Tag Archives: AI education

Experience AI: Making AI relevant and accessible

Post Syndicated from Jan Ander original https://www.raspberrypi.org/blog/experience-ai-equal-access-ai-education/

Google DeepMind’s Aimee Welch discusses our partnership on the Experience AI learning programme and why equal access to AI education is key. This article also appears in issue 22 of Hello World on teaching and AI.

From AI chatbots to self-driving cars, artificial intelligence (AI) is here and rapidly transforming our world. It holds the potential to solve some of the biggest challenges humanity faces today — but it also has many serious risks and inherent challenges, like reinforcing existing patterns of bias or “hallucinating”, a term that describes AI making up false outputs that do not reflect real events or data.

A teenager learning computer science.
Young people need the knowledge and skills to navigate and shape AI.

Teachers want to build young people’s AI literacy

As AI becomes an integral part of our daily lives, it’s essential that younger generations gain the knowledge and skills to navigate and shape this technology. Young people who have a foundational understanding of AI are able to make more informed decisions about using AI applications in their daily lives, helping ensure safe and responsible use of the technology. This has been recognised for example by the UK government’s AI Council, whose AI Roadmap sets out the goal of ensuring that every child in the UK leaves school with a basic sense of how AI works.

Learner in a computing classroom.
Every young person should have access to learning AI literacy.

But while AI literacy is a key skill in this new era, not every young person currently has access to sufficient AI education and resources. In a recent survey by the EdWeek Research Center in the USA, only one in 10 teachers said they knew enough about AI to teach its basics, and very few reported receiving any professional development related to the topic. Similarly, our work with the Raspberry Pi Computing Education Research Centre has suggested that UK-based teachers are eager to understand more about AI and how to engage their students in the topic.

Bringing AI education into classrooms

Ensuring broad access to AI education is also important to improve diversity in the field of AI to ensure safe and responsible development of the technology. There are currently stark disparities in the field and these start already early on, with school-level barriers contributing to underrepresentation of certain groups of people. By increasing diversity in AI, we bring diverse values, hopes, and concerns into the design and deployment of the technology — something that’s critical for AI to benefit everyone.

Kenyan children work on a physical computing project.
Bringing diverse values into AI is critical.

By focusing on AI education from a young age, there is an opportunity to break down some of these long-standing barriers. That’s why we partnered with the Raspberry Pi Foundation to co-create Experience AI, a new learning programme with free lesson plans, slide decks, worksheets and videos, to address gaps in AI education and support teachers in engaging and inspiring young people in the subject.

The programme aims to help young people aged 11–14 take their first steps in understanding the technology, making it relevant to diverse learners, and encouraging future careers in the field. All Experience AI resources are freely available to every school across the UK and beyond.

A woman teacher helps a young person with a coding project.
The Experience AI resources are free for every school.

The partnership is built on a shared vision to make AI education more inclusive and accessible. Bringing together the Foundation’s expertise in computing education and our cutting-edge technical knowledge and industry insights has allowed us to create a holistic learning experience that connects theoretical concepts and practical applications.

Experience AI: Informed by AI experts

A group of 15 research scientists and engineers at Google DeepMind contributed to the development of the lessons. From drafting definitions for key concepts, to brainstorming interesting research areas to highlight, and even featuring in the videos included in the lessons, the group played a key role in shaping the programme in close collaboration with the Foundation’s educators and education researchers.

Interview for Experience AI at Google DeepMind.
Interviews with AI scientists and engineers at Google DeepMind are part of Experience AI.

To bring AI concepts to life, the lessons include interactive activities as well as real-life examples, such as a project where Google DeepMind collaborated with ecologists and conservationists to develop machine learning methods to study the behaviour of an entire animal community in the Serengeti National Park and Grumeti Reserve in Tanzania.

Elephants in the Serengeti.
One of the Experience AI lessons focuses on an AI-enabled research project in the Serengeti.

Member of the working group, Google DeepMind Research Scientist Petar Veličković, shares: “AI is a technology that is going to impact us all, and therefore educating young people on how to interact with this technology is likely going to be a core part of school education going forward. The project was eye-opening and humbling for me, as I learned of the challenges associated with making such a complex topic accessible — not only to every pupil, but also to every teacher! Observing the thoughtful approach undertaken by the Raspberry Pi Foundation left me deeply impressed, and I’m taking home many useful ideas that I hope to incorporate in my own AI teaching efforts going forward.”

The lessons have been carefully developed to:

  • Follow a clear learning journey, underpinned by the SEAME framework which guides learners sequentially through key concepts and acts as a progression framework.
  • Build foundational knowledge and provide support for teachers. Focus on teacher training and support is at the core of the programme.
  • Embed ethics and responsibility. Crucially, key concepts in AI ethics and responsibility are woven into each lesson and progressively built on. Students are introduced to concepts like data bias, user-focused approaches, model cards, and how AI can be used for social good. 
  • Ensure cultural relevance and inclusion. Experience AI was designed with diverse learners in mind and includes a variety of activities to enable young people to pick topics that most interest them. 

What teachers say about the Experience AI lessons

To date, we estimate the resources have reached 200,000+ students in the UK and beyond. We’re thrilled to hear from teachers already using the resources about the impact they are having in the classroom, such as Mrs J Green from Waldegrave School in London, who says: “I thought that the lessons covered a really important topic. Giving the pupils an understanding of what AI is and how it works will become increasingly important as it becomes more ubiquitous in all areas of society. The lessons that we trialled took some of the ‘magic’ out of AI and started to give the students an understanding that AI is only as good as the data that is used to build it. It also started some really interesting discussions with the students around areas such as bias.”

An educator points to an image on a student's computer screen.
Experience AI offers support for teachers.

At North Liverpool Academy, teacher Dave Cross tells us: “AI is such a current and relevant topic in society that [these lessons] will enable Key Stage 3 computing students [ages 11–14] to gain a solid foundation in something that will become more prevalent within the curriculum, and wider subjects too as more sectors adopt AI and machine learning as standard. Our Key Stage 3 computing students now feel immensely more knowledgeable about the importance and place that AI has in their wider lives. These lessons and activities are engaging and accessible to students and educators alike, whatever their specialism may be.”

A stronger global AI community

Our hope is that the Experience AI programme instils confidence in both teachers and students, helping to address some of the critical school-level barriers leading to underrepresentation in AI and playing a role in building a stronger, more inclusive AI community where everyone can participate irrespective of their background. 

Children in a Code Club in India.

Today’s young people are tomorrow’s leaders — and as such, educating and inspiring them about AI is valuable for everybody.

Teachers can visit experience-ai.org to download all Experience AI resources for free.

We are now building a network of educational organisations around the world to tailor and translate the Experience AI resources so that more teachers and students can engage with them and learn key AI literacy skills. Find out more.

The post Experience AI: Making AI relevant and accessible appeared first on Raspberry Pi Foundation.

AI literacy for teachers and students all over the world

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/experience-ai-canada-kenya-romania/

I am delighted to announce that the Raspberry Pi Foundation and Google DeepMind are building a global network of educational organisations to bring AI literacy to teachers and students all over the world, starting with Canada, Kenya, and Romania.

Learners in a classroom in Kenya.
Learners around the world will gain AI literacy skills through Experience AI.

Experience AI 

We launched Experience AI in September 2022 to help teachers and students learn about AI technologies and how they are changing the world. 

Developed by the Raspberry Pi Foundation and Google DeepMind, Experience AI provides everything that teachers need to confidently deliver engaging lessons that will inspire and educate young people about AI and the role that it could play in their lives.

A group of young people investigate computer hardware together.
Experience AI is designed to inspire learners about AI through real-world contexts.

We provide lesson plans, classroom resources, worksheets, hands-on activities, and videos that introduce a wide range of AI applications and the underlying technologies that make them work. The materials are designed to be relatable to young people and can be taught by any teacher, whether or not they have a technical background. Alongside the classroom resources, we provide teacher professional development, including an online course that provides an introduction to machine learning and AI. 

Part of Experience AI are video interviews with AI developers at Google DeepMind.

The materials are grounded in real-world contexts and emphasise the potential for young people to positively change the world through a mastery of AI technologies. 

Since launching the first resources, we have seen significant demand from teachers and students all over the world, with over 200,000 students already learning with Experience AI. 

Experience AI network

Building on that initial success and in response to huge demand, we are now building a global network of educational organisations to expand the reach and impact of Experience AI by translating and localising the materials, promoting them to schools, and supporting teacher professional development.

Obum Ekeke OBE, Head of Education Partnerships at Google DeepMind, says:

“We have been blown away by the interest we have seen in Experience AI since its launch and are thrilled to be working with the Raspberry Pi Foundation and local partners to expand the reach of the programme. AI literacy is a critical skill in today’s world, but not every young person currently has access to relevant education and resources. By making AI education more inclusive, we can help young people make more informed decisions about using AI applications in their daily lives, and encourage safe and responsible use of the technology.”

Learner in a computing classroom.
Experience AI helps learners understand how they might use AI to positively change the world.

Today we are announcing the first three organisations that we are working with, each of which is already doing fantastic work to democratise digital skills in their part of the world. All three are already working in partnership with the Raspberry Pi Foundation and we are excited to be deepening and expanding our collaboration to include AI literacy.

Digital Moment, Canada

Digital Moment is a Montreal-based nonprofit focused on empowering young changemakers through digital skills. Founded in 2013, Digital Moment has a track record of supporting teachers and students across Canada to learn about computing, coding, and AI literacy, including through supporting one of the world’s largest networks of Code Clubs

Digital Moment logo.

“We’re excited to be working with the Raspberry Pi Foundation and Google DeepMind to bring Experience AI to teachers across Canada. Since 2018, Digital Moment has been introducing rich training experiences and educational resources to make sure that Canadian teachers have the support to navigate the impacts of AI in education for their students. Through this partnership, we will be able to reach more teachers and with more resources, to keep up with the incredible pace and disruption of AI.”

Indra Kubicek, President, Digital Moment

Tech Kidz Africa, Kenya

Tech Kidz Africa is a Mobasa-based social enterprise that nurtures creativity in young people across Kenya through digital skills including coding, robotics, app and web development, and creative design thinking.

Tech Kidz Africa logo.

“With the retooling of teachers as a key objective of Tech Kidz Africa, working with Google DeepMind and the Raspberry Pi Foundation will enable us to build the capacity of educators to empower the 21st century learner, enhancing the teaching and learning experience to encourage innovation and  prepare the next generation for the future of work.”

