Tag Archives: event

CoderDojo Coolest Projects 2017

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/coderdojo-coolest-projects-2017/

When I heard we were merging with CoderDojo, I was delighted. CoderDojo is a wonderful organisation with a spectacular community, and it’s going to be great to join forces with the team and work towards our common goal: making a difference to the lives of young people by making technology accessible to them.

You may remember that last year Philip and I went along to Coolest Projects, CoderDojo’s annual event at which their global community showcase their best makes. It was awesome! This year a whole bunch of us from the Raspberry Pi Foundation attended Coolest Projects with our new Irish colleagues, and as expected, the projects on show were as cool as can be.

Coolest Projects 2017 attendee

Crowd at Coolest Projects 2017

This year’s coolest projects!

Young maker Benjamin demoed his brilliant RGB LED table tennis ball display for us, and showed off his brilliant project tutorial website codemakerbuddy.com, which he built with Python and Flask. [Click on any of the images to enlarge them.]

Coolest Projects 2017 LED ping-pong ball display
Coolest Projects 2017 Benjamin and Oly

Next up, Aimee showed us a recipes app she’d made with the MIT App Inventor. It was a really impressive and well thought-out project.

Coolest Projects 2017 Aimee's cook book
Coolest Projects 2017 Aimee's setup

This very successful OpenCV face detection program with hardware installed in a teddy bear was great as well:

Coolest Projects 2017 face detection bear
Coolest Projects 2017 face detection interface
Coolest Projects 2017 face detection database

Helen’s and Oly’s favourite project involved…live bees!

Coolest Projects 2017 live bees

BEEEEEEEEEEES!

Its creator, 12-year-old Amy, said she wanted to do something to help the Earth. Her project uses various sensors to record data on the bee population in the hive. An adjacent monitor displays the data in a web interface:

Coolest Projects 2017 Aimee's bees

Coolest robots

I enjoyed seeing lots of GPIO Zero projects out in the wild, including this robotic lawnmower made by Kevin and Zach:

Raspberry Pi Lawnmower

Kevin and Zach’s Raspberry Pi lawnmower project with Python and GPIO Zero, showed at CoderDojo Coolest Projects 2017

Philip’s favourite make was a Pi-powered robot you can control with your mind! According to the maker, Laura, it worked really well with Philip because he has no hair.

Philip Colligan on Twitter

This is extraordinary. Laura from @CoderDojo Romania has programmed a mind controlled robot using @Raspberry_Pi @coolestprojects

And here are some pictures of even more cool robots we saw:

Coolest Projects 2017 coolest robot no.1
Coolest Projects 2017 coolest robot no.2
Coolest Projects 2017 coolest robot no.3

Games, toys, activities

Oly and I were massively impressed with the work of Mogamad, Daniel, and Basheerah, who programmed a (borrowed) Amazon Echo to make a voice-controlled text-adventure game using Java and the Alexa API. They’ve inspired me to try something similar using the AIY projects kit and adventurelib!

Coolest Projects 2017 Mogamad, Daniel, Basheerah, Oly
Coolest Projects 2017 Alexa text-based game

Christopher Hill did a brilliant job with his Home Alone LEGO house. He used sensors to trigger lights and sounds to make it look like someone’s at home, like in the film. I should have taken a video – seeing it in action was great!

Coolest Projects 2017 Lego home alone house
Coolest Projects 2017 Lego home alone innards
Coolest Projects 2017 Lego home alone innards closeup

Meanwhile, the Northern Ireland Raspberry Jam group ran a DOTS board activity, which turned their area into a conductive paint hazard zone.

Coolest Projects 2017 NI Jam DOTS activity 1
Coolest Projects 2017 NI Jam DOTS activity 2
Coolest Projects 2017 NI Jam DOTS activity 3
Coolest Projects 2017 NI Jam DOTS activity 4
Coolest Projects 2017 NI Jam DOTS activity 5
Coolest Projects 2017 NI Jam DOTS activity 6

Creativity and ingenuity

We really enjoyed seeing so many young people collaborating, experimenting, and taking full advantage of the opportunity to make real projects. And we loved how huge the range of technologies in use was: people employed all manner of hardware and software to bring their ideas to life.

Philip Colligan on Twitter

Wow! Look at that room full of awesome young people. @coolestprojects #coolestprojects @CoderDojo

Congratulations to the Coolest Projects 2017 prize winners, and to all participants. Here are some of the teams that won in the different categories:

Coolest Projects 2017 winning team 1
Coolest Projects 2017 winning team 2
Coolest Projects 2017 winning team 3

Take a look at the gallery of all winners over on Flickr.

The wow factor

Raspberry Pi co-founder and Foundation trustee Pete Lomas came along to the event as well. Here’s what he had to say:

It’s hard to describe the scale of the event, and photos just don’t do it justice. The first thing that hit me was the sheer excitement of the CoderDojo ninjas [the children attending Dojos]. Everyone was setting up for their time with the project judges, and their pure delight at being able to show off their creations was evident in both halls. Time and time again I saw the ninjas apply their creativity to help save the planet or make someone’s life better, and it’s truly exciting that we are going to help that continue and expand.

Even after 8 hours, enthusiasm wasn’t flagging – the awards ceremony was just brilliant, with ninjas high-fiving the winners on the way to the stage. This speaks volumes about the ethos and vision of the CoderDojo founders, where everyone is a winner just by being part of a community of worldwide friends. It was a brilliant introduction, and if this weekend was anything to go by, our merger certainly is a marriage made in Heaven.

Join this awesome community!

If all this inspires you as much as it did us, consider looking for a CoderDojo near you – and sign up as a volunteer! There’s plenty of time for young people to build up skills and start working on a project for next year’s event. Check out coolestprojects.com for more information.

The post CoderDojo Coolest Projects 2017 appeared first on Raspberry Pi.

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

 
In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:

Requirements

 
To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.

Technologies

 
In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

 
We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

 
Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

.
├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

 
While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

...
phases:
  ...
  build:
    commands:
      ...
      - ./packer build -color=false packer_cis.json | tee build.log
  post_build:
    commands:
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
      ...
artifacts:
  files:
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

 
CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

[
        {
            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]
        }
]

Cloudwatch Events rule

{
  "detail-type": [
    "AmiBuilder"
  ],
  "source": [
    "com.ami.builder"
  ],
  "detail": {
    "AmiStatus": [
      "Created"
    ]
  }
}

Example SNS message sent in email

{
    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"
    }
}

Packer Implementation Details

 
In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.

Variables

  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  },
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.

Builders

  "builders": [{
    ...
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    },
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    },
    ...
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"
  }],

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.

Provisioners

  "provisioners": [
    {
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        ]
    }, 
    {
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
            "ansible/roles/common"
        ],
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
    },
    {
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"
      ]
    }

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

 
Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

---
- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
  vars:
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    cis_level_1_exclusions:
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
      - 4.2.1.4
      - 4.2.2.4
      - 4.2.2.5
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
    logs:
      - file: /var/log/messages
        group_name: "system_logs"
  roles:
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

 
Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.

Summary

 
We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

 
Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

DynamoDB Accelerator (DAX) Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/dynamodb-accelerator-dax-now-generally-available/

Earlier this year I told you about Amazon DynamoDB Accelerator (DAX), a fully-managed caching service that sits in front of (logically speaking) your Amazon DynamoDB tables. DAX returns cached responses in microseconds, making it a great fit for eventually-consistent read-intensive workloads. DAX supports the DynamoDB API, and is seamless and easy to use. As a managed service, you simply create your DAX cluster and use it as the target for your existing reads and writes. You don’t have to worry about patching, cluster maintenance, replication, or fault management.

Now Generally Available
Today I am pleased to announce that DAX is now generally available. We have expanded DAX into additional AWS Regions and used the preview time to fine-tune performance and availability:

Now in Five Regions – DAX is now available in the US East (Northern Virginia), EU (Ireland), US West (Oregon), Asia Pacific (Tokyo), and US West (Northern California) Regions.

