action": [
            "iam:PassRole"
         ],
         "Resource": "*"
   }
]
}
{
"Version": "2012-10-17",
"Statement": [
   {
      "Effect": "Allow", 
         "Action": [
            "application-autoscaling:*"
         ],
         "Resource": "*"
   }
]
}

Monitoring usage

After you have set up scaling for your fleet, you can use CloudWatch metrics with AppStream 2.0, and create a dashboard for monitoring. This helps optimize your scaling policies over time based on the amount of usage that you see.

For example, if you were very conservative with your initial set up and over-provisioned resources, you might see long periods of low fleet utilization. On the other hand, if you set the fleet size too low, you would see high utilization or errors from insufficient capacity, which would block users’ connections. You can view CloudWatch metrics for up to 15 months, and drive adjustments to your fleet scaling policy.

Figure 11: Dashboard with custom Amazon CloudWatch metrics

appstreamscaling_13.53%20PM

Summary

These are just a few ideas for scaling AppStream 2.0 and optimizing your costs. Let us know if these are useful, and if you would like to see similar posts. If you have comments about the service, please post your feedback on the AWS forum for AppStream 2.0.

Implementing DevSecOps Using AWS CodePipeline

Post Syndicated from Ramesh Adabala original https://aws.amazon.com/blogs/devops/implementing-devsecops-using-aws-codepipeline/

DevOps is a combination of cultural philosophies, practices, and tools that emphasizes collaboration and communication between software developers and IT infrastructure teams while automating an organization’s ability to deliver applications and services rapidly, frequently, and more reliably.

CI/CD stands for continuous integration and continuous deployment. These concepts represent everything related to automation of application development and the deployment pipeline — from the moment a developer adds a change to a central repository until that code winds up in production.

DevSecOps covers security of and in the CI/CD pipeline, including automating security operations and auditing. The goals of DevSecOps are to:

  • Embed security knowledge into DevOps teams so that they can secure the pipelines they design and automate.
  • Embed application development knowledge and automated tools and processes into security teams so that they can provide security at scale in the cloud.

The Security Cloud Adoption Framework (CAF) whitepaper provides prescriptive controls to improve the security posture of your AWS accounts. These controls are in line with a DevOps blog post published last year about the control-monitor-fix governance model.

Security CAF controls are grouped into four categories:

  • Directive: controls establish the governance, risk, and compliance models on AWS.
  • Preventive: controls protect your workloads and mitigate threats and vulnerabilities.
  • Detective: controls provide full visibility and transparency over the operation of your deployments in AWS.
  • Responsive: controls drive remediation of potential deviations from your security baselines.

To embed the DevSecOps discipline in the enterprise, AWS customers are automating CAF controls using a combination of AWS and third-party solutions.

In this blog post, I will show you how to use a CI/CD pipeline to automate preventive and detective security controls. I’ll use an example that show how you can take the creation of a simple security group through the CI/CD pipeline stages and enforce security CAF controls at various stages of the deployment. I’ll use AWS CodePipeline to orchestrate the steps in a continuous delivery pipeline.

These resources are being used in this example:

  • An AWS CloudFormation template to create the demo pipeline.
  • A Lambda function to perform the static code analysis of the CloudFormation template.
  • A Lambda function to perform dynamic stack validation for the security groups in scope.
  • An S3 bucket as the sample code repository.
  • An AWS CloudFormation source template file to create the security groups.
  • Two VPCs to deploy the test and production security groups.

These are the high-level security checks enforced by the pipeline:

  • During the Source stage, static code analysis for any open security groups. The pipeline will fail if there are any violations.
  • During the Test stage, dynamic analysis to make sure port 22 (SSH) is open only to the approved IP CIDR range. The pipeline will fail if there are any violations.

demo_pipeline1

 

These are the pipeline stages:

1. Source stage: In this example, the pipeline gets the CloudFormation code that creates the security group from S3, the code repository service.

