Tag Archives: Interactive

New – Pay-per-Session Pricing for Amazon QuickSight, Another Region, and Lots More

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-pay-per-session-pricing-for-amazon-quicksight-another-region-and-lots-more/

Amazon QuickSight is a fully managed cloud business intelligence system that gives you Fast & Easy to Use Business Analytics for Big Data. QuickSight makes business analytics available to organizations of all shapes and sizes, with the ability to access data that is stored in your Amazon Redshift data warehouse, your Amazon Relational Database Service (RDS) relational databases, flat files in S3, and (via connectors) data stored in on-premises MySQL, PostgreSQL, and SQL Server databases. QuickSight scales to accommodate tens, hundreds, or thousands of users per organization.

Today we are launching a new, session-based pricing option for QuickSight, along with additional region support and other important new features. Let’s take a look at each one:

Pay-per-Session Pricing
Our customers are making great use of QuickSight and take full advantage of the power it gives them to connect to data sources, create reports, and and explore visualizations.

However, not everyone in an organization needs or wants such powerful authoring capabilities. Having access to curated data in dashboards and being able to interact with the data by drilling down, filtering, or slicing-and-dicing is more than adequate for their needs. Subscribing them to a monthly or annual plan can be seen as an unwarranted expense, so a lot of such casual users end up not having access to interactive data or BI.

In order to allow customers to provide all of their users with interactive dashboards and reports, the Enterprise Edition of Amazon QuickSight now allows Reader access to dashboards on a Pay-per-Session basis. QuickSight users are now classified as Admins, Authors, or Readers, with distinct capabilities and prices:

Authors have access to the full power of QuickSight; they can establish database connections, upload new data, create ad hoc visualizations, and publish dashboards, all for $9 per month (Standard Edition) or $18 per month (Enterprise Edition).

Readers can view dashboards, slice and dice data using drill downs, filters and on-screen controls, and download data in CSV format, all within the secure QuickSight environment. Readers pay $0.30 for 30 minutes of access, with a monthly maximum of $5 per reader.

Admins have all authoring capabilities, and can manage users and purchase SPICE capacity in the account. The QuickSight admin now has the ability to set the desired option (Author or Reader) when they invite members of their organization to use QuickSight. They can extend Reader invites to their entire user base without incurring any up-front or monthly costs, paying only for the actual usage.

To learn more, visit the QuickSight Pricing page.

A New Region
QuickSight is now available in the Asia Pacific (Tokyo) Region:

The UI is in English, with a localized version in the works.

Hourly Data Refresh
Enterprise Edition SPICE data sets can now be set to refresh as frequently as every hour. In the past, each data set could be refreshed up to 5 times a day. To learn more, read Refreshing Imported Data.

Access to Data in Private VPCs
This feature was launched in preview form late last year, and is now available in production form to users of the Enterprise Edition. As I noted at the time, you can use it to implement secure, private communication with data sources that do not have public connectivity, including on-premises data in Teradata or SQL Server, accessed over an AWS Direct Connect link. To learn more, read Working with AWS VPC.

Parameters with On-Screen Controls
QuickSight dashboards can now include parameters that are set using on-screen dropdown, text box, numeric slider or date picker controls. The default value for each parameter can be set based on the user name (QuickSight calls this a dynamic default). You could, for example, set an appropriate default based on each user’s office location, department, or sales territory. Here’s an example:

To learn more, read about Parameters in QuickSight.

URL Actions for Linked Dashboards
You can now connect your QuickSight dashboards to external applications by defining URL actions on visuals. The actions can include parameters, and become available in the Details menu for the visual. URL actions are defined like this:

You can use this feature to link QuickSight dashboards to third party applications (e.g. Salesforce) or to your own internal applications. Read Custom URL Actions to learn how to use this feature.

Dashboard Sharing
You can now share QuickSight dashboards across every user in an account.

Larger SPICE Tables
The per-data set limit for SPICE tables has been raised from 10 GB to 25 GB.

Upgrade to Enterprise Edition
The QuickSight administrator can now upgrade an account from Standard Edition to Enterprise Edition with a click. This enables provisioning of Readers with pay-per-session pricing, private VPC access, row-level security for dashboards and data sets, and hourly refresh of data sets. Enterprise Edition pricing applies after the upgrade.

Available Now
Everything I listed above is available now and you can start using it today!

You can try QuickSight for 60 days at no charge, and you can also attend our June 20th Webinar.

Jeff;

 

Randomly generated, thermal-printed comics

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/random-comic-strip-generation-vomit-comic-robot/

Python code creates curious, wordless comic strips at random, spewing them from the thermal printer mouth of a laser-cut body reminiscent of Disney Pixar’s WALL-E: meet the Vomit Comic Robot!

The age of the thermal printer!

Thermal printers allow you to instantly print photos, data, and text using a few lines of code, with no need for ink. More and more makers are using this handy, low-maintenance bit of kit for truly creative projects, from Pierre Muth’s tiny PolaPi-Zero camera to the sound-printing Waves project by Eunice Lee, Matthew Zhang, and Bomani McClendon (and our own Secret Santa Babbage).

Vomiting robots

Interaction designer and developer Cadin Batrack, whose background is in game design and interactivity, has built the Vomit Comic Robot, which creates “one-of-a-kind comics on demand by processing hand-drawn images through a custom software algorithm.”

The robot is made up of a Raspberry Pi 3, a USB thermal printer, and a handful of LEDs.

Comic Vomit Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

At the press of a button, Processing code selects one of a set of Cadin’s hand-drawn empty comic grids and then randomly picks images from a library to fill in the gaps.

Vomit Comic Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

Each image is associated with data that allows the code to fit it correctly into the available panels. Cadin says about the concept behing his build:

Although images are selected and placed randomly, the comic panel format suggests relationships between elements. Our minds create a story where there is none in an attempt to explain visuals created by a non-intelligent machine.

The Raspberry Pi saves the final image as a high-resolution PNG file (so that Cadin can sell prints on thick paper via Etsy), and a Python script sends it to be vomited up by the thermal printer.

Comic Vomit Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

For more about the Vomit Comic Robot, check out Cadin’s blog. If you want to recreate it, you can find the info you need in the Imgur album he has put together.

We ❤ cute robots

We have a soft spot for cute robots here at Pi Towers, and of course we make no exception for the Vomit Comic Robot. If, like us, you’re a fan of adorable bots, check out Mira, the tiny interactive robot by Alonso Martinez, and Peeqo, the GIF bot by Abhishek Singh.

Mira Alfonso Martinez Raspberry Pi

The post Randomly generated, thermal-printed comics appeared first on Raspberry Pi.

Use Slack ChatOps to Deploy Your Code – How to Integrate Your Pipeline in AWS CodePipeline with Your Slack Channel

Post Syndicated from Rumi Olsen original https://aws.amazon.com/blogs/devops/use-slack-chatops-to-deploy-your-code-how-to-integrate-your-pipeline-in-aws-codepipeline-with-your-slack-channel/

Slack is widely used by DevOps and development teams to communicate status. Typically, when a build has been tested and is ready to be promoted to a staging environment, a QA engineer or DevOps engineer kicks off the deployment. Using Slack in a ChatOps collaboration model, the promotion can be done in a single click from a Slack channel. And because the promotion happens through a Slack channel, the whole development team knows what’s happening without checking email.

In this blog post, I will show you how to integrate AWS services with a Slack application. I use an interactive message button and incoming webhook to promote a stage with a single click.

To follow along with the steps in this post, you’ll need a pipeline in AWS CodePipeline. If you don’t have a pipeline, the fastest way to create one for this use case is to use AWS CodeStar. Go to the AWS CodeStar console and select the Static Website template (shown in the screenshot). AWS CodeStar will create a pipeline with an AWS CodeCommit repository and an AWS CodeDeploy deployment for you. After the pipeline is created, you will need to add a manual approval stage.

You’ll also need to build a Slack app with webhooks and interactive components, write two Lambda functions, and create an API Gateway API and a SNS topic.

As you’ll see in the following diagram, when I make a change and merge a new feature into the master branch in AWS CodeCommit, the check-in kicks off my CI/CD pipeline in AWS CodePipeline. When CodePipeline reaches the approval stage, it sends a notification to Amazon SNS, which triggers an AWS Lambda function (ApprovalRequester).

The Slack channel receives a prompt that looks like the following screenshot. When I click Yes to approve the build promotion, the approval result is sent to CodePipeline through API Gateway and Lambda (ApprovalHandler). The pipeline continues on to deploy the build to the next environment.

Create a Slack app

For App Name, type a name for your app. For Development Slack Workspace, choose the name of your workspace. You’ll see in the following screenshot that my workspace is AWS ChatOps.

After the Slack application has been created, you will see the Basic Information page, where you can create incoming webhooks and enable interactive components.

To add incoming webhooks:

  1. Under Add features and functionality, choose Incoming Webhooks. Turn the feature on by selecting Off, as shown in the following screenshot.
  2. Now that the feature is turned on, choose Add New Webhook to Workspace. In the process of creating the webhook, Slack lets you choose the channel where messages will be posted.
  3. After the webhook has been created, you’ll see its URL. You will use this URL when you create the Lambda function.

If you followed the steps in the post, the pipeline should look like the following.

Write the Lambda function for approval requests

This Lambda function is invoked by the SNS notification. It sends a request that consists of an interactive message button to the incoming webhook you created earlier.  The following sample code sends the request to the incoming webhook. WEBHOOK_URL and SLACK_CHANNEL are the environment variables that hold values of the webhook URL that you created and the Slack channel where you want the interactive message button to appear.

# This function is invoked via SNS when the CodePipeline manual approval action starts.
# It will take the details from this approval notification and sent an interactive message to Slack that allows users to approve or cancel the deployment.

import os
import json
import logging
import urllib.parse

from base64 import b64decode
from urllib.request import Request, urlopen
from urllib.error import URLError, HTTPError

# This is passed as a plain-text environment variable for ease of demonstration.
# Consider encrypting the value with KMS or use an encrypted parameter in Parameter Store for production deployments.
SLACK_WEBHOOK_URL = os.environ['SLACK_WEBHOOK_URL']
SLACK_CHANNEL = os.environ['SLACK_CHANNEL']

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    print("Received event: " + json.dumps(event, indent=2))
    message = event["Records"][0]["Sns"]["Message"]
    
    data = json.loads(message) 
    token = data["approval"]["token"]
    codepipeline_name = data["approval"]["pipelineName"]
    
    slack_message = {
        "channel": SLACK_CHANNEL,
        "text": "Would you like to promote the build to production?",
        "attachments": [
            {
                "text": "Yes to deploy your build to production",
                "fallback": "You are unable to promote a build",
                "callback_id": "wopr_game",
                "color": "#3AA3E3",
                "attachment_type": "default",
                "actions": [
                    {
                        "name": "deployment",
                        "text": "Yes",
                        "style": "danger",
                        "type": "button",
                        "value": json.dumps({"approve": True, "codePipelineToken": token, "codePipelineName": codepipeline_name}),
                        "confirm": {
                            "title": "Are you sure?",
                            "text": "This will deploy the build to production",
                            "ok_text": "Yes",
                            "dismiss_text": "No"
                        }
                    },
                    {
                        "name": "deployment",
                        "text": "No",
                        "type": "button",
                        "value": json.dumps({"approve": False, "codePipelineToken": token, "codePipelineName": codepipeline_name})
                    }  
                ]
            }
        ]
    }

    req = Request(SLACK_WEBHOOK_URL, json.dumps(slack_message).encode('utf-8'))

    response = urlopen(req)
    response.read()
    
    return None

 

Create a SNS topic

Create a topic and then create a subscription that invokes the ApprovalRequester Lambda function. You can configure the manual approval action in the pipeline to send a message to this SNS topic when an approval action is required. When the pipeline reaches the approval stage, it sends a notification to this SNS topic. SNS publishes a notification to all of the subscribed endpoints. In this case, the Lambda function is the endpoint. Therefore, it invokes and executes the Lambda function. For information about how to create a SNS topic, see Create a Topic in the Amazon SNS Developer Guide.