Grace Irungu, CEO, Tech Kidz Africa

Asociația Techsoup, Romania

Asociația Techsoup works with teachers and students across Romania and Moldova, training Computer Science, ICT, and primary school teachers to build their competencies around coding and technology. A longstanding partner of the Raspberry Pi Foundation, they foster a vibrant community of CoderDojos and support young people to participate in Coolest Projects and the European Astro Pi Challenge

Asociata Techsoup logo.

“We are enthusiastic about participating in this global partnership to bring high-quality AI education to all students, regardless of their background. Given the current exponential growth of AI tools and instruments in our daily lives, it is crucial to ensure that students and teachers everywhere comprehend and effectively utilise these tools to enhance their human, civic, and professional potential. Experience AI is the best available method for AI education for middle school students. We couldn’t be more thrilled to work with the Raspberry Pi Foundation and Google DeepMind to make it accessible in Romanian for teachers in Romania and the Republic of Moldova, and to assist teachers in fully integrating it into their classes.”

Elena Coman, Director of Development, Asociația Techsoup

Get involved

These are the first of what will become a global network of organisations supporting tens of thousands of teachers to equip millions of students with a foundational understanding of AI technologies through Experience AI. If you want to get involved in inspiring the next generation of AI leaders, we would love to hear from you.

The post AI literacy for teachers and students all over the world appeared first on Raspberry Pi Foundation.

The Experience AI Challenge: Make your own AI project

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/experience-ai-challenge-announcement/

We are pleased to announce a new AI-themed challenge for young people: the Experience AI Challenge invites and supports young people aged up to 18 to design and make their own AI applications. This is their chance to have a taste of getting creative with the powerful technology of machine learning. And equally exciting: every young creator will get feedback and encouragement from us at the Raspberry Pi Foundation.

As you may have heard, we recently launched a series of classroom lessons called Experience AI in partnership with Google DeepMind. The lesson materials make it easy for teachers of all subjects to teach their learners aged up to 18 about artificial intelligence and machine learning. Now the Experience AI Challenge gives young people the opportunity to develop their skills further and build their own AI applications.

Key information

  • Starts on 08 January 2024
  • Free to take part in
  • Designed for beginners, based on the tools Scratch and Machine Learning for Kids
  • Open for official submissions made by UK-based young people aged up to 18 and their mentors 
  • Young people and their mentors around the world are welcome to access the Challenge resources and make AI projects
  • Tailored resources for young people and mentors to support you to take part
  • Register your interest and we’ll send you a reminder email on the launch day

The Experience AI Challenge

For the Experience AI Challenge, you and the young people you work with will learn how to make a machine learning (ML) classifier that organises data types such as audio, text, or images into different groupings that you specify.

A girl points excitedly at a project on the Raspberry Pi Foundation's projects site.

The Challenge resources show young people the basic principles of using the tools and training ML models. Then they will use these new skills to create their own projects, and it’s a chance for their imaginations to run free. Here are some examples of projects your young tech creators could make:

  • An instrument classifier to identify the type of musical instrument being played in pieces of music
  • An animal sound identifier to determine which animal is making a particular sound
  • A voice command recogniser to detect voice commands like ‘stop’, ‘go’, ‘left’, and ‘right’
  • A photo classifier to identify what kind of food is shown in a photograph

All creators will receive expert feedback on their projects.

To make the Experience AI Challenge as familiar and accessible as possible for young people who may be new to coding, we designed it for beginners. We chose the free, easy-to-use, online tool Machine Learning for Kids for young people to train their machine learning models, and Scratch as the programming environment for creators to code their projects. If you haven’t used these tools before, don’t worry. The Challenge resources will provide all the support you need to get up to speed.

Training an ML model and creating a project with it teaches many skills beyond coding, including computational thinking, ethical programming, data literacy, and developing a broader understanding of the influence of AI on society.

The three Challenge stages

Our resources for creators and mentors walk you through the three stages of the Experience AI Challenge.

Stage 1: Explore and discover

The first stage of the Challenge is designed to ignite young people’s curiosity. Through our resources, mentors let participants explore the world of AI and ML and discover how these technologies are revolutionising industries like healthcare and entertainment.

Stage 2: Get hands-on

In the second stage, young people choose a data type and embark on a guided example project. They create a training dataset, train an ML model, and develop a Scratch application as the user interface for their model. 

Stage 3: Design and create

In the final stage, mentors support young people to apply what they’ve learned to create their own ML project that addresses a problem they’re passionate about. They submit their projects to us online and receive feedback from our expert panel.

Things to do today

  1. Visit our new Experience AI Challenge homepage to find out more details
  2. Register your interest so you receive a reminder email on launch day, 8 January
  3. Get your young people excited and thinking about what kind of AI project they might like to create

We can’t wait to see how you and your young creators choose to engage with the Experience AI Challenge!

The post The Experience AI Challenge: Make your own AI project appeared first on Raspberry Pi Foundation.

Hello World #22 out now: Teaching and AI

Post Syndicated from Meg Wang original https://www.raspberrypi.org/blog/hello-world-22-ai-education/

Recent developments in artificial intelligence are changing how the world sees computing and challenging computing educators to rethink their approach to teaching. In the brand-new issue of Hello World, out today for free, we tackle some big questions about AI and computing education. We also get practical with resources for your classroom.

Cover of Hello World issue 22.

Teaching and AI

In their articles for issue 22, educators explore a range of topics related to teaching and AI, including what is AI literacy and how do we teach it; gender bias in AI and what we can do about it; how to speak to young children about AI; and why anthropomorphism hinders learners’ understanding of AI.

Our feature articles also include a research digest on AI ethics for children, and of course hands-on examples of AI lessons for your learners.

A snapshot of AI education

Hello World issue 22 is a comprehensive snapshot of the current landscape of AI education. Ben Garside, Learning Manager for our Experience AI programme and guest editor of this issue, says:

“When I was teaching in the classroom, I used to enjoy getting to grips with new technological advances and finding ways in which I could bring them into school and excite the students I taught. Occasionally, during the busiest of times, I’d also look longingly at other subjects and be jealous that their curriculum appeared to be more static than ours (probably a huge misconception on my behalf).”

It’s inspiring for me to see how the education community is reacting to the opportunities that AI can provide.

Ben Garside

“It’s inspiring for me to see how the education community is reacting to the opportunities that AI can provide. Of course, there are elements of AI where we need to tread carefully and be very cautious in our approach, but what you’ll see in this magazine is educators who are thinking creatively in this space.”

Download Hello World issue 22 for free

AI is a topic we’ve addressed before in Hello World, and we’ll keep covering this rapidly evolving area in future. We hope this issue gives you plenty of ideas to take away and build upon.

Also in issue 22:

  • Vocational training for young people
  • Making the most of online educator training
  • News about BBC micro:bit
  • An insight into the WiPSCE 2023 conference for teachers and educators
  • And much, much more

You can download your free PDF issue now, or purchase a print copy from our store. UK-based subscribers for a free print edition can expect their copies to arrive in the mail this week.

Send us a message or tag us on social media to let us know which articles have made you think and, most importantly, which will help you with your teaching.

The post Hello World #22 out now: Teaching and AI appeared first on Raspberry Pi Foundation.

What does AI mean for computing education?

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/what-does-ai-mean-for-computing-education/

It’s been less than a year since ChatGPT catapulted generative artificial intelligence (AI) into mainstream public consciousness, reigniting the debate about the role that these powerful new technologies will play in all of our futures.

A person in front of a cloudy sky, seen through a refractive glass grid. Parts of the image are overlaid with a diagram of a neural network.
Image: Alan Warburton / © BBC / Better Images of AI / Quantified Human / CC-BY 4.0

‘Will AI save or destroy humanity?’ might seem like an extreme title for a podcast, particularly if you’ve played with these products and enjoyed some of their obvious limitations. The reality is that we are still at the foothills of what AI technology can achieve (think World Wide Web in the 1990s), and lots of credible people are predicting an astonishing pace of progress over the next few years, promising the radical transformation of almost every aspect of our lives. Comparisons with the Industrial Revolution abound.

At the same time, there are those saying it’s all moving too fast; that regulation isn’t keeping pace with innovation. One of the UK’s leading AI entrepreneurs, Mustafa Suleyman, said recently: “If you don’t start from a position of fear, you probably aren’t paying attention.”

In a computing classroom, a girl looks at a computer screen.
What is AI literacy for young people?

What does all this mean for education, and particularly for computing education? Is there any point trying to teach children about AI when it is all changing so fast? Does anyone need to learn to code anymore? Will teachers be replaced by chatbots? Is assessment as we know it broken?

If we’re going to seriously engage with these questions, we need to understand that we’re talking about three different things:

  1. AI literacy: What it is and how we teach it
  2. Rethinking computer science (and possibly some other subjects)
  3. Enhancing teaching and learning through AI-powered technologies

AI literacy: What it is and how we teach it

For young people to thrive in a world that is being transformed by AI systems, they need to understand these technologies and the role they could play in their lives.

In a computing classroom, a smiling girl raises her hand.
Our SEAME model articulates the concepts, knowledge, and skills that are essential ingredients of any AI literacy curriculum.

The first problem is defining what AI literacy actually means. What are the concepts, knowledge, and skills that it would be useful for a young person to learn?

The reality is that — with a few notable exceptions — the vast majority of AI literacy resources available today are probably doing more harm than good.

In the past couple of years there has been a huge explosion in resources that claim to help young people develop AI literacy. Our research team mapped and categorised over 500 resources, and undertaken a systematic literature review to understand what research has been done on K–12 AI classroom interventions (spoiler: not much). 

The reality is that — with a few notable exceptions — the vast majority of AI literacy resources available today are probably doing more harm than good. For example, in an attempt to be accessible and fun, many materials anthropomorphise AI systems, using human terms to describe them and their functions and thereby perpetuating misconceptions about what AI systems are and how they work.

A real banana and an image of a banana shown on the screen of a laptop are both labelled "Banana".
Image: Max Gruber / Better Images of AI / Ceci n’est pas une banane / CC-BY 4.0

What emerged from this work at the Raspberry Pi Foundation is the SEAME model, which articulates the concepts, knowledge, and skills that are essential ingredients of any AI literacy curriculum. It separates out the social and ethical, application, model, and engine levels of AI systems — all of which are important — and gets specific about age-appropriate learning outcomes for each. 

This research has formed the basis of Experience AI (experience-ai.org), a suite of resources, lessons plans, videos, and interactive learning experiences created by the Raspberry Pi Foundation in partnership with Google DeepMind, which is already being used in thousands of classrooms.

