Tag Archives: headless

Safety first: a Raspberry Pi safety helmet

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/safety-helmet/

Jennifer Fox is back, this time with a Raspberry Pi Zero–controlled impact force monitor that will notify you if your collision is a worth a trip to the doctor.

Make an Impact Force Monitor!

Check out my latest Hacker in Residence project for SparkFun Electronics: the Helmet Guardian! It’s a Pi Zero powered impact force monitor that turns on an LED if your head/body experiences a potentially dangerous impact. Install in your sports helmets, bicycle, or car to keep track of impact and inform you when it’s time to visit the doctor.

Concussion

We’ve all knocked our heads at least once in our lives, maybe due to tripping over a loose paving slab, or to falling off a bike, or to walking into the corner of the overhead cupboard door for the third time this week — will I ever learn?! More often than not, even when we’re seeing stars, we brush off the accident and continue with our day, oblivious to the long-term damage we may be doing.

Force of impact

After some thorough research, Jennifer Fox, founder of FoxBot Industries, concluded that forces of 4 to 6 G sustained for more than a few seconds are dangerous to the human body. With this in mind, she decided to use a Raspberry Pi Zero W and an accelerometer to create helmet with an impact force monitor that notifies its wearer if this level of G-force has been met.

Jennifer Fox Raspberry Pi Impact Force Monitor

Obviously, if you do have a serious fall, you should always seek medical advice. This project is an example of how affordable technology can be used to create medical and citizen science builds, and not a replacement for professional medical services.

Setting up the impact monitor

Jennifer’s monitor requires only a few pieces of tech: a Zero W, an accelerometer and breakout board, a rechargeable USB battery, and an LED, plus the standard wires and resistors for these components.

After installing Raspbian, Jennifer enabled SSH and I2C on the Zero W to make it run headlessly, and then accessed it from a laptop. This allows her to control the Pi without physically connecting to it, and it makes for a wireless finished project.

Jen wired the Pi to the accelerometer breakout board and LED as shown in the schematic below.

Jennifer Fox Raspberry Pi Impact Force Monitor

The LED acts as a signal of significant impacts, turning on when the G-force threshold is reached, and not turning off again until the program is reset.

Jennifer Fox Raspberry Pi Impact Force Monitor

Make your own and more

Jennifer’s full code for the impact monitor is on GitHub, and she’s put together a complete tutorial on SparkFun’s website.

For more tutorials from Jennifer Fox, such as her ‘Bark Back’ IoT Pet Monitor, be sure to follow her on YouTube. And for similar projects, check out Matt’s smart bike light and Amelia Day’s physical therapy soccer ball.

The post Safety first: a Raspberry Pi safety helmet appeared first on Raspberry Pi.

e-paper pocket money tracker using Monzo pots

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/monzo-money-tracker/

Jason Barnett used the pots feature of the Monzo banking API to create a simple e-paper display so that his kids can keep track of their pocket money.

Monzo ePaper Pot Jason Barnett Raspberry Pi

Monzo

For those outside the UK: Monzo is a smartphone-based bank that allows costumers to manage their money and payment cards via an app, removing the bank clerk middleman.

In the Monzo banking app, users can set up pots, which allow them to organise their money into various, you guessed it, pots. You want to put aside holiday funds, budget your food shopping, or, like Jason, manage your kids’ pocket money? Using pots is an easy way to do it.

Jason’s Monzo Pot ePaper tracker

After failed attempts at keeping track of his sons’ pocket money via a scrap of paper stuck to the fridge, Jason decided to try a new approach.

He started his build by installing Stretch Lite to the SD card of his Raspberry Pi Zero W. “The Pi will be running headless (without screen, mouse or keyboard)”, he explains on his blog, “so there is no need for a full-fat Raspbian image.” While Stretch Lite was downloading, he set up the Waveshare ePaper HAT on his Zero W. He notes that Pimoroni’s “Inky pHAT would be easiest,” but his tutorial is specific to the Waveshare device.

Monzo ePaper Pot Jason Barnett Raspberry Pi

Before ejecting the SD card, Jason updated the boot partition to allow him to access the Pi via SSH. He talks makers through that process here.