Write the Lambda function for handling the interactive message button

This Lambda function is invoked by API Gateway. It receives the result of the interactive message button whether or not the build promotion was approved. If approved, an API call is made to CodePipeline to promote the build to the next environment. If not approved, the pipeline stops and does not move to the next stage.

The Lambda function code might look like the following. SLACK_VERIFICATION_TOKEN is the environment variable that contains your Slack verification token. You can find your verification token under Basic Information on Slack manage app page. When you scroll down, you will see App Credential. Verification token is found under the section.

# This function is triggered via API Gateway when a user acts on the Slack interactive message sent by approval_requester.py.

from urllib.parse import parse_qs
import json
import os
import boto3

SLACK_VERIFICATION_TOKEN = os.environ['SLACK_VERIFICATION_TOKEN']

#Triggered by API Gateway
#It kicks off a particular CodePipeline project
def lambda_handler(event, context):
	#print("Received event: " + json.dumps(event, indent=2))
	body = parse_qs(event['body'])
	payload = json.loads(body['payload'][0])

	# Validate Slack token
	if SLACK_VERIFICATION_TOKEN == payload['token']:
		send_slack_message(json.loads(payload['actions'][0]['value']))
		
		# This will replace the interactive message with a simple text response.
		# You can implement a more complex message update if you would like.
		return  {
			"isBase64Encoded": "false",
			"statusCode": 200,
			"body": "{\"text\": \"The approval has been processed\"}"
		}
	else:
		return  {
			"isBase64Encoded": "false",
			"statusCode": 403,
			"body": "{\"error\": \"This request does not include a vailid verification token.\"}"
		}


def send_slack_message(action_details):
	codepipeline_status = "Approved" if action_details["approve"] else "Rejected"
	codepipeline_name = action_details["codePipelineName"]
	token = action_details["codePipelineToken"] 

	client = boto3.client('codepipeline')
	response_approval = client.put_approval_result(
							pipelineName=codepipeline_name,
							stageName='Approval',
							actionName='ApprovalOrDeny',
							result={'summary':'','status':codepipeline_status},
							token=token)
	print(response_approval)

 

Create the API Gateway API

  1. In the Amazon API Gateway console, create a resource called InteractiveMessageHandler.
  2. Create a POST method.
    • For Integration type, choose Lambda Function.
    • Select Use Lambda Proxy integration.
    • From Lambda Region, choose a region.
    • In Lambda Function, type a name for your function.
  3.  Deploy to a stage.

For more information, see Getting Started with Amazon API Gateway in the Amazon API Developer Guide.

Now go back to your Slack application and enable interactive components.

To enable interactive components for the interactive message (Yes) button:

  1. Under Features, choose Interactive Components.
  2. Choose Enable Interactive Components.
  3. Type a request URL in the text box. Use the invoke URL in Amazon API Gateway that will be called when the approval button is clicked.

Now that all the pieces have been created, run the solution by checking in a code change to your CodeCommit repo. That will release the change through CodePipeline. When the CodePipeline comes to the approval stage, it will prompt to your Slack channel to see if you want to promote the build to your staging or production environment. Choose Yes and then see if your change was deployed to the environment.

Conclusion

That is it! You have now created a Slack ChatOps solution using AWS CodeCommit, AWS CodePipeline, AWS Lambda, Amazon API Gateway, and Amazon Simple Notification Service.

Now that you know how to do this Slack and CodePipeline integration, you can use the same method to interact with other AWS services using API Gateway and Lambda. You can also use Slack’s slash command to initiate an action from a Slack channel, rather than responding in the way demonstrated in this post.

Raspberry Jam Cameroon #PiParty

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/raspberry-jam-cameroon-piparty/

Earlier this year on 3 and 4 March, communities around the world held Raspberry Jam events to celebrate Raspberry Pi’s sixth birthday. We sent out special birthday kits to participating Jams — it was amazing to know the kits would end up in the hands of people in parts of the world very far from Raspberry Pi HQ in Cambridge, UK.

The Raspberry Jam Camer team: Damien Doumer, Eyong Etta, Loïc Dessap and Lionel Sichom, aka Lionel Tellem

Preparing for the #PiParty

One birthday kit went to Yaoundé, the capital of Cameroon. There, a team of four students in their twenties — Lionel Sichom (aka Lionel Tellem), Eyong Etta, Loïc Dessap, and Damien Doumer — were organising Yaoundé’s first Jam, called Raspberry Jam Camer, as part of the Raspberry Jam Big Birthday Weekend. The team knew one another through their shared interests and skills in electronics, robotics, and programming. Damien explains in his blog post about the Jam that they planned ahead for several activities for the Jam based on their own projects, so they could be confident of having a few things that would definitely be successful for attendees to do and see.

Show-and-tell at Raspberry Jam Cameroon

Loïc presented a Raspberry Pi–based, Android app–controlled robot arm that he had built, and Lionel coded a small video game using Scratch on Raspberry Pi while the audience watched. Damien demonstrated the possibilities of Windows 10 IoT Core on Raspberry Pi, showing how to install it, how to use it remotely, and what you can do with it, including building a simple application.

Loïc Dessap, wearing a Raspberry Jam Big Birthday Weekend T-shirt, sits at a table with a robot arm, a laptop with a Pi sticker and other components. He is making an adjustment to his set-up.

Loïc showcases the prototype robot arm he built

There was lots more too, with others discussing their own Pi projects and talking about the possibilities Raspberry Pi offers, including a Pi-controlled drone and car. Cake was a prevailing theme of the Raspberry Jam Big Birthday Weekend around the world, and Raspberry Jam Camer made sure they didn’t miss out.

A round pink-iced cake decorated with the words "Happy Birthday RBP" and six candles, on a table beside Raspberry Pi stickers, Raspberry Jam stickers and Raspberry Jam fliers

Yay, birthday cake!!

A big success

Most visitors to the Jam were secondary school students, while others were university students and graduates. The majority were unfamiliar with Raspberry Pi, but all wanted to learn about Raspberry Pi and what they could do with it. Damien comments that the fact most people were new to Raspberry Pi made the event more interactive rather than creating any challenges, because the visitors were all interested in finding out about the little computer. The Jam was an all-round success, and the team was pleased with how it went:

What I liked the most was that we sensitized several people about the Raspberry Pi and what one can be capable of with such a small but powerful device. — Damien Doumer

The Jam team rounded off the event by announcing that this was the start of a Raspberry Pi community in Yaoundé. They hope that they and others will be able to organise more Jams and similar events in the area to spread the word about what people can do with Raspberry Pi, and to help them realise their ideas.

The Raspberry Jam Camer team, wearing Raspberry Jam Big Birthday Weekend T-shirts, pose with young Jam attendees outside their venue

Raspberry Jam Camer gets the thumbs-up

The Raspberry Pi community in Cameroon

In a French-language interview about their Jam, the team behind Raspberry Jam Camer said they’d like programming to become the third official language of Cameroon, after French and English; their aim is to to popularise programming and digital making across Cameroonian society. Neither of these fields is very familiar to most people in Cameroon, but both are very well aligned with the country’s ambitions for development. The team is conscious of the difficulties around the emergence of information and communication technologies in the Cameroonian context; in response, they are seizing the opportunities Raspberry Pi offers to give children and young people access to modern and constantly evolving technology at low cost.

Thanks to Lionel, Eyong, Damien, and Loïc, and to everyone who helped put on a Jam for the Big Birthday Weekend! Remember, anyone can start a Jam at any time — and we provide plenty of resources to get you started. Check out the Guidebook, the Jam branding pack, our specially-made Jam activities online (in multiple languages), printable worksheets, and more.

The post Raspberry Jam Cameroon #PiParty appeared first on Raspberry Pi.

From Framework to Function: Deploying AWS Lambda Functions for Java 8 using Apache Maven Archetype

Post Syndicated from Ryosuke Iwanaga original https://aws.amazon.com/blogs/compute/from-framework-to-function-deploying-aws-lambda-functions-for-java-8-using-apache-maven-archetype/

As a serverless computing platform that supports Java 8 runtime, AWS Lambda makes it easy to run any type of Java function simply by uploading a JAR file. To help define not only a Lambda serverless application but also Amazon API Gateway, Amazon DynamoDB, and other related services, the AWS Serverless Application Model (SAM) allows developers to use a simple AWS CloudFormation template.

AWS provides the AWS Toolkit for Eclipse that supports both Lambda and SAM. AWS also gives customers an easy way to create Lambda functions and SAM applications in Java using the AWS Command Line Interface (AWS CLI). After you build a JAR file, all you have to do is type the following commands:

aws cloudformation package 
aws cloudformation deploy

To consolidate these steps, customers can use Archetype by Apache Maven. Archetype uses a predefined package template that makes getting started to develop a function exceptionally simple.

In this post, I introduce a Maven archetype that allows you to create a skeleton of AWS SAM for a Java function. Using this archetype, you can generate a sample Java code example and an accompanying SAM template to deploy it on AWS Lambda by a single Maven action.

Prerequisites

Make sure that the following software is installed on your workstation:

  • Java
  • Maven
  • AWS CLI
  • (Optional) AWS SAM CLI

Install Archetype

After you’ve set up those packages, install Archetype with the following commands:

git clone https://github.com/awslabs/aws-serverless-java-archetype
cd aws-serverless-java-archetype
mvn install

These are one-time operations, so you don’t run them for every new package. If you’d like, you can add Archetype to your company’s Maven repository so that other developers can use it later.

With those packages installed, you’re ready to develop your new Lambda Function.