This stage passes the CloudFormation template and pipeline name to a Lambda function, CFNValidateLambda. This function performs the static code analysis. It uses the regular expression language to find patterns and identify security group policy violations. If it finds violations, then Lambda fails the pipeline and includes the violation details.

Here is the regular expression that Lambda function using for static code analysis of the open SSH port:

"^.*Ingress.*(([fF]rom[pP]ort|[tT]o[pP]ort).\s*:\s*u?.(22).*[cC]idr[iI]p.\s*:\s*u?.((0\.){3}0\/0)|[cC]idr[iI]p.\s*:\s*u?.((0\.){3}0\/0).*([fF]rom[pP]ort|[tT]o[pP]ort).\s*:\s*u?.(22))"

2. Test stage: After the static code analysis is completed successfully, the pipeline executes the following steps:

a. Create stack: This step creates the stack in the test VPC, as described in the test configuration.

b. Stack validation: This step triggers the StackValidationLambda Lambda function. It passes the stack name and pipeline name in the event parameters. Lambda validates the security group for the following security controls. If it finds violations, then Lambda deletes the stack, stops the pipeline, and returns an error message.

The following is the sample Python code used by AWS Lambda to check if the SSH port is open to the approved IP CIDR range (in this example, 72.21.196.67/32):

for n in regions:
    client = boto3.client('ec2', region_name=n)
    response = client.describe_security_groups(
        Filters=[{'Name': 'tag:aws:cloudformation:stack-name', 'Values': [stackName]}])
    for m in response['SecurityGroups']:
        if "72.21.196.67/32" not in str(m['IpPermissions']):
            for o in m['IpPermissions']:
                try:
                    if int(o['FromPort']) <= 22 <= int(o['ToPort']):
                        result = False
                        failReason = "Found Security Group with port 22 open to the wrong source IP range"
                        offenders.append(str(m['GroupId']))
                except:
                    if str(o['IpProtocol']) == "-1":
                        result = False
                        failReason = "Found Security Group with port 22 open to the wrong source IP range"
                        offenders.append(str(n) + " : " + str(m['GroupId']))

c. Approve test stack: This step creates a manual approval task for stack review. This step could be eliminated for automated deployments.

d. Delete test stack: After all the stack validations are successfully completed, this step deletes the stack in the test environment to avoid unnecessary costs.

3. Production stage: After the static and dynamic security checks are completed successfully, this stage creates the stack in the production VPC using the production configuration supplied in the template.

a. Create change set: This step creates the change set for the resources in the scope.

b. Execute change set: This step executes the change set and creates/updates the security group in the production VPC.

 

Source code and CloudFormation template

You’ll find the source code at https://github.com/awslabs/automating-governance-sample/tree/master/DevSecOps-Blog-Code

basic-sg-3-cfn.json creates the pipeline in AWS CodePipeline with all the stages previously described. It also creates the static code analysis and stack validation Lambda functions.

The CloudFormation template points to a shared S3 bucket. The codepipeline-lambda.zip file contains the Lambda functions. Before you run the template, upload the zip file to your S3 bucket and then update the CloudFormation template to point to your S3 bucket location.

The CloudFormation template uses the codepipe-single-sg.zip file, which contains the sample security group and test and production configurations. Update these configurations with your VPC details, and then upload the modified zip file to your S3 bucket.

Update these parts of the code to point to your S3 bucket:

 "S3Bucket": {
      "Default": "codepipeline-devsecops-demo",
      "Description": "The name of the S3 bucket that contains the source artifact, which must be in the same region as this stack",
      "Type": "String"
    },
    "SourceS3Key": {
      "Default": "codepipe-single-sg.zip",
      "Description": "The file name of the source artifact, such as myfolder/myartifact.zip",
      "Type": "String"
    },
    "LambdaS3Key": {
      "Default": "codepipeline-lambda.zip",
      "Description": "The file name of the source artifact of the Lambda code, such as myfolder/myartifact.zip",
      "Type": "String"
    },
	"OutputS3Bucket": {
      "Default": "codepipeline-devsecops-demo",
      "Description": "The name of the output S3 bucket that contains the processed artifact, which must be in the same region as this stack",
      "Type": "String"
    },