If we’re serious about AI literacy for young people, we have to get serious about AI literacy for teachers.

Defining AI literacy and developing resources is part of the challenge, but that doesn’t solve the problem of how we get them into the hands and minds of every young person. This will require policy change. We need governments and education system leaders to grasp that a foundational understanding of AI technologies is essential for creating economic opportunity, ensuring that young people have the mindsets to engage positively with technological change, and avoiding a widening of the digital divide. We’ve messed this up before with digital skills. Let’s not do it again.

Two smiling adults learn about computing at desktop computers.
Teacher professional development is key to AI literacy for young people.

More than anything, we need to invest in teachers and their professional development. While there are some fantastic computing teachers with computer science qualifications, the reality is that most of the computing lessons taught anywhere on the planet are taught by a non-specialist teacher. That is even more so the case for anything related to AI. If we’re serious about AI literacy for young people, we have to get serious about AI literacy for teachers. 

Rethinking computer science 

Alongside introducing AI literacy, we also need to take a hard look at computer science. At the very least, we need to make sure that computer science curricula include machine learning models, explaining how they constitute a new paradigm for computing, and give more emphasis to the role that data will play in the future of computing. Adding anything new to an already packed computer science curriculum means tough choices about what to deprioritise to make space.

Elephants in the Serengeti.
One of our Experience AI Lessons revolves around the us of AI technology to study the Serengeti ecosystem.

And, while we’re reviewing curricula, what about biology, geography, or any of the other subjects that are just as likely to be revolutionised by big data and AI? As part of Experience AI, we are launching some of the first lessons focusing on ecosystems and AI, which we think should be at the heart of any modern biology curriculum. 

Some are saying young people don’t need to learn how to code. It’s an easy political soundbite, but it just doesn’t stand up to serious scrutiny.

There is already a lively debate about the extent to which the new generation of AI technologies will make programming as we know it obsolete. In January, the prestigious ACM journal ran an opinion piece from Matt Welsh, founder of an AI-powered programming start-up, in which he said: “I believe the conventional idea of ‘writing a program’ is headed for extinction, and indeed, for all but very specialised applications, most software, as we know it, will be replaced by AI systems that are trained rather than programmed.”

Computer science students at a desktop computer in a classroom.
Writing computer programs is an essential part of learning how to analyse problems in computational terms.

With GitHub (now part of Microsoft) claiming that their pair programming technology, Copilot, is now writing 46 percent of developers’ code, it’s perhaps not surprising that some are saying young people don’t need to learn how to code. It’s an easy political soundbite, but it just doesn’t stand up to serious scrutiny. 

Even if AI systems can improve to the point where they generate consistently reliable code, it seems to me that it is just as likely that this will increase the demand for more complex software, leading to greater demand for more programmers. There is historical precedent for this: the invention of abstract programming languages such as Python dramatically simplified the act of humans providing instructions to computers, leading to more complex software and a much greater demand for developers. 

A child codes a Spiderman project at a laptop during a Code Club session.
Learning to program will help young people understand how the world around them is being transformed by AI systems.

However these AI-powered tools develop, it will still be essential for young people to learn the fundamentals of programming and to get hands-on experience of writing code as part of any credible computer science course. Practical experience of writing computer programs is an essential part of learning how to analyse problems in computational terms; it brings the subject to life; it will help young people understand how the world around them is being transformed by AI systems; and it will ensure that they are able to shape that future, rather than it being something that is done to them.

Enhancing teaching and learning through AI-powered technologies

Technology has already transformed learning. YouTube is probably the most important educational innovation of the past 20 years, democratising both the creation and consumption of learning resources. Khan Academy, meanwhile, integrated video instruction into a learning experience that gamified formative assessment. Our own edtech platform, Ada Computer Science, combines comprehensive instructional materials, a huge bank of questions designed to help learning, and automated marking and feedback to make computer science easier to teach and learn. Brilliant though these are, none of them have even begun to harness the potential of AI systems like large language models (LLMs).

The challenge for all of us working in education is how we ensure that ethics and privacy are at the centre of the development of [AI-powered edtech].

One area where I think we’ll see huge progress is feedback. It’s well-established that good-quality feedback makes a huge difference to learning, but a teacher’s ability to provide feedback is limited by their time. No one is seriously claiming that chatbots will replace teachers, but — if we can get the quality right — LLM applications could provide every child with unlimited, on-demand feedback. AI-powered feedback — not giving students the answers, but coaching, suggesting, and encouraging in the way that great teachers already do — could be transformational.

Two adults learn about computing at desktop computers.
The challenge for all of us working in education is how we ensure that ethics and privacy are at the centre of the development of AI-powered edtech.

We are already seeing edtech companies racing to bring new products and features to market that leverage LLMs, and my prediction is that the pace of that innovation is going to increase exponentially over the coming years. The challenge for all of us working in education is how we ensure that ethics and privacy are at the centre of the development of these technologies. That’s important for all applications of AI, but especially so in education, where these systems will be unleashed directly on young people. How much data from students will an AI system need to access? Can that data — aggregated from millions of students — be used to train new models? How can we communicate transparently the limitations of the information provided back to students?

Ultimately, we need to think about how parents, teachers, and education systems (the purchasers of edtech products) will be able to make informed choices about what to put in front of students. Standards will have an important role to play here, and I think we should be exploring ideas such as an AI kitemark for edtech products that communicate whether they meet a set of standards around bias, transparency, and privacy. 

Realising potential in a brave new world

We may very well be entering an era in which AI systems dramatically enhance the creativity and productivity of humanity as a species. Whether the reality lives up to the hype or not, AI systems are undoubtedly going to be a big part of all of our futures, and we urgently need to figure out what that means for education, and what skills, knowledge, and mindsets young people need to develop in order to realise their full potential in that brave new world. 

That’s the work we’re engaged in at the Raspberry Pi Foundation, working in partnership with individuals and organisations from across industry, government, education, and civil society.

If you have ideas and want to get involved in shaping the future of computing education, we’d love to hear from you.

This article will also appear in issue 22 of Hello World magazine, which focuses on teaching and AI. We are publishing this new issue on Monday 23 October. Sign up for a free digital subscription to get the PDF straight to your inbox on the day.

The post What does AI mean for computing education? appeared first on Raspberry Pi Foundation.

Experience AI: Teach about AI, chatbots, and biology

Post Syndicated from Ben Garside original https://www.raspberrypi.org/blog/experience-ai-new-updated-lessons/

New artificial intelligence (AI) tools have had a profound impact on many areas of our lives in the past twelve months, including on education. Teachers and schools have been exploring how AI tools can transform their work, and how they can teach their learners about this rapidly developing technology. As enabling all schools and teachers to help their learners understand computing and digital technologies is part of our mission, we’ve been working hard to support educators with high-quality, free teaching resources about AI through Experience AI, our learning programme in partnership with Google DeepMind.


In this article, we take you through the updates we’ve made to the Experience AI Lessons based on teachers’ feedback, reveal two new lessons on large language models (LLMs) and biology, and give you the chance to shape the future of the Experience AI programme. 

Updated lessons based on your feedback

In April we launched the first Experience AI Lessons as a unit of six lessons for secondary school students (ages 11 to 14, Key Stage 3) that gives you everything you need to teach AI, including lesson plans, slide decks, worksheets, and videos. Since the launch, we’ve worked closely with teachers and learners to make improvements to the lesson materials.

The first big update you’ll see now is an additional project for students to do across Lesson 5 and Lesson 6. Before, students could choose between two projects to create their own machine learning model, either to classify data from the world’s oceans or to identify fake news. The new project we’ve added gives students the chance to use images to train a machine learning model to identify whether or not an item is biodegradable and therefore suitable to be put in a food waste bin.

Two teenagers sit at laptops and do coding activities.

Our second big update is a new set of teacher-focused videos that summarise each lesson and highlight possible talking points. We hope these videos will help you feel confident and ready to deliver the Experience AI Lessons to your learners.

A new lesson on large language models

As well as updating the six existing lessons, we’ve just released a new seventh lesson consisting of a set of activities to help students learn about the capabilities, opportunities, and downsides of LLMs, the models that AI chatbots are based on.

With the LLM lesson’s activities you can help your learners to:

  • Explore the purpose and functionality of LLMs and examine the critical aspect of trustworthiness of these models’ outputs
  • Examine the reasons why the output of LLMs may not always be reliable and understand that LLMs are machines that make predictions
  • Compare LLMs to other technologies to assess their suitability for different purposes
  • Evaluate the appropriateness of using LLMs in a variety of authentic scenarios
A slide from an Experience AI Lesson about large language models.
An example activity in our new LLM unit.

All Experience AI Lessons are designed to be cross-curricular, and for England-based teachers, the LLM lesson is particularly useful for teaching PSHE (Personal, Social, Health and Economic education).

The LLM lesson is designed as a set of five 10-minute activities, so you have the flexibility to teach the material as a single lesson or over a number of sessions. While we recommend that you teach the activities in the order they come, you can easily adapt them for your learners’ interests and needs. Feel free to take longer than our recommended time and have fun with them.

A new lesson on biology: AI for the Serengeti

We have also been working on an exciting new lesson to introduce AI to secondary school students (ages 11 to 14, Key Stage 3) in the biology classroom. This stand-alone lesson focuses on how AI can help conservationists with monitoring an ecosystem in the Serengeti.

Elephants in the Serengeti.

We worked alongside members of the Biology Education Research Group (BERG) at the UK’s Royal Society of Biology to make sure the lesson is relevant and accessible for Key Stage 3 teachers and their learners.

Register your interest if you would like to be one of the first teachers to try out this thought-provoking lesson.  

Webinars to support your teaching

If you want to use the Experience AI materials but would like more support, our new webinar series will help you. You will get your questions answered by the people who created the lessons. Our first webinar covered the six-lesson unit and you can watch the recording now:

September’s webinar: How to use Machine Learning for Kids

Join us to learn how to use Machine Learning for Kids (ML4K), a child-friendly tool for training AI models that is used for project work throughout the Experience AI Lessons. The September webinar will be with Dale Lane, who has spent his career developing AI technology and is the creator of ML4K.

Help shape the future of AI education

We need your feedback like a machine learning model needs data. Here are two ways you can share your thoughts:

  1. Fill in our form to tell us how you’ve used the Experience AI materials.
  2. Become part of our teacher feedback panel. We meet every half term, and our first session will be held mid-October. Email us to register your interest and we’ll be in touch.