Start a project

Now that you have the archetype, customize it and run the code:

cd /path/to/project_home
mvn archetype:generate \
  -DarchetypeGroupId=com.amazonaws.serverless.archetypes \
  -DarchetypeArtifactId=aws-serverless-java-archetype \
  -DarchetypeVersion=1.0.0 \
  -DarchetypeRepository=local \ # Forcing to use local maven repository
  -DinteractiveMode=false \ # For batch mode
  # You can also specify properties below interactively if you omit the line for batch mode
  -DgroupId=YOUR_GROUP_ID \
  -DartifactId=YOUR_ARTIFACT_ID \
  -Dversion=YOUR_VERSION \
  -DclassName=YOUR_CLASSNAME

You should have a directory called YOUR_ARTIFACT_ID that contains the files and folders shown below:

├── event.json
├── pom.xml
├── src
│   └── main
│       ├── java
│       │   └── Package
│       │       └── Example.java
│       └── resources
│           └── log4j2.xml
└── template.yaml

The sample code is a working example. If you install SAM CLI, you can invoke it just by the command below:

cd YOUR_ARTIFACT_ID
mvn -P invoke verify
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- maven-jar-plugin:3.0.2:jar (default-jar) @ foo ---
[INFO] Building jar: /private/tmp/foo/target/foo-1.0.jar
[INFO]
[INFO] --- maven-shade-plugin:3.1.0:shade (shade) @ foo ---
[INFO] Including com.amazonaws:aws-lambda-java-core:jar:1.2.0 in the shaded jar.
[INFO] Replacing /private/tmp/foo/target/lambda.jar with /private/tmp/foo/target/foo-1.0-shaded.jar
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-local-invoke) @ foo ---
2018/04/06 16:34:35 Successfully parsed template.yaml
2018/04/06 16:34:35 Connected to Docker 1.37
2018/04/06 16:34:35 Fetching lambci/lambda:java8 image for java8 runtime...
java8: Pulling from lambci/lambda
Digest: sha256:14df0a5914d000e15753d739612a506ddb8fa89eaa28dcceff5497d9df2cf7aa
Status: Image is up to date for lambci/lambda:java8
2018/04/06 16:34:37 Invoking Package.Example::handleRequest (java8)
2018/04/06 16:34:37 Decompressing /tmp/foo/target/lambda.jar
2018/04/06 16:34:37 Mounting /private/var/folders/x5/ldp7c38545v9x5dg_zmkr5kxmpdprx/T/aws-sam-local-1523000077594231063 as /var/task:ro inside runtime container
START RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74 Version: $LATEST
Log output: Greeting is 'Hello Tim Wagner.'
END RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74
REPORT RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74	Duration: 96.60 ms	Billed Duration: 100 ms	Memory Size: 128 MB	Max Memory Used: 7 MB

{"greetings":"Hello Tim Wagner."}


[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 10.452 s
[INFO] Finished at: 2018-04-06T16:34:40+09:00
[INFO] ------------------------------------------------------------------------

This maven goal invokes sam local invoke -e event.json, so you can see the sample output to greet Tim Wagner.

To deploy this application to AWS, you need an Amazon S3 bucket to upload your package. You can use the following command to create a bucket if you want:

aws s3 mb s3://YOUR_BUCKET --region YOUR_REGION

Now, you can deploy your application by just one command!

mvn deploy \
    -DawsRegion=YOUR_REGION \
    -Ds3Bucket=YOUR_BUCKET \
    -DstackName=YOUR_STACK
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-package) @ foo ---
Uploading to aws-serverless-java/com.riywo:foo:1.0/924732f1f8e4705c87e26ef77b080b47  11657 / 11657.0  (100.00%)
Successfully packaged artifacts and wrote output template to file target/sam.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file /private/tmp/foo/target/sam.yaml --stack-name <YOUR STACK NAME>
[INFO]
[INFO] --- maven-deploy-plugin:2.8.2:deploy (default-deploy) @ foo ---
[INFO] Skipping artifact deployment
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-deploy) @ foo ---

Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - archetype
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 37.176 s
[INFO] Finished at: 2018-04-06T16:41:02+09:00
[INFO] ------------------------------------------------------------------------

Maven automatically creates a shaded JAR file, uploads it to your S3 bucket, replaces template.yaml, and creates and updates the CloudFormation stack.

To customize the process, modify the pom.xml file. For example, to avoid typing values for awsRegion, s3Bucket or stackName, write them inside pom.xml and check in your VCS. Afterward, you and the rest of your team can deploy the function by typing just the following command:

mvn deploy

Options

Lambda Java 8 runtime has some types of handlers: POJO, Simple type and Stream. The default option of this archetype is POJO style, which requires to create request and response classes, but they are baked by the archetype by default. If you want to use other type of handlers, you can use handlerType property like below:

## POJO type (default)
mvn archetype:generate \
 ...
 -DhandlerType=pojo

## Simple type - String
mvn archetype:generate \
 ...
 -DhandlerType=simple

### Stream type
mvn archetype:generate \
 ...
 -DhandlerType=stream

See documentation for more details about handlers.

Also, Lambda Java 8 runtime supports two types of Logging class: Log4j 2 and LambdaLogger. This archetype creates LambdaLogger implementation by default, but you can use Log4j 2 if you want:

## LambdaLogger (default)
mvn archetype:generate \
 ...
 -Dlogger=lambda

## Log4j 2
mvn archetype:generate \
 ...
 -Dlogger=log4j2

If you use LambdaLogger, you can delete ./src/main/resources/log4j2.xml. See documentation for more details.

Conclusion

So, what’s next? Develop your Lambda function locally and type the following command: mvn deploy !

With this Archetype code example, available on GitHub repo, you should be able to deploy Lambda functions for Java 8 in a snap. If you have any questions or comments, please submit them below or leave them on GitHub.

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

#!/bin/bash
hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
LOCATION '$1/';

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 campaign['n'],',',pdays['n'],',',previous['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

#!/bin/bash
## Define variable 
REGION=$2
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 


# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
    IMAGE="174872318107.dkr.ecr.us-west-2.amazonaws.com/linear-learner:latest"
    ;;
"us-east-1" )
    IMAGE="382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:latest" 
    ;;
"us-east-2" )
    IMAGE="404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:latest" 
    ;;
"eu-west-1" )
    IMAGE="438346466558.dkr.ecr.eu-west-1.amazonaws.com/linear-learner:latest" 
    ;;
 *)
    echo "Invalid Region Name"
    exit 1 ;  
esac

# Start training job and creating model artifact 
TRAINING_JOB_NAME=TRAIN-${DTTIME} 
S3OUTPUT="s3://<your bucket name>/model/" 
INSTANCETYPE="ml.m4.xlarge"
INSTANCECOUNT=1
VOLUMESIZE=5 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
MODELNAME=MODEL-${DTTIME}
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
CONFIGNAME=CONFIG-${DTTIME}
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
then
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
else
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}
fi

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:UpdateEndpoint",
 "iam:PassRole"
 ],
 "Resource": "*"
 }
 ]
}

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
    EndpointName='ServiceEndpoint',
    Body=new_customer_info, 
    ContentType='text/csv'
)
result = json.loads(response['Body'].read().decode())
print(result)
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
CREATE EXTERNAL TABLE datasource (
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
)
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n' 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;

Conclusion

In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.

 


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

Own your own working Pokémon Pokédex!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-pokedex/

Squeal with delight as your inner Pokémon trainer witnesses the wonder of Adrian Rosebrock’s deep learning Pokédex.

Creating a real-life Pokedex with a Raspberry Pi, Python, and Deep Learning

This video demos a real-like Pokedex, complete with visual recognition, that I created using a Raspberry Pi, Python, and Deep Learning. You can find the entire blog post, including code, using this link: https://www.pyimagesearch.com/2018/04/30/a-fun-hands-on-deep-learning-project-for-beginners-students-and-hobbyists/ Music credit to YouTube user “No Copyright” for providing royalty free music: https://www.youtube.com/watch?v=PXpjqURczn8

The history of Pokémon in 30 seconds

The Pokémon franchise was created by video game designer Satoshi Tajiri in 1995. In the fictional world of Pokémon, Pokémon Trainers explore the vast landscape, catching and training small creatures called Pokémon. To date, there are 802 different types of Pokémon. They range from the ever recognisable Pikachu, a bright yellow electric Pokémon, to the highly sought-after Shiny Charizard, a metallic, playing-card-shaped Pokémon that your mate Alex claims she has in mint condition, but refuses to show you.

Pokemon GIF

In the world of Pokémon, children as young as ten-year-old protagonist and all-round annoyance Ash Ketchum are allowed to leave home and wander the wilderness. There, they hunt vicious, deadly creatures in the hope of becoming a Pokémon Master.

Adrian’s deep learning Pokédex

Adrian is a bit of a deep learning pro, as demonstrated by his Santa/Not Santa detector, which we wrote about last year. For that project, he also provided a great explanation of what deep learning actually is. In a nutshell:

…a subfield of machine learning, which is, in turn, a subfield of artificial intelligence (AI).While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

As with his earlier Raspberry Pi project, Adrian uses the Keras deep learning model and the TensorFlow backend, plus a few other packages such as Adrian’s own imutils functions and OpenCV.

Adrian trained a Convolutional Neural Network using Keras on a dataset of 1191 Pokémon images, obtaining 96.84% accuracy. As Adrian explains, this model is able to identify Pokémon via still image and video. It’s perfect for creating a Pokédex – an interactive Pokémon catalogue that should, according to the franchise, be able to identify and read out information on any known Pokémon when captured by camera. More information on model training can be found on Adrian’s blog.

Adrian Rosebeck deep learning pokemon pokedex

For the physical build, a Raspberry Pi 3 with camera module is paired with the Raspberry Pi 7″ touch display to create a portable Pokédex. And while Adrian comments that the same result can be achieved using your home computer and a webcam, that’s not how Adrian rolls as a Raspberry Pi fan.

Adrian Rosebeck deep learning pokemon pokedex

Plus, the smaller size of the Pi is perfect for one of you to incorporate this deep learning model into a 3D-printed Pokédex for ultimate Pokémon glory, pretty please, thank you.

Adrian Rosebeck deep learning pokemon pokedex

Adrian has gone into impressive detail about how the project works and how you can create your own on his blog, pyimagesearch. So if you’re interested in learning more about deep learning, and making your own Pokédex, be sure to visit.

The post Own your own working Pokémon Pokédex! appeared first on Raspberry Pi.

If YouTube-Ripping Sites Are Illegal, What About Tools That Do a Similar Job?

Post Syndicated from Andy original https://torrentfreak.com/if-youtube-ripping-sites-are-illegal-what-about-tools-that-do-a-similar-job-180407/

In 2016, the International Federation of the Phonographic Industry published research which claimed that half of 16 to 24-year-olds use stream-ripping tools to copy music from sites like YouTube.

While this might not have surprised those who regularly participate in the activity, IFPI said that volumes had become so vast that stream-ripping had overtaken pirate site music downloads. That was a big statement.

Probably not coincidentally, just two weeks later IFPI, RIAA, and BPI announced legal action against the world’s largest YouTube ripping site, YouTube-MP3.

“YTMP3 rapidly and seamlessly removes the audio tracks contained in videos streamed from YouTube that YTMP3’s users access, converts those audio tracks to an MP3 format, copies and stores them on YTMP3’s servers, and then distributes copies of the MP3 audio files from its servers to its users in the United States, enabling its users to download those MP3 files to their computers, tablets, or smartphones,” the complaint read.