After the stack is created, AWS CodePipeline executes the pipeline and starts deploying the sample CloudFormation template. In the default template, security groups have wide-open ports (0.0.0.0/0), so the pipeline execution will fail. Update the CloudFormation template in codepipe-single-sg.zip with more restrictive ports and then upload the modified zip file to S3 bucket. Open the AWS CodePipeline console, and choose the Release Change button. This time the pipeline will successfully create the security groups.

demo_pipeline2

You could expand the security checks in the pipeline to include other AWS resources, not just security groups. The following table shows the sample controls you could enforce in the pipeline using the static and dynamic analysis Lambda functions.

demo_pipeline3
If you have feedback about this post, please add it to the Comments section below. If you have questions about implementing the example used in this post, please open a thread on the Developer Tools forum.

In Case You Missed These: AWS Security Blog Posts from January, February, and March

Post Syndicated from Craig Liebendorfer original https://aws.amazon.com/blogs/security/in-case-you-missed-these-aws-security-blog-posts-from-january-february-and-march/

Image of lock and key

In case you missed any AWS Security Blog posts published so far in 2017, they are summarized and linked to below. The posts are shown in reverse chronological order (most recent first), and the subject matter ranges from protecting dynamic web applications against DDoS attacks to monitoring AWS account configuration changes and API calls to Amazon EC2 security groups.

March

March 22: How to Help Protect Dynamic Web Applications Against DDoS Attacks by Using Amazon CloudFront and Amazon Route 53
Using a content delivery network (CDN) such as Amazon CloudFront to cache and serve static text and images or downloadable objects such as media files and documents is a common strategy to improve webpage load times, reduce network bandwidth costs, lessen the load on web servers, and mitigate distributed denial of service (DDoS) attacks. AWS WAF is a web application firewall that can be deployed on CloudFront to help protect your application against DDoS attacks by giving you control over which traffic to allow or block by defining security rules. When users access your application, the Domain Name System (DNS) translates human-readable domain names (for example, www.example.com) to machine-readable IP addresses (for example, 192.0.2.44). A DNS service, such as Amazon Route 53, can effectively connect users’ requests to a CloudFront distribution that proxies requests for dynamic content to the infrastructure hosting your application’s endpoints. In this blog post, I show you how to deploy CloudFront with AWS WAF and Route 53 to help protect dynamic web applications (with dynamic content such as a response to user input) against DDoS attacks. The steps shown in this post are key to implementing the overall approach described in AWS Best Practices for DDoS Resiliency and enable the built-in, managed DDoS protection service, AWS Shield.

March 21: New AWS Encryption SDK for Python Simplifies Multiple Master Key Encryption
The AWS Cryptography team is happy to announce a Python implementation of the AWS Encryption SDK. This new SDK helps manage data keys for you, and it simplifies the process of encrypting data under multiple master keys. As a result, this new SDK allows you to focus on the code that drives your business forward. It also provides a framework you can easily extend to ensure that you have a cryptographic library that is configured to match and enforce your standards. The SDK also includes ready-to-use examples. If you are a Java developer, you can refer to this blog post to see specific Java examples for the SDK. In this blog post, I show you how you can use the AWS Encryption SDK to simplify the process of encrypting data and how to protect your encryption keys in ways that help improve application availability by not tying you to a single region or key management solution.

