Tag Archives: chess

DARPA Funding in AI-Assisted Cybersecurity

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/darpa_funding_i.html

DARPA is launching a program aimed at vulnerability discovery via human-assisted AI. The new DARPA program is called CHESS (Computers and Humans Exploring Software Security), and they’re holding a proposers day in a week and a half.

This is the kind of thing that can dramatically change the offense/defense balance.

One LED Matrix Table to rule them all

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/led-matrix-table/

Germany-based Andreas Rottach’s multi-purpose LED table is an impressive build within a gorgeous-looking body. Play games, view (heavily pixelated) images, and become hypnotised by flashy lights, once you’ve built your own using his newly released tutorial.

LED-Matrix Table – 300 LEDs – Raspberry Pi – C++ Engine – Custom Controllers

This is a short presentation of my LED-Matrix Table. The table is controlled by a raspberry pi computer that executes a control engine, written in c++. It supports input from keyboards or custom made game controllers. A full list of all features as well as the source code is available on GitHub (https://github.com/rottaca/LEDTableEngine).

Much excitement

Andreas uploaded a video of his LED Matrix Table to YouTube back in February, with the promise of publishing a complete write-up within the coming weeks. And so the members of Pi Towers sat, eagerly waiting and watching. Now the write-up has arrived, to our cheers of acclaim for this beautful, shiny, flashy, LED-based wonderment.

Build your own LED table

In his GitHub tutorial, Andreas goes through all the stages of building the table, from the necessary components to coding the Raspberry Pi 3 and 3D printing your own controllers.

Raspberry Pi LED Table

Find files for the controllers on Thingiverse

Andreas created the table’s impressive light matrix using a strip of 300 LEDs, chained together and connected to the Raspberry Pi via an LED controller.

Raspberry Pi LED Table

The LEDs are set out in zigzags

For the code, he used several open-source tools, such as SDL for image and audio support, and CMake for building the project software.

Anyone planning to recreate Andreas’ table can compile its engine by downloading the project repository from GitHub. Again, find full instructions for this on his GitHub.

Features

The table boasts multiple cool features, including games and visualisation tools. Using the controllers, you can play simplified versions of Flappy Bird and Minesweeper, or go on a nostalgia trip with Tetris, Pong, and Snake.

Raspberry Pi LED Table

There’s also a version of Conway’s Game of Life. Andreas explains: “The lifespan of each cell is color-coded. If the game field gets static, the animation is automatically reset to a new random cell population.”

Raspberry Pi LED Table

The table can also display downsampled Bitmap images, or show clear static images such as a chess board, atop of which you can place physical game pieces.

Raspberry Pi LED Table
Raspberry Pi LED Table
Raspberry Pi LED Table

Find all the 3D-printable aspects of the LED table on Thingiverse here and here, and the full GitHub tutorial and repository here. If you build your own, or have already dabbled in LED tables and displays, be sure to share your project with us, either in the comments below or via our social media accounts. What other functions would you integrate into this awesome build?

The post One LED Matrix Table to rule them all appeared first on Raspberry Pi.

More Raspberry Pi labs in West Africa

Post Syndicated from Rachel Churcher original https://www.raspberrypi.org/blog/pi-based-ict-west-africa/

Back in May 2013, we heard from Dominique Laloux about an exciting project to bring Raspberry Pi labs to schools in rural West Africa. Until 2012, 75 percent of teachers there had never used a computer. The project has been very successful, and Dominique has been in touch again to bring us the latest news.

A view of the inside of the new Pi lab building

Preparing the new Pi labs building in Kuma Tokpli, Togo

Growing the project

Thanks to the continuing efforts of a dedicated team of teachers, parents and other supporters, the Centre Informatique de Kuma, now known as INITIC (from the French ‘INItiation aux TIC’), runs two Raspberry Pi labs in schools in Togo, and plans to open a third in December. The second lab was opened last year in Kpalimé, a town in the Plateaux Region in the west of the country.

Student using a Raspberry Pi computer

Using the new Raspberry Pi labs in Kpalimé, Togo

More than 400 students used the new lab intensively during the last school year. Dominique tells us more:

“The report made in early July by the seven teachers who accompanied the students was nothing short of amazing: the young people covered a very impressive number of concepts and skills, from the GUI and the file system, to a solid introduction to word processing and spreadsheets, and many other skills. The lab worked exactly as expected. Its 21 Raspberry Pis worked flawlessly, with the exception of a couple of SD cards that needed re-cloning, and a couple of old screens that needed to be replaced. All the Raspberry Pis worked without a glitch. They are so reliable!”

The teachers and students have enjoyed access to a range of software and resources, all running on Raspberry Pi 2s and 3s.

“Our current aim is to introduce the students to ICT using the Raspberry Pis, rather than introducing them to programming and electronics (a step that will certainly be considered later). We use Ubuntu Mate along with a large selection of applications, from LibreOffice, Firefox, GIMP, Audacity, and Calibre, to special maths, science, and geography applications. There are also special applications such as GnuCash and GanttProject, as well as logic games including PyChess. Since December, students also have access to a local server hosting Kiwix, Wiktionary (a local copy of Wikipedia in four languages), several hundred videos, and several thousand books. They really love it!”