The labels sued YouTube-MP3 for direct infringement, contributory infringement, vicarious infringement, inducing others to infringe, plus circumvention of technological measures on top. The case was big and one that would’ve been intriguing to watch play out in court, but that never happened.

A year later in September 2017, YouTubeMP3 settled out of court. No details were made public but YouTube-MP3 apparently took all the blame and the court was asked to rule in favor of the labels on all counts.

This certainly gave the impression that what YouTube-MP3 did was illegal and a strong message was sent out to other companies thinking of offering a similar service. However, other onlookers clearly saw the labels’ lawsuit as something to be studied and learned from.

One of those was the operator of NotMP3downloader.com, a site that offers Free MP3 Recorder for YouTube, a tool offering similar functionality to YouTube-MP3 while supposedly avoiding the same legal pitfalls.

Part of that involves audio being processed on the user’s machine – not by stream-ripping as such – but by stream-recording. A subtle difference perhaps, but the site’s operator thinks it’s important.

“After examining the claims made by the copyright holders against youtube-mp3.org, we identified that the charges were based on the three main points. [None] of them are applicable to our product,” he told TF this week.

The first point involves YouTube-MP3’s acts of conversion, storage and distribution of content it had previously culled from YouTube. Copies of unlicensed tracks were clearly held on its own servers, a potent direct infringement risk.

“We don’t have any servers to download, convert or store a copyrighted or any other content from YouTube. Therefore, we do not violate any law or prohibition implied in this part,” NotMP3downloader’s operator explains.

Then there’s the act of “stream-ripping” itself. While YouTube-MP3 downloaded digital content from YouTube using its own software, NotMP3downloader claims to do things differently.

“Our software doesn’t download any streaming content directly, but only launches a web browser with the video specified by a user. The capturing happens from a local machine’s sound card and doesn’t deal with any content streamed through a network,” its operator notes.

This part also seems quite important. YouTube-MP3 was accused of unlawfully circumventing technological measures implemented by YouTube to prevent people downloading or copying content. By opening up YouTube’s own website and viewing content in the way the site demands, NotMP3downloader says it does not “violate the website’s integrity nor performs direct download of audio or video files.”

Like the Betamax video recorder before it that enabled recording from analog TV, NotMP3downloader enables a user to record a YouTube stream on their local machine. This, its makers claim, means the software is completely legal and defeats all the claims made by the labels in the YouTube-MP3 lawsuit.

“What YouTube does is broadcasting content through the Internet. Thus, there is nothing wrong if users are allowed to watch such content later as they may want,” the NotMP3downloader team explain.

“It is worth noting that in Sony Corp. of America v. United City Studios, Inc. (464 U.S. 417) the United States Supreme Court held that such practice, also known as time-shifting, was lawful representing fair use under the US Copyright Act and causing no substantial harm to the copyright holder.”

While software that can record video and sounds locally are nothing new, the developments in the YouTube-MP3 case and this response from NotMP3downloader raises interesting questions.

We put some of them to none other than former RIAA Executive Vice President, Neil Turkewitz, who now works as President of Turkewitz Consulting Group.

Turkewitz stressed that he doesn’t speak for the industry as a whole or indeed the RIAA but it’s clear that his passion for protecting creators persists. He told us that in this instance, reliance on the Betamax decision is “misplaced”.

“The content is different, the activity is different, and the function is different,” Turkewitz told TF.

“The Sony decision must be understood in its context — the time shifting of audiovisual programming being broadcast from point to multipoint. The making available of content by a point-to-point interactive service like YouTube isn’t broadcasting — or at a minimum, is not a form of broadcasting akin to that considered by the Supreme Court in Sony.

“More fundamentally, broadcasting (right of communication to the public) is one of only several rights implicated by the service. And of course, issues of liability will be informed by considerations of purpose, effect and perceived harm. A court’s judgment will also be affected by whether it views the ‘innovation’ as an attempt to circumvent the requirements of law. The decision of the Supreme Court in ABC v. Aereo is certainly instructive in that regard.”

And there are other issues too. While YouTube itself is yet to take any legal action to deter users from downloading rather than merely streaming content, its terms of service are quite specific and seem to cover all eventualities.

“[Y]ou agree not to access Content or any reason other than your personal, non-commercial use solely as intended through and permitted by the normal functionality of the Service, and solely for Streaming,” YouTube’s ToS reads.

“‘Streaming’ means a contemporaneous digital transmission of the material by YouTube via the Internet to a user operated Internet enabled device in such a manner that the data is intended for real-time viewing and not intended to be downloaded (either permanently or temporarily), copied, stored, or redistributed by the user.

“You shall not copy, reproduce, distribute, transmit, broadcast, display, sell, license, or otherwise exploit any Content for any other purposes without the prior written consent of YouTube or the respective licensors of the Content.”

In this respect, it seems that a user doing anything but real-time streaming of YouTube content is breaching YouTube’s terms of service. The big question then, of course, is whether providing a tool specifically for that purpose represents an infringement of copyright.

The people behind Free MP3 Recorder believe that the “scope of application depends entirely on the end users’ intentions” which seems like a fair argument at first view. But, as usual, copyright law is incredibly complex and there are plenty of opposing views.

We asked the BPI, which took action against YouTubeMP3, for its take on this type of tool. The official response was “No comment” which doesn’t really clarify the position, at least for now.

Needless to say, the Betamax decision – relevant or not – doesn’t apply in the UK. But that only adds more parameters into the mix – and perhaps more opportunities for lawyers to make money arguing for and against tools like this in the future.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Join us at Raspberry Fields 2018!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-fields-2018/

This summer, the Raspberry Pi Foundation is bringing you an all-new community event taking place in Cambridge, UK!

Raspberry Fields 2018 Raspberry Pi festival

Raspberry Fields

On the weekend of Saturday 30 June and Sunday 1 July 2018, the Pi Towers team, with lots of help from our community of young people, educators, hobbyists, and tech enthusiasts, will be running Raspberry Fields, our brand-new annual festival of digital making!

Raspberry Fields 2018 Raspberry Pi festival

It will be a chance for people of all ages and skill levels to have a go at getting creative with tech, and it will be a celebration of all that our digital makers have already learnt and achieved, whether through taking part in Code Clubs, CoderDojos, or Raspberry Jams, or through trying our resources at home.

Dive into digital making

At Raspberry Fields, you will have the chance to inspire your inner inventor! Learn about amazing projects others in the community are working on, such as cool robots and wearable technology; have a go at a variety of hands-on activities, from home automation projects to remote-controlled vehicles and more; see fascinating science- and technology-related talks and musical performances. After your visit, you’ll be excited to go home and get making!

Raspberry Fields 2018 Raspberry Pi festivalIf you’re wondering about bringing along young children or less technologically minded family members or friends, there’ll be plenty for them to enjoy — with lots of festival-themed activities such as face painting, fun performances, free giveaways, and delicious food, Raspberry Fields will have something for everyone!

Get your tickets

This two-day ticketed event will be taking place at Cambridge Junction, the city’s leading arts centre. Tickets are £5 if you are aged 16 or older, and free for everyone under 16. Get your tickets by clicking the button on the Raspberry Fields web page!

Where: Cambridge Junction, Clifton Way, Cambridge, CB1 7GX, UK
When: Saturday 30 June 2018, 10:30 – 18:00 and Sunday 1 July 2018, 10:00 – 17:30

Get involved

We are currently looking for people who’d like to contribute activities, talks, or performances with digital themes to the festival. This could be something like live music, dance, or other show acts; talks; or drop-in Raspberry Fields 2018 Raspberry Pi festivalmaking activities. In addition, we’re looking for artists who’d like to showcase interactive digital installations, for proud makers who are keen to exhibit their projects, and for vendors who’d like to join in. We particularly encourage young people to showcase projects they’ve created or deliver talks on their digital making journey!Raspberry Fields 2018 Raspberry Pi festival

Your contribution to Raspberry Fields should focus on digital making and be fun and engaging for an audience of various ages. However, it doesn’t need to be specific to Raspberry Pi. You might be keen to demonstrate a project you’ve built, do a short Q&A session on what you’ve learnt, or present something more in-depth in the auditorium; maybe you’re one of our approved resellers wanting to showcase in our market area. We’re also looking for digital makers to run drop-in activity sessions, as well as for people who’d like to be marshals with smiling faces who will ensure that everyone has a wonderful time!

If you’d like to take part in Raspberry Fields, let us know via this form, and we’ll be in touch with you soon.

The post Join us at Raspberry Fields 2018! appeared first on Raspberry Pi.

Happy birthday to us!

Post Syndicated from Eben Upton original https://www.raspberrypi.org/blog/happy-birthday-2018/

The eagle-eyed among you may have noticed that today is 28 February, which is as close as you’re going to get to our sixth birthday, given that we launched on a leap day. For the last three years, we’ve launched products on or around our birthday: Raspberry Pi 2 in 2015; Raspberry Pi 3 in 2016; and Raspberry Pi Zero W in 2017. But today is a snow day here at Pi Towers, so rather than launching something, we’re taking a photo tour of the last six years of Raspberry Pi products before we don our party hats for the Raspberry Jam Big Birthday Weekend this Saturday and Sunday.

Prehistory

Before there was Raspberry Pi, there was the Broadcom BCM2763 ‘micro DB’, designed, as it happens, by our very own Roger Thornton. This was the first thing we demoed as a Raspberry Pi in May 2011, shown here running an ARMv6 build of Ubuntu 9.04.

BCM2763 micro DB

Ubuntu on Raspberry Pi, 2011-style

A few months later, along came the first batch of 50 “alpha boards”, designed for us by Broadcom. I used to have a spreadsheet that told me where in the world each one of these lived. These are the first “real” Raspberry Pis, built around the BCM2835 application processor and LAN9512 USB hub and Ethernet adapter; remarkably, a software image taken from the download page today will still run on them.

Raspberry Pi alpha board, top view

Raspberry Pi alpha board

We shot some great demos with this board, including this video of Quake III:

Raspberry Pi – Quake 3 demo

A little something for the weekend: here’s Eben showing the Raspberry Pi running Quake 3, and chatting a bit about the performance of the board. Thanks to Rob Bishop and Dave Emett for getting the demo running.

Pete spent the second half of 2011 turning the alpha board into a shippable product, and just before Christmas we produced the first 20 “beta boards”, 10 of which were sold at auction, raising over £10000 for the Foundation.

The beginnings of a Bramble

Beta boards on parade

Here’s Dom, demoing both the board and his excellent taste in movie trailers:

Raspberry Pi Beta Board Bring up

See http://www.raspberrypi.org/ for more details, FAQ and forum.

Launch

Rather to Pete’s surprise, I took his beta board design (with a manually-added polygon in the Gerbers taking the place of Paul Grant’s infamous red wire), and ordered 2000 units from Egoman in China. After a few hiccups, units started to arrive in Cambridge, and on 29 February 2012, Raspberry Pi went on sale for the first time via our partners element14 and RS Components.