March 21: Updated CJIS Workbook Now Available by Request
The need for guidance when implementing Criminal Justice Information Services (CJIS)–compliant solutions has become of paramount importance as more law enforcement customers and technology partners move to store and process criminal justice data in the cloud. AWS services allow these customers to easily and securely architect a CJIS-compliant solution when handling criminal justice data, creating a durable, cost-effective, and secure IT infrastructure that better supports local, state, and federal law enforcement in carrying out their public safety missions. AWS has created several documents (collectively referred to as the CJIS Workbook) to assist you in aligning with the FBI’s CJIS Security Policy. You can use the workbook as a framework for developing CJIS-compliant architecture in the AWS Cloud. The workbook helps you define and test the controls you operate, and document the dependence on the controls that AWS operates (compute, storage, database, networking, regions, Availability Zones, and edge locations).

March 9: New Cloud Directory API Makes It Easier to Query Data Along Multiple Dimensions
Today, we made available a new Cloud Directory API, ListObjectParentPaths, that enables you to retrieve all available parent paths for any directory object across multiple hierarchies. Use this API when you want to fetch all parent objects for a specific child object. The order of the paths and objects returned is consistent across iterative calls to the API, unless objects are moved or deleted. In case an object has multiple parents, the API allows you to control the number of paths returned by using a paginated call pattern. In this blog post, I use an example directory to demonstrate how this new API enables you to retrieve data across multiple dimensions to implement powerful applications quickly.

March 8: How to Access the AWS Management Console Using AWS Microsoft AD and Your On-Premises Credentials
AWS Directory Service for Microsoft Active Directory, also known as AWS Microsoft AD, is a managed Microsoft Active Directory (AD) hosted in the AWS Cloud. Now, AWS Microsoft AD makes it easy for you to give your users permission to manage AWS resources by using on-premises AD administrative tools. With AWS Microsoft AD, you can grant your on-premises users permissions to resources such as the AWS Management Console instead of adding AWS Identity and Access Management (IAM) user accounts or configuring AD Federation Services (AD FS) with Security Assertion Markup Language (SAML). In this blog post, I show how to use AWS Microsoft AD to enable your on-premises AD users to sign in to the AWS Management Console with their on-premises AD user credentials to access and manage AWS resources through IAM roles.

March 7: How to Protect Your Web Application Against DDoS Attacks by Using Amazon Route 53 and an External Content Delivery Network
Distributed Denial of Service (DDoS) attacks are attempts by a malicious actor to flood a network, system, or application with more traffic, connections, or requests than it is able to handle. To protect your web application against DDoS attacks, you can use AWS Shield, a DDoS protection service that AWS provides automatically to all AWS customers at no additional charge. You can use AWS Shield in conjunction with DDoS-resilient web services such as Amazon CloudFront and Amazon Route 53 to improve your ability to defend against DDoS attacks. Learn more about architecting for DDoS resiliency by reading the AWS Best Practices for DDoS Resiliency whitepaper. You also have the option of using Route 53 with an externally hosted content delivery network (CDN). In this blog post, I show how you can help protect the zone apex (also known as the root domain) of your web application by using Route 53 to perform a secure redirect to prevent discovery of your application origin.

Image of lock and key

February

February 27: Now Generally Available – AWS Organizations: Policy-Based Management for Multiple AWS Accounts
Today, AWS Organizations moves from Preview to General Availability. You can use Organizations to centrally manage multiple AWS accounts, with the ability to create a hierarchy of organizational units (OUs). You can assign each account to an OU, define policies, and then apply those policies to an entire hierarchy, specific OUs, or specific accounts. You can invite existing AWS accounts to join your organization, and you can also create new accounts. All of these functions are available from the AWS Management Console, the AWS Command Line Interface (CLI), and through the AWS Organizations API.To read the full AWS Blog post about today’s launch, see AWS Organizations – Policy-Based Management for Multiple AWS Accounts.

February 23: s2n Is Now Handling 100 Percent of SSL Traffic for Amazon S3
Today, we’ve achieved another important milestone for securing customer data: we have replaced OpenSSL with s2n for all internal and external SSL traffic in Amazon Simple Storage Service (Amazon S3) commercial regions. This was implemented with minimal impact to customers, and multiple means of error checking were used to ensure a smooth transition, including client integration tests, catching potential interoperability conflicts, and identifying memory leaks through fuzz testing.