To find out more about how you can use Experience AI to teach AI and machine learning to your learners this school year, visit the Experience AI website.

The post Experience AI: Teach about AI, chatbots, and biology appeared first on Raspberry Pi Foundation.

Experience AI: The excitement of AI in your classroom

Post Syndicated from Duncan Maidens original https://www.raspberrypi.org/blog/experience-ai-launch-lessons/

We are delighted to announce that we’ve launched Experience AI, our new learning programme to help educators to teach, inspire, and engage young people in the subject of artificial intelligence (AI) and machine learning (ML).

Experience AI is a new educational programme that offers cutting-edge secondary school resources on AI and machine learning for teachers and their students. Developed in partnership by the Raspberry Pi Foundation and DeepMind, the programme aims to support teachers in the exciting and fast-moving area of AI, and get young people passionate about the subject.

The importance of AI and machine learning education

Artificial intelligence and machine learning applications are already changing many aspects of our lives. From search engines, social media content recommenders, self-driving cars, and facial recognition software, to AI chatbots and image generation, these technologies are increasingly common in our everyday world.

Young people who understand how AI works will be better equipped to engage with the changes AI applications bring to the world, to make informed decisions about using and creating AI applications, and to choose what role AI should play in their futures. They will also gain critical thinking skills and awareness of how they might use AI to come up with new, creative solutions to problems they care about.

The AI applications people are building today are predicted to affect many career paths. In 2020, the World Economic Forum estimated that AI would replace some 85 million jobs by 2025 and create 97 million new ones. Many of these future jobs will require some knowledge of AI and ML, so it’s important that young people develop a strong understanding from an early age.

A group of young people investigate computer hardware together.
 Develop a strong understanding of the concepts of AI and machine learning with your learners.

Experience AI Lessons

Something we get asked a lot is: “How do I teach AI and machine learning with my class?”. To answer this question, we have developed a set of free lessons for secondary school students (age 11 to 14) that give you everything you need including lesson plans, slide decks, worksheets, and videos.

The lessons focus on relatable applications of AI and are carefully designed so that teachers in a wide range of subjects can use them. You can find out more about how we used research to shape the lessons and how we aim to avoid misconceptions about AI.

The lessons are also for you if you’re an educator or volunteer outside of a school setting, such as in a coding club.

The six lessons

  1. What is AI?: Learners explore the current context of artificial intelligence (AI) and how it is used in the world around them. Looking at the differences between rule-based and data-driven approaches to programming, they consider the benefits and challenges that AI could bring to society. 
  2. How computers learn: Learners focus on the role of data-driven models in AI systems. They are introduced to machine learning and find out about three common approaches to creating ML models. Finally the learners explore classification, a specific application of ML.
  3. Bias in, bias out: Learners create their own machine learning model to classify images of apples and tomatoes. They discover that a limited dataset is likely to lead to a flawed ML model. Then they explore how bias can appear in a dataset, resulting in biased predictions produced by a ML model.
  4. Decision trees: Learners take their first in-depth look at a specific type of machine learning model: decision trees. They see how different training datasets result in the creation of different ML models, experiencing first-hand what the term ‘data-driven’ means. 
  5. Solving problems with ML models: Learners are introduced to the AI project lifecycle and use it to create a machine learning model. They apply a human-focused approach to working on their project, train a ML model, and finally test their model to find out its accuracy.
  6. Model cards and careers: Learners finish the AI project lifecycle by creating a model card to explain their machine learning model. To finish off the unit, they explore a range of AI-related careers, hear from people working in AI research at DeepMind, and explore how they might apply AI and ML to their interests.

As part of this exciting first phase, we’re inviting teachers to participate in research to help us further develop the resources. All you need to do is sign up through our website, download the lessons, use them in your classroom, and give us your valuable feedback.

An educator points to an image on a student's computer screen.
 Ben Garside, one of our lead educators working on Experience AI, takes a group of students through one of the new lessons.

Support for teachers

We’ve designed the Experience AI lessons with teacher support in mind, and so that you can deliver them to your learners aged 11 to 14 no matter what your subject area is. Each of the lesson plans includes a section that explains new concepts, and the slide decks feature embedded videos in which DeepMind’s AI researchers describe and bring these concepts to life for your learners.

We will also be offering you a range of new teacher training opportunities later this year, including a free online CPD course — Introduction to AI and Machine Learning — and a series of AI-themed webinars.

Tell us your feedback

We will be inviting schools across the UK to test and improve the Experience AI lessons through feedback. We are really looking forward to working with you to shape the future of AI and machine learning education.

Visit the Experience AI website today to get started.

The post Experience AI: The excitement of AI in your classroom appeared first on Raspberry Pi Foundation.

How anthropomorphism hinders AI education

Post Syndicated from Ben Garside original https://www.raspberrypi.org/blog/ai-education-anthropomorphism/

In the 1950s, Alan Turing explored the central question of artificial intelligence (AI). He thought that the original question, “Can machines think?”, would not provide useful answers because the terms “machine” and “think” are hard to define. Instead, he proposed changing the question to something more provable: “Can a computer imitate intelligent behaviour well enough to convince someone they are talking to a human?” This is commonly referred to as the Turing test.

It’s been hard to miss the newest generation of AI chatbots that companies have released over the last year. News articles and stories about them seem to be everywhere at the moment. So you may have heard of machine learning (ML) chatbots such as ChatGPT and LaMDA. These chatbots are advanced enough to have caused renewed discussions about the Turing Test and whether the chatbots are sentient.

Chatbots are not sentient

Without any knowledge of how people create such chatbots, it’s easy to imagine how someone might develop an incorrect mental model around these chatbots being living entities. With some awareness of Sci-Fi stories, you might even start to imagine what they could look like or associate a gender with them.

A person in front of a cloudy sky, seen through a refractive glass grid. Parts of the image are overlaid with a diagram of a neural network.
Image: Alan Warburton / © BBC / Better Images of AI / Quantified Human / CC BY 4.0

The reality is that these new chatbots are applications based on a large language model (LLM) — a type of machine learning model that has been trained with huge quantities of text, written by people and taken from places such as books and the internet, e.g. social media posts. An LLM predicts the probable order of combinations of words, a bit like the autocomplete function on a smartphone. Based on these probabilities, it can produce text outputs. LLM chatbots run on servers with huge amounts of computing power that people have built in data centres around the world.

Our AI education resources for young people

AI applications are often described as “black boxes” or “closed boxes”: they may be relatively easy to use, but it’s not as easy to understand how they work. We believe that it’s fundamentally important to help everyone, especially young people, to understand the potential of AI technologies and to open these closed boxes to understand how they actually work.

As always, we want to demystify digital technology for young people, to empower them to be thoughtful creators of technology and to make informed choices about how they engage with technology — rather than just being passive consumers.

That’s the goal we have in mind as we’re working on lesson resources to help teachers and other educators introduce KS3 students (ages 11 to 14) to AI and ML. We will release these Experience AI lessons very soon.

Why we avoid describing AI as human-like

Our researchers at the Raspberry Pi Computing Education Research Centre have started investigating the topic of AI and ML, including thinking deeply about how AI and ML applications are described to educators and learners.

To support learners to form accurate mental models of AI and ML, we believe it is important to avoid using words that can lead to learners developing misconceptions around machines being human-like in their abilities. That’s why ‘anthropomorphism’ is a term that comes up regularly in our conversations about the Experience AI lessons we are developing.

To anthropomorphise: “to show or treat an animal, god, or object as if it is human in appearance, character, or behaviour”


Anthropomorphising AI in teaching materials might lead to learners believing that there is sentience or intention within AI applications. That misconception would distract learners from the fact that it is people who design AI applications and decide how they are used. It also risks reducing learners’ desire to take an active role in understanding AI applications, and in the design of future applications.

Examples of how anthropomorphism is misleading

Avoiding anthropomorphism helps young people to open the closed box of AI applications. Take the example of a smart speaker. It’s easy to describe a smart speaker’s functionality in anthropomorphic terms such as “it listens” or “it understands”. However, we think it’s more accurate and empowering to explain smart speakers as systems developed by people to process sound and carry out specific tasks. Rather than telling young people that a smart speaker “listens” and “understands”, it’s more accurate to say that the speaker receives input, processes the data, and produces an output. This language helps to distinguish how the device actually works from the illusion of a persona the speaker’s voice might conjure for learners.

Eight photos of the same tree taken at different times of the year, displayed in a grid. The final photo is highly pixelated. Groups of white blocks run across the grid from left to right, gradually becoming aligned.
Image: David Man & Tristan Ferne / Better Images of AI / Trees / CC BY 4.0

Another example is the use of AI in computer vision. ML models can, for example, be trained to identify when there is a dog or a cat in an image. An accurate ML model, on the surface, displays human-like behaviour. However, the model operates very differently to how a human might identify animals in images. Where humans would point to features such as whiskers and ear shapes, ML models process pixels in images to make predictions based on probabilities.

Better ways to describe AI

The Experience AI lesson resources we are developing introduce students to AI applications and teach them about the ML models that are used to power them. We have put a lot of work into thinking about the language we use in the lessons and the impact it might have on the emerging mental models of the young people (and their teachers) who will be engaging with our resources.

It’s not easy to avoid anthropomorphism while talking about AI, especially considering the industry standard language in the area: artificial intelligence, machine learning, computer vision, to name but a few examples. At the Foundation, we are still training ourselves not to anthropomorphise AI, and we take a little bit of pleasure in picking each other up on the odd slip-up.

Here are some suggestions to help you describe AI better:

Avoid using Instead use
Avoid using phrases such as “AI learns” or “AI/ML does” Use phrases such as “AI applications are designed to…” or “AI developers build applications that…
Avoid words that describe the behaviour of people (e.g. see, look, recognise, create, make) Use system type words (e.g. detect, input, pattern match, generate, produce)
Avoid using AI/ML as a countable noun, e.g. “new artificial intelligences emerged in 2022” Refer to ‘AI/ML’ as a scientific discipline, similarly to how you use the term “biology”

The purpose of our AI education resources

If we are correct in our approach, then whether or not the young people who engage in Experience AI grow up to become AI developers, we will have helped them to become discerning users of AI technologies and to be more likely to see such products for what they are: data-driven applications and not sentient machines.

If you want to use the Experience AI lessons to teach your learners, please sign up to be the first to hear when we launch these resources.

The post How anthropomorphism hinders AI education appeared first on Raspberry Pi Foundation.

AI education resources: What do we teach young people?