Among the libraries he installed for the project is pyMonzo, a Python wrapper for the Monzo API created by Paweł Adamczak. Monzo is still in its infancy, and the API is partly under construction. Until it’s completed, Paweł’s wrapper offers a more stable way to use it.

After installing the software, it was time to set up the e-paper screen for the tracker. Jason adjusted the code for the API so that the screen reloads information every 15 minutes, displaying the up-to-date amount of pocket money in both kids’ pots.

Here is how Jason describes going to the supermarket with his sons, now that he has completed the tracker:

“Daddy, I want (insert first thing picked up here), I’ve always wanted one of these my whole life!” […] Even though you have never seen that (insert thing here) before, I can quickly open my Monzo app, flick to Account, and say “You have £3.50 in your money box”. If my boy wants it, a 2-second withdrawal is made whilst queueing, and done — he walks away with a new (again, insert whatever he wanted his whole life here) and is happy!

Jason’s blog offers a full breakdown of his project, including all necessary code and the specs for the physical build. Be sure to head over and check it out.

Have you used an API in your projects? What would you build with one?

The post e-paper pocket money tracker using Monzo pots appeared first on Raspberry Pi.

UI Testing at Scale with AWS Lambda

Post Syndicated from Stas Neyman original https://aws.amazon.com/blogs/devops/ui-testing-at-scale-with-aws-lambda/

This is a guest blog post by Wes Couch and Kurt Waechter from the Blackboard Internal Product Development team about their experience using AWS Lambda.

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Here’s how we did it.

The backstory:

Blackboard is a global leader in delivering robust and innovative education software and services to clients in higher education, government, K12, and corporate training. We have a large product development team working across the globe in at least 10 different time zones, with an internal tools team providing support for quality and workflows. We have been using Selenium Webdriver to perform automated cross-browser UI testing since 2007. Because we are now practicing continuous delivery, the automated UI testing challenge has grown due to the faster release schedule. On top of that, every commit made to each branch triggers an execution of our automated UI test suite. If you have ever implemented an automated UI testing infrastructure, you know that it can be very challenging to scale and maintain. Although there are services that are useful for testing different browser/OS combinations, they don’t meet our scale needs.

It used to take three hours to synchronously run our functional UI suite, which revealed the obvious need for parallel execution. Previously, we used Mesos to orchestrate a Selenium Grid Docker container for each test run. This way, we were able to run eight concurrent threads for test execution, which took an average of 16 minutes. Although this setup is fine for a single workflow, the cracks started to show when we reached the scale required for Blackboard’s mature product lines. Going beyond eight concurrent sessions on a single container introduced performance problems that impact the reliability of tests (for example, issues in Webdriver or the browser popping up frequently). We tried Mesos and considered Kubernetes for Selenium Grid orchestration, but the answer to scaling a Selenium Grid was to think smaller, not larger. This led to our breakthrough with AWS Lambda.

The solution:

We started using AWS Lambda for UI testing because it doesn’t require costly infrastructure or countless man hours to maintain. The steps we outline in this blog post took one work day, from inception to implementation. By simply packaging the UI test suite into a Lambda function, we can execute these tests in parallel on a massive scale. We use a custom JUnit test runner that invokes the Lambda function with a request to run each test from the suite. The runner then aggregates the results returned from each Lambda test execution.

Selenium is the industry standard for testing UI at scale. Although there are other options to achieve the same thing in Lambda, we chose this mature suite of tools. Selenium is backed by Google, Firefox, and others to help the industry drive their browsers with code. This makes Lambda and Selenium a compelling stack for achieving UI testing at scale.

Making Chrome Run in Lambda

Currently, Chrome for Linux will not run in Lambda due to an absent mount point. By rebuilding Chrome with a slight modification, as Marco Lüthy originally demonstrated, you can run it inside Lambda anyway! It took about two hours to build the current master branch of Chromium to build on a c4.4xlarge. Unfortunately, the current version of ChromeDriver, 2.33, does not support any version of Chrome above 62, so we’ll be using Marco’s modified version of version 60 for the near future.