Pallet of pis

The first 2000 Raspberry Pis

Unboxing continues

The first Raspberry Pi from the first box from the first pallet

We took over 100000 orders on the first day: something of a shock for an organisation that had imagined in its wildest dreams that it might see lifetime sales of 10000 units. Some people who ordered that day had to wait until the summer to finally receive their units.

Evolution

Even as we struggled to catch up with demand, we were working on ways to improve the design. We quickly replaced the USB polyfuses in the top right-hand corner of the board with zero-ohm links to reduce IR drop. If you have a board with polyfuses, it’s a real limited edition; even more so if it also has Hynix memory. Pete’s “rev 2” design made this change permanent, tweaked the GPIO pin-out, and added one much-requested feature: mounting holes.

Revision 1 versus revision 2

If you look carefully, you’ll notice something else about the revision 2 board: it’s made in the UK. 2012 marked the start of our relationship with the Sony UK Technology Centre in Pencoed, South Wales. In the five years since, they’ve built every product we offer, including more than 12 million “big” Raspberry Pis and more than one million Zeros.

Celebrating 500,000 Welsh units, back when that seemed like a lot

Economies of scale, and the decline in the price of SDRAM, allowed us to double the memory capacity of the Model B to 512MB in the autumn of 2012. And as supply of Model B finally caught up with demand, we were able to launch the Model A, delivering on our original promise of a $25 computer.

A UK-built Raspberry Pi Model A

In 2014, James took all the lessons we’d learned from two-and-a-bit years in the market, and designed the Model B+, and its baby brother the Model A+. The Model B+ established the form factor for all our future products, with a 40-pin extended GPIO connector, four USB ports, and four mounting holes.

The Raspberry Pi 1 Model B+ — entering the era of proper product photography with a bang.

New toys

While James was working on the Model B+, Broadcom was busy behind the scenes developing a follow-on to the BCM2835 application processor. BCM2836 samples arrived in Cambridge at 18:00 one evening in April 2014 (chips never arrive at 09:00 — it’s always early evening, usually just before a public holiday), and within a few hours Dom had Raspbian, and the usual set of VideoCore multimedia demos, up and running.

We launched Raspberry Pi 2 at the start of 2015, pairing BCM2836 with 1GB of memory. With a quad-core Arm Cortex-A7 clocked at 900MHz, we’d increased performance sixfold, and memory fourfold, in just three years.

Nobody mention the xenon death flash.

And of course, while James was working on Raspberry Pi 2, Broadcom was developing BCM2837, with a quad-core 64-bit Arm Cortex-A53 clocked at 1.2GHz. Raspberry Pi 3 launched barely a year after Raspberry Pi 2, providing a further doubling of performance and, for the first time, wireless LAN and Bluetooth.

All our recent products are just the same board shot from different angles

Zero to hero

Where the PC industry has historically used Moore’s Law to “fill up” a given price point with more performance each year, the original Raspberry Pi used Moore’s law to deliver early-2000s PC performance at a lower price. But with Raspberry Pi 2 and 3, we’d gone back to filling up our original $35 price point. After the launch of Raspberry Pi 2, we started to wonder whether we could pull the same trick again, taking the original Raspberry Pi platform to a radically lower price point.

The result was Raspberry Pi Zero. Priced at just $5, with a 1GHz BCM2835 and 512MB of RAM, it was cheap enough to bundle on the front of The MagPi, making us the first computer magazine to give away a computer as a cover gift.

Cheap thrills

MagPi issue 40 in all its glory

We followed up with the $10 Raspberry Pi Zero W, launched exactly a year ago. This adds the wireless LAN and Bluetooth functionality from Raspberry Pi 3, using a rather improbable-looking PCB antenna designed by our buddies at Proant in Sweden.

Up to our old tricks again

Other things

Of course, this isn’t all. There has been a veritable blizzard of point releases; RAM changes; Chinese red units; promotional blue units; Brazilian blue-ish units; not to mention two Camera Modules, in two flavours each; a touchscreen; the Sense HAT (now aboard the ISS); three compute modules; and cases for the Raspberry Pi 3 and the Zero (the former just won a Design Effectiveness Award from the DBA). And on top of that, we publish three magazines (The MagPi, Hello World, and HackSpace magazine) and a whole host of Project Books and Essentials Guides.

Chinese Raspberry Pi 1 Model B

RS Components limited-edition blue Raspberry Pi 1 Model B

Brazilian-market Raspberry Pi 3 Model B

Visible-light Camera Module v2

Learning about injection moulding the hard way

250 pages of content each month, every month

Essential reading

Forward the Foundation

Why does all this matter? Because we’re providing everyone, everywhere, with the chance to own a general-purpose programmable computer for the price of a cup of coffee; because we’re giving people access to tools to let them learn new skills, build businesses, and bring their ideas to life; and because when you buy a Raspberry Pi product, every penny of profit goes to support the Raspberry Pi Foundation in its mission to change the face of computing education.

We’ve had an amazing six years, and they’ve been amazing in large part because of the community that’s grown up alongside us. This weekend, more than 150 Raspberry Jams will take place around the world, comprising the Raspberry Jam Big Birthday Weekend.

Raspberry Pi Big Birthday Weekend 2018. GIF with confetti and bopping JAM balloons

If you want to know more about the Raspberry Pi community, go ahead and find your nearest Jam on our interactive map — maybe we’ll see you there.

The post Happy birthday to us! appeared first on Raspberry Pi.

Amazon Redshift – 2017 Recap

Post Syndicated from Larry Heathcote original https://aws.amazon.com/blogs/big-data/amazon-redshift-2017-recap/

We have been busy adding new features and capabilities to Amazon Redshift, and we wanted to give you a glimpse of what we’ve been doing over the past year. In this article, we recap a few of our enhancements and provide a set of resources that you can use to learn more and get the most out of your Amazon Redshift implementation.

In 2017, we made more than 30 announcements about Amazon Redshift. We listened to you, our customers, and delivered Redshift Spectrum, a feature of Amazon Redshift, that gives you the ability to extend analytics to your data lake—without moving data. We launched new DC2 nodes, doubling performance at the same price. We also announced many new features that provide greater scalability, better performance, more automation, and easier ways to manage your analytics workloads.

To see a full list of our launches, visit our what’s new page—and be sure to subscribe to our RSS feed.

Major launches in 2017

Amazon Redshift Spectrumextend analytics to your data lake, without moving data

We launched Amazon Redshift Spectrum to give you the freedom to store data in Amazon S3, in open file formats, and have it available for analytics without the need to load it into your Amazon Redshift cluster. It enables you to easily join datasets across Redshift clusters and S3 to provide unique insights that you would not be able to obtain by querying independent data silos.

With Redshift Spectrum, you can run SQL queries against data in an Amazon S3 data lake as easily as you analyze data stored in Amazon Redshift. And you can do it without loading data or resizing the Amazon Redshift cluster based on growing data volumes. Redshift Spectrum separates compute and storage to meet workload demands for data size, concurrency, and performance. Redshift Spectrum scales processing across thousands of nodes, so results are fast, even with massive datasets and complex queries. You can query open file formats that you already use—such as Apache Avro, CSV, Grok, ORC, Apache Parquet, RCFile, RegexSerDe, SequenceFile, TextFile, and TSV—directly in Amazon S3, without any data movement.

For complex queries, Redshift Spectrum provided a 67 percent performance gain,” said Rafi Ton, CEO, NUVIAD. “Using the Parquet data format, Redshift Spectrum delivered an 80 percent performance improvement. For us, this was substantial.

To learn more about Redshift Spectrum, watch our AWS Summit session Intro to Amazon Redshift Spectrum: Now Query Exabytes of Data in S3, and read our announcement blog post Amazon Redshift Spectrum – Exabyte-Scale In-Place Queries of S3 Data.

DC2 nodes—twice the performance of DC1 at the same price

We launched second-generation Dense Compute (DC2) nodes to provide low latency and high throughput for demanding data warehousing workloads. DC2 nodes feature powerful Intel E5-2686 v4 (Broadwell) CPUs, fast DDR4 memory, and NVMe-based solid state disks (SSDs). We’ve tuned Amazon Redshift to take advantage of the better CPU, network, and disk on DC2 nodes, providing up to twice the performance of DC1 at the same price. Our DC2.8xlarge instances now provide twice the memory per slice of data and an optimized storage layout with 30 percent better storage utilization.

Redshift allows us to quickly spin up clusters and provide our data scientists with a fast and easy method to access data and generate insights,” said Bradley Todd, technology architect at Liberty Mutual. “We saw a 9x reduction in month-end reporting time with Redshift DC2 nodes as compared to DC1.”

Read our customer testimonials to see the performance gains our customers are experiencing with DC2 nodes. To learn more, read our blog post Amazon Redshift Dense Compute (DC2) Nodes Deliver Twice the Performance as DC1 at the Same Price.

Performance enhancements— 3x-5x faster queries

On average, our customers are seeing 3x to 5x performance gains for most of their critical workloads.

We introduced short query acceleration to speed up execution of queries such as reports, dashboards, and interactive analysis. Short query acceleration uses machine learning to predict the execution time of a query, and to move short running queries to an express short query queue for faster processing.

We launched results caching to deliver sub-second response times for queries that are repeated, such as dashboards, visualizations, and those from BI tools. Results caching has an added benefit of freeing up resources to improve the performance of all other queries.

We also introduced late materialization to reduce the amount of data scanned for queries with predicate filters by batching and factoring in the filtering of predicates before fetching data blocks in the next column. For example, if only 10 percent of the table rows satisfy the predicate filters, Amazon Redshift can potentially save 90 percent of the I/O for the remaining columns to improve query performance.

We launched query monitoring rules and pre-defined rule templates. These features make it easier for you to set metrics-based performance boundaries for workload management (WLM) queries, and specify what action to take when a query goes beyond those boundaries. For example, for a queue that’s dedicated to short-running queries, you might create a rule that aborts queries that run for more than 60 seconds. To track poorly designed queries, you might have another rule that logs queries that contain nested loops.

Customer insights

Amazon Redshift and Redshift Spectrum serve customers across a variety of industries and sizes, from startups to large enterprises. Visit our customer page to see the success that customers are having with our recent enhancements. Learn how companies like Liberty Mutual Insurance saw a 9x reduction in month-end reporting time using DC2 nodes. On this page, you can find case studies, videos, and other content that show how our customers are using Amazon Redshift to drive innovation and business results.

In addition, check out these resources to learn about the success our customers are having building out a data warehouse and data lake integration solution with Amazon Redshift:

Partner solutions

You can enhance your Amazon Redshift data warehouse by working with industry-leading experts. Our AWS Partner Network (APN) Partners have certified their solutions to work with Amazon Redshift. They offer software, tools, integration, and consulting services to help you at every step. Visit our Amazon Redshift Partner page and choose an APN Partner. Or, use AWS Marketplace to find and immediately start using third-party software.