Post Syndicated from Jane Waite original https://www.raspberrypi.org/blog/ai-education-resources-what-to-teach-seame-framework/

People have many different reasons to think that children and teenagers need to learn about artificial intelligence (AI) technologies. Whether it’s that AI impacts young people’s lives today, or that understanding these technologies may open up careers in their future — there is broad agreement that school-level education about AI is important.

A young person writes Python code.

But how do you actually design lessons about AI, a technical area that is entirely new to young people? That was the question we needed to answer as we started Experience AI, our exciting collaboration with DeepMind, a leading AI company.

Our approach to developing AI education resources

As part of Experience AI, we are creating a free set of lesson resources to help teachers introduce AI and machine learning (ML) to KS3 students (ages 11 to 14). In England this area is not currently part of the national curriculum, but it’s starting to appear in all sorts of learning materials for young people. 

Two learners and a teacher in a physical computing lesson.

While developing the six Experience AI lessons, we took a research-informed approach. We built on insights from the series of research seminars on AI and data science education we had hosted in 2021 and 2022, and on research we ourselves have been conducting at the Raspberry Pi Computing Education Research Centre.

We reviewed over 500 existing resources that are used to teach AI and ML.

As part of this research, we reviewed over 500 existing resources that are used to teach AI and ML. We found that the vast majority of them were one-off activities, and many claimed to be appropriate for learners of any age. There were very few sets of lessons, or units of work, that were tailored to a specific age group. Activities often had vague learning objectives, or none at all. We rarely found associated assessment activities. These were all shortcomings we wanted to avoid in our set of lessons.

To analyse the content of AI education resources, we use a simple framework called SEAME. This framework is based on work I did in 2018 with Professor Paul Curzon at Queen Mary University of London, running professional development for educators on teaching machine learning.

The SEAME framework gives you a simple way to group learning objectives and resources related to teaching AI and ML, based on whether they focus on social and ethical aspects (SE), applications (A), models (M), or engines (E, i.e. how AI works).
Click to enlarge.

The SEAME framework gives you a simple way to group learning objectives and resources related to teaching AI and ML, based on whether they focus on social and ethical aspects (SE), applications (A), models (M), or engines (E, i.e. how AI works). We hope that it will be a useful tool for anyone who is interested in looking at resources to teach AI. 

What do AI education resources focus on?

The four levels of the SEAME framework do not indicate a hierarchy or sequence. Instead, they offer a way for teachers, resource developers, and researchers to talk about the focus of AI learning activities.

Social and ethical aspects (SE)

The SE level covers activities that relate to the impact of AI on everyday life, and to its implications for society. Learning objectives and their related resources categorised at this level introduce students to issues such as privacy or bias concerns, the impact of AI on employment, misinformation, and the potential benefits of AI applications.

A slide from a lesson about AI that describes an AI application related to timetables.
An example activity in the Experience AI lessons where learners think about the social and ethical issues of an AI application that predicts what subjects they might want to study. This activity is mostly focused on the social and ethical level of the SEAME framework, but also links to the applications and models levels.

Applications (A)

The A level refers to activities related to applications and systems that use AI or ML models. At this level, learners do not learn how to train models themselves, or how such models work. Learning objectives at this level include knowing a range of AI applications and starting to understand the difference between rule-based and data-driven approaches to developing applications.

Models (M)

The M level concerns the models underlying AI and ML applications. Learning objectives at this level include learners understanding the processes used to train and test models. For example, through resources focused on the M level, students could learn about the different learning paradigms of ML (i.e., supervised, unsupervised, or reinforcement learning).

A slide from a lesson about AI that describes an ML model to classify animals.
An example activity in the Experience AI lessons where students learn about classification. This activity is mostly focused on the models level of the SEAME framework, but also links to the social and ethical and the applications levels.

Engines (E)

The E level is related to the engines that make AI models work. This is the most hidden and complex level, and for school-aged learners may need to be taught using unplugged activities and visualisations. Learning objectives could include understanding the basic workings of systems such as data-driven decision trees and artificial neural networks.

Covering the four levels

Some learning activities may focus on a single level, but activities can also span more than one level. For example, an activity may start with learners trying out an existing ‘rock-paper-scissors’ application that uses an ML model to recognise hand shapes. This would cover the applications level. If learners then move on to train the model to improve its accuracy by adding more image data, they work at the models level.

A teacher helps a young person with a coding project.

Other activities cover several SEAME levels to address a specific concept. For example, an activity focussed on bias might start with an example of the societal impact of bias (SE level). Learners could then discuss the AI applications they use and reflect on how bias impacts them personally (A level). The activity could finish with learners exploring related data in a simple ML model and thinking about how representative the data is of all potential application users (M level).

The set of lessons on AI we are developing in collaboration with DeepMind covers all four levels of SEAME.

The set of Experience AI lessons we are developing in collaboration with DeepMind covers all four levels of SEAME. The lessons are based on carefully designed learning objectives and specifically targeted to KS3 students. Lesson materials include presentations, videos, student activities, and assessment questions.

We’re releasing the Experience AI lessons very soon — if you want to be the first to hear news about them, please sign up here.

The SEAME framework as a tool for research on AI education

For researchers, we think the SEAME framework will, for example, be useful to analyse school curriculum material to see whether some age groups have more learning activities available at one level than another, and whether this changes over time. We may find that primary school learners work mostly at the SE and A levels, and secondary school learners move between the levels with increasing clarity as they develop their knowledge. It may also be the case that some learners or teachers prefer activities focused on one level rather than another. However, we can’t be sure: research is needed to investigate the teaching and learning of AI and ML across all year groups.

That’s why we’re excited to welcome Salomey Afua Addo to the Raspberry Pi Computing Education Research Centre. Salomey joined the Centre as a PhD student in January, and her research will focus on approaches to the teaching and learning of AI. We’re looking forward to seeing the results of her work.

The post AI education resources: What do we teach young people? appeared first on Raspberry Pi Foundation.

Building a maths curriculum for a world shaped by computing

Post Syndicated from Bobby Whyte original https://www.raspberrypi.org/blog/maths-curriculum-conrad-wolfram-computing-ai-research-seminar/

In the penultimate seminar in our series on cross-disciplinary computing, we were delighted to host Conrad Wolfram (European co-founder/CEO of Wolfram Research).

Conrad Wolfram.
Conrad Wolfram

Conrad has been an influential figure in the areas of AI, data science, and computation for over 30 years. The company he co-founded, Wolfram Research, develops computational technologies including the Wolfram programming language, which is used by the Mathematica and WolframAlpha programs. In the seminar, Conrad spoke about his work on developing a mathematics curriculum “for the AI age”.

In a computing classroom, a girl laughs at what she sees on the screen.

Computation is everywhere

In his talk, Conrad began by talking about the ubiquity of computation. He explained how computation (i.e. an operation that follows conditions to give a defined output) has transformed our everyday lives and led to the development of entire new sub-disciplines, such as computational medicine, computational marketing, and even computational agriculture. He then used the WolframAlpha tool to give several practical examples of applying high-level computation to problem-solving in different areas.

A line graph comparing the population of the UK with the number of sheep in New Zealand.
Yes, there are more people in the UK than sheep in New Zealand.

The power of computation for mathematics

Conrad then turned his attention to the main question of his talk: if computation has also changed real-world mathematics, how should school-based mathematics teaching respond? He suggested that, as computation has impacted all aspects of our daily lives, school subjects should be reformed to better prepare students for the careers of the future.

A diagram indicating that hand calculating takes up a lot of time in current maths classes.
Hand calculation methods are time-consuming.

His biggest criticism was the use of hand calculation methods in mathematics teaching. He proposed that a mathematics curriculum that “assumes computers exist” and uses computers (rather than humans) to compute answers would better support students to develop a deep understanding of mathematical concepts and principles. In other words, if students spent less time doing hand-calculation methods, they could devote more time to more complex problems.

What does computational problem-solving look like?

One interesting aspect of Conrad’s talk was how he modelled the process of solving problems using computation. In all of the example problems, he outlined that computational problem-solving follows the same four-step process:

  1. Define the question: Students think about the scope and details of the problem and define answerable questions to tackle.
  2. Abstract to computable form: Using the information provided, students translate the question into a precise abstract form, such as a diagram or algorithm, so that it can be solved by a computer-based agent.
  3. Computer answers: Using the power of computation, students solve the abstract question and resolve any issues during the computation process.
  4. Interpret results: Students reinterpret and recontextualise the abstract answer to derive useful results. If problems emerge, students refine or fix their work.

Depending on the problem, the process can be repeated multiple times until the desired solution is reached. Rather than being proposed as a static list of outcomes, the process was presented by Conrad as an iterative cycle than resembles an “ascending helix”:

A helix representing the iterative cycle of computational problem-solving.
The problem-solving ‘helix’ model.

A curriculum for a world with AI

In the later stages of his talk, Conrad talked about the development of a new computational curriculum to better define what a modern mathematics curriculum might look like. The platform that hosts the curriculum, named Computer-Based Math (or CBM), outlines the need to integrate computational thinking into mathematics in schools. For instance, one of the modules, How Fast Could I Cycle Stage 7 Of The An Post Rás?, asks students to develop a computational solution to a real-world problem. Following the four-step problem-solving process, students apply mathematical models, computational tools, and real-world data to generate a valid solution:

A module from Wolfram Research’s Computer-Based Maths curriculum.
Sample module from Computer-Based Math. Click to enlarge.

Some future challenges he remarked on included how a computer-based mathematics curriculum could be integrated with existing curricula or qualifications, at what ages computational mathematics should be taught, and what assessment, training, and hardware would be needed to support teachers to deliver such a curriculum. 

Conrad concluded the talk by arguing that the current need for computational literacy is similar to the need for mass literacy and pondering whether the UK could lead the push towards a new computational curriculum suitable for learners who grow up with AI technologies. This point provided food for thought during our discussion section, especially for teachers interested in embedding computation into their lessons, and for researchers thinking about the impact of AI in different fields. We’re grateful to Conrad for speaking about his work and mission — long may it continue!

You can catch up on Conrad’s talk with his slides and the talk’s recording:

More to explore

Conrad’s book, The Math(s) Fix: An Education Blueprint for the AI Age, gives more details on how he thinks data science, AI, and computation could be embedded into the modern maths curriculum.

You can also explore Wolfram Research’s Computer-Based Maths curriculum, which offers learning materials to help teachers embed computation in their maths lessons. 