Required System Libraries

The Lambda runtime environment comes with a subset of common shared libraries. This means we need to include some extra libraries to get Chrome and ChromeDriver to work. Anything that exists in the java resources folder during compile time is included in the base directory of the compiled jar file. When this jar file is deployed to Lambda, it is placed in the /var/task/ directory. This allows us to simply place the libraries in the java resources folder under a folder named lib/ so they are right where they need to be when the Lambda function is invoked.

To get these libraries, create an EC2 instance and choose the Amazon Linux AMI.

Next, use ssh to connect to the server. After you connect to the new instance, search for the libraries to find their locations.

sudo find / -name libgconf-2.so.4
sudo find / -name libORBit-2.so.0

Now that you have the locations of the libraries, copy these files from the EC2 instance and place them in the java resources folder under lib/.

Packaging the Tests

To deploy the test suite to Lambda, we used a simple Gradle tool called ShadowJar, which is similar to the Maven Shade Plugin. It packages the libraries and dependencies inside the jar that is built. Usually test dependencies and sources aren’t included in a jar, but for this instance we want to include them. To include the test dependencies, add this section to the build.gradle file.

shadowJar {
   from sourceSets.test.output
   configurations = [project.configurations.testRuntime]
}

Deploying the Test Suite

Now that our tests are packaged with the dependencies in a jar, we need to get them into a running Lambda function. We use  simple SAM  templates to upload the packaged jar into S3, and then deploy it to Lambda with our settings.

{
   "AWSTemplateFormatVersion": "2010-09-09",
   "Transform": "AWS::Serverless-2016-10-31",
   "Resources": {
       "LambdaTestHandler": {
           "Type": "AWS::Serverless::Function",
           "Properties": {
               "CodeUri": "./build/libs/your-test-jar-all.jar",
               "Runtime": "java8",
               "Handler": "com.example.LambdaTestHandler::handleRequest",
               "Role": "<YourLambdaRoleArn>",
               "Timeout": 300,
               "MemorySize": 1536
           }
       }
   }
}

We use the maximum timeout available to ensure our tests have plenty of time to run. We also use the maximum memory size because this ensures our Lambda function can support Chrome and other resources required to run a UI test.

Specifying the handler is important because this class executes the desired test. The test handler should be able to receive a test class and method. With this information it will then execute the test and respond with the results.

public LambdaTestResult handleRequest(TestRequest testRequest, Context context) {
   LoggerContainer.LOGGER = new Logger(context.getLogger());
  
   BlockJUnit4ClassRunner runner = getRunnerForSingleTest(testRequest);
  
   Result result = new JUnitCore().run(runner);

   return new LambdaTestResult(result);
}

Creating a Lambda-Compatible ChromeDriver

We provide developers with an easily accessible ChromeDriver for local test writing and debugging. When we are running tests on AWS, we have configured ChromeDriver to run them in Lambda.

To configure ChromeDriver, we first need to tell ChromeDriver where to find the Chrome binary. Because we know that ChromeDriver is going to be unzipped into the root task directory, we should point the ChromeDriver configuration at that location.

The settings for getting ChromeDriver running are mostly related to Chrome, which must have its working directories pointed at the tmp/ folder.

Start with the default DesiredCapabilities for ChromeDriver, and then add the following settings to enable your ChromeDriver to start in Lambda.

public ChromeDriver createLambdaChromeDriver() {
   ChromeOptions options = new ChromeOptions();

   // Set the location of the chrome binary from the resources folder
   options.setBinary("/var/task/chrome");

   // Include these settings to allow Chrome to run in Lambda
   options.addArguments("--disable-gpu");
   options.addArguments("--headless");
   options.addArguments("--window-size=1366,768");
   options.addArguments("--single-process");
   options.addArguments("--no-sandbox");
   options.addArguments("--user-data-dir=/tmp/user-data");
   options.addArguments("--data-path=/tmp/data-path");
   options.addArguments("--homedir=/tmp");
   options.addArguments("--disk-cache-dir=/tmp/cache-dir");
  