To see what our Partners are saying about Amazon Redshift Spectrum and our DC2 nodes mentioned earlier, read these blog posts:

Resources

Blog posts

Visit the AWS Big Data Blog for a list of all Amazon Redshift articles.

YouTube videos

GitHub

Our community of experts contribute on GitHub to provide tips and hints that can help you get the most out of your deployment. Visit GitHub frequently to get the latest technical guidance, code samples, administrative task automation utilities, the analyze & vacuum schema utility, and more.

Customer support

If you are evaluating or considering a proof of concept with Amazon Redshift, or you need assistance migrating your on-premises or other cloud-based data warehouse to Amazon Redshift, our team of product experts and solutions architects can help you with architecting, sizing, and optimizing your data warehouse. Contact us using this support request form, and let us know how we can assist you.

If you are an Amazon Redshift customer, we offer a no-cost health check program. Our team of database engineers and solutions architects give you recommendations for optimizing Amazon Redshift and Amazon Redshift Spectrum for your specific workloads. To learn more, email us at [email protected].

If you have any questions, email us at [email protected].

 


Additional Reading

If you found this post useful, be sure to check out Amazon Redshift Spectrum – Exabyte-Scale In-Place Queries of S3 Data, Using Amazon Redshift for Fast Analytical Reports and How to Migrate Your Oracle Data Warehouse to Amazon Redshift Using AWS SCT and AWS DMS.


About the Author

Larry Heathcote is a Principle Product Marketing Manager at Amazon Web Services for data warehousing and analytics. Larry is passionate about seeing the results of data-driven insights on business outcomes. He enjoys family time, home projects, grilling out and the taste of classic barbeque.

 

 

 

This IoT Pet Monitor barks back

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/iot-pet-monitor/

Jennifer Fox, founder of FoxBot Industries, uses a Raspberry Pi pet monitor to check the sound levels of her home while she is out, allowing her to keep track of when her dog Marley gets noisy or agitated, and to interact with the gorgeous furball accordingly.

Bark Back Project Demo

A quick overview and demo of the Bark Back, a project to monitor and interact with Check out the full tutorial here: https://learn.sparkfun.com/tutorials/bark-back-interactive-pet-monitor For any licensing requests please contact [email protected]

Marley, bark!

Using a Raspberry Pi 3, speakers, SparkFun’s MEMS microphone breakout board, and an analogue-to-digital converter (ADC), the IoT Pet Monitor is fairly easy to recreate, all thanks to Jennifer’s full tutorial on the FoxBot website.

Building the pet monitor

In a nutshell, once the Raspberry Pi and the appropriate bits and pieces are set up, you’ll need to sign up at CloudMQTT — it’s free if you select the Cute Cat account. CloudMQTT will create an invisible bridge between your home and wherever you are that isn’t home, so that you can check in on your pet monitor.

Screenshot CloudMQTT account set-up — IoT Pet Monitor Bark Back Raspberry Pi

Image c/o FoxBot Industries

Within the project code, you’ll be able to calculate the peak-to-peak amplitude of sound the microphone picks up. Then you can decide how noisy is too noisy when it comes to the occasional whine and bark of your beloved pup.

MEMS microphone breakout board — IoT Pet Monitor Bark Back Raspberry Pi

The MEMS microphone breakout board collects sound data and relays it back to the Raspberry Pi via the ADC.
Image c/o FoxBot Industries

Next you can import sounds to a preset song list that will be played back when the volume rises above your predefined threshold. As Jennifer states in the tutorial, the sounds can easily be recorded via apps such as Garageband, or even on your mobile phone.

Using the pet monitor

Whenever the Bark Back IoT Pet Monitor is triggered to play back audio, this information is fed to the CloudMQTT service, allowing you to see if anything is going on back home.

A sitting dog with a doll in its mouth — IoT Pet Monitor Bark Back Raspberry Pi

*incoherent coos of affection from Alex*
Image c/o FoxBot Industries

And as Jennifer recommends, a update of the project could include a camera or sensors to feed back more information about your home environment.

If you’ve created something similar, be sure to let us know in the comments. And if you haven’t, but you’re now planning to build your own IoT pet monitor, be sure to let us know in the comments. And if you don’t have a pet but just want to say hi…that’s right, be sure to let us know in the comments.

The post This IoT Pet Monitor barks back appeared first on Raspberry Pi.

Build a Multi-Tenant Amazon EMR Cluster with Kerberos, Microsoft Active Directory Integration and EMRFS Authorization

Post Syndicated from Songzhi Liu original https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/

One of the challenges faced by our customers—especially those in highly regulated industries—is balancing the need for security with flexibility. In this post, we cover how to enable multi-tenancy and increase security by using EMRFS (EMR File System) authorization, the Amazon S3 storage-level authorization on Amazon EMR.

Amazon EMR is an easy, fast, and scalable analytics platform enabling large-scale data processing. EMRFS authorization provides Amazon S3 storage-level authorization by configuring EMRFS with multiple IAM roles. With this functionality enabled, different users and groups can share the same cluster and assume their own IAM roles respectively.

Simply put, on Amazon EMR, we can now have an Amazon EC2 role per user assumed at run time instead of one general EC2 role at the cluster level. When the user is trying to access Amazon S3 resources, Amazon EMR evaluates against a predefined mappings list in EMRFS configurations and picks up the right role for the user.

In this post, we will discuss what EMRFS authorization is (Amazon S3 storage-level access control) and show how to configure the role mappings with detailed examples. You will then have the desired permissions in a multi-tenant environment. We also demo Amazon S3 access from HDFS command line, Apache Hive on Hue, and Apache Spark.

EMRFS authorization for Amazon S3

There are two prerequisites for using this feature:

  1. Users must be authenticated, because EMRFS needs to map the current user/group/prefix to a predefined user/group/prefix. There are several authentication options. In this post, we launch a Kerberos-enabled cluster that manages the Key Distribution Center (KDC) on the master node, and enable a one-way trust from the KDC to a Microsoft Active Directory domain.
  2. The application must support accessing Amazon S3 via Applications that have their own S3FileSystem APIs (for example, Presto) are not supported at this time.

EMRFS supports three types of mapping entries: user, group, and Amazon S3 prefix. Let’s use an example to show how this works.

Assume that you have the following three identities in your organization, and they are defined in the Active Directory:

To enable all these groups and users to share the EMR cluster, you need to define the following IAM roles:

In this case, you create a separate Amazon EC2 role that doesn’t give any permission to Amazon S3. Let’s call the role the base role (the EC2 role attached to the EMR cluster), which in this example is named EMR_EC2_RestrictedRole. Then, you define all the Amazon S3 permissions for each specific user or group in their own roles. The restricted role serves as the fallback role when the user doesn’t belong to any user/group, nor does the user try to access any listed Amazon S3 prefixes defined on the list.

Important: For all other roles, like emrfs_auth_group_role_data_eng, you need to add the base role (EMR_EC2_RestrictedRole) as the trusted entity so that it can assume other roles. See the following example:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "ec2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::511586466501:role/EMR_EC2_RestrictedRole"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

The following is an example policy for the admin user role (emrfs_auth_user_role_admin_user):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:*",
            "Resource": "*"
        }
    ]
}

We are assuming the admin user has access to all buckets in this example.

The following is an example policy for the data science group role (emrfs_auth_group_role_data_sci):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

This role grants all Amazon S3 permissions to the emrfs-auth-data-science-bucket-demo bucket and all the objects in it. Similarly, the policy for the role emrfs_auth_group_role_data_eng is shown below:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

Example role mappings configuration

To configure EMRFS authorization, you use EMR security configuration. Here is the configuration we use in this post

Consider the following scenario.

First, the admin user admin1 tries to log in and run a command to access Amazon S3 data through EMRFS. The first role emrfs_auth_user_role_admin_user on the mapping list, which is a user role, is mapped and picked up. Then admin1 has access to the Amazon S3 locations that are defined in this role.

Then a user from the data engineer group (grp_data_engineering) tries to access a data bucket to run some jobs. When EMRFS sees that the user is a member of the grp_data_engineering group, the group role emrfs_auth_group_role_data_eng is assumed, and the user has proper access to Amazon S3 that is defined in the emrfs_auth_group_role_data_eng role.

Next, the third user comes, who is not an admin and doesn’t belong to any of the groups. After failing evaluation of the top three entries, EMRFS evaluates whether the user is trying to access a certain Amazon S3 prefix defined in the last mapping entry. This type of mapping entry is called the prefix type. If the user is trying to access s3://emrfs-auth-default-bucket-demo/, then the prefix mapping is in effect, and the prefix role emrfs_auth_prefix_role_default_s3_prefix is assumed.

If the user is not trying to access any of the Amazon S3 paths that are defined on the list—which means it failed the evaluation of all the entries—it only has the permissions defined in the EMR_EC2RestrictedRole. This role is assumed by the EC2 instances in the cluster.

In this process, all the mappings defined are evaluated in the defined order, and the first role that is mapped is assumed, and the rest of the list is skipped.

Setting up an EMR cluster and mapping Active Directory users and groups

Now that we know how EMRFS authorization role mapping works, the next thing we need to think about is how we can use this feature in an easy and manageable way.

Active Directory setup

Many customers manage their users and groups using Microsoft Active Directory or other tools like OpenLDAP. In this post, we create the Active Directory on an Amazon EC2 instance running Windows Server and create the users and groups we will be using in the example below. After setting up Active Directory, we use the Amazon EMR Kerberos auto-join capability to establish a one-way trust from the KDC running on the EMR master node to the Active Directory domain on the EC2 instance. You can use your own directory services as long as it talks to the LDAP (Lightweight Directory Access Protocol).

To create and join Active Directory to Amazon EMR, follow the steps in the blog post Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory.

After configuring Active Directory, you can create all the users and groups using the Active Directory tools and add users to appropriate groups. In this example, we created users like admin1, dataeng1, datascientist1, grp_data_engineering, and grp_data_science, and then add the users to the right groups.

Join the EMR cluster to an Active Directory domain

For clusters with Kerberos, Amazon EMR now supports automated Active Directory domain joins. You can use the security configuration to configure the one-way trust from the KDC to the Active Directory domain. You also configure the EMRFS role mappings in the same security configuration.

The following is an example of the EMR security configuration with a trusted Active Directory domain EMRKRB.TEST.COM and the EMRFS role mappings as we discussed earlier:

The EMRFS role mapping configuration is shown in this example:

We will also provide an example AWS CLI command that you can run.

Launching the EMR cluster and running the tests

Now you have configured Kerberos and EMRFS authorization for Amazon S3.

Additionally, you need to configure Hue with Active Directory using the Amazon EMR configuration API in order to log in using the AD users created before. The following is an example of Hue AD configuration.