Finally, try out Wolfram’s tools to solve everyday problems using computation. For example, you might ask WolframAlpha data-rich questions, which the tool converts from text input into a computable problem using natural language processing. (Two of my favourite example questions are: “How old was Leonardo when the Mona Lisa was painted?” and “What was the weather like when I was born?”)

Join our next seminar

In the final seminar of our series on cross-curricular computing, we welcome Dr Tracy Gardner and Rebecca Franks (Raspberry Pi Foundation) to present their ongoing work on computing education in non-formal settings. Sign up now to join us for this session on Tues 8 November:

We will shortly be announcing the theme of a brand-new series of research seminars starting in January 2023. The seminars will take place online on the first Tuesday of the month at 17:00–18:30 UK time.

The post Building a maths curriculum for a world shaped by computing appeared first on Raspberry Pi.

Experience AI with the Raspberry Pi Foundation and DeepMind

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/experience-ai-deepmind-ai-education/

I am delighted to announce a new collaboration between the Raspberry Pi Foundation and a leading AI company, DeepMind, to inspire the next generation of AI leaders.

Young people work together to investigate computer hardware.

The Raspberry Pi Foundation’s mission is to enable young people to realise their full potential through the power of computing and digital technologies. Our vision is that every young person — whatever their background — should have the opportunity to learn how to create and solve problems with computers.

With the rapid advances in artificial intelligence — from machine learning and robotics, to computer vision and natural language processing — it’s increasingly important that young people understand how AI is affecting their lives now and the role that it can play in their future. 

DeepMind logo.

Experience AI is a new collaboration between the Raspberry Pi Foundation and DeepMind that aims to help young people understand how AI works and how it is changing the world. We want to inspire young people about the careers in AI and help them understand how to access those opportunities, including through their subject choices. 

Experience AI 

More than anything, we want to make AI relevant and accessible to young people from all backgrounds, and to make sure that we engage young people from backgrounds that are underrepresented in AI careers. 

The program has two strands: Inspire and Experiment. 

Inspire: To engage and inspire students about AI and its impact on the world, we are developing a set of free learning resources and materials including lesson plans, assembly packs, videos, and webinars, alongside training and support for educators. This will include an introduction to the technologies that enable AI; how AI models are trained; how to frame problems for AI to solve; the societal and ethical implications of AI; and career opportunities. All of this will be designed around real-world and relatable applications of AI, engaging a wide range of diverse interests and useful to teachers from different subjects.

In a computing classroom, two girls concentrate on their programming task.

Experiment: Building on the excitement generated through Inspire, we are also designing an AI challenge that will support young people to experiment with AI technologies and explore how these can be used to solve real-world problems. This will provide an opportunity for students to get hands-on with technology and data, along with support for educators. 

Our initial focus is learners aged 11 to 14 in the UK. We are working with teachers, students, and DeepMind engineers to ensure that the materials and learning experiences are engaging and accessible to all, and that they reflect the latest AI technologies and their application.

A woman teacher helps a young person with a coding project.

As with all of our work, we want to be research-led and the Raspberry Pi Foundation research team has been working over the past year to understand the latest research on what works in AI education.

Next steps 

Development of the Inspire learning materials is underway now, and we will release the whole set of resources early in 2023. Throughout 2023, we will design and pilot the Experiment challenge.

If you want to stay up to date with Experience AI, or if you’d like to be involved in testing the materials, fill in this form to register your interest.

The post Experience AI with the Raspberry Pi Foundation and DeepMind appeared first on Raspberry Pi.

Classroom activities to discuss machine learning accuracy and ethics | Hello World #18

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/classroom-activity-machine-learning-accuracy-ethics-hello-world-18/

In Hello World issue 18, available as a free PDF download, teacher Michael Jones shares how to use Teachable Machine with learners aged 13–14 in your classroom to investigate issues of accuracy and ethics in machine learning models.

Machine learning: Accuracy and ethics

The landscape for working with machine learning/AI/deep learning has grown considerably over the last couple of years. Students are now able to develop their understanding from the hard-coded end via resources such as Machine Learning for Kids, get their hands dirty using relatively inexpensive hardware such as the Nvidia Jetson Nano, and build a classification machine using the Google-driven Teachable Machine resources. I have used all three of the above with my students, and this article focuses on Teachable Machine.

For this module, I’m more concerned with the fuzzy end of AI, including how credible AI decisions are, and the elephant-in-the-room aspect of bias and potential for harm.

Michael Jones

For the worried, there is absolutely no coding involved in this resource; the ‘machine’ behind the portal does the hard work for you. For my Year 9 classes (students aged 13 to 14) undertaking a short, three-week module, this was ideal. The coding is important, but was not my focus. For this module, I’m more concerned with the fuzzy end of AI, including how credible AI decisions are, and the elephant-in-the-room aspect of bias and potential for harm.

Getting started with Teachable Machine activities

There are three possible routes to use in Teachable Machine, and my focus is the ‘Image Project’, and within this, the ‘Standard image model’. From there, you are presented with a basic training scenario template — see Hello World issue 16 (pages 84–86) for a step-by-step set-up and training guide. For this part of the project, my students trained the machine to recognise different breeds of dog, with border collie, labrador, saluki, and so on as classes. Any AI system devoted to recognition requires a substantial set of training data. Fortunately, there are a number of freely available data sets online (for example, download a folder of dog photos separated by breed by accessing helloworld.cc/dogdata). Be warned, these can be large, consisting of thousands of images. If you have more time, you may want to set students off to collect data to upload using a camera (just be aware that this can present safeguarding considerations). This is a key learning point with your students and an opportunity to discuss the time it takes to gather such data, and variations in the data (for example, images of dogs from the front, side, or top).

Drawing of a machine learning ars rover trying to decide whether it is seeing an alien or a rock.
Image recognition is a common application of machine learning technology.

Once you have downloaded your folders, upload the images to your Teachable Machine project. It is unlikely that you will be able to upload a whole subfolder at once — my students have found that the optimum number of images seems to be twelve. Remember to build this time for downloading and uploading into your lesson plan. This is a good opportunity to discuss the need for balance in the training data. Ask questions such as, “How likely would the model be to identify a saluki if the training set contained 10 salukis and 30 of the other dogs?” This is a left-field way of dropping the idea of bias into the exploration of AI — more on that later!

Accuracy issues in machine learning models

If you have got this far, the heavy lifting is complete and Google’s training engine will now do the work for you. Once you have set your model on its training, leave the system to complete its work — it takes seconds, even on large sets of data. Once it’s done, you should be ready to test you model. If all has gone well and a webcam is attached to your computer, the Output window will give a prediction of what is being viewed. Again, the article in Hello World issue 16 takes you through the exact steps of this process. Make sure you have several images ready to test. See Figure 1a for the response to an image of a saluki presented to the model. As you might expect, it is showing as a 100 percent prediction.

Screenshots from Teachable Machine showing photos of dogs classified as specific breeds with different degrees of confidence by a machine learning model.
Figure 1: Outputs of a Teachable Machine model classifying photos of dog breeds. 1a (left): Photo of a saluki. 1b (right): Photo of a Samoyed and two people.

It will spark an interesting discussion if you now try the same operation with an image with items other than the one you’re testing in it. For example see Figure 1b, in which two people are in the image along with the Samoyed dog. The model is undecided, as the people are affecting the outcome. This raises the question of accuracy. Which features are being used to identify the dogs as border collie and saluki? Why are the humans in the image throwing the model off the scent?

Getting closer to home, training a model on human faces provides an opportunity to explore AI accuracy through the question of what might differentiate a female from a male face. You can find a model at helloworld.cc/maleorfemale that contains 5418 images almost evenly spread across male and female faces (see Figure 2). Note that this model will take a little longer to train.

Screenshot from Teachable Machine showing two datasets of photos of faces labeled either male or female.
Figure 2: Two photo sets of faces labeled either male or female, uploaded to Teachable Machine.

Once trained, try the model out. Props really help — a top hat, wig, and beard give the model a testing time (pun intended). In this test (see Figure 3), I presented myself to the model face-on and, unsurprisingly, I came out as 100 percent male. However, adding a judge’s wig forces the model into a rethink, and a beard produces a variety of results, but leaves the model unsure. It might be reasonable to assume that our model uses hair length as a strong feature. Adding a top hat to the ensemble brings the model back to a 100 percent prediction that the image is of a male.

Screenshots from Teachable Machine showing two datasets of a model classifying photos of the same face as either male or female with different degrees of confidence, based on the face is wearing a wig, a fake beard, or a tophat.
Figure 3: Outputs of a Teachable Machine model classifying photos of the author’s face as male or female with different degrees of confidence. Click to enlarge.

Machine learning uses a best-fit principle. The outputs, in this case whether I am male or female, have a greater certainty of male (65 percent) versus a lesser certainty of female (35 percent) if I wear a beard (Figure 3, second image from the right). Remove the beard and the likelihood of me being female increases by 2 percent (Figure 3, second image from the left).

Bias in machine learning models

Within a fairly small set of parameters, most human faces are similar. However, when you start digging, the research points to there being bias in AI (whether this is conscious or unconscious is a debate for another day!). You can exemplify this by firstly creating classes with labels such as ‘young smart’, ‘old smart’, ‘young not smart’, and ‘old not smart’. Select images that you think would fit the classes, and train them in Teachable Machine. You can then test the model by asking your students to find images they think fit each category. Run them against the model and ask students to debate whether the AI is acting fairly, and if not, why they think that is. Who is training these models? What images are they receiving? Similarly, you could create classes of images of known past criminals and heroes. Train the model before putting yourself in front of it. How far up the percentage scale are you towards being a criminal? It soon becomes frighteningly worrying that unless you are white and seemingly middle class, AI may prove problematic to you, from decisions on financial products such as mortgages through to mistaken arrest and identification.

It soon becomes frighteningly worrying that unless you are white and seemingly middle class, AI may prove problematic to you, from decisions on financial products such as mortgages through to mistaken arrest and identification.

Michael Jones

Encourage your students to discuss how they could influence this issue of race, class, and gender bias — for example, what rules would they use for identifying suitable images for a data set? There are some interesting articles on this issue that you can share with your students at helloworld.cc/aibias1 and helloworld.cc/aibias2.

Where next with your learners?

In the classroom, you could then follow the route of building models that identify letters for words, for example. One of my students built a model that could identify a range of spoons and forks. You may notice that Teachable Machine can also be run on Arduino boards, which adds an extra dimension. Why not get your students to create their own AI assistant that responds to commands? The possibilities are there to be explored. If you’re using webcams to collect photos yourself, why not create a system that will identify students? If you are lucky enough to have a set of identical twins in your class, that adds just a little more flavour! Teachable Machine offers a hands-on way to demonstrate the issues of AI accuracy and bias, and gives students a healthy opportunity for debate.