   DesiredCapabilities desiredCapabilities = DesiredCapabilities.chrome();
   desiredCapabilities.setCapability(ChromeOptions.CAPABILITY, options);
  
   return new ChromeDriver(desiredCapabilities);
}

Executing Tests in Parallel

You can approach parallel test execution in Lambda in many different ways. Your approach depends on the structure and design of your test suite. For our solution, we implemented a custom test runner that uses reflection and JUnit libraries to create a list of test cases we want run. When we have the list, we create a TestRequest object to pass into the Lambda function that we have deployed. In this TestRequest, we place the class name, test method, and the test run identifier. When the Lambda function receives this TestRequest, our LambdaTestHandler generates and runs the JUnit test. After the test is complete, the test result is sent to the test runner. The test runner compiles a result after all of the tests are complete. By executing the same Lambda function multiple times with different test requests, we can effectively run the entire test suite in parallel.

To get screenshots and other test data, we pipe those files during test execution to an S3 bucket under the test run identifier prefix. When the tests are complete, we link the files to each test execution in the report generated from the test run. This lets us easily investigate test executions.

Pro Tip: Dynamically Loading Binaries

AWS Lambda has a limit of 250 MB of uncompressed space for packaged Lambda functions. Because we have libraries and other dependencies to our test suite, we hit this limit when we tried to upload a function that contained Chrome and ChromeDriver (~140 MB). This test suite was not originally intended to be used with Lambda. Otherwise, we would have scrutinized some of the included libraries. To get around this limit, we used the Lambda functions temporary directory, which allows up to 500 MB of space at runtime. Downloading these binaries at runtime moves some of that space requirement into the temporary directory. This allows more room for libraries and dependencies. You can do this by grabbing Chrome and ChromeDriver from an S3 bucket and marking them as executable using built-in Java libraries. If you take this route, be sure to point to the new location for these executables in order to create a ChromeDriver.

private static void downloadS3ObjectToExecutableFile(String key) throws IOException {
   File file = new File("/tmp/" + key);

   GetObjectRequest request = new GetObjectRequest("s3-bucket-name", key);

   FileUtils.copyInputStreamToFile(s3client.getObject(request).getObjectContent(), file);
   file.setExecutable(true);
}

Lambda-Selenium Project Source

We have compiled an open source example that you can grab from the Blackboard Github repository. Grab the code and try it out!

https://blackboard.github.io/lambda-selenium/

Conclusion

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Thanks to AWS Lambda, we can reduce our build times and perform automated UI testing at scale!

Using AWS CodePipeline, AWS CodeBuild, and AWS Lambda for Serverless Automated UI Testing

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/using-aws-codepipeline-aws-codebuild-and-aws-lambda-for-serverless-automated-ui-testing/

Testing the user interface of a web application is an important part of the development lifecycle. In this post, I’ll explain how to automate UI testing using serverless technologies, including AWS CodePipeline, AWS CodeBuild, and AWS Lambda.

I built a website for UI testing that is hosted in S3. I used Selenium to perform cross-browser UI testing on Chrome, Firefox, and PhantomJS, a headless WebKit browser with Ghost Driver, an implementation of the WebDriver Wire Protocol. I used Python to create test cases for ChromeDriver, FirefoxDriver, or PhatomJSDriver based the browser against which the test is being executed.

Resources referred to in this post, including the AWS CloudFormation template, test and status websites hosted in S3, AWS CodeBuild build specification files, AWS Lambda function, and the Python script that performs the test are available in the serverless-automated-ui-testing GitHub repository.

S3 Hosted Test Website:

AWS CodeBuild supports custom containers so we can use the Selenium/standalone-Firefox and Selenium/standalone-Chrome containers, which include prebuild Firefox and Chrome browsers, respectively. Xvfb performs the graphical operation in virtual memory without any display hardware. It will be installed in the CodeBuild containers during the install phase.