In Production – Our preview customers are reporting that they are using DAX in production, that they loved how easy it was to add DAX to their application, and have told us that their apps are now running 10x faster.

Getting Started with DAX
As I outlined in my earlier post, it is easy to use DAX to accelerate your existing DynamoDB applications. You simply create a DAX cluster in the desired region, update your application to reference the DAX SDK for Java (the calls are the same; this is a drop-in replacement), and configure the SDK to use the endpoint to your cluster. As a read-through/write-through cache, DAX seamlessly handles all of the DynamoDB read/write APIs.

We are working on SDK support for other languages, and I will share additional information as it becomes available.

DAX Pricing
You pay for each node in the cluster (see the DynamoDB Pricing page for more information) on a per-hour basis, with prices starting at $0.269 per hour in the US East (Northern Virginia) and US West (Oregon) regions. With DAX, each of the nodes in your cluster serves as a read target and as a failover target for high availability. The DAX SDK is cluster aware and will issue round-robin requests to all nodes in the cluster so that you get to make full use of the cluster’s cache resources.

Because DAX can easily handle sudden spikes in read traffic, you may be able to reduce the amount of provisioned throughput for your tables, resulting in an overall cost savings while still returning results in microseconds.

Jeff;

 

MPAA & RIAA Demand Tough Copyright Standards in NAFTA Negotiations

Post Syndicated from Andy original https://torrentfreak.com/mpaa-riaa-demand-tough-copyright-standards-in-nafta-negotiations-170621/

The North American Free Trade Agreement (NAFTA) between the United States, Canada, and Mexico was negotiated more than 25 years ago. With a quarter of a decade of developments to contend with, the United States wants to modernize.

“While our economy and U.S. businesses have changed considerably over that period, NAFTA has not,” the government says.

With this in mind, the US requested comments from interested parties seeking direction for negotiation points. With those comments now in, groups like the MPAA and RIAA have been making their positions known. It’s no surprise that intellectual property enforcement is high on the agenda.

“Copyright is the lifeblood of the U.S. motion picture and television industry. As such, MPAA places high priority on securing strong protection and enforcement disciplines in the intellectual property chapters of trade agreements,” the MPAA writes in its submission.

“Strong IPR protection and enforcement are critical trade priorities for the music industry. With IPR, we can create good jobs, make significant contributions to U.S. economic growth and security, invest in artists and their creativity, and drive technological innovation,” the RIAA notes.

While both groups have numerous demands, it’s clear that each seeks an environment where not only infringers can be held liable, but also Internet platforms and services.

For the RIAA, there is a big focus on the so-called ‘Value Gap’, a phenomenon found on user-uploaded content sites like YouTube that are able to offer infringing content while avoiding liability due to Section 512 of the DMCA.

“Today, user-uploaded content services, which have developed sophisticated on-demand music platforms, use this as a shield to avoid licensing music on fair terms like other digital services, claiming they are not legally responsible for the music they distribute on their site,” the RIAA writes.

“Services such as Apple Music, TIDAL, Amazon, and Spotify are forced to compete with services that claim they are not liable for the music they distribute.”

But if sites like YouTube are exercising their rights while acting legally under current US law, how can partners Canada and Mexico do any better? For the RIAA, that can be achieved by holding them to standards envisioned by the group when the DMCA was passed, not how things have panned out since.

Demanding that negotiators “protect the original intent” of safe harbor, the RIAA asks that a “high-level and high-standard service provider liability provision” is pursued. This, the music group says, should only be available to “passive intermediaries without requisite knowledge of the infringement on their platforms, and inapplicable to services actively engaged in communicating to the public.”

In other words, make sure that YouTube and similar sites won’t enjoy the same level of safe harbor protection as they do today.

The RIAA also requires any negotiated safe harbor provisions in NAFTA to be flexible in the event that the DMCA is tightened up in response to the ongoing safe harbor rules study.

In any event, NAFTA should not “support interpretations that no longer reflect today’s digital economy and threaten the future of legitimate and sustainable digital trade,” the RIAA states.

For the MPAA, Section 512 is also perceived as a problem. While noting that the original intent was to foster a system of shared responsibility between copyright owners and service providers, the MPAA says courts have subsequently let copyright holders down. Like the RIAA, the MPAA also suggests that Canada and Mexico can be held to higher standards.

“We recommend a new approach to this important trade policy provision by moving to high-level language that establishes intermediary liability and appropriate limitations on liability. This would be fully consistent with U.S. law and avoid the same misinterpretations by policymakers and courts overseas,” the MPAA writes.

“In so doing, a modernized NAFTA would be consistent with Trade Promotion Authority’s negotiating objective of ‘ensuring that standards of protection and enforcement keep pace with technological developments’.”

The MPAA also has some specific problems with Mexico, including unauthorized camcording. The Hollywood group says that 85 illicit audio and video recordings of films were linked to Mexican theaters in 2016. However, recording is not currently a criminal offense in Mexico.

Another issue for the MPAA is that criminal sanctions for commercial scale infringement are only available if the infringement is for profit.

“This has hampered enforcement against the above-discussed camcording problem but also against online infringement, such as peer-to-peer piracy, that may be on a scale that is immensely harmful to U.S. rightsholders but nonetheless occur without profit by the infringer,” the MPAA writes.

“The modernized NAFTA like other U.S. bilateral free trade agreements must provide for criminal sanctions against commercial scale infringements without proof of profit motive.”

Also of interest are the MPAA’s complaints against Mexico’s telecoms laws. Unlike in the US and many countries in Europe, Mexico’s ISPs are forbidden to hand out their customers’ personal details to rights holders looking to sue. This, the MPAA says, needs to change.

The submissions from the RIAA and MPAA can be found here and here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Building Loosely Coupled, Scalable, C# Applications with Amazon SQS and Amazon SNS

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/building-loosely-coupled-scalable-c-applications-with-amazon-sqs-and-amazon-sns/

 
Stephen Liedig, Solutions Architect

 

One of the many challenges professional software architects and developers face is how to make cloud-native applications scalable, fault-tolerant, and highly available.

Fundamental to your project success is understanding the importance of making systems highly cohesive and loosely coupled. That means considering the multi-dimensional facets of system coupling to support the distributed nature of the applications that you are building for the cloud.

By that, I mean addressing not only the application-level coupling (managing incoming and outgoing dependencies), but also considering the impacts of of platform, spatial, and temporal coupling of your systems. Platform coupling relates to the interoperability, or lack thereof, of heterogeneous systems components. Spatial coupling deals with managing components at a network topology level or protocol level. Temporal, or runtime coupling, refers to the ability of a component within your system to do any kind of meaningful work while it is performing a synchronous, blocking operation.

The AWS messaging services, Amazon SQS and Amazon SNS, help you deal with these forms of coupling by providing mechanisms for:

  • Reliable, durable, and fault-tolerant delivery of messages between application components
  • Logical decomposition of systems and increased autonomy of components
  • Creating unidirectional, non-blocking operations, temporarily decoupling system components at runtime
  • Decreasing the dependencies that components have on each other through standard communication and network channels

Following on the recent topic, Building Scalable Applications and Microservices: Adding Messaging to Your Toolbox, in this post, I look at some of the ways you can introduce SQS and SNS into your architectures to decouple your components, and show how you can implement them using C#.

Walkthrough

To illustrate some of these concepts, consider a web application that processes customer orders. As good architects and developers, you have followed best practices and made your application scalable and highly available. Your solution included implementing load balancing, dynamic scaling across multiple Availability Zones, and persisting orders in a Multi-AZ Amazon RDS database instance, as in the following diagram.


In this example, the application is responsible for handling and persisting the order data, as well as dealing with increases in traffic for popular items.

One potential point of vulnerability in the order processing workflow is in saving the order in the database. The business expects that every order has been persisted into the database. However, any potential deadlock, race condition, or network issue could cause the persistence of the order to fail. Then, the order is lost with no recourse to restore the order.