Michael Jones is director of Computer Science at Northfleet Technology College in the UK. He is a Specialist Leader of Education and a CS Champion for the National Centre for Computing Education.

More resources for AI and data science education

At the Foundation, AI education is one of our focus areas. Here is how we are supporting you and your learners in this area already:

  • Hello World issue 12 focuses on AI and machine learning education, with many practical resources, insightful interviews, and inspiring features from computer science educators. Download your free copy of issue 12 now.
  • In Hello World issue 16, the focus is on all things data science and data literacy for your learners. As always, you can download a free copy of the issue.
  • On our Hello World podcast, we’ve got episodes where we talk with practicing computing educators about how they bring AI, AI ethics, machine learning, and data science to the young people they teach.
  • If you’d like a practical introduction to the basics of machine learning and how to use it, take our free online course.
An image demonstrating that AI systems for object recognition do not distinguish between a real banana on a desk and the photo of a banana on a laptop screen.
  • Computing education researchers are working to answer the many open questions about what good AI and data science education looks like for young people. To learn more, you can watch the recordings from our research seminar series focused on this. We ourselves are working on research projects in this area and will share the results freely with the computing education community.
  • You can find a list of free educational resources about these topics that we’ve collated based on our research seminars, seminar participants’ recommendations, and our own work.

The post Classroom activities to discuss machine learning accuracy and ethics | Hello World #18 appeared first on Raspberry Pi.

AI literacy research: Children and families working together around smart devices

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/ai-literacy-children-families-working-together-ai-education-research/

Between September 2021 and March 2022, we’ve been partnering with The Alan Turing Institute to host a series of free research seminars about how to young people about AI and data science.

In the final seminar of the series, we were excited to hear from Stefania Druga from the University of Washington, who presented on the topic of AI literacy for families. Stefania’s talk highlighted the importance of families in supporting children to develop AI literacy. Her talk was a perfect conclusion to the series and very well-received by our audience.

Stefania Druga.
Stefania Druga, University of Washington

Stefania is a third-year PhD student who has been working on AI literacy in families, and since 2017 she has conducted a series of studies that she presented in her seminar talk. She presented some new work to us that was to be formally shared at the HCI conference in April, and we were very pleased to have a sneak preview of these results. It was a fascinating talk about the ways in which the interactions between parents and children using AI-based devices in the home, and the discussions they have while learning together, can facilitate an appreciation of the affordances of AI systems. You’ll find my summary as well as the seminar recording below.

“AI literacy practices and skills led some families to consider making meaningful use of AI devices they already have in their homes and redesign their interactions with them. These findings suggest that family has the potential to act as a third space for AI learning.”

– Stefania Druga

AI literacy: Growing up with AI systems, growing used to them

Back in 2017, interest in Alexa and other so-called ‘smart’, AI-based devices was just developing in the public, and such devices would have been very novel to most people. That year, Stefania and colleagues conducted a first pilot study of children’s and their parents’ interactions with ‘smart’ devices, including robots, talking dolls, and the sort of voice assistants we are used to now.

A slide from Stefania Druga's AI literacy seminar. Content is described in the blog text.
A slide from Stefania’s AI literacy seminar. Click to enlarge.

Working directly with families, the researchers explored the level of understanding that children had about ‘smart’ devices, and were surprised by the level of insight very young children had into the potential of this type of technology.

In this AI literacy pilot study, Stefania and her colleagues found that:

  • Children perceived AI-based agents (i.e. ‘smart’ devices) as friendly and truthful
  • They treated different devices (e.g. two different Alexas) as completely independent
  • How ‘smart’ they found the device was dependent on age, with older children more likely to describe devices as ‘smart’

AI literacy: Influence of parents’ perceptions, influence of talking dolls

Stefania’s next study, undertaken in 2018, showed that parents’ perceptions of the implications and potential of ‘smart’ devices shaped what their children thought. Even when parents and children were interviewed separately, if the parent thought that, for example, robots were smarter than humans, then the child did too.

A slide from Stefania Druga's AI literacy seminar.
A slide from Stefania’s AI literacy seminar. Click to enlarge.

Another part of this study showed that talking dolls could influence children’s moral decisions (e.g. “Should I give a child a pillow?”). In some cases, these ‘smart’ toys would influence the child more than another human. Some ‘smart’ dolls have been banned in some European countries because of security concerns. In the light of these concerns, Stefania pointed out how important it is to help children develop a critical understanding of the potential of AI-based technology, and what its fallibility and the limits of its guidance are.

A slide from Stefania Druga's AI literacy seminar.
A slide from Stefania’s AI literacy seminar. Click to enlarge.

AI literacy: Programming ‘smart’ devices, algorithmic bias

Another study Stefania discussed involved children who programmed ‘smart’ devices. She used the children’s drawings to find out about their mental models of how the technology worked.

She found that when children had the opportunity to train machine learning models or ‘smart’ devices, they became more sceptical about the appropriate use of these technologies and asked better questions about when and for what they should be used. Another finding was that children and adults had different ideas about algorithmic bias, particularly relating to the meaning of fairness.

A parent and child work together at a Raspberry Pi computer.

AI literacy: Kinaesthetic activities, sharing discussions

The final study Stefania talked about was conducted with families online during the pandemic, when children were learning at home. 15 families, with in total 18 children (ages 5 to 11) and 16 parents, participated in five weekly sessions. A number of learning activities to demonstrate features of AI made up each of the sessions. These are all available at aiplayground.me.

A slide from Stefania Druga's AI literacy seminar, describing two research questions about how children and parents learn about AI together, and about how to design learning supports for family AI literacies.
A slide from Stefania’s AI literacy seminar. Click to enlarge.

The fact that children and parents, or other family members, worked through the activities together seemed to generate fruitful discussions about the usefulness of AI-based technology. Many families were concerned about privacy and what was happening to their personal data when they were using ‘smart’ devices, and also expressed frustration with voice assistants that couldn’t always understand the way they spoke.

A slide from Stefania Druga's AI literacy seminar. Content described in the blog text.
A slide from Stefania’s AI literacy seminar. Click to enlarge.

In one of the sessions, with a focus on machine learning, families were introduced to a kinaesthetic activity involving moving around their home to train a model. Through this activity, parents and children had more insight into the constraints facing machine learning. They used props in the home to experiment and find out ways of training the model better. In another session, families were encouraged to design their own devices on paper, and Stefania showed some examples of designs children had drawn.

A slide from Stefania Druga's AI literacy seminar. Content described in the blog text.
A slide from Stefania’s AI literacy seminar. Click to enlarge.

This study identified a number of different roles that parents or other adults played in supporting children’s learning about AI, and found that embodied and tangible activities worked well for encouraging joint work between children and their families.

Find out more

You can catch up with Stefania’s seminar below in the video, and download her presentation slides.

More about Stefania’s work can be learned in her paper on children’s training of ML models and also in her latest paper about the five weekly AI literacy sessions with families.

Recordings and slides of all our previous seminars on AI education are available online for you, and you can see the list of AI education resources we’ve put together based on recommendations from seminar speakers and participants.

Join our next free research seminar

We are delighted to start a new seminar series on cross-disciplinary computing, with seminars in May, June, July, and September to look forward to. It’s not long now before we begin: Mark Guzdial will speak to us about task-specific programming languages (TSP) in history and mathematics classes on 3 May, 17.00 to 18.30pm local UK time. I can’t wait!

Sign up to receive the Zoom details for the seminar with Mark:

The post AI literacy research: Children and families working together around smart devices appeared first on Raspberry Pi.

Linking AI education to meaningful projects

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/ai-education-meaningful-projects-tara-chklovski/

Our seminars in this series on AI and data science education, co-hosted with The Alan Turing Institute, have been covering a range of different topics and perspectives. This month was no exception. We were delighted to be able to host Tara Chklovski, CEO of Technovation, whose presentation was called ‘Teaching youth to use AI to tackle the Sustainable Development Goals’.

Tara Chklovski.
Tara Chklovski

The Technovation Challenge

Tara started Technovation, formerly called Iridescent, in 2007 with a family science programme in one school in Los Angeles. The nonprofit has grown hugely, and Technovation now runs computing education activities across the world. We heard from Tara that over 350,000 girls from more than 100 countries take part in their programmes, and that the nonprofit focuses particularly on empowering girls to become tech entrepreneurs. The girls, with support from industry volunteers, parents, and the Technovation curriculum, work in teams to solve real-world problems through an annual event called the Technovation Challenge. Working at scale with young people has given the Technovation team the opportunity to investigate the impact of their programmes as well as more generally learn what works in computing education. 

Tara Chklovski describes the Technovation Challenge in an online seminar.
Click to enlarge

Tara’s talk was extremely engaging (you’ll find the recording below), with videos of young people who had participated in recent years. Technovation works with volunteers and organisations to reach young people in communities where opportunities may be lacking, focussing on low- and middle-income countries. Tara spoke about the 900 million teenage girls in the world, a  substantial number of whom live in countries where there is considerable inequality. 

To illustrate the impact of the programme, Tara gave a number of examples of projects that students had developed, including:

  • An air quality sensor linked to messaging about climate change
  • A support circle for girls living in domestic violence situation
  • A project helping mothers communicate with their daughters
  • Support for water collection in Kenya

Early on, the Technovation Challenge had involved the creation of mobile apps, but in recent years, the projects have focused on using AI technologies to solve problems. An key message that Tara wanted to get across was that the focus on real-world problems and teamwork was as important, if not more, than the technical skills the young people were developing.

Technovation has designed an online curriculum to support teams, who may have no prior computing experience, to learn how to design an AI project. Students work through units on topics such as data analysis and building datasets. As well as the technical activities, young people also work through activities on problem-solving approaches, design, and system thinking to help them tackle a real-world problem that is relevant to them. The curriculum supports teams to identify problems in their community and find a path to prototype and share an invention to tackle that problem.

Tara Chklovski describes the Technovation Challenge in an online seminar.
Click to enlarge

While working through the curriculum, teams develop AI models to address the problem that they have chosen. They then submit them to a global competition for beginners, juniors, and seniors. Many of the girls enjoy the Technovation Challenge so much that they come back year on year to further develop their team skills. 

AI Families: Children and parents using AI to solve problems

Technovation runs another programme, AI Families, that focuses on families working together to learn AI concepts and skills and use them to develop projects together. Families worked together with the help of educators to identify meaningful problems in their communities, and developed AI prototypes to address them.