Pi lab upgrade

This summer, INITIC upgraded the equipment in their Pi lab in Kuma Adamé, which has been running since 2014. 21 older model Raspberry Pis were replaced with Pi 2s and 3s, to bring this lab into line with the others, and encourage co-operation between the different locations.

“All 21 first-generation Raspberry Pis worked flawlessly for three years, despite the less-than-ideal conditions in which they were used — tropical conditions, dust, frequent power outages, etc. I brought them all back to Brussels, and they all still work fine. The rationale behind the upgrade was to bring more computing power to the lab, and also to have the same equipment in our two Raspberry Pi labs (and in other planned installations).”

Students and teachers using the upgraded Pi labs in Kuma Adamé

Students and teachers using the upgraded Pi lab in Kuma Adamé

An upgrade of the organisation’s first lab, installed in 2012 in Kuma Tokpli, will be completed in December. This lab currently uses ‘retired’ laptops, which will be replaced with Raspberry Pis and peripherals. INITIC, in partnership with the local community, is also constructing a new building to house the upgraded technology, and the organisation’s third Raspberry Pi lab.

Reliable tech

Dominique has been very impressed with the performance of the Raspberry Pis since 2014.

“Our experience of three years, in two very different contexts, clearly demonstrates that the Raspberry Pi is a very convincing alternative to more ‘conventional’ computers for introducing young students to ICT where resources are scarce. I wish I could convince more communities in the world to invest in such ‘low cost, low consumption, low maintenance’ infrastructure. It really works!”

He goes on to explain that:

“Our goal now is to build at least one new Raspberry Pi lab in another Togolese school each year. That will, of course, depend on how successful we are at gathering the funds necessary for each installation, but we are confident we can convince enough friends to give us the financial support needed for our action.”

A desk with Raspberry Pis and peripherals

Reliable Raspberry Pis in the labs at Kpalimé

Get involved

We are delighted to see the Raspberry Pi being used to bring information technology to new teachers, students, and communities in Togo – it’s wonderful to see this project becoming established and building on its achievements. The mission of the Raspberry Pi Foundation is to put the power of digital making into the hands of people all over the world. Therefore, projects like this, in which people use our tech to fulfil this mission in places with few resources, are wonderful to us.

More information about INITIC and its projects can be found on its website. If you are interested in helping the organisation to meet its goals, visit the How to help page. And if you are involved with a project like this, bringing ICT, computer science, and coding to new places, please tell us about it in the comments below.

The post More Raspberry Pi labs in West Africa appeared first on Raspberry Pi.

IoT Sleepbuddy, the robotic babysitter

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sleepbuddy-robotic-babysitter/

You’re watching the new episode of Game of Thrones, and suddenly you hear your children, up and about after their bedtime! Now you’ll probably miss a crucial moment of the show because you have to put them to bed again. Or you’re out to dinner with friends and longing for the sight of your sleeping small humans. What do you do? Text the babysitter to check on them? Well, luckily for you these issues could soon be things of the past, thanks to Bert Vuylsteke and his Pi-powered Sleepbuddy. This IoT-controlled social robot could fulfil all your remote babysitting needs!

IoT Sleepbuddy – babyphone – Design concept

This is the actual concept of my robot and in what context it can be used.

A social robot?

A social robot fulfils a role normally played by a person, and interacts with humans via human language, gestures, and facial expressions. This is what Bert says about the role of the Sleepbuddy:

[For children, it] is a friend or safeguard from nightmares, but it is so much more for the babysitters or parents. The babysitters or parents connect their smartphone/tablet/PC to the Sleepbuddy. This will give them access to control all his emotions, gestures, microphone, speaker and camera. In the eye is a hidden camera to see the kids sleeping. The speaker and microphone allow communication with the kids through WiFi.

The roots of the Sleepbuddy

As a student at Ghent University, Bert had to build a social robot using OPSORO, the university’s open-source robotics platform. The developers of this platform create social robots for research purposes. They are also making all software, as well as hardware design plans, available on GitHub. In addition, you will soon be able to purchase their robot kits via a Kickstarter. OPSORO robots are designed around the Raspberry Pi, and controlled via a web interface. The interface allows you to customise your robot’s behaviour, using visual or text-based programming languages.

Sleepbuddy Bert Vuylsteke components

The Sleepbuddy’s components

Building the Sleepbuddy

Bert has provided a detailed Instructable describing the process of putting the Sleepbuddy together, complete with video walk-throughs. However, the making techniques he has used include thermoforming, laser cutting, and 3D printing. If you want to recreate this build, you may need to contact your local makerspace to find out whether they have the necessary equipment.

Sleepbuddy Bert Vuylsteke assembly

Assembling the Sleepbuddy

Finally, Bert added an especially cute touch to this project by covering the Sleepbuddy in blackboard paint. Therefore, kids can draw on the robot to really make it their own!

So many robots!