Build Spec for Chrome and Firefox

The build specification for Chrome and Firefox testing includes multiple phases:

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, required packages like Xvfb and Selenium are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, the appropriate DISPLAY is set and the tests are executed.
version: 0.2

env:
  variables:
    BROWSER: "chrome"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install xvfb python python-pip build-essential -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
      - cp xvfb.init /etc/init.d/xvfb
      - chmod +x /etc/init.d/xvfb
      - update-rc.d xvfb defaults
      - service xvfb start
      - export PATH="$PATH:`pwd`/webdrivers"
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - export DISPLAY=:5
      - cd tests
      - echo "Executing simple test..."
      - python testsuite.py

Because Ghost Driver runs headless, it can be executed on AWS Lambda. In keeping with a fire-and-forget model, I used CodeBuild to create the PhantomJS Lambda function and trigger the test invocations on Lambda in parallel. This is powerful because many tests can be executed in parallel on Lambda.

Build Spec for PhantomJS

The build specification for PhantomJS testing also includes multiple phases. It is a little different from the preceding example because we are using AWS Lambda for the test execution.

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, the required packages like Selenium and the AWS CLI are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, a zip file that will be used to create the PhantomJS Lambda function is created and tests are executed on the Lambda function.
version: 0.2

env:
  variables:
    BROWSER: "phantomjs"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"
    LambdaRole: "arn:aws:iam::account-id:role/role-name"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install python python-pip build-essential -y
      - apt-get install zip unzip -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - cd lambda_function
      - echo "Packaging Lambda Function..."
      - zip -r /tmp/lambda_function.zip ./*
      - func_name=`echo $CODEBUILD_BUILD_ID | awk -F ':' '{print $1}'`-phantomjs
      - echo "Creating Lambda Function..."
      - chmod 777 phantomjs
      - |
         func_list=`aws lambda list-functions | grep FunctionName | awk -F':' '{print $2}' | tr -d ', "'`
         if echo "$func_list" | grep -qw $func_name
         then
             echo "Lambda function already exists."
         else
             aws lambda create-function --function-name $func_name --runtime "python2.7" --role $LambdaRole --handler "testsuite.lambda_handler" --zip-file fileb:///tmp/lambda_function.zip --timeout 150 --memory-size 1024 --environment Variables="{WebURL=$WebURL, StatusTable=$StatusTable}" --tags Name=$func_name
         fi
      - export PhantomJSFunction=$func_name
      - cd ../tests/
      - python testsuite.py

The list of test cases and the test modules that belong to each case are stored in an Amazon DynamoDB table. Based on the list of modules passed as an argument to the CodeBuild project, CodeBuild gets the test cases from that table and executes them. The test execution status and results are stored in another Amazon DynamoDB table. It will read the test status from the status table in DynamoDB and display it.

AWS CodeBuild and AWS Lambda perform the test execution as individual tasks. AWS CodePipeline plays an important role here by enabling continuous delivery and parallel execution of tests for optimized testing.

Here’s how to do it:

In AWS CodePipeline, create a pipeline with four stages:

  • Source (AWS CodeCommit)
  • UI testing (AWS Lambda and AWS CodeBuild)
  • Approval (manual approval)
  • Production (AWS Lambda)

Pipeline stages, the actions in each stage, and transitions between stages are shown in the following diagram.

This design implemented in AWS CodePipeline looks like this:

CodePipeline automatically detects a change in the source repository and triggers the execution of the pipeline.

In the UITest stage, there are two parallel actions:

  • DeployTestWebsite invokes a Lambda function to deploy the test website in S3 as an S3 website.
  • DeployStatusPage invokes another Lambda function to deploy in parallel the status website in S3 as an S3 website.

Next, there are three parallel actions that trigger the CodeBuild project:

  • TestOnChrome launches a container to perform the Selenium tests on Chrome.
  • TestOnFirefox launches another container to perform the Selenium tests on Firefox.
  • TestOnPhantomJS creates a Lambda function and invokes individual Lambda functions per test case to execute the test cases in parallel.

You can monitor the status of the test execution on the status website, as shown here:

When the UI testing is completed successfully, the pipeline continues to an Approval stage in which a notification is sent to the configured SNS topic. The designated team member reviews the test status and approves or rejects the deployment. Upon approval, the pipeline continues to the Production stage, where it invokes a Lambda function and deploys the website to a production S3 bucket.

