Tag Archives: retrofit

Raspberry Pi turns retro radio into interactive storyteller

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-turns-retro-radio-into-interactive-storyteller/

8 Bits and a Byte created this voice-controllable, interactive, storytelling device, hidden inside a 1960s radio for extra aesthetic wonderfulness.

A Raspberry Pi 3B works with an AIY HAT, a microphone, and the device’s original speaker to run chatbot and speech-to-text artificial intelligence.

This creature is a Bajazzo TS made by Telefunken some time during the 1960s in West Germany, and this detail inspired the espionage-themed story that 8 Bits and a Byte retrofitted it to tell. Users are intelligence agents whose task is to find the evil Dr Donogood.

The device works like one of those ‘choose your own adventure’ books, asking you a series of questions and offering you several options. The story unfolds according to the options you choose, and leads you to a choice of endings.

In with the new (Raspberry Pi tucked in the lower right corner)

What’s the story?

8 Bits and a Byte designed a decision tree to provide a tight story frame, so users can’t go off on question-asking tangents.

When you see the ‘choose your own adventure’ frame set out like this, you can see how easy it is to create something that feels interactive, but really only needs to understand the difference between a few phrases: ‘laser pointer’; ‘lockpick’; ‘drink’; take bribe’, and ‘refuse bribe’.

How does it interact with the user?

Skip to 03mins 30secs to see the storytelling in action

Google Dialogflow is a free natural language understanding platform that makes it easy to design a conversational user interface, which is long-speak for ‘chatbot’.

There are a few steps between the user talking to the radio, and the radio figuring out how to respond. The speech-to-text and chatbot software need to work in tandem. For this project, the data flow runs like so:

1: The microphone detects that someone is speaking and records the audio.

2-3: Google AI (the Speech-To-Text box) processes the audio and extracts the words the user spoke as text.

4-5: The chatbot (Google Dialogflow) receives this text and matches it with the correct response, which is sent back to the Raspberry Pi.

6-7: Some more artificial intelligence uses this text to generate artificial speech.

8: This audio is played to the user via the speaker.

Make sure to check out more of 8 Bits and a Byte’s projects on YouTube. We recommend Mooomba the cow roomba.

The post Raspberry Pi turns retro radio into interactive storyteller appeared first on Raspberry Pi.

Give your voice assistant a retro Raspberry Pi makeover

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/give-your-voice-assistant-a-retro-raspberry-pi-makeover/

Do you feel weird asking the weather or seeking advice from a faceless device? Would you feel better about talking to a classic 1978 2-XL educational robot from Mego Corporation? Matt over at element14 Community, where tons of interesting stuff happens, has got your back.

Watch Matt explain how the 2-XL toy robot worked before he started tinkering with it. This robot works with Google Assistant on a Raspberry Pi, and answers to a custom wake word.

Kit list

Our recent blog about repurposing a Furby as a voice assistant device would have excited Noughties kids, but this one is mostly for our beautiful 1970s- and 1980s-born fanbase.

Time travel

2-XL, Wikipedia tells us, is considered the first “smart toy”, marketed way back in 1978, and exhibiting “rudimentary intelligence, memory, gameplay, and responsiveness”. 2-XL had a personality that kept kids’ attention, telling jokes and offering verbal support as they learned.

Teardown

Delve under the robot’s armour to see how the toy was built, understand the basic working mechanism, and watch Matt attempt to diagnose why his 2-XL is not working.

Setting up Google Assistant

The Matrix Creator daughter board mentioned in the kit list is an ideal platform for developing your own AI assistant. It’s the daughter board’s 8-microphone array that makes it so brilliant for this task. Learn how to set up Google Assistant on the Matrix board in this video.

What if you don’t want to wake your retrofit voice assistant in the same way as all the other less dedicated users, the ones who didn’t spend hours of love and care refurbishing an old device? Instead of having your homemade voice assistant answer to “OK Google” or “Alexa”, you can train it to recognise a phrase of your choice. In this tutorial, Matt shows you how to set up a custom wake word with your voice assistant, using word detection software called Snowboy.

Keep an eye on element14 on YouTube for the next instalment of this excellent retrofit project.

The post Give your voice assistant a retro Raspberry Pi makeover appeared first on Raspberry Pi.

Raspberry Pi retro player

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-retro-player/

We found this project at TeCoEd and we loved the combination of an OLED display housed inside a retro Argus slide viewer. It uses a Raspberry Pi 3 with Python and OpenCV to pull out single frames from a video and write them to the display in real time.​

TeCoEd names this creation the Raspberry Pi Retro Player, or RPRP, or -- rather neatly -- RP squared. The Argus viewer, he tells us, was a charity-shop find that cost just 50p.  It sat collecting dust for a few years until he came across an OLED setup guide on hackster.io, which inspired the birth of the RPRP.

Timelapse of the build and walk-through of the code

At the heart of the project is a Raspberry Pi 3 which is running a Python program that uses the OpenCV computer vision library.  The code takes a video clip and breaks it down into individual frames. Then it resizes each frame and converts it to black and white, before writing it to the OLED display. The viewer sees the video play in pleasingly retro monochrome on the slide viewer.

Tiny but cute, like us!

TeCoEd ran into some frustrating problems with the OLED display, which, he discovered, uses the SH1106 driver, rather than the standard SH1306 driver that the Adafruit CircuitPython library expects. Many OLED displays use the SH1306 driver, but it turns out that cheaper displays like the one in this project use the SH1106. He has made a video to spare other makers this particular throw-it-all-in-the-bin moment.