With good logging capability, you may be able to identify when an error occurred and which customer’s order failed. This wouldn’t allow you to “restore” the transaction, and by that stage, your customer is no longer your customer.

As illustrated in the following diagram, introducing an SQS queue helps improve your ordering application. Using the queue isolates the processing logic into its own component and runs it in a separate process from the web application. This, in turn, allows the system to be more resilient to spikes in traffic, while allowing work to be performed only as fast as necessary in order to manage costs.


In addition, you now have a mechanism for persisting orders as messages (with the queue acting as a temporary database), and have moved the scope of your transaction with your database further down the stack. In the event of an application exception or transaction failure, this ensures that the order processing can be retired or redirected to the Amazon SQS Dead Letter Queue (DLQ), for re-processing at a later stage. (See the recent post, Using Amazon SQS Dead-Letter Queues to Control Message Failure, for more information on dead-letter queues.)

Scaling the order processing nodes

This change allows you now to scale the web application frontend independently from the processing nodes. The frontend application can continue to scale based on metrics such as CPU usage, or the number of requests hitting the load balancer. Processing nodes can scale based on the number of orders in the queue. Here is an example of scale-in and scale-out alarms that you would associate with the scaling policy.

Scale-out Alarm

aws cloudwatch put-metric-alarm --alarm-name AddCapacityToCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
--statistic Average --period 300 --threshold 3 --comparison-operator GreaterThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
--evaluation-periods 2 --alarm-actions <arn of the scale-out autoscaling policy>

Scale-in Alarm

aws cloudwatch put-metric-alarm --alarm-name RemoveCapacityFromCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
 --statistic Average --period 300 --threshold 1 --comparison-operator LessThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
 --evaluation-periods 2 --alarm-actions <arn of the scale-in autoscaling policy>

In the above example, use the ApproximateNumberOfMessagesVisible metric to discover the queue length and drive the scaling policy of the Auto Scaling group. Another useful metric is ApproximateAgeOfOldestMessage, when applications have time-sensitive messages and developers need to ensure that messages are processed within a specific time period.

Scaling the order processing implementation

On top of scaling at an infrastructure level using Auto Scaling, make sure to take advantage of the processing power of your Amazon EC2 instances by using as many of the available threads as possible. There are several ways to implement this. In this post, we build a Windows service that uses the BackgroundWorker class to process the messages from the queue.

Here’s a closer look at the implementation. In the first section of the consuming application, use a loop to continually poll the queue for new messages, and construct a ReceiveMessageRequest variable.

public static void PollQueue()
{
    while (_running)
    {
        Task<ReceiveMessageResponse> receiveMessageResponse;

        // Pull messages off the queue
        using (var sqs = new AmazonSQSClient())
        {
            const int maxMessages = 10;  // 1-10

            //Receiving a message
            var receiveMessageRequest = new ReceiveMessageRequest
            {
                // Get URL from Configuration
                QueueUrl = _queueUrl, 
                // The maximum number of messages to return. 
                // Fewer messages might be returned. 
                MaxNumberOfMessages = maxMessages, 
                // A list of attributes that need to be returned with message.
                AttributeNames = new List<string> { "All" },
                // Enable long polling. 
                // Time to wait for message to arrive on queue.
                WaitTimeSeconds = 5 
            };

            receiveMessageResponse = sqs.ReceiveMessageAsync(receiveMessageRequest);
        }

The WaitTimeSeconds property of the ReceiveMessageRequest specifies the duration (in seconds) that the call waits for a message to arrive in the queue before returning a response to the calling application. There are a few benefits to using long polling:

  • It reduces the number of empty responses by allowing SQS to wait until a message is available in the queue before sending a response.
  • It eliminates false empty responses by querying all (rather than a limited number) of the servers.
  • It returns messages as soon any message becomes available.

For more information, see Amazon SQS Long Polling.

After you have returned messages from the queue, you can start to process them by looping through each message in the response and invoking a new BackgroundWorker thread.

// Process messages
if (receiveMessageResponse.Result.Messages != null)
{
    foreach (var message in receiveMessageResponse.Result.Messages)
    {
        Console.WriteLine("Received SQS message, starting worker thread");

        // Create background worker to process message
        BackgroundWorker worker = new BackgroundWorker();
        worker.DoWork += (obj, e) => ProcessMessage(message);
        worker.RunWorkerAsync();
    }
}
else
{
    Console.WriteLine("No messages on queue");
}

The event handler, ProcessMessage, is where you implement business logic for processing orders. It is important to have a good understanding of how long a typical transaction takes so you can set a message VisibilityTimeout that is long enough to complete your operation. If order processing takes longer than the specified timeout period, the message becomes visible on the queue. Other nodes may pick it and process the same order twice, leading to unintended consequences.

Handling Duplicate Messages

In order to manage duplicate messages, seek to make your processing application idempotent. In mathematics, idempotent describes a function that produces the same result if it is applied to itself:

f(x) = f(f(x))

No matter how many times you process the same message, the end result is the same (definition from Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions, Hohpe and Wolf, 2004).

There are several strategies you could apply to achieve this:

  • Create messages that have inherent idempotent characteristics. That is, they are non-transactional in nature and are unique at a specified point in time. Rather than saying “place new order for Customer A,” which adds a duplicate order to the customer, use “place order <orderid> on <timestamp> for Customer A,” which creates a single order no matter how often it is persisted.
  • Deliver your messages via an Amazon SQS FIFO queue, which provides the benefits of message sequencing, but also mechanisms for content-based deduplication. You can deduplicate using the MessageDeduplicationId property on the SendMessage request or by enabling content-based deduplication on the queue, which generates a hash for MessageDeduplicationId, based on the content of the message, not the attributes.
var sendMessageRequest = new SendMessageRequest
{
    QueueUrl = _queueUrl,
    MessageBody = JsonConvert.SerializeObject(order),
    MessageGroupId = Guid.NewGuid().ToString("N"),
    MessageDeduplicationId = Guid.NewGuid().ToString("N")
};
  • If using SQS FIFO queues is not an option, keep a message log of all messages attributes processed for a specified period of time, as an alternative to message deduplication on the receiving end. Verifying the existence of the message in the log before processing the message adds additional computational overhead to your processing. This can be minimized through low latency persistence solutions such as Amazon DynamoDB. Bear in mind that this solution is dependent on the successful, distributed transaction of the message and the message log.

Handling exceptions

Because of the distributed nature of SQS queues, it does not automatically delete the message. Therefore, you must explicitly delete the message from the queue after processing it, using the message ReceiptHandle property (see the following code example).

However, if at any stage you have an exception, avoid handling it as you normally would. The intention is to make sure that the message ends back on the queue, so that you can gracefully deal with intermittent failures. Instead, log the exception to capture diagnostic information, and swallow it.

By not explicitly deleting the message from the queue, you can take advantage of the VisibilityTimeout behavior described earlier. Gracefully handle the message processing failure and make the unprocessed message available to other nodes to process.

In the event that subsequent retries fail, SQS automatically moves the message to the configured DLQ after the configured number of receives has been reached. You can further investigate why the order process failed. Most importantly, the order has not been lost, and your customer is still your customer.

private static void ProcessMessage(Message message)
{
    using (var sqs = new AmazonSQSClient())
    {
        try
        {
            Console.WriteLine("Processing message id: {0}", message.MessageId);

            // Implement messaging processing here
            // Ensure no downstream resource contention (parallel processing)
            // <your order processing logic in here…>
            Console.WriteLine("{0} Thread {1}: {2}", DateTime.Now.ToString("s"), Thread.CurrentThread.ManagedThreadId, message.MessageId);
            
            // Delete the message off the queue. 
            // Receipt handle is the identifier you must provide 
            // when deleting the message.
            var deleteRequest = new DeleteMessageRequest(_queueName, message.ReceiptHandle);
            sqs.DeleteMessageAsync(deleteRequest);
            Console.WriteLine("Processed message id: {0}", message.MessageId);

        }
        catch (Exception ex)
        {
            // Do nothing.
            // Swallow exception, message will return to the queue when 
            // visibility timeout has been exceeded.
            Console.WriteLine("Could not process message due to error. Exception: {0}", ex.Message);
        }
    }
}

Using SQS to adapt to changing business requirements

One of the benefits of introducing a message queue is that you can accommodate new business requirements without dramatically affecting your application.