I used a CloudFormation template to set up my continuous delivery pipeline. The automated-ui-testing.yaml template, available from GitHub, sets up a full-featured pipeline.

When I use the template to create my pipeline, I specify the following:

  • AWS CodeCommit repository.
  • SNS topic to send approval notification.
  • S3 bucket name where the artifacts will be stored.

The stack name should follow the rules for S3 bucket naming because it will be part of the S3 bucket name.

When the stack is created successfully, the URLs for the test website and status website appear in the Outputs section, as shown here:

Conclusion

In this post, I showed how you can use AWS CodePipeline, AWS CodeBuild, AWS Lambda, and a manual approval process to create a continuous delivery pipeline for serverless automated UI testing. Websites running on Amazon EC2 instances or AWS Elastic Beanstalk can also be tested using similar approach.


About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

A security update for Raspbian PIXEL

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/a-security-update-for-raspbian-pixel/

The more observant among you may have spotted that we’ve recently updated the Raspbian-with-PIXEL image available from Downloads. With any major release of the OS, we usually find a few small bugs and other issues as soon as the wider community start using it, and so we gather up the fixes and produce a 1.1 release a few weeks later. We don’t make a fuss about these bug fix releases, as there’s no new functionality; these are just fixes to make things work as originally intended.

However, in this case, we’ve made a couple of important changes. They won’t be noticed by many users, but to those who do notice them and who will be affected by them, we should explain ourselves!

Why have we changed things?

Anyone following tech media over the last few months will have seen the stories about botnets running on Internet of Things devices. Hackers are using the default passwords on webcams and the like to create a network capable of sending enough requests to a website to cause it to grind to a halt.

news

With the Pi, we’ve always tried to keep it as open as possible. We provide a default user account with a default password, and this account can use sudo to control or modify anything without a password; this makes life much easier for beginners. We also have an open SSH port by default, so that people who are using a Pi remotely can just install the latest Raspbian image, plug it in, and control their Pi with no configuration required; again, this makes life easier.

Unfortunately, hackers are increasingly exploiting loopholes such as these in other products to enable them to invisibly take control of devices. In general, this has not been a problem for Pis. If a Pi is on a private network in your home, it’s unlikely that an attacker can reach it; if you’re putting a Pi on a public network, we’ve hoped that you know enough about the issues involved to change the default password or turn off SSH.

But the threat of hacking has now got to the point where we can see that we need to change our approach. Much as we hate to impose restrictions on users, we would also hate for our relatively relaxed approach to security to cause far worse problems. With this release, therefore, we’ve made a couple of small changes to improve security, which should be enough to make it extremely hard to hijack a Pi, while not making life too difficult for users.

What has changed?

First, from now on SSH will be disabled by default on our images. SSH (Secure SHell) is a networking protocol which allows you to remotely log into a Linux computer and control it from a remote command line. As mentioned above, many Pi owners use it to install a Pi headless (without screen or keyboard) and control it from another PC.

In the past, SSH was enabled by default, so people using their Pi headless could easily update their SD card to a new image. Switching SSH on or off has always required the use of raspi-config or the Raspberry Pi Configuration application, but to access those, you need a screen and keyboard connected to the Pi itself, which is not the case in headless applications. So we’ve provided a simple mechanism for enabling SSH before an image is booted.

The boot partition on a Pi should be accessible from any machine with an SD card reader, on Windows, Mac, or Linux. If you want to enable SSH, all you need to do is to put a file called ssh in the /boot/ directory. The contents of the file don’t matter: it can contain any text you like, or even nothing at all. When the Pi boots, it looks for this file; if it finds it, it enables SSH and then deletes the file. SSH can still be turned on or off from the Raspberry Pi Configuration application or raspi-config; this is simply an additional way to turn it on if you can’t easily run either of those applications.

rconf

The risk with an open SSH port is that someone can access it and log in; to do this, they need a user account and a password. Out of the box, all Raspbian installs have the default user account ‘pi’ with the password ‘raspberry’. If you’re enabling SSH, you should really change the password for the ‘pi’ user to prevent a hacker using the defaults. To encourage this, we’ve added warnings to the boot process. If SSH is enabled, and the password for the ‘pi’ user is still ‘raspberry’, you’ll see a warning message whenever you boot the Pi, whether to the desktop or the command line. We’re not enforcing password changes, but you’ll be warned whenever you boot if your Pi is potentially at risk.

warn

Our hope is that these (relatively minor) changes will not cause too much inconvenience, but they will make it much harder for hackers to attack the Pi.