February 22: Easily Replace or Attach an IAM Role to an Existing EC2 Instance by Using the EC2 Console
AWS Identity and Access Management (IAM) roles enable your applications running on Amazon EC2 to use temporary security credentials. IAM roles for EC2 make it easier for your applications to make API requests securely from an instance because they do not require you to manage AWS security credentials that the applications use. Recently, we enabled you to use temporary security credentials for your applications by attaching an IAM role to an existing EC2 instance by using the AWS CLI and SDK. To learn more, see New! Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI. Starting today, you can attach an IAM role to an existing EC2 instance from the EC2 console. You can also use the EC2 console to replace an IAM role attached to an existing instance. In this blog post, I will show how to attach an IAM role to an existing EC2 instance from the EC2 console.

February 22: How to Audit Your AWS Resources for Security Compliance by Using Custom AWS Config Rules
AWS Config Rules enables you to implement security policies as code for your organization and evaluate configuration changes to AWS resources against these policies. You can use Config rules to audit your use of AWS resources for compliance with external compliance frameworks such as CIS AWS Foundations Benchmark and with your internal security policies related to the US Health Insurance Portability and Accountability Act (HIPAA), the Federal Risk and Authorization Management Program (FedRAMP), and other regimes. AWS provides some predefined, managed Config rules. You also can create custom Config rules based on criteria you define within an AWS Lambda function. In this post, I show how to create a custom rule that audits AWS resources for security compliance by enabling VPC Flow Logs for an Amazon Virtual Private Cloud (VPC). The custom rule meets requirement 4.3 of the CIS AWS Foundations Benchmark: “Ensure VPC flow logging is enabled in all VPCs.”

February 13: AWS Announces CISPE Membership and Compliance with First-Ever Code of Conduct for Data Protection in the Cloud
I have two exciting announcements today, both showing AWS’s continued commitment to ensuring that customers can comply with EU Data Protection requirements when using our services.

February 13: How to Enable Multi-Factor Authentication for AWS Services by Using AWS Microsoft AD and On-Premises Credentials
You can now enable multi-factor authentication (MFA) for users of AWS services such as Amazon WorkSpaces and Amazon QuickSight and their on-premises credentials by using your AWS Directory Service for Microsoft Active Directory (Enterprise Edition) directory, also known as AWS Microsoft AD. MFA adds an extra layer of protection to a user name and password (the first “factor”) by requiring users to enter an authentication code (the second factor), which has been provided by your virtual or hardware MFA solution. These factors together provide additional security by preventing access to AWS services, unless users supply a valid MFA code.

February 13: How to Create an Organizational Chart with Separate Hierarchies by Using Amazon Cloud Directory
Amazon Cloud Directory enables you to create directories for a variety of use cases, such as organizational charts, course catalogs, and device registries. Cloud Directory offers you the flexibility to create directories with hierarchies that span multiple dimensions. For example, you can create an organizational chart that you can navigate through separate hierarchies for reporting structure, location, and cost center. In this blog post, I show how to use Cloud Directory APIs to create an organizational chart with two separate hierarchies in a single directory. I also show how to navigate the hierarchies and retrieve data. I use the Java SDK for all the sample code in this post, but you can use other language SDKs or the AWS CLI.

February 10: How to Easily Log On to AWS Services by Using Your On-Premises Active Directory
AWS Directory Service for Microsoft Active Directory (Enterprise Edition), also known as Microsoft AD, now enables your users to log on with just their on-premises Active Directory (AD) user name—no domain name is required. This new domainless logon feature makes it easier to set up connections to your on-premises AD for use with applications such as Amazon WorkSpaces and Amazon QuickSight, and it keeps the user logon experience free from network naming. This new interforest trusts capability is now available when using Microsoft AD with Amazon WorkSpaces and Amazon QuickSight Enterprise Edition. In this blog post, I explain how Microsoft AD domainless logon works with AD interforest trusts, and I show an example of setting up Amazon WorkSpaces to use this capability.