If, for example, the business decided that all orders placed over $5000 are to be handled as a priority, you could introduce a new “priority order” queue. The way the orders are processed does not change. The only significant change to the processing application is to ensure that messages from the “priority order” queue are processed before the “standard order” queue.

The following diagram shows how this logic could be isolated in an “order dispatcher,” whose only purpose is to route order messages to the appropriate queue based on whether the order exceeds $5000. Nothing on the web application or the processing nodes changes other than the target queue to which the order is sent. The rates at which orders are processed can be achieved by modifying the poll rates and scalability settings that I have already discussed.

Extending the design pattern with Amazon SNS

Amazon SNS supports reliable publish-subscribe (pub-sub) scenarios and push notifications to known endpoints across a wide variety of protocols. It eliminates the need to periodically check or poll for new information and updates. SNS supports:

  • Reliable storage of messages for immediate or delayed processing
  • Publish / subscribe – direct, broadcast, targeted “push” messaging
  • Multiple subscriber protocols
  • Amazon SQS, HTTP, HTTPS, email, SMS, mobile push, AWS Lambda

With these capabilities, you can provide parallel asynchronous processing of orders in the system and extend it to support any number of different business use cases without affecting the production environment. This is commonly referred to as a “fanout” scenario.

Rather than your web application pushing orders to a queue for processing, send a notification via SNS. The SNS messages are sent to a topic and then replicated and pushed to multiple SQS queues and Lambda functions for processing.

As the diagram above shows, you have the development team consuming “live” data as they work on the next version of the processing application, or potentially using the messages to troubleshoot issues in production.

Marketing is consuming all order information, via a Lambda function that has subscribed to the SNS topic, inserting the records into an Amazon Redshift warehouse for analysis.

All of this, of course, is happening without affecting your order processing application.

Summary

While I haven’t dived deep into the specifics of each service, I have discussed how these services can be applied at an architectural level to build loosely coupled systems that facilitate multiple business use cases. I’ve also shown you how to use infrastructure and application-level scaling techniques, so you can get the most out of your EC2 instances.

One of the many benefits of using these managed services is how quickly and easily you can implement powerful messaging capabilities in your systems, and lower the capital and operational costs of managing your own messaging middleware.

Using Amazon SQS and Amazon SNS together can provide you with a powerful mechanism for decoupling application components. This should be part of design considerations as you architect for the cloud.

For more information, see the Amazon SQS Developer Guide and Amazon SNS Developer Guide. You’ll find tutorials on all the concepts covered in this post, and more. To can get started using the AWS console or SDK of your choice visit:

Happy messaging!

Shelfchecker Smart Shelf: build a home library system

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/smart-shelf-home-library/

Are you tired of friends borrowing your books and never returning them? Maybe you’re sure you own 1984 but can’t seem to locate it? Do you find a strange satisfaction in using the supermarket self-checkout simply because of the barcode beep? With the ShelfChecker smart shelf from maker Annelynn described on Instructables, you can be your own librarian and never misplace your books again! Beep!

Shelfchecker smart shelf annelynn Raspberry Pi

Harry Potter and the Aesthetically Pleasing Smart Shelf

The ShelfChecker smart shelf

Annelynn built her smart shelf utilising a barcode scanner, LDR light sensors, a Raspberry Pi, plus a few other peripherals and some Python scripts. She has created a fully integrated library checkout system with accompanying NeoPixel location notification for your favourite books.

This build allows you to issue your book-borrowing friends their own IDs and catalogue their usage of your treasured library. On top of that, you’ll be able to use LED NeoPixels to highlight your favourite books, registering their removal and return via light sensor tracking.

Using light sensors for book cataloguing

Once Annelynn had built the shelf, she drilled holes to fit the eight LDRs that would guard her favourite books, and separated them with corner brackets to prevent confusion.

Shelfchecker smart shelf annelynn Raspberry Pi

Corner brackets keep the books in place without confusion between their respective light sensors

Due to the limitations of the MCP3008 Adafruit microchip, the smart shelf can only keep track of eight of your favourite books. But this limitation won’t stop you from cataloguing your entire home library; it simply means you get to pick your ultimate favourites that will occupy the prime real estate on your wall.

Obviously, the light sensors sense light. So when you remove or insert a book, light floods or is blocked from that book’s sensor. The sensor sends this information to the Raspberry Pi. In response, an Arduino controls the NeoPixel strip along the ‘favourites’ shelf to indicate the book’s status.

Shelfchecker smart shelf annelynn Raspberry Pi

The book you are looking for is temporarily unavailable

Code your own library

While keeping a close eye on your favourite books, the system also allows creation of a complete library catalogue system with the help of a MySQL database. Users of the library can log into the system with a barcode scanner, and take out or return books recorded in the database guided by an LCD screen attached to the Pi.

Shelfchecker smart shelf annelynn Raspberry Pi

Beep!

I won’t go into an extensive how-to on creating MySQL databases here on the blog, because my glamourous assistant Janina has pulled up these MySQL tutorials to help you get started. Annelynn’s Github scripts are also packed with useful comments to keep you on track.

Raspberry Pi and books

We love books and libraries. And considering the growing number of Code Clubs and makespaces into libraries across the world, and the host of book-based Pi builds we’ve come across, the love seems to be mutual.

We’ve seen the Raspberry Pi introduced into the Wordery bookseller warehouse, a Pi-powered page-by-page book scanner by Jonathon Duerig, and these brilliant text-to-speech and page turner projects that use our Pis!

Did I say we love books? In fact we love them so much that members of our team have even written a few.*

If you’ve set up any sort of digital making event in a library, have in some way incorporated Raspberry Pi into your own personal book collection, or even managed to recreate the events of your favourite story using digital making, make sure to let us know in the comments below.

* Shameless plug**

Fancy adding some Pi to your home library? Check out these publications from the Raspberry Pi staff:

A Beginner’s Guide to Coding by Marc Scott

Adventures in Raspberry Pi by Carrie Anne Philbin

Getting Started with Raspberry Pi by Matt Richardson

Raspberry Pi User Guide by Eben Upton

The MagPi Magazine, Essentials Guides and Project Books

Make Your Own Game and Build Your Own Website by CoderDojo

** Shameless Pug

 

The post Shelfchecker Smart Shelf: build a home library system appeared first on Raspberry Pi.

All Systems Go! 2017 CfP Open

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/all-systems-go-2017-cfp-open.html

The All Systems Go! 2017 Call for Participation is Now Open!

We’d like to invite presentation proposals for All Systems Go! 2017!

All Systems Go! is an Open Source community conference focused on the projects and technologies at the foundation of modern Linux systems — specifically low-level user-space technologies. Its goal is to provide a friendly and collaborative gathering place for individuals and communities working to push these technologies forward.

All Systems Go! 2017 takes place in Berlin, Germany on October 21st+22nd.

All Systems Go! is a 2-day event with 2-3 talks happening in parallel. Full presentation slots are 30-45 minutes in length and lightning talk slots are 5-10 minutes.

We are now accepting submissions for presentation proposals. In particular, we are looking for sessions including, but not limited to, the following topics:

  • Low-level container executors and infrastructure
  • IoT and embedded OS infrastructure
  • OS, container, IoT image delivery and updating
  • Building Linux devices and applications
  • Low-level desktop technologies
  • Networking
  • System and service management
  • Tracing and performance measuring
  • IPC and RPC systems
  • Security and Sandboxing

While our focus is definitely more on the user-space side of things, talks about kernel projects are welcome too, as long as they have a clear and direct relevance for user-space.