[
  {
    "Classification":"hue-ini",
    "Properties":{

    },
    "Configurations":[
      {
        "Classification":"desktop",
        "Properties":{

        },
        "Configurations":[
          {
            "Classification":"ldap",
            "Properties":{

            },
            "Configurations":[
              {
                "Classification":"ldap_servers",
                "Properties":{

                },
                "Configurations":[
                  {
                    "Classification":"AWS",
                    "Properties":{
                      "base_dn":"DC=emrkrb,DC=test,DC=com",
                      "ldap_url":"ldap://emrkrb.test.com",
                      "search_bind_authentication":"false",
                      "bind_dn":"CN=adjoiner,CN=users,DC=emrkrb,DC=test,DC=com",
                      "bind_password":"Abc123456",
                      "create_users_on_login":"true",
                      "nt_domain":"emrkrb.test.com"
                    },
                    "Configurations":[

                    ]
                  }
                ]
              }
            ]
          },
          {
            "Classification":"auth",
            "Properties":{
              "backend":"desktop.auth.backend.LdapBackend"
            },
            "Configurations":[

            ]
          }
        ]
      }
    ]
  }

Note: In the preceding configuration JSON file, change the values as required before pasting it into the software setting section in the Amazon EMR console.

Now let’s use this configuration and the security configuration you created before to launch the cluster.

In the Amazon EMR console, choose Create cluster. Then choose Go to advanced options. On the Step1: Software and Steps page, under Edit software settings (optional), paste the configuration in the box.

The rest of the setup is the same as an ordinary cluster setup, except in the Security Options section. In Step 4: Security, under Permissions, choose Custom, and then choose the RestrictedRole that you created before.

Choose the appropriate subnets (these should meet the base requirement in order for a successful Active Directory join—see the Amazon EMR Management Guide for more details), and choose the appropriate security groups to make sure it talks to the Active Directory. Choose a key so that you can log in and configure the cluster.

Most importantly, choose the security configuration that you created earlier to enable Kerberos and EMRFS authorization for Amazon S3.

You can use the following AWS CLI command to create a cluster.

aws emr create-cluster --name "TestEMRFSAuthorization" \ 
--release-label emr-5.10.0 \ --instance-type m3.xlarge \ 
--instance-count 3 \ 
--ec2-attributes InstanceProfile=EMR_EC2_DefaultRole,KeyName=MyEC2KeyPair \ --service-role EMR_DefaultRole \ 
--security-configuration MyKerberosConfig \ 
--configurations file://hue-config.json \
--applications Name=Hadoop Name=Hive Name=Hue Name=Spark \ 
--kerberos-attributes Realm=EC2.INTERNAL, \ KdcAdminPassword=<YourClusterKDCAdminPassword>, \ ADDomainJoinUser=<YourADUserLogonName>,ADDomainJoinPassword=<YourADUserPassword>, \ 
CrossRealmTrustPrincipalPassword=<MatchADTrustPwd>

Note: If you create the cluster using CLI, you need to save the JSON configuration for Hue into a file named hue-config.json and place it on the server where you run the CLI command.

After the cluster gets into the Waiting state, try to connect by using SSH into the cluster using the Active Directory user name and password.

ssh -l [email protected] <EMR IP or DNS name>

Quickly run two commands to show that the Active Directory join is successful:

  1. id [user name] shows the mapped AD users and groups in Linux.
  2. hdfs groups [user name] shows the mapped group in Hadoop.

Both should return the current Active Directory user and group information if the setup is correct.

Now, you can test the user mapping first. Log in with the admin1 user, and run a Hadoop list directory command:

hadoop fs -ls s3://emrfs-auth-data-science-bucket-demo/

Now switch to a user from the data engineer group.

Retry the previous command to access the admin’s bucket. It should throw an Amazon S3 Access Denied exception.

When you try listing the Amazon S3 bucket that a data engineer group member has accessed, it triggers the group mapping.

hadoop fs -ls s3://emrfs-auth-data-engineering-bucket-demo/

It successfully returns the listing results. Next we will test Apache Hive and then Apache Spark.

 

To run jobs successfully, you need to create a home directory for every user in HDFS for staging data under /user/<username>. Users can configure a step to create a home directory at cluster launch time for every user who has access to the cluster. In this example, you use Hue since Hue will create the home directory in HDFS for the user at the first login. Here Hue also needs to be integrated with the same Active Directory as explained in the example configuration described earlier.

First, log in to Hue as a data engineer user, and open a Hive Notebook in Hue. Then run a query to create a new table pointing to the data engineer bucket, s3://emrfs-auth-data-engineering-bucket-demo/table1_data_eng/.

You can see that the table was created successfully. Now try to create another table pointing to the data science group’s bucket, where the data engineer group doesn’t have access.

It failed and threw an Amazon S3 Access Denied error.

Now insert one line of data into the successfully create table.

Next, log out, switch to a data science group user, and create another table, test2_datasci_tb.

The creation is successful.

The last task is to test Spark (it requires the user directory, but Hue created one in the previous step).

Now let’s come back to the command line and run some Spark commands.

Login to the master node using the datascientist1 user:

Start the SparkSQL interactive shell by typing spark-sql, and run the show tables command. It should list the tables that you created using Hive.

As a data science group user, try select on both tables. You will find that you can only select the table defined in the location that your group has access to.

Conclusion

EMRFS authorization for Amazon S3 enables you to have multiple roles on the same cluster, providing flexibility to configure a shared cluster for different teams to achieve better efficiency. The Active Directory integration and group mapping make it much easier for you to manage your users and groups, and provides better auditability in a multi-tenant environment.


Additional Reading

If you found this post useful, be sure to check out Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory and Launching and Running an Amazon EMR Cluster inside a VPC.


About the Authors

Songzhi Liu is a Big Data Consultant with AWS Professional Services. He works closely with AWS customers to provide them Big Data & Machine Learning solutions and best practices on the Amazon cloud.

 

 

 

 

Four days of STEAM at Bett 2018

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/bett-2018/

If you’re an educator from the UK, chances are you’ve heard of Bett. For everyone else: Bett stands for British Education Technology Tradeshow. It’s the El Dorado of edtech, where every street is adorned with interactive whiteboards, VR headsets, and new technologies for the classroom. Every year since 2014, the Raspberry Pi Foundation has been going to the event hosted in the ExCeL London to chat to thousands of lovely educators about our free programmes and resources.

Raspberry Pi Bett 2018

On a mission

Our setup this year consisted of four pods (imagine tables on steroids) in the STEAM village, and the mission of our highly trained team of education agents was to establish a new world record for Highest number of teachers talked to in a four-day period. I’m only half-joking.

Bett 2018 Raspberry Pi

Educators with a mission

Meeting educators

The best thing about being at Bett is meeting the educators who use our free content and training materials. It’s easy to get wrapped up in the everyday tasks of the office without stopping to ask: “Hey, have we asked our users what they want recently?” Events like Bett help us to connect with our audience, creating some lovely moments for both sides. We had plenty of Hello World authors visit us, including Gary Stager, co-author of Invent to Learn, a must-read for any computing educator. More than 700 people signed up for a digital subscription, we had numerous lovely conversations about our content and about ideas for new articles, and we met many new authors expressing an interest in writing for us in the future.

BETT 2018 Hello World Raspberry Pi
BETT 2018 Hello World Raspberry Pi
BETT 2018 Hello World Raspberry Pi

We also talked to lots of Raspberry Pi Certified Educators who we’d trained in our free Picademy programme — new dates in Belfast and Dublin now! — and who are now doing exciting and innovative things in their local areas. For example, Chris Snowden came to tell us about the great digital making outreach work he has been doing with the Eureka! museum in Yorkshire.

Bett 2018 Raspberry Pi

Raspberry Pi Certified Educator Chris Snowden

Digital making for kids

The other best thing about being at Bett is running workshops for young learners and seeing the delight on their faces when they accomplish something they believed to be impossible only five minutes ago. On the Saturday, we ran a massive Raspberry Jam/Code Club where over 250 children, parents, and curious onlookers got stuck into some of our computing activities. We were super happy to find out that we’d won the Bett Kids’ Choice Award for Best Hands-on Experience — a fantastic end to a busy four days. With Bett over for another year, our tired and happy ‘rebel alliance’ from across the Foundation still had the energy to pose for a group photo.

Bett 2018 Raspberry Pi

Celebrating our ‘Best Hands-on Experience’ award

More events

You can find out more about starting a Code Club here, and if you’re running a Jam, why not get involved with our global Raspberry Jam Big Birthday Weekend celebrations in March?

Raspberry Pi Big Birthday Weekend 2018. GIF with confetti and bopping JAM balloons

We’ll be at quite a few events in 2018, including the Big Bang Fair in March — do come and say hi.

The post Four days of STEAM at Bett 2018 appeared first on Raspberry Pi.

Strawberry Jam 2 🍓

Post Syndicated from Eevee original https://eev.ee/release/2018/01/24/strawberry-jam-2/

🔗 Strawberry Jam 2 on itch

I’m running a game jam, and this announcement is before the jam starts! What a concept!

The idea is simple: you have all of February to make a horny game.

(This jam is, as you may have guessed, NSFW. 🔞)


I think there’s a lot of interesting potential at the intersection of sex and games, but we see very little exploration of it — in large part because mega-platforms like Steam (and its predecessor, Walmart) have historically been really squeamish about anything sexual. Unless it’s scantily-clad women draped over everything, that’s fine. But un-clad women are right out. Also gratuitous high-definition gore is cool. But no nipples!!

The result is a paltry cultural volume of games about sex, but as boundaries continue to be pushed without really being broken, we get more and more blockbuster games with sex awkwardly tacked on top as lazy titillation. “Ah, it’s a story-driven role-playing shooter, but in this one part you can have sex, which will affect nothing and never come up again, but you can see a butt!” Truly revolutionary.

The opposite end of the spectrum also exists, in the form of porn games where the game part is tacked on to make something interactive — you know, click really fast to make clothes fall off or whatever. It’s not especially engaging, but it’s more compelling than staring at a JPEG.

So my secret motive here is to encourage people to explore the vast gulf in the middle — to make games that are interesting as games and that feature sexuality as a fundamental part of the game. Something where both parts could stand alone, yet are so intertwined as to be inseparable.

The one genre that is seeing a lot of experimentation is the raunchy visual novel, which is a great example: they tend to tell stories where sexuality plays a heavy part, but they’re still compelling interactive stories and hold up on those grounds just as well. What, I wonder, would this same sort of harmony look like for other genres, other kinds of interaction? What does a horny racing game look like, or a horny inventory-horror game, or a horny brawler? Hell, why are there no horny co-op games to speak of? That seems obvious, right?

I haven’t said all this on the jam page because it would add half a dozen paragraphs to what is already a lengthy document. I also suspect that I’ll sound like I’m suggesting “a racing game but all the cars are dicks,” which isn’t quite right, and I’d need to blather even more to clarify. Anyway, it seems vaguely improper as the jam organizer to be telling people what kind of games not to make; last year I just tried to lead by example by making fox flux.


If exploring this design space seems interesting to you, please do join in! If you’ve never made a game before, this might be a great opportunity to give it a try — everything is going to be embarrassing and personal regardless. Maybe hop on Discord if you need help or want a teammate. Feel free to flip through last year’s entries, too, or my (super nsfw) thread where I played some and talked about them. Some of them are even open source, cough, cough.