February 9: New! Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI
AWS Identity and Access Management (IAM) roles enable your applications running on Amazon EC2 to use temporary security credentials that AWS creates, distributes, and rotates automatically. Using temporary credentials is an IAM best practice because you do not need to maintain long-term keys on your instance. Using IAM roles for EC2 also eliminates the need to use long-term AWS access keys that you have to manage manually or programmatically. Starting today, you can enable your applications to use temporary security credentials provided by AWS by attaching an IAM role to an existing EC2 instance. You can also replace the IAM role attached to an existing EC2 instance. In this blog post, I show how you can attach an IAM role to an existing EC2 instance by using the AWS CLI.

February 8: How to Remediate Amazon Inspector Security Findings Automatically
The Amazon Inspector security assessment service can evaluate the operating environments and applications you have deployed on AWS for common and emerging security vulnerabilities automatically. As an AWS-built service, Amazon Inspector is designed to exchange data and interact with other core AWS services not only to identify potential security findings but also to automate addressing those findings. Previous related blog posts showed how you can deliver Amazon Inspector security findings automatically to third-party ticketing systems and automate the installation of the Amazon Inspector agent on new Amazon EC2 instances. In this post, I show how you can automatically remediate findings generated by Amazon Inspector. To get started, you must first run an assessment and publish any security findings to an Amazon Simple Notification Service (SNS) topic. Then, you create an AWS Lambda function that is triggered by those notifications. Finally, the Lambda function examines the findings and then implements the appropriate remediation based on the type of issue.

February 6: How to Simplify Security Assessment Setup Using Amazon EC2 Systems Manager and Amazon Inspector
In a July 2016 AWS Blog post, I discussed how to integrate Amazon Inspector with third-party ticketing systems by using Amazon Simple Notification Service (SNS) and AWS Lambda. This AWS Security Blog post continues in the same vein, describing how to use Amazon Inspector to automate various aspects of security management. In this post, I show you how to install the Amazon Inspector agent automatically through the Amazon EC2 Systems Manager when a new Amazon EC2 instance is launched. In a subsequent post, I will show you how to update EC2 instances automatically that run Linux when Amazon Inspector discovers a missing security patch.

Image of lock and key

January

January 30: How to Protect Data at Rest with Amazon EC2 Instance Store Encryption
Encrypting data at rest is vital for regulatory compliance to ensure that sensitive data saved on disks is not readable by any user or application without a valid key. Some compliance regulations such as PCI DSS and HIPAA require that data at rest be encrypted throughout the data lifecycle. To this end, AWS provides data-at-rest options and key management to support the encryption process. For example, you can encrypt Amazon EBS volumes and configure Amazon S3 buckets for server-side encryption (SSE) using AES-256 encryption. Additionally, Amazon RDS supports Transparent Data Encryption (TDE). Instance storage provides temporary block-level storage for Amazon EC2 instances. This storage is located on disks attached physically to a host computer. Instance storage is ideal for temporary storage of information that frequently changes, such as buffers, caches, and scratch data. By default, files stored on these disks are not encrypted. In this blog post, I show a method for encrypting data on Linux EC2 instance stores by using Linux built-in libraries. This method encrypts files transparently, which protects confidential data. As a result, applications that process the data are unaware of the disk-level encryption.