Please submit your proposals by September 3rd. Notification of acceptance will be sent out 1-2 weeks later.

To submit your proposal now please visit our CFP submission web site.

For further information about All Systems Go! visit our conference web site.

systemd.conf will not take place this year in lieu of All Systems Go!. All Systems Go! welcomes all projects that contribute to Linux user space, which, of course, includes systemd. Thus, anything you think was appropriate for submission to systemd.conf is also fitting for All Systems Go!

[$] Preventing stack guard-page hopping

Post Syndicated from corbet original https://lwn.net/Articles/725832/rss

Normally, the -rc6 kernel testing release is not the place where one would
expect to find a 900-line memory-management change. As it happens, though,
such a change was quietly merged immediately prior to the 4.12-rc6 release; indeed, it may have been the
real reason behind 4.12-rc6 coming out some hours later than would have
been expected. This change is important, though, in that it addresses a
newly publicized security threat
that, it seems, is being actively
exploited.

BPI Breaks Record After Sending 310 Million Google Takedowns

Post Syndicated from Andy original https://torrentfreak.com/bpi-breaks-record-after-sending-310-million-google-takedowns-170619/

A little over a year ago during March 2016, music industry group BPI reached an important milestone. After years of sending takedown notices to Google, the group burst through the 200 million URL barrier.

The fact that it took BPI several years to reach its 200 million milestone made the surpassing of the quarter billion milestone a few months later even more remarkable. In October 2016, the group sent its 250 millionth takedown to Google, a figure that nearly doubled when accounting for notices sent to Microsoft’s Bing.

But despite the volumes, the battle hadn’t been won, let alone the war. The BPI’s takedown machine continued to run at a remarkable rate, churning out millions more notices per week.

As a result, yet another new milestone was reached this month when the BPI smashed through the 300 million URL barrier. Then, days later, a further 10 million were added, with the latter couple of million added during the time it took to put this piece together.

BPI takedown notices, as reported by Google

While demanding that Google places greater emphasis on its de-ranking of ‘pirate’ sites, the BPI has called again and again for a “notice and stay down” regime, to ensure that content taken down by the search engine doesn’t simply reappear under a new URL. It’s a position BPI maintains today.

“The battle would be a whole lot easier if intermediaries played fair,” a BPI spokesperson informs TF.

“They need to take more proactive responsibility to reduce infringing content that appears on their platform, and, where we expressly notify infringing content to them, to ensure that they do not only take it down, but also keep it down.”

The long-standing suggestion is that the volume of takedown notices sent would reduce if a “take down, stay down” regime was implemented. The BPI says it’s difficult to present a precise figure but infringing content has a tendency to reappear, both in search engines and on hosting sites.

“Google rejects repeat notices for the same URL. But illegal content reappears as it is re-indexed by Google. As to the sites that actually host the content, the vast majority of notices sent to them could be avoided if they implemented take-down & stay-down,” BPI says.

The fact that the BPI has added 60 million more takedowns since the quarter billion milestone a few months ago is quite remarkable, particularly since there appears to be little slowdown from month to month. However, the numbers have grown so huge that 310 billion now feels a lot like 250 million, with just a few added on top for good measure.

That an extra 60 million takedowns can almost be dismissed as a handful is an indication of just how massive the issue is online. While pirates always welcome an abundance of links to juicy content, it’s no surprise that groups like the BPI are seeking more comprehensive and sustainable solutions.

Previously, it was hoped that the Digital Economy Bill would provide some relief, hopefully via government intervention and the imposition of a search engine Code of Practice. In the event, however, all pressure on search engines was removed from the legislation after a separate voluntary agreement was reached.

All parties agreed that the voluntary code should come into effect two weeks ago on June 1 so it seems likely that some effects should be noticeable in the near future. But the BPI says it’s still early days and there’s more work to be done.

“BPI has been working productively with search engines since the voluntary code was agreed to understand how search engines approach the problem, but also what changes can and have been made and how results can be improved,” the group explains.

“The first stage is to benchmark where we are and to assess the impact of the changes search engines have made so far. This will hopefully be completed soon, then we will have better information of the current picture and from that we hope to work together to continue to improve search for rights owners and consumers.”

With more takedown notices in the pipeline not yet publicly reported by Google, the BPI informs TF that it has now notified the search giant of 315 million links to illegal content.

“That’s an astonishing number. More than 1 in 10 of the entire world’s notices to Google come from BPI. This year alone, one in every three notices sent to Google from BPI is for independent record label repertoire,” BPI concludes.

While it’s clear that groups like BPI have developed systems to cope with the huge numbers of takedown notices required in today’s environment, it’s clear that few rightsholders are happy with the status quo. With that in mind, the fight will continue, until search engines are forced into compromise. Considering the implications, that could only appear on a very distant horizon.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Comodo DNS Blocks TorrentFreak Over “Hacking and Warez “

Post Syndicated from Ernesto original https://torrentfreak.com/comodo-dns-blocks-torrentfreak-over-hacking-and-warez-170617/

Website blocking has become one of the go-to methods for reducing online copyright infringement.

In addition to court-ordered blockades, various commercial vendors also offer a broad range of blocking tools. This includes Comodo, which offers a free DNS service that keeps people away from dangerous sites.

The service labeled SecureDNS is part of the Comodo Internet Security bundle but can be used by the general public as well, without charge. Just change the DNS settings on your computer or any other device, and you’re ready to go.

“As a leading provider of computer security solutions, Comodo is keenly aware of the dangers that plague the Internet today. SecureDNS helps users keep safe online with its malware domain filtering feature,” the company explains.

Aside from malware and spyware, Comodo also blocks access to sites that offer access to pirated content. Or put differently, they try to do this. But it’s easier said than done.

This week we were alerted to the fact that Comodo blocks direct access to TorrentFreak. Those who try to access our news site get an ominous warning instead, suggesting that we might share pirated content.

“This website has been blocked temporarily because of the following reason(s): Hacking/Warez: Site may offer illegal sharing of copyrighted software or media,” the warning reads, adding that several users also reported the site to be unsafe.

TorrentFreak blocked

People can still access the site by clicking on a big red cross, although that’s something Comodo doesn’t recommend. However, it is quite clear that new readers will be pretty spooked by the alarming message.

We assume that TorrentFreak was added to Comodo’s blocklist by mistake. And while mistakes can happen everywhere, this once again show that overblocking is a serious concern.

We are lucky enough that readers alerted us to the problem, but in other cases, it could easily go unnoticed.

Interestingly, the ‘piracy’ blocklist is not as stringent as the above would suggest. While we replicated the issue, we also checked several other known ‘pirate’ sites including The Pirate Bay, RARBG, GoMovies, and Pubfilm. These could all be accessed through SecureDNS without any warning.

TorrentFreak contacted Comodo for a comment on their curious blocking efforts, but we have yet to hear back from the company. In the meantime, Comodo SecureDNS users may want to consider switching to a more open DNS provider.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

“Kodi Boxes Are a Fire Risk”: Awful Timing or Opportunism?

Post Syndicated from Andy original https://torrentfreak.com/kodi-boxes-are-a-fire-risk-awful-timing-or-opportunism-170618/

Anyone who saw the pictures this week couldn’t have failed to be moved by the plight of Londoners caught up in the Grenfell Tower inferno. The apocalyptic images are likely to stay with people for years to come and the scars for those involved may never heal.

As the building continued to smolder and the death toll increased, UK tabloids provided wall-to-wall coverage of the disaster. On Thursday, however, The Sun took a short break to put out yet another sensationalized story about Kodi. Given the week’s events, it was bound to raise eyebrows.

“HOT GOODS: Kodi boxes are a fire hazard because thousands of IPTV devices nabbed by customs ‘failed UK electrical standards’,” the headline reads.

Another sensational ‘Kodi’ headline

“It’s estimated that thousands of Brits have bought so-called Kodi boxes which can be connected to telly sets to stream pay-per-view sport and films for free,” the piece continued.