Is there anything I need to do to protect my Pi?

We should stress at this point that there’s no need to panic! We are not aware of Pis being used in botnets or being taken over in large numbers; your own Pi is almost certainly not currently hacked.

It’s still good practice to protect yourself to avoid problems in future. We therefore suggest that you use the Raspberry Pi Configuration application or raspi-config to disable SSH if you’re not using it, and also change the password for the ‘pi’ user if it’s still ‘raspberry’.

To change the password, you can either press the ‘Change Password’ button in Raspberry Pi Configuration, or type passwd at the command line, and follow the prompts.

cpass

This issue has caused quite a lot of discussion at Pi Towers. The relaxed approach we’ve taken thus far has been for very good reasons, and we’re reluctant to change it. However, we feel that these changes are necessary to protect our users from potential threats now and in the future, and we hope you can understand our reasoning.

How do I get the updates?

The latest Raspbian with PIXEL image is available from the Downloads page on our website now. Note that the uncompressed image is over 4GB in size, and some older unzippers will fail to decompress it properly. If you have problems, use 7-Zip on Windows and The Unarchiver on Mac; both are free applications which have been tested and will decompress the file correctly.

To update your existing Jessie image with all the bug fixes and these new security changes, type the following at the command line:

sudo apt-get update
sudo apt-get dist-upgrade
sudo apt-get install -y pprompt

and then reboot.

The post A security update for Raspbian PIXEL appeared first on Raspberry Pi.

Friday’s security updates

Post Syndicated from n8willis original http://lwn.net/Articles/696545/rss

Arch Linux has updated firefox (multiple vulnerabilities), jdk7-openjdk (multiple vulnerabilities), jre7-openjdk (multiple vulnerabilities), and jre7-openjdk-headless (multiple vulnerabilities).

Debian has updated openjdk-7 (multiple vulnerabilities).

Debian-LTS has updated curl
(multiple vulnerabilities) and mysql-5.5 (multiple vulnerabilities).

Fedora has updated collectd (F23; F24:
code execution),
dietlibc (F23; F24: insecure default PATH), perl (F24: privilege escalation), perl-DBD-MySQL (F24: code execution), and python-autobahn (F24: insecure origin validation).

openSUSE has updated MozillaFirefox, mozilla-nss (13.2, Leap
42.1: multiple vulnerabilities).

Oracle has updated kernel (O7; O6:
multiple vulnerabilities; O7; O6; O6; O5:
privilege escalation)
and squid (O6: code execution).

Scientific Linux has updated squid (SL6: code execution).

SUSE has updated kernel
(SLE12-LP: multiple vulnerabilities).

Ubuntu has updated firefox
(12.04, 14.04, 16.04: multiple vulnerabilities), libreoffice (12.04: code execution), oxide-qt (14.04, 16.04: multiple vulnerabilities), and qemu, qemu-kvm (12.04, 14.04, 16.04: multiple vulnerabilities).

Pi 3 booting part II: Ethernet

Post Syndicated from Gordon Hollingworth original https://www.raspberrypi.org/blog/pi-3-booting-part-ii-ethernet-all-the-awesome/

Yesterday, we introduced the first of two new boot modes which have now been added to the Raspberry Pi 3. Today, we introduce an even more exciting addition: network booting a Raspberry Pi with no SD card.

Again, rather than go through a description of the boot mode here, we’ve written a fairly comprehensive guide on the Raspberry Pi documentation pages, and you can find a tutorial to get you started here. Below are answers to what we think will be common questions, and a look at some limitations of the boot mode.