January 27: How to Detect and Automatically Remediate Unintended Permissions in Amazon S3 Object ACLs with CloudWatch Events
Amazon S3 Access Control Lists (ACLs) enable you to specify permissions that grant access to S3 buckets and objects. When S3 receives a request for an object, it verifies whether the requester has the necessary access permissions in the associated ACL. For example, you could set up an ACL for an object so that only the users in your account can access it, or you could make an object public so that it can be accessed by anyone. If the number of objects and users in your AWS account is large, ensuring that you have attached correctly configured ACLs to your objects can be a challenge. For example, what if a user were to call the PutObjectAcl API call on an object that is supposed to be private and make it public? Or, what if a user were to call the PutObject with the optional Acl parameter set to public-read, therefore uploading a confidential file as publicly readable? In this blog post, I show a solution that uses Amazon CloudWatch Events to detect PutObject and PutObjectAcl API calls in near-real time and helps ensure that the objects remain private by making automatic PutObjectAcl calls, when necessary.

January 26: Now Available: Amazon Cloud Directory—A Cloud-Native Directory for Hierarchical Data
Today we are launching Amazon Cloud Directory. This service is purpose-built for storing large amounts of strongly typed hierarchical data. With the ability to scale to hundreds of millions of objects while remaining cost-effective, Cloud Directory is a great fit for all sorts of cloud and mobile applications.

January 24: New SOC 2 Report Available: Confidentiality
As with everything at Amazon, the success of our security and compliance program is primarily measured by one thing: our customers’ success. Our customers drive our portfolio of compliance reports, attestations, and certifications that support their efforts in running a secure and compliant cloud environment. As a result of our engagement with key customers across the globe, we are happy to announce the publication of our new SOC 2 Confidentiality report. This report is available now through AWS Artifact in the AWS Management Console.

January 18: Compliance in the Cloud for New Financial Services Cybersecurity Regulations
Financial regulatory agencies are focused more than ever on ensuring responsible innovation. Consequently, if you want to achieve compliance with financial services regulations, you must be increasingly agile and employ dynamic security capabilities. AWS enables you to achieve this by providing you with the tools you need to scale your security and compliance capabilities on AWS. The following breakdown of the most recent cybersecurity regulations, NY DFS Rule 23 NYCRR 500, demonstrates how AWS continues to focus on your regulatory needs in the financial services sector.

January 9: New Amazon GameDev Blog Post: Protect Multiplayer Game Servers from DDoS Attacks by Using Amazon GameLift
In online gaming, distributed denial of service (DDoS) attacks target a game’s network layer, flooding servers with requests until performance degrades considerably. These attacks can limit a game’s availability to players and limit the player experience for those who can connect. Today’s new Amazon GameDev Blog post uses a typical game server architecture to highlight DDoS attack vulnerabilities and discusses how to stay protected by using built-in AWS Cloud security, AWS security best practices, and the security features of Amazon GameLift. Read the post to learn more.

January 6: The Top 10 Most Downloaded AWS Security and Compliance Documents in 2016
The following list includes the 10 most downloaded AWS security and compliance documents in 2016. Using this list, you can learn about what other people found most interesting about security and compliance last year.

January 6: FedRAMP Compliance Update: AWS GovCloud (US) Region Receives a JAB-Issued FedRAMP High Baseline P-ATO for Three New Services
Three new services in the AWS GovCloud (US) region have received a Provisional Authority to Operate (P-ATO) from the Joint Authorization Board (JAB) under the Federal Risk and Authorization Management Program (FedRAMP). JAB issued the authorization at the High baseline, which enables US government agencies and their service providers the capability to use these services to process the government’s most sensitive unclassified data, including Personal Identifiable Information (PII), Protected Health Information (PHI), Controlled Unclassified Information (CUI), criminal justice information (CJI), and financial data.

January 4: The Top 20 Most Viewed AWS IAM Documentation Pages in 2016
The following 20 pages were the most viewed AWS Identity and Access Management (IAM) documentation pages in 2016. I have included a brief description with each link to give you a clearer idea of what each page covers. Use this list to see what other people have been viewing and perhaps to pique your own interest about a topic you’ve been meaning to research.

January 3: The Most Viewed AWS Security Blog Posts in 2016
The following 10 posts were the most viewed AWS Security Blog posts that we published during 2016. You can use this list as a guide to catch up on your blog reading or even read a post again that you found particularly useful.