“But they could be a fire hazard, according to the Federation Against Copyright Theft (FACT), which has been nabbing huge deliveries of the devices as they arrive in the UK.”

As the image below shows, “Kodi box” fire hazard claims appeared next to images from other news articles about the huge London fire. While all separate stories, the pairing is not a great look.

A ‘Kodi Box’, as depicted in The Sun

FACT chief executive Kieron Sharp told The Sun that his group had uncovered two parcels of 2,000 ‘Kodi’ boxes and found that they “failed electrical safety standards”, making them potentially dangerous. While that may well be the case, the big question is all about timing.

It’s FACT’s job to reduce copyright infringement on behalf of clients such as The Premier League so it’s no surprise that they’re making a sustained effort to deter the public from buying these devices. That being said, it can’t have escaped FACT or The Sun that fire and death are extremely sensitive topics this week.

That leaves us with a few options including unfortunate opportunism or perhaps terrible timing, but let’s give the benefit of the doubt for a moment.

There’s a good argument that FACT and The Sun brought a valid issue to the public’s attention at a time when fire safety is on everyone’s lips. So, to give credit where it’s due, providing people with a heads-up about potentially dangerous devices is something that most people would welcome.

However, it’s difficult to offer congratulations on the PSA when the story as it appears in The Sun does nothing – absolutely nothing – to help people stay safe.

If some boxes are a risk (and that’s certainly likely given the level of Far East imports coming into the UK) which ones are dangerous? Where were they manufactured? Who sold them? What are the serial numbers? Which devices do people need to get out of their houses?

Sadly, none of these questions were answered or even addressed in the article, making it little more than scaremongering. Only making matters worse, the piece notes that it isn’t even clear how many of the seized devices are indeed a fire risk and that more tests need to be done. Is this how we should tackle such an important issue during an extremely sensitive week?

Timing and lack of useful information aside, one then has to question the terminology employed in the article.

As a piece of computer software, Kodi cannot catch fire. So, what we’re actually talking about here is small computers coming into the country without passing safety checks. The presence of Kodi on the devices – if indeed Kodi was even installed pre-import – is absolutely irrelevant.

Anti-piracy groups warning people of the dangers associated with their piracy habits is nothing new. For years, Internet users have been told that their computers will become malware infested if they share files or stream infringing content. While in some cases that may be true, there’s rarely any effort by those delivering the warnings to inform people on how to stay safe.

A classic example can be found in the numerous reports put out by the Digital Citizens Alliance in the United States. The DCA has produced several and no doubt expensive reports which claim to highlight the risks Internet users are exposed to on ‘pirate’ sites.

The DCA claims to do this in the interests of consumers but the group offers no practical advice on staying safe nor does it provide consumers with risk reduction strategies. Like many high-level ‘drug prevention’ documents shuffled around government, it could be argued that on a ‘street’ level their reports are next to useless.

Demonizing piracy is a well-worn and well-understood strategy but if warnings are to be interpreted as representing genuine concern for the welfare of people, they have to be a lot more substantial than mere scaremongering.

Anyone concerned about potentially dangerous devices can check out these useful guides from Electrical Safety First (pdf) and the Electrical Safety Council (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Visualize and Monitor Amazon EC2 Events with Amazon CloudWatch Events and Amazon Kinesis Firehose

Post Syndicated from Karan Desai original https://aws.amazon.com/blogs/big-data/visualize-and-monitor-amazon-ec2-events-with-amazon-cloudwatch-events-and-amazon-kinesis-firehose/

Monitoring your AWS environment is important for security, performance, and cost control purposes. For example, by monitoring and analyzing API calls made to your Amazon EC2 instances, you can trace security incidents and gain insights into administrative behaviors and access patterns. The kinds of events you might monitor include console logins, Amazon EBS snapshot creation/deletion/modification, VPC creation/deletion/modification, and instance reboots, etc.

In this post, I show you how to build a near real-time API monitoring solution for EC2 events using Amazon CloudWatch Events and Amazon Kinesis Firehose. Please be sure to have Amazon CloudTrail enabled in your account.

  • CloudWatch Events offers a near real-time stream of system events that describe changes in AWS resources. CloudWatch Events now supports Kinesis Firehose as a target.
  • Kinesis Firehose is a fully managed service for continuously capturing, transforming, and delivering data in minutes to storage and analytics destinations such as Amazon S3, Amazon Kinesis Analytics, Amazon Redshift, and Amazon Elasticsearch Service.

Walkthrough

For this walkthrough, you create a CloudWatch event rule that matches specific EC2 events such as:

  • Starting, stopping, and terminating an instance
  • Creating and deleting VPC route tables
  • Creating and deleting a security group
  • Creating, deleting, and modifying instance volumes and snapshots

Your CloudWatch event target is a Kinesis Firehose delivery stream that delivers this data to an Elasticsearch cluster, where you set up Kibana for visualization. Using this solution, you can easily load and visualize EC2 events in minutes without setting up complicated data pipelines.

Set up the Elasticsearch cluster

Create the Amazon ES domain in the Amazon ES console, or by using the create-elasticsearch-domain command in the AWS CLI.

This example uses the following configuration:

  • Domain Name: esLogSearch
  • Elasticsearch Version: 1
  • Instance Count: 2
  • Instance type:elasticsearch
  • Enable dedicated master: true
  • Enable zone awareness: true
  • Restrict Amazon ES to an IP-based access policy

Other settings are left as the defaults.

Create a Kinesis Firehose delivery stream

In the Kinesis Firehose console, create a new delivery stream with Amazon ES as the destination. For detailed steps, see Create a Kinesis Firehose Delivery Stream to Amazon Elasticsearch Service.

Set up CloudWatch Events

Create a rule, and configure the event source and target. You can choose to configure multiple event sources with several AWS resources, along with options to specify specific or multiple event types.

In the CloudWatch console, choose Events.

For Service Name, choose EC2.

In Event Pattern Preview, choose Edit and copy the pattern below. For this walkthrough, I selected events that are specific to the EC2 API, but you can modify it to include events for any of your AWS resources.

 

{
	"source": [
		"aws.ec2"
	],
	"detail-type": [
		"AWS API Call via CloudTrail"
	],
	"detail": {
		"eventSource": [
			"ec2.amazonaws.com"
		],
		"eventName": [
			"RunInstances",
			"StopInstances",
			"StartInstances",
			"CreateFlowLogs",
			"CreateImage",
			"CreateNatGateway",
			"CreateVpc",
			"DeleteKeyPair",
			"DeleteNatGateway",
			"DeleteRoute",
			"DeleteRouteTable",
"CreateSnapshot",
"DeleteSnapshot",
			"DeleteVpc",
			"DeleteVpcEndpoints",
			"DeleteSecurityGroup",
			"ModifyVolume",
			"ModifyVpcEndpoint",
			"TerminateInstances"
		]
	}
}

The following screenshot shows what your event looks like in the console.

Next, choose Add target and select the delivery stream that you just created.

Set up Kibana on the Elasticsearch cluster

Amazon ES provides a default installation of Kibana with every Amazon ES domain. You can find the Kibana endpoint on your domain dashboard in the Amazon ES console. You can restrict Amazon ES access to an IP-based access policy.

In the Kibana console, for Index name or pattern, type log. This is the name of the Elasticsearch index.

For Time-field name, choose @time.

To view the events, choose Discover.

The following chart demonstrates the API operations and the number of times that they have been triggered in the past 12 hours.

Summary

In this post, you created a continuous, near real-time solution to monitor various EC2 events such as starting and shutting down instances, creating VPCs, etc. Likewise, you can build a continuous monitoring solution for all the API operations that are relevant to your daily AWS operations and resources.

With Kinesis Firehose as a new target for CloudWatch Events, you can retrieve, transform, and load system events to the storage and analytics destination of your choice in minutes, without setting up complicated data pipelines.