Previously:

SUPER game night 3: GAMES MADE QUICK??? 2.0

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/23/super-game-night-3-games-made-quick-2-0/

Game night continues with a smorgasbord of games from my recent game jam, GAMES MADE QUICK??? 2.0!

The idea was to make a game in only a week while watching AGDQ, as an alternative to doing absolutely nothing for a week while watching AGDQ. (I didn’t submit a game myself; I was chugging along on my Anise game, which isn’t finished yet.)

I can’t very well run a game jam and not play any of the games, so here’s some of them in no particular order! Enjoy!

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Weather Quest, by timlmul

short · rpg · jan 2017 · (lin)/mac/win · free on itch · jam entry

Weather Quest is its author’s first shipped game, written completely from scratch (the only vendored code is a micro OO base). It’s very short, but as someone who has also written LÖVE games completely from scratch, I can attest that producing something this game-like in a week is a fucking miracle. Bravo!

For reference, a week into my first foray, I think I was probably still writing my own Tiled importer like an idiot.

Only Mac and Windows builds are on itch, but it’s a LÖVE game, so Linux folks can just grab a zip from GitHub and throw that at love.

FINAL SCORE: ⛅☔☀

Pancake Numbers Simulator, by AnorakThePrimordial

short · sim · jan 2017 · lin/mac/win · free on itch · jam entry

Given a stack of N pancakes (of all different sizes and in no particular order), the Nth pancake number is the most flips you could possibly need to sort the pancakes in order with the smallest on top. A “flip” is sticking a spatula under one of the pancakes and flipping the whole sub-stack over. There’s, ah, a video embedded on the game page with some visuals.

Anyway, this game lets you simulate sorting a stack via pancake flipping, which is surprisingly satisfying! I enjoy cleaning up little simulated messes, such as… incorrectly-sorted pancakes, I guess?

This probably doesn’t work too well as a simulator for solving the general problem — you’d have to find an optimal solution for every permutation of N pancakes to be sure you were right. But it’s a nice interactive illustration of the problem, and if you know the pancake number for your stack size of choice (which I wish the game told you — for seven pancakes, it’s 8), then trying to restore a stack in that many moves makes for a nice quick puzzle.

FINAL SCORE: \(\frac{18}{11}\)

Framed Animals, by chridd

short · metroidvania · jan 2017 · web/win · free on itch · jam entry

The concept here was to kill the frames, save the animals, which is a delightfully literal riff on a long-running AGDQ/SGDQ donation incentive — people vote with their dollars to decide whether Super Metroid speedrunners go out of their way to free the critters who show you how to walljump and shinespark. Super Metroid didn’t have a showing at this year’s AGDQ, and so we have this game instead.

It’s rough, but clever, and I got really into it pretty quickly — each animal you save gives you a new ability (in true Metroid style), and you get to test that ability out by playing as the animal, with only that ability and no others, to get yourself back to the most recent save point.

I did, tragically, manage to get myself stuck near what I think was about to be the end of the game, so some of the animals will remain framed forever. What an unsatisfying conclusion.

Gravity feels a little high given the size of the screen, and like most tile-less platformers, there’s not really any way to gauge how high or long your jump is before you leap. But I’m only even nitpicking because I think this is a great idea and I hope the author really does keep working on it.

FINAL SCORE: $136,596.69

Battle 4 Glory, by Storyteller Games

short · fighter · jan 2017 · win · free on itch · jam entry

This is a Smash Bros-style brawler, complete with the four players, the 2D play area in a 3D world, and the random stage obstacles showing up. I do like the Smash style, despite not otherwise being a fan of fighting games, so it’s nice to see another game chase that aesthetic.

Alas, that’s about as far as it got — which is pretty far for a week of work! I don’t know what more to say, though. The environments are neat, but unless I’m missing something, the only actions at your disposal are jumping and very weak melee attacks. I did have a good few minutes of fun fruitlessly mashing myself against the bumbling bots, as you can see.

FINAL SCORE: 300%

Icnaluferu Guild, Year Sixteen, by CHz

short · adventure · jan 2017 · web · free on itch · jam entry

Here we have the first of several games made with bitsy, a micro game making tool that basically only supports walking around, talking to people, and picking up items.

I tell you this because I think half of my appreciation for this game is in the ways it wriggled against those limits to emulate a Zelda-like dungeon crawler. Everything in here is totally fake, and you can’t really understand just how fake unless you’ve tried to make something complicated with bitsy.

It’s pretty good. The dialogue is entertaining (the rest of your party develops distinct personalities solely through oneliners, somehow), the riffs on standard dungeon fare are charming, and the Link’s Awakening-esque perspective walls around the edges of each room are fucking glorious.

FINAL SCORE: 2 bits

The Lonely Tapes, by JTHomeslice

short · rpg · jan 2017 · web · free on itch · jam entry

Another bitsy entry, this one sees you play as a Wal— sorry, a JogDawg, which has lost its cassette tapes and needs to go recover them!

(A cassette tape is like a VHS, but for music.)

(A VHS is—)

I have the sneaking suspicion that I missed out on some musical in-jokes, due to being uncultured swine. I still enjoyed the game — it’s always clear when someone is passionate about the thing they’re writing about, and I could tell I was awash in that aura even if some of it went over my head. You know you’ve done good if someone from way outside your sphere shows up and still has a good time.

FINAL SCORE: Nine… Inch Nails? They’re a band, right? God I don’t know write your own damn joke

Pirate Kitty-Quest, by TheKoolestKid

short · adventure · jan 2017 · win · free on itch · jam entry

I completely forgot I’d even given “my birthday” and “my cat” as mostly-joking jam themes until I stumbled upon this incredible gem. I don’t think — let me just check here and — yeah no this person doesn’t even follow me on Twitter. I have no idea who they are?

BUT THEY MADE A GAME ABOUT ANISE AS A PIRATE, LOOKING FOR TREASURE

PIRATE. ANISE

PIRATE ANISE!!!

This game wins the jam, hands down. 🏆

FINAL SCORE: Yarr, eight pieces o’ eight

CHIPS Mario, by NovaSquirrel

short · platformer · jan 2017 · (lin/mac)/win · free on itch · jam entry

You see this? This is fucking witchcraft.

This game is made with MegaZeux. MegaZeux games look like THIS. Text-mode, bound to a grid, with two colors per cell. That’s all you get.

Until now, apparently?? The game is a tech demo of “unbound” sprites, which can be drawn on top of the character grid without being aligned to it. And apparently have looser color restrictions.

The collision is a little glitchy, which isn’t surprising for a MegaZeux platformer; I had some fun interactions with platforms a couple times. But hey, goddamn, it’s free-moving Mario, in MegaZeux, what the hell.

(I’m looking at the most recently added games on DigitalMZX now, and I notice that not only is this game in the first slot, but NovaSquirrel’s MegaZeux entry for Strawberry Jam last February is still in the seventh slot. RIP, MegaZeux. I’m surprised a major feature like this was even added if the community has largely evaporated?)

FINAL SCORE: n/a, disqualified for being probably summoned from the depths of Hell

d!¢< pic, by 573 Games

short · story · jan 2017 · web · free on itch · jam entry

This is a short story about not sending dick pics. It’s very short, so I can’t say much without spoiling it, but: you are generally prompted to either text something reasonable, or send a dick pic. You should not send a dick pic.

It’s a fascinating artifact, not because of the work itself, but because it’s so terse that I genuinely can’t tell what the author was even going for. And this is the kind of subject where the author was, surely, going for something. Right? But was it genuinely intended to be educational, or was it tongue-in-cheek about how some dudes still don’t get it? Or is it side-eying the player who clicks the obviously wrong option just for kicks, which is the same reason people do it for real? Or is it commentary on how “send a dick pic” is a literal option for every response in a real conversation, too, and it’s not that hard to just not do it — unless you are one of the kinds of people who just feels a compulsion to try everything, anything, just because you can? Or is it just a quick Twine and I am way too deep in this? God, just play the thing, it’s shorter than this paragraph.

I’m also left wondering when it is appropriate to send a dick pic. Presumably there is a correct time? Hopefully the author will enter Strawberry Jam 2 to expound upon this.

FINAL SCORE: 3½” 😉

Marble maze, by Shtille

short · arcade · jan 2017 · win · free on itch · jam entry

Ah, hm. So this is a maze navigated by rolling a marble around. You use WASD to move the marble, and you can also turn the camera with the arrow keys.

The trouble is… the marble’s movement is always relative to the world, not the camera. That means if you turn the camera 30° and then try to move the marble, it’ll move at a 30° angle from your point of view.

That makes navigating a maze, er, difficult.

Camera-relative movement is the kind of thing I take so much for granted that I wouldn’t even think to do otherwise, and I think it’s valuable to look at surprising choices that violate fundamental conventions, so I’m trying to take this as a nudge out of my comfort zone. What could you design in an interesting way that used world-relative movement? Probably not the player, but maybe something else in the world, as long as you had strong landmarks? Hmm.

FINAL SCORE: ᘔ

Refactor: flight, by fluffy

short · arcade · jan 2017 · lin/mac/win · free on itch · jam entry

Refactor is a game album, which is rather a lot what it sounds like, and Flight is one of the tracks. Which makes this a single, I suppose.

It’s one of those games where you move down an oddly-shaped tunnel trying not to hit the walls, but with some cute twists. Coins and gems hop up from the bottom of the screen in time with the music, and collecting them gives you points. Hitting a wall costs you some points and kills your momentum, but I don’t think outright losing is possible, which is great for me!

Also, the monk cycles through several animal faces. I don’t know why, and it’s very good. One of those odd but memorable details that sits squarely on the intersection of abstract, mysterious, and a bit weird, and refuses to budge from that spot.

The music is great too? Really chill all around.

FINAL SCORE: 🎵🎵🎵🎵

The Adventures of Klyde

short · adventure · jan 2017 · web · free on itch · jam entry

Another bitsy game, this one starring a pig (humorously symbolized by a giant pig nose with ears) who must collect fruit and solve some puzzles.

This is charmingly nostalgic for me — it reminds me of some standard fare in engines like MegaZeux, where the obvious things to do when presented with tiles and pickups were to make mazes. I don’t mean that in a bad way; the maze is the fundamental environmental obstacle.

A couple places in here felt like invisible teleport mazes I had to brute-force, but I might have been missing a hint somewhere. I did make it through with only a little trouble, but alas — I stepped in a bad warp somewhere and got sent to the upper left corner of the starting screen, which is surrounded by walls. So Klyde’s new life is being trapped eternally in a nowhere space.

FINAL SCORE: 19/20 apples

And more

That was only a third of the games, and I don’t think even half of the ones I’ve played. I’ll have to do a second post covering the rest of them? Maybe a third?

Or maybe this is a ludicrous format for commenting on several dozen games and I should try to narrow it down to the ones that resonated the most for Strawberry Jam 2? Maybe??