A list of lessons in the AI Families programme from Technovation.

There were 20,000 participants from under-resourced communities in 17 countries through 2018 and 2019. 70% of them were women (mothers and grandmothers) who wanted their children to participate; in this way the programme encouraged parents to be role models for their daughters, as well as enabling families to understand that AI is a tool that could be used to think about what problems in their community can be solved with the help of AI skills and principles. Tara was keen to emphasise that, given the importance of AI in the world, the more people know about it, the more impact they can make on their local communities.

Tara shared links to the curriculum to demonstrate what families in this programme would learn week by week. The AI modules use tools such as Machine Learning for Kids.

The results of the AI Families project as investigated over 2018 and 2019 are reported in this paper.  The findings of the programme included:

  • Learning needs to focus on more than just content; interviews showed that the learners needed to see the application to real-world applications
  • Engaging parents and other family members can support retention and a sense of community, and support a culture of lifelong learning
  • It takes around 3 to 5 years to iteratively develop fun, engaging, effective curriculum, training, and scalable programme delivery methods. This level of patience and commitment is needed from all community and industry partners and funders.

The research describes how the programme worked pre-pandemic. Tara highlighted that although the pandemic has prevented so much face-to-face team work, it has allowed some young people to access education online that they would not have otherwise had access to.

Many perspectives on AI education

Our goal is to listen to a variety of perspectives through this seminar series, and I felt that Tara really offered something fresh and engaging to our seminar audience, many of them (many of you!) regular attendees who we’ve got to know since we’ve been running the seminars. The seminar combined real-life stories with videos, as well as links to the curriculum used by Technovation to support learners of AI. The ‘question and answer’ session after the seminar focused on ways in which people could engage with the programme. On Twitter, one of the seminar participants declared this seminar “my favourite thus far in the series”.  It was indeed very inspirational.

As we near the end of this series, we can start to reflect on what we’ve been learning from all the various speakers, and I intend to do this more formally in a month or two as we prepare Volume 3 of our seminar proceedings. While Tara’s emphasis is on motivating children to want to learn the latest technologies because they can see what they can achieve with them, some of our other speakers have considered the actual concepts we should be teaching, whether we have to change our approach to teaching computer science if we include AI, and how we should engage young learners in the ethics of AI.

Join us for our next seminar

I’m really looking forward to our final seminar in the series, with Stefania Druga, on Tuesday 1 March at 17:00–18:30 GMT. Stefania, PhD candidate at the University of Washington Information School, will also focus on families. In her talk ‘Democratising AI education with and for families’, she will consider the ways that children engage with smart, AI-enabled devices that they are becoming part of their everyday lives. It’s a perfect way to finish this series, and we hope you’ll join us.

Thanks to our seminars series, we are developing a list of AI education resources that seminar speakers and attendees share with us, plus the free resources we are developing at the Foundation. Please do take a look.

You can find all blog posts relating to our previous seminars on this page.

The post Linking AI education to meaningful projects appeared first on Raspberry Pi.

The AI4K12 project: Big ideas for AI education

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/ai-education-ai4k12-big-ideas-ai-thinking/

What is AI thinking? What concepts should we introduce to young people related to AI, including machine learning (ML), and data science? Should we teach with a glass-box or an opaque-box approach? These are the questions we’ve been grappling with since we started our online research seminar series on AI education at the Raspberry Pi Foundation, co-hosted with The Alan Turing Institute.

Over the past few months, we’d already heard from researchers from the UK, Germany, and Finland. This month we virtually travelled to the USA, to hear from Prof. Dave Touretzky (Carnegie Mellon University) and Prof. Fred G. Martin (University of Massachusetts Lowell), who have pioneered the influential AI4K12 project together with their colleagues Deborah Seehorn and Christina Gardner-McLure.

The AI4K12 project

The AI4K12 project focuses on teaching AI in K-12 in the US. The AI4K12 team have aligned their vision for AI education to the CSTA standards for computer science education. These Standards, published in 2017, describe what should be taught in US schools across the discipline of computer science, but they say very little about AI. This was the stimulus for starting the AI4K12 initiative in 2018. A number of members of the AI4K12 working group are practitioners in the classroom who’ve made a huge contribution in taking this project from ideas into the classroom.

Dave Touretzky presents the five big ideas of the AI4K12 project at our online research seminar.
Dave gave us an overview of the AI4K12 project (click to enlarge)

The project has a number of goals. One is to develop a curated resource directory for K-12 teachers, and another to create a community of K-12 resource developers. On the AI4K12.org website, you can find links to many resources and sign up for their mailing list. I’ve been subscribed to this list for a while now, and fascinating discussions and resources have been shared. 

Five Big Ideas of AI4K12

If you’ve heard of AI4K12 before, it’s probably because of the Five Big Ideas the team has set out to encompass the AI field from the perspective of school-aged children. These ideas are: 

  1. Perception — the idea that computers perceive the world through sensing
  2. Representation and reasoning — the idea that agents maintain representations of the world and use them for reasoning
  3. Learning — the idea that computers can learn from data
  4. Natural interaction — the idea that intelligent agents require many types of knowledge to interact naturally with humans
  5. Societal impact — the idea that artificial intelligence can impact society in both positive and negative ways

Sometimes we hear concerns that resources being developed to teach AI concepts to young people are narrowly focused on machine learning, particularly supervised learning for classification. It’s clear from the AI4K12 Five Big Ideas that the team’s definition of the AI field encompasses much more than one area of ML. Despite being developed for a US audience, I believe the description laid out in these five ideas is immensely useful to all educators, researchers, and policymakers around the world who are interested in AI education.

Fred Martin presents one of the five big ideas of the AI4K12 project at our online research seminar.
Fred explained how ‘representation and reasoning’ is a big idea in the AI field (click to enlarge)

During the seminar, Dave and Fred shared some great practical examples. Fred explained how the big ideas translate into learning outcomes at each of the four age groups (ages 5–8, 9–11, 12–14, 15–18). You can find out more about their examples in their presentation slides or the seminar recording (see below). 

I was struck by how much the AI4K12 team has thought about progression — what you learn when, and in which sequence — which we do really need to understand well before we can start to teach AI in any formal way. For example, looking at how we might teach visual perception to young people, children might start when very young by using a tool such as Teachable Machine to understand that they can teach a computer to recognise what they want it to see, then move on to building an application using Scratch plugins or Calypso, and then to learning the different levels of visual structure and understanding the abstraction pipeline — the hierarchy of increasingly abstract things. Talking about visual perception, Fred used the example of self-driving cars and how they represent images.

A diagram of the levels of visual structure.
Fred used this slide to describe how young people might learn abstracted elements of visual structure

AI education with an age-appropriate, glass-box approach

Dave and Fred support teaching AI to children using a glass-box approach. By ‘glass-box approach’ we mean that we should give students information about how AI systems work, and show the inner workings, so to speak. The opposite would be a ‘opaque-box approach’, by which we mean showing students an AI system’s inputs and the outputs only to demonstrate what AI is capable of, without trying to teach any technical detail.

AI4K12 advice for educators supporting K-12 students: 1. Use transparent AI demonstrations. 2. Help students build mental models. 3. Encourage students to build AI applications.
AI4K12 teacher guidelines for AI education

Our speakers are keen for learners to understand, at an age-appropriate level, what is going on “inside” an AI system, not just what the system can do. They believe it’s important for young people to build mental models of how AI systems work, and that when the young people get older, they should be able to use their increasing knowledge and skills to develop their own AI applications. This aligns with the views of some of our previous seminar speakers, including Finnish researchers Matti Tedre and Henriikka Vartiainen, who presented at our seminar series in November

What is AI thinking?

Dave addressed the question of what AI thinking looks like in school. His approach was to start with computational thinking (he used the example of the Barefoot project’s description of computational thinking as a starting point) and describe AI thinking as an extension that includes the following skills:

  • Perception 
  • Reasoning
  • Representation
  • Machine learning
  • Language understanding
  • Autonomous robots

Dave described AI thinking as furthering the ideas of abstraction and algorithmic thinking commonly associated with computational thinking, stating that in the case of AI, computation actually is thinking. My own view is that to fully define AI thinking, we need to dig a bit deeper into, for example, what is involved in developing an understanding of perception and representation.

An image demonstrating that AI systems for object recognition may not distinguish between a real banana on a desk and the photo of a banana on a laptop screen.
Image: Max Gruber / Better Images of AI / Ceci n’est pas une banane / CC-BY 4.0

Thinking back to Matti Tedre and Henriikka Vartainen’s description of CT 2.0, which focuses only on the ‘Learning’ aspect of the AI4K12 Five Big Ideas, and on the distinct ways of thinking underlying data-driven programming and traditional programming, we can see some differences between how the two groups of researchers describe the thinking skills young people need in order to understand and develop AI systems. Tedre and Vartainen are working on a more finely granular description of ML thinking, which has the potential to impact the way we teach ML in school.

There is also another description of AI thinking. Back in 2020, Juan David Rodríguez García presented his system LearningML at one of our seminars. Juan David drew on a paper by Brummelen, Shen, and Patton, who extended Brennan and Resnick’s CT framework of concepts, practices, and perspectives, to include concepts such as classification, prediction, and generation, together with practices such as training, validating, and testing.

What I take from this is that there is much still to research and discuss in this area! It’s a real privilege to be able to hear from experts in the field and compare and contrast different standpoints and views.

Resources for AI education

The AI4K12 project has already made a massive contribution to the field of AI education, and we were delighted to hear that Dave, Fred, and their colleagues have just been awarded the AAAI/EAAI Outstanding Educator Award for 2022 for AI4K12.org. An amazing achievement! Particularly useful about this website is that it links to many resources, and that the Five Big Ideas give a framework for these resources.

Through our seminars series, we are developing our own list of AI education resources shared by seminar speakers or attendees, or developed by us. Please do take a look.

Join our next seminar

Through these seminars, we’re learning a lot about AI education and what it might look like in school, and we’re having great discussions during the Q&A section.

On Tues 1 February at 17:00–18:30 GMT, we’ll hear from Tara Chklovski, who will talk about AI education in the context of the Sustainable Development Goals. To participate, click the button below to sign up, and we will send you information about joining. I really hope you’ll be there for this seminar!

The schedule of our upcoming seminars is online. You can also (re)visit past seminars and recordings on the blog.

The post The AI4K12 project: Big ideas for AI education appeared first on Raspberry Pi.