If you have any questions or suggestions, please comment below.


Additional Reading

Learn how to build a serverless architecture to analyze Amazon CloudFront access logs using AWS Lambda, Amazon Athena, and Amazon Kinesis Analytics

 

 

 

Pirate Bay Ruling is Bad News For Google & YouTube, Experts Says

Post Syndicated from Andy original https://torrentfreak.com/pirate-bay-ruling-is-bad-news-for-google-youtube-experts-says-170615/

After years of legal wrangling, yesterday the European Court of Justice handed down a decision in the case between Dutch anti-piracy outfit BREIN and ISPs Ziggo and XS4ALL.

BREIN had demanded that the ISPs block The Pirate Bay, but both providers dug in their heels, forcing the case through the Supreme Court and eventually the ECJ.

For BREIN, yesterday’s decision will have been worth the wait. Although The Pirate Bay does not provide the content that’s ultimately downloaded and shared by its users, the ECJ said that it plays an important role in how that content is presented.

“Whilst it accepts that the works in question are placed online by the users, the Court highlights the fact that the operators of the platform play an essential role in making those works available,” the Court said.

With that established the all-important matter is whether by providing such a platform, the operators of The Pirate Bay are effectively engaging in a “communication to the public” of copyrighted works. According to the ECJ, that’s indeed the case.

“The Court holds that the making available and management of an online sharing platform must be considered to be an act of communication for the purposes of the directive,” the ECJ said.

Add into the mix that The Pirate Bay generates profit from its activities and there’s a potent case for copyright liability.

While the case was about The Pirate Bay, ECJ rulings tend to have an effect far beyond individual cases. That’s certainly the opinion of Enzo Mazza, chief at Italian anti-piracy group FIMI.

“The ruling will have a major impact on the way that entities like Google operate, because it will expose them to a greater and more direct responsibility,” Mazza told La Repubblica.

“So far, Google has worked against piracy by eliminating illegal content after it gets reported. But that is not enough. It is a fairly ineffective intervention.”

Mazza says that platforms like Google, YouTube, and thousands of similar sites that help to organize and curate user-uploaded content are somewhat similar to The Pirate Bay. In any event, they are not neutral intermediaries, he insists.

The conclusion that the decision is bad for platforms like YouTube is shared by Fulvio Sarzana, a lawyer with Sarzana and Partners, a law firm specializing in Internet and copyright disputes.

“In the ruling, the Court has in fact attributed, for the first time, secondary liability to sharing platforms due to the violation of copyrights carried out by the users of a platform,” Sarzana informs TF.

“This will have consequences for video-sharing platforms and user-generated content sites like YouTube, but it excludes responsibility for platforms that play a purely passive role, without affecting users’ content. This the case with cyberlockers, for example.”

Sarzana says that “unfortunate judgments” like this should be expected, until the approval of a new European copyright law. Enzo Mazza, on the other hand, feels that the copyright reform debate should take account of this ruling when formulating legislation to stop platforms like YouTube exploiting copyright works without an appropriate license.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

BackMap, the haptic navigation system

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/backmap-haptic/

At this year’s TechCrunch Disrupt NY hackathon, one team presented BackMap, a haptic feedback system which helps visually impaired people to navigate cities and venues. It is assisted by a Raspberry Pi and integrated into a backpack.

Good vibrations with BackMap

The team, including Shashank Sharma, wrote an iOS phone app in Swift, Apple’s open-source programming language. To convert between addresses and geolocations, they used the Esri APIs offered by PubNub. So far, so standard. However, they then configured their BackMap setup so that the user can input their destination via the app, and then follow the route without having to look at a screen or listen to directions. Instead, vibrating motors have been integrated into the straps of a backpack and hooked up to a Raspberry Pi. Whenever the user needs to turn left or right, the Pi makes the respective motor vibrate.

Disrupt NY 2017 Hackathon | Part 1

Disrupt NY 2017 Hackathon presentations filmed live on May 15th, 2017. Preceding the Disrupt Conference is Hackathon weekend on May 13-14, where developers and engineers descend from all over the world to take part in a 24-hour hacking endurance test.

BackMap can also be adapted for indoor navigation by receiving signals from beacons. This could be used to direct users to toilet facilities or exhibition booths at conferences. The team hopes to upgrade the BackMap device to use a wristband format in the future.

Accessible Pi

Here at Pi Towers, we are always glad to see Pi builds for people with disabilities: we’ve seen Sanskriti and Aman’s Braille teacher Mudra, the audio e-reader Valdema by Finnish non-profit Kolibre, and Myrijam and Paul’s award-winning, eye-movement-controlled wheelchair, to name but a few.

Our mission is to bring the power of coding and digital making to everyone, and we are lucky to be part of a diverse community of makers and educators who have often worked proactively to make events and resources accessible to as many people as possible. There is, for example, the autism- and Tourette’s syndrome-friendly South London Raspberry Jam, organised by Femi Owolade-Coombes and his mum Grace. The Raspberry VI website is a portal to all things Pi for visually impaired and blind people. Deaf digital makers may find Jim Roberts’ video tutorials, which are signed in ASL, useful. And anyone can contribute subtitles in any language to our YouTube channel.

If you create or use accessible tutorials, or run a Jam, Code Club, or CoderDojo that is designed to be friendly to people who are neuroatypical or have a disability, let us know how to find your resource or event in the comments!

The post BackMap, the haptic navigation system appeared first on Raspberry Pi.

2017 Maintainer and Kernel Summit planning

Post Syndicated from corbet original https://lwn.net/Articles/725374/rss

The Kernel Summit is undergoing some changes this year; the core
developers’ gathering from previous events will be replaced by a half-day
“maintainers summit” consisting of about 30 people. The process of
selecting those people, and of selecting topics for the open technical
session, is underway now; interested developers are encouraged to submit
their topic ideas.

Man Faces Prison For Sharing Pirated Deadpool Movie on Facebook

Post Syndicated from Ernesto original https://torrentfreak.com/man-faces-prison-for-sharing-pirated-deadpool-movie-on-facebook-170614/

With roughly two billion active users per month, Facebook is by far the largest social networking site around.

While most of the content posted to the site is relatively harmless, some people use it to share things they are not supposed to.

This is also what 21-year-old Trevon Maurice Franklin from Fresno, California, did early last year. Just a week after the box-office hit Deadpool premiered in theaters, he shared a pirated copy of the movie on the social network.

Franklin, who used the screen name “Tre-Von M. King,” saw his post go viral as it allegedly reached five million views. This didn’t go unnoticed by Twentieth Century Fox, and soon after the feds were involved as well.

The FBI began to investigate the possibly criminal Facebook post and decided to build a case. This eventually led to an indictment, and the alleged “pirate” was arrested soon after.

Facebook post from early 2016

The U.S. Attorney’s Office for the Central District of California, which released the news a few hours ago, states that Franklin faces up to three years in prison for the alleged copyright infringement.

“Franklin is charged in a one-count indictment returned by a federal grand jury on April 7 with reproducing and distributing a copyrighted work, a felony offense that carries a statutory maximum penalty of three years in federal prison,” the office wrote in a press release.

According to comments on Facebook, posted last year, several people warned “Tre-Von M. King” that it wasn’t wise to post copyright-infringing material on Facebook. However, Franklin said he wasn’t worried that he would get in trouble.

Comment from early 2016

While the case is significant, there are also plenty of questions that remain unanswered.

Was the defendant involved in recording the copyright infringing copy? Was it already widely available elsewhere? Are the reported five million “views” people who watched a large part of the movie, or is this just the number of people who might have seen it in their feeds?

Thus far we have not seen a copy of the indictment in the court records, but a follow-up may be warranted when it becomes available.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Pirate Bay Facilitates Piracy and Can be Blocked, Top EU Court Rules

Post Syndicated from Ernesto original https://torrentfreak.com/pirate-bay-facilitates-piracy-and-can-be-blocked-top-eu-court-rules-170614/

pirate bayIn 2014, The Court of The Hague handed down its decision in a long running case which had previously forced two Dutch ISPs, Ziggo and XS4ALL, to block The Pirate Bay.