At Pi Towers we are partial to all kinds of robots, be they ones that test medical devices, play chess or Connect 4, or fight other robots. If they twerk, or are cute, tiny, or shoddy, we maybe even like them a tiny bit more.

Do you share our love of robots? Would you like to make your own? Then check out our resource for building a simple robot buggy. Maybe it will kick-start your career as the general of a robot army. A robot army that does good, of course! Let us know your benevolent robot overlord plans in the comments.

The post IoT Sleepbuddy, the robotic babysitter appeared first on Raspberry Pi.

Raspberry Turk: a chess-playing robot

Post Syndicated from Lorna Lynch original https://www.raspberrypi.org/blog/raspberry-turk-chess-playing-robot/

Computers and chess have been a potent combination ever since the appearance of the first chess-playing computers in the 1970s. You might even be able to play a game of chess on the device you are using to read this blog post! For digital makers, though, adding a Raspberry Pi into the mix can be the first step to building something a little more exciting. Allow us to introduce you to Joey Meyer‘s chess-playing robot, the Raspberry Turk.

The Raspberry Turk chess-playing robot

Image credit: Joey Meyer

Being both an experienced software engineer with an interest in machine learning, and a skilled chess player, it’s not surprising that Joey was interested in tinkering with chess programs. What is really stunning, though, is the scale and complexity of the build he came up with. Fascinated by a famous historical hoax, Joey used his skills in programming and robotics to build an open-source Raspberry Pi-powered recreation of the celebrated Mechanical Turk automaton.

You can see the Raspberry Turk in action on Joey’s YouTube channel:

Chess Playing Robot Powered by Raspberry Pi – Raspberry Turk

The Raspberry Turk is a robot that can play chess-it’s entirely open source, based on Raspberry Pi, and inspired by the 18th century chess playing machine, the Mechanical Turk. Website: http://www.raspberryturk.com Source Code: https://github.com/joeymeyer/raspberryturk

A historical hoax

Joey explains that he first encountered the Mechanical Turk through a book by Tom Standage. A famous example of mechanical trickery, the original Turk was advertised as a chess-playing automaton, capable of defeating human opponents and solving complex puzzles.

Image of the Mechanical Turk Automaton

A modern reconstruction of the Mechanical Turk 
Image from Wikimedia Commons

Its inner workings a secret, the Turk toured Europe for the best part of a century, confounding everyone who encountered it. Unfortunately, it turned out not to be a fabulous example of early robotic engineering after all. Instead, it was just an elaborate illusion. The awesome chess moves were not being worked out by the clockwork brain of the automaton, but rather by a human chess master who was cunningly concealed inside the casing.

Building a modern Turk

A modern version of the Mechanical Turk was constructed in the 1980s. However, the build cost $120,000. At that price, it would have been impossible for most makers to create their own version. Impossible, that is, until now: Joey uses a Raspberry Pi 3 to drive the Raspberry Turk, while a Raspberry Pi Camera Module handles computer vision.

Image of chess board and Raspberry Turk robot

The Raspberry Turk in the middle of a game 
Image credit: Joey Meyer

Joey’s Raspberry Turk is built into a neat wooden table. All of the electronics are housed in a box on one side. The chessboard is painted directly onto the table’s surface. In order for the robot to play, a Camera Module located in a 3D-printed housing above the table takes an image of the chessboard. The image is then analysed to determine which pieces are in which positions at that point. By tracking changes in the positions of the pieces, the Raspberry Turk can determine which moves have been made, and which piece should move next. To train the system, Joey had to build a large dataset to validate a computer vision model. This involved painstakingly moving pieces by hand and collecting multiple images of each possible position.

Look, no hands!

A key feature of the Mechanical Turk was that the automaton appeared to move the chess pieces entirely by itself. Of course, its movements were actually being controlled by a person hidden inside the machine. The Raspberry Turk, by contrast, does move the chess pieces itself. To achieve this, Joey used a robotic arm attached to the table. The arm is made primarily out of Actobotics components. Joey explains:

The motion is controlled by the rotation of two servos which are attached to gears at the base of each link of the arm. At the end of the arm is another servo which moves a beam up and down. At the bottom of the beam is an electromagnet that can be dynamically activated to lift the chess pieces.

Joey individually fitted the chess pieces with tiny sections of metal dowel so that the magnet on the arm could pick them up.

Programming the Raspberry Turk

The Raspberry Turk is controlled by a daemon process that runs a perception/action sequence, and the status updates automatically as the pieces are moved. The code is written almost entirely in Python. It is all available on Joey’s GitHub repo for the project, together with his notebooks on the project.

Image of Raspberry Turk chessboard with Python script alongside

Image credit: Joey Meyer

The AI backend that gives the robot its chess-playing ability is currently Stockfish, a strong open-source chess engine. Joey says he would like to build his own engine when he has time. For the moment, though, he’s confident that this AI will prove a worthy opponent.

The project website goes into much more detail than we are able to give here. We’d definitely recommend checking it out. If you have been experimenting with any robotics or computer vision projects like this, please do let us know in the comments!

The post Raspberry Turk: a chess-playing robot appeared first on Raspberry Pi.