Note: this is still in beta testing and uses the “next” branch of the firmware. If you’re unsure about using the new boot modes, it’s probably best to wait until we release it fully.

What is network booting?

Network booting is a computer’s ability to load all its software over a network. This is useful in a number of cases, such as remotely operated systems or those in data centres; network booting means they can be updated, upgraded, and completely re-imaged, without anyone having to touch the device!

The main advantages when it comes to the Raspberry Pi are:

  1. SD cards are difficult to make reliable unless they are treated well; they must be powered down correctly, for example. A Network File System (NFS) is much better in this respect, and is easy to fix remotely.
  2. NFS file systems can be shared between multiple Raspberry Pis, meaning that you only have to update and upgrade a single Pi, and are then able to share users in a single file system.
  3. Network booting allows for completely headless Pis with no external access required. The only desirable addition would be an externally controlled power supply.

I’ve tried doing things like this before and it’s really hard editing DHCP configurations!

It can be quite difficult to edit DHCP configurations to allow your Raspberry Pi to boot, while not breaking the whole network in the process. Because of this, and thanks to input from Andrew Mulholland, I added the support of proxy DHCP as used with PXE booting computers.

What’s proxy DHCP and why does it make it easier?

Standard DHCP is the protocol that gives a system an IP address when it powers up. It’s one of the most important protocols, because it allows all the different systems to coexist. The problem is that if you edit the DHCP configuration, you can easily break your network.

So proxy DHCP is a special protocol: instead of handing out IP addresses, it only hands out the TFTP server address. This means it will only reply to devices trying to do netboot. This is much easier to enable and manage, because we’ve given you a tutorial!

Are there any bugs?

At the moment we know of three problems which need to be worked around:

  • When the boot ROM enables the Ethernet link, it first waits for the link to come up, then sends its first DHCP request packet. This is sometimes too quick for the switch to which the Raspberry Pi is connected: we believe that the switch may throw away packets it receives very soon after the link first comes up.
  • The second bug is in the retransmission of the DHCP packet: the retransmission loop is not timing out correctly, so the DHCP packet will not be retransmitted.

The solution to both these problems is to find a suitable switch which works with the Raspberry Pi boot system. We have been using a Netgear GS108 without a problem.

  • Finally, the failing timeout has a knock-on effect. This means it can require the occasional random packet to wake it up again, so having the Raspberry Pi network wired up to a general network with lots of other computers actually helps!

Can I use network boot with Raspberry Pi / Pi 2?

Unfortunately, because the code is actually in the boot ROM, this won’t work with Pi 1, Pi B+, Pi 2, and Pi Zero. But as with the MSD instructions, there’s a special mode in which you can copy the ‘next’ firmware bootcode.bin to an SD card on its own, and then it will try and boot from the network.

This is also useful if you’re having trouble with the bugs above, since I’ve fixed them in the bootcode.bin implementation.

Finally, I would like to thank my Slack beta testing team who provided a great testing resource for this work. It’s been a fun few weeks! Thanks in particular to Rolf Bakker for this current handy status reference…

Current state of network boot on all Pis

Current state of network boot on all Pis

The post Pi 3 booting part II: Ethernet appeared first on Raspberry Pi.

Programming your Pi Zero over USB

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/programming-pi-zero-usb/

Here’s a really neat solution from the inestimable Dan “PiGlove, mind where you put the capitals” Aldred. If you’re not able to get to another screen or monitor, or if you’re on the move, this is a very tidy way to get set up.

Programming the Pi over USB

A comprehensive video covering how to set up your Raspberry Pi Zero so that you can access it via the USB port. Yes, plug it in to a USB port and you can use the command line or with a few tweaks a full graphical desktop.

This is a really comprehensive guide, taking you all the way from flashing an SD card, accessing your Pi Zero via Putty, installing VNC and setting up a graphical user interface, to running Minecraft. Dan’s a teacher, and this video is perfect for beginners; if you find it helpful, please let us know in the comments!

 

 

The post Programming your Pi Zero over USB appeared first on Raspberry Pi.