The Court ruled against local anti-piracy outfit BREIN, concluding that the blockade was ineffective and restricted the ISPs’ entrepreneurial freedoms.

The Pirate Bay was unblocked by all local ISPs while BREIN took the matter to the Supreme Court, which subsequently referred the case to the EU Court of Justice, seeking further clarification.

After a careful review of the case, the Court of Justice today ruled that The Pirate Bay can indeed be blocked.

While the operators don’t share anything themselves, they knowingly provide users with a platform to share copyright-infringing links. This can be seen as “an act of communication” under the EU Copyright Directive, the Court concludes.

“Whilst it accepts that the works in question are placed online by the users, the Court highlights the fact that the operators of the platform play an essential role in making those works available,” the Court explains in a press release (pdf).

According to the ruling, The Pirate Bay indexes torrents in a way that makes it easy for users to find infringing content while the site makes a profit. The Pirate Bay is aware of the infringements, and although moderators sometimes remove “faulty” torrents, infringing links remain online.

“In addition, the same operators expressly display, on blogs and forums accessible on that platform, their intention of making protected works available to users, and encourage the latter to make copies of those works,” the Court writes.

The ruling means that there are no major obstacles for the Dutch Supreme Court to issue an ISP blockade, but a final decision in the underlying case will likely take a few more months.

A decision at the European level is important, as it may also affect court orders in other countries where The Pirate Bay and other torrent sites are already blocked, including Austria, Belgium, Finland, Italy, and its home turf Sweden.

Despite the negative outcome, the Pirate Bay team is not overly worried.

“Copyright holders will remain stubborn and fight to hold onto a dying model. Clueless and corrupt law makers will put corporate interests before the public’s. Their combined jackassery is what keeps TPB alive,” TPB’s plc365 tells TorrentFreak.

“The reality is that regardless of the ruling, nothing substantial will change. Maybe more ISPs will block TPB. More people will use one of the hundreds of existing proxies, and even more new ones will be created as a result.”

Pirate Bay moderator “Xe” notes that while it’s an extra barrier to access the site, blockades will eventually help people to get around censorship efforts, which are not restricted to TPB.

“They’re an issue for everyone in the sense that they’re an obstacle which has to be overcome. But learning how to work around them isn’t hard and knowing how to work around them is becoming a core skill for everyone who uses the Internet.

“Blockades are not a major issue for the site in the sense that they’re nothing new: we’ve long since adapted to them. We serve the needs of millions of people every day in spite of them,” Xe adds.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

UK Police Claim Success in Keeping Gambling Ads off Pirate Sites

Post Syndicated from Andy original https://torrentfreak.com/uk-police-claim-success-in-keeping-gambling-ads-off-pirate-sites-170614/

Over the past several years, there has been a major effort by entertainment industry groups to cut off revenue streams to ‘pirate’ sites. The theory is that if sites cannot generate funds, their operators will eventually lose interest.

Since advertising is a key money earner for any website, significant resources have been expended trying to keep ads off sites that directly or indirectly profit from infringement. It’s been a multi-pronged affair, with agencies being encouraged to do the right thing and brands warned that their ads appearing on pirate sites does nothing for their image.

One sector that has trailed behind most is the gambling industry. Up until fairly recently, ads for some of the UK’s largest bookmakers have been a regular feature on many large pirate sites, either embedded in pages or more often than not, appearing via popup or pop-under spreads. Now, however, a significant change is being reported.

According to the City of London Police’s Intellectual Property Crime Unit (PIPCU), over the past 12 months there has been an 87% drop in adverts for licensed gambling operators being displayed on infringing websites.

The research was carried out by whiteBULLET, a brand safety and advertising solutions company which helps advertisers to assess whether placing an advert on a particular URL will cause it to appear on a pirate site.

PIPCU says that licensed gambling operators have an obligation to “keep crime out of gambling” due to their commitments under the Gambling Act 2005. However, the Gambling Commission, the UK’s gambling regulatory body, has recently been taking additional steps to tackle the problem.

In September 2015, the Commission consulted on amendments (pdf) to licensing conditions that would compel licensees to ensure that advertisements “placed by themselves and others” do not appear on websites providing unauthorized access to copyrighted content.

After the consultation was published in May 2016 (pdf), all respondents agreed in principle that gambling operators should not advertise on pirate sites. A month later, the Commission said it would ban the placement of gambling ads on such platforms.

When the new rules came into play last October, 40 gambling companies (including Bet365, Coral and Sky Bet, who had previously been called out for displaying ads on pirate sites) were making use of PIPCU’s ‘Infringing Website List‘, a database of sites that police claim are actively involved in piracy.

Speaking yesterday, acting Detective Superintendent Peter Ratcliffe, Head of the Police Intellectual Property Crime Unit (PIPCU), welcomed the ensuing reduction in ad placement on ‘pirate’ domains.

“The success of a strong relationship built between PIPCU and The Gambling Commission can be seen by these figures. This is a fantastic example of a joint working initiative between police and an industry regulator,” Ratcliffe said.

“We commend the 40 gambling companies who are already using the Infringing Website List and encourage others to sign up. We will continue to encourage all UK advertisers to become a member of the Infringing Website List to ensure they’re not inadvertently funding criminal websites.”

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

More Pirated Ultra HD Blu-Ray Discs Leak Online, But Mystery Remains

Post Syndicated from Ernesto original https://torrentfreak.com/more-pirated-ultra-hd-blu-ray-disks-leak-online-but-mystery-remains-170612/

Up until a few weeks ago, full copies of UHD Blu-Ray Discs were impossible to find on pirate sites.

Protected with strong AACS 2.0 encryption, it has long been one of the last bastions movie pirates had to breach.

While the encryption may still be as strong as before, it’s clear that some pirates have found a way through. After the first pirated Ultra HD Blu-Ray Disc leaked early last month, two new ones have appeared in recent days.

Following the historic “Smurfs 2” release, a full UHD copy of “Patriots Day” surfaced online little over a week ago, followed by a similar copy of “Inferno” this past weekend. The latter two were both released by the scene group TERMiNAL and leaked to various torrent sites.

While the leaks all appear to be legitimate, it’s still a mystery how the Blu-Ray discs were ripped.

While some have suggested that AACS 2.0 must have been cracked, there is no evidence supporting this yet. The TERMiNAL releases don’t mention anything that hints at a crack so the mystery remains intact.

4k capture (full)

4k

An alternative explanation would be that there is some kind of exploit allowing the pirates to bypass the encryption. Some have pointed to a private exploit of Intel’s SGX, which would make it possible to sniff out what PowerDVD has in memory.

“If SGX has a loop, that will enable people to read PowerDVD’s memory. That will then allow them to copy the decrypted data from the UHD Blu-Ray drive 1:1,” a source informs TorrentFreak.

Another option could be that there’s a private media player exploit, allowing the pirates to get full access to the data and read the encrypted disc. Our source has tried this extensively in the past and got close, but without success. Others may have had more luck.

UHD leak specs

If there’s indeed such an exploit or vulnerability, the pirates in question might want to keep that private to prevent it from being fixed, presuming it can be patched, that is.

Theoretically, AACS 2.0 could be cracked of course, but this seems to be less likely, according to our source. The latest UHD Blu-Rays also have bus encryption. This means that there are two separate keys to break, which would be very hard.

Cracked or not, pirates are excited about the UHD Blu-Ray copies that have started to populate through private and public torrent sites.

Tracker advertising the third UHD leak

While the download numbers are nowhere near those of regular HD releases, the UHD leaks are widely seen as a breakthrough. And with three releases in short succession, there are likely more to follow.

Those who dare to pirate them have to make sure that they have enough bandwidth, time, and free space on their hard drives though. Ultra HD releases easily take up several dozens of gigabytes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.