January 3: How to Monitor AWS Account Configuration Changes and API Calls to Amazon EC2 Security Groups
You can use AWS security controls to detect and mitigate risks to your AWS resources. The purpose of each security control is defined by its control objective. For example, the control objective of an Amazon VPC security group is to permit only designated traffic to enter or leave a network interface. Let’s say you have an Internet-facing e-commerce website, and your security administrator has determined that only HTTP (TCP port 80) and HTTPS (TCP 443) traffic should be allowed access to the public subnet. As a result, your administrator configures a security group to meet this control objective. What if, though, someone were to inadvertently change this security group’s rules and enable FTP or other protocols to access the public subnet from any location on the Internet? That expanded access could weaken the security posture of your assets. Consequently, your administrator might need to monitor the integrity of your company’s security controls so that the controls maintain their desired effectiveness. In this blog post, I explore two methods for detecting unintended changes to VPC security groups. The two methods address not only control objectives but also control failures.

If you have questions about or issues with implementing the solutions in any of these posts, please start a new thread on the forum identified near the end of each post.

– Craig

EC2 Run Command is Now a CloudWatch Events Target

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-run-command-is-now-a-cloudwatch-events-target/

Ok, time for another peanut butter and chocolate post! Let’s combine EC2 Run Command (New EC2 Run Command – Remote Instance Management at Scale) and CloudWatch Events (New CloudWatch Events – Track and Respond to Changes to Your AWS Resources) and see what we get.

EC2 Run Command is part of EC2 Systems Manager. It allows you to operate on collections of EC2 instances and on-premises servers reliably and at scale, in a controlled and selective fashion. You can run scripts, install software, collect metrics and log files, manage patches, and much more, on both Windows and Linux.

CloudWatch Events gives you the ability to track changes to AWS resources in near real-time. You get a stream of system events that you can easily route to one or more targets including AWS Lambda functions, Amazon Kinesis streams, Amazon SNS topics, and built-in EC2 and EBS targets.

Better Together
Today we are bringing these two services together. You can now create CloudWatch Events rules that use EC2 Run Command to perform actions on EC2 instances or on-premises servers. This opens the door to all sorts of interesting ideas; here are a few that I came up with:

Final Log Collection – Collect application or system logs from instances that are being shut down (either manually or as a result of a scale-in operation initiated by Auto Scaling).

Error Log Condition – Collect logs after an application crash or a security incident.

Instance Setup – After an instance has started, download & install applications, set parameters and configurations, and launch processes.

Configuration Updates – When a config file is changed in S3, install it on applicable instances (perhaps determined by tags). For example, you could install an updated Apache web server config file on a set of properly tagged instances, and then restart the server so that it picks up the changes. Or, update an instance-level firewall each time the AWS IP Address Ranges are updated.

EBS Snapshot Testing and Tracking – After a fresh snapshot has been created, mount it on a test instance, check the filesystem for errors, and then index the files in the snapshot.

Instance Coordination – Every time an instance is launched or terminated, inform the others so that they can update internal tracking information or rebalance their workloads.

I’m sure that you have some more interesting ideas; please feel free to share them in the comments.

Time for Action!
Let’s set this up. Suppose I want to run a specific PowerShell script every time Auto Scaling adds another instance to an Auto Scaling Group.

I start by opening the CloudWatch Events Console and clicking on Create rule:

I configure my Event Source to be my Auto Scaling Group (AS-Main-1), and indicate that I want to take action when EC2 instances are launched successfully:

Then I set up the target. I choose SSM Run Command, pick the AWS-RunShellScript document, and indicate that I want the command to be run on the instances that are tagged as coming from my Auto Scaling group:

Then I click on Configure details, give my rule a name and a description, and click on Create rule:

With everything set up, the command service httpd start will be run on each instance launched as a result of a scale out operation.

Available Now
This new feature is available now and you can start using it today.

Jeff;