Tutorial for using the SH1106 driver for cheap OLED displays

If you’d like to try this build for yourself, here’s all the code and setup advice on GitHub.

Wiring diagram

TeCoEd is, as ever, our favourite kind of maker -- the sharing kind! He has collated everything you’ll need to get to grips with OpenCV, connecting the SH1106 OLED screen over I2C, and more. He’s even told us where we can buy the OLED board.

The post Raspberry Pi retro player appeared first on Raspberry Pi.

Raspberry Pi + Furby = ‘Furlexa’ voice assistant

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-furby-furlexa-voice-assistant/

How can you turn a redundant, furry, slightly annoying tech pet into a useful home assistant? Zach took to howchoo to show you how to combine a Raspberry Pi Zero W with Amazon’s Alexa Voice Service software and a Furby to create Furlexa.

Furby was pretty impressive technology, considering that it’s over 20 years old. It could learn to speak English, sort of, by listening to humans. It communicated with other Furbies via infrared sensor. It even slept when its light sensor registered that it was dark.

Furby innards, exploded

Zach explains why Furby is so easy to hack:

Furby is comprised of a few primary components — a microprocessor, infrared and light sensors, microphone, speaker, and — most impressively — a single motor that uses an elaborate system of gears and cams to drive Furby’s ears, eyes, mouth and rocker. A cam position sensor (switch) tells the microprocessor what position the cam system is in. By driving the motor at varying speeds and directions and by tracking the cam position, the microprocessor can tell Furby to dance, sing, sleep, or whatever.

The original CPU and related circuitry were replaced with a Raspberry Pi Zero W

Zach continues: “Though the microprocessor isn’t worth messing around with (it’s buried inside a blob of resin to protect the IP), it would be easy to install a small Raspberry Pi computer inside of Furby, use it to run Alexa, and then track Alexa’s output to make Furby move.”

What you’ll need:

Harrowing

Running Alexa

The Raspberry Pi is running Alexa Voice Service (AVS) to provide full Amazon Echo functionality. Amazon AVS doesn’t officially support the tiny Raspberry Pi Zero, so lots of hacking was required. Point 10 on Zach’s original project walkthrough explains how to get AVS working with the Pimoroni Speaker pHAT.

Animating Furby

A small motor driver board is connected to the Raspberry Pi’s GPIO pins, and controls Furby’s original DC motor and gearbox: when Alexa speaks, so does Furby. The Raspberry Pi Zero can’t supply enough juice to power the motor, so instead, it’s powered by Furby’s original battery pack.

Software

There are three key pieces of software that make Furlexa possible:

  1. Amazon Alexa on Raspberry Pi -- there are tonnes of tutorials showing you how to get Amazon Alexa up and running on your Raspberry Pi. Try this one on instructables.
  2. A script to control Furby’s motor -- howchooer Tyler wrote the Python script that Zach is using to drive the motor, and you can copy and paste it from Zach’s howchoo walkthrough.
  3. A script that detects when Alexa is speaking and calls the motor program -- Furby detects when Alexa is speaking by monitoring the contents of a file whose contents change when audio is being output. Zach has written a separate guide for driving a DC motor based on Linux sound output.
Teeny tiny living space

The real challenge was cramming the Raspberry Pi Zero plus the Speaker pHAT, the motor controller board, and all the wiring back inside Furby, where space is at a premium. Soldering wires directly to the GPIO saved a bit of room, and foam tape holds everything above together nice and tightly. It’s a squeeze!

Zach is a maker extraordinaire, so check out his projects page on howchoo.

The post Raspberry Pi + Furby = ‘Furlexa’ voice assistant appeared first on Raspberry Pi.

Atomic TV | The MagPi 97

Post Syndicated from Lucy Hattersley original https://www.raspberrypi.org/blog/atomic-tv-the-magpi-97/

Nothing on television worth watching? Ryan Cochran’s TV set is just as visually arresting when it’s turned off, as David Crookes reports in the latest issue of the MagPi magazine, out now.

Flat-screen televisions, with their increasingly thin bezels, are designed to put the picture front and centre. Go back a few decades, however, and a number of TVs were made to look futuristic – some even sported space age designs resembling astronaut helmets or flying saucers sat upon elaborate stands. They were quirky and hugely fun.

Maker Ryan Cochran’s project evokes such memories of the past. “I have a passion for vintage modern design and early NASA aesthetics, and I wanted to make something which would merge the two into an art piece that could fit on my shelf,” he recalls. “The first thing I could think of was a small television.” And so the idea for the Atomic TV came into being.

Made of wood and using spare tech parts left over from a couple of past projects, it’s a television that’s as compelling to look at when it’s turned off as when it’s playing videos on a loop. “My main concern was fit and finish,” he says. “I didn’t want this thing to look amateurish at all. I wanted it to look like a professionally built prototype from 1968.”

Turn on

Before he began planning the look of the project, Ryan wanted to make sure everything would connect. “The parts sort of drove the direction of the project, so the first thing I did was mock everything up without a cabinet to make sure everything worked together,” he says.

This posed some problems. “The display is 12 volts, and I would have preferred to simplify things by using one of the 5-volt displays on the market, but I had what I had, so I figured a way to make it work,” Ryan explains, discovering the existence of a dual 5 V-12 V power supply.

With a Raspberry Pi 4 computer, the LCD display, a driver board, and a pair of USB speakers borrowed from his son all firmly in hand, he worked on a way of controlling the volume and connected everything up.

“Power comes in and goes to an on/off switch,” he begins. “From there, it goes to the dual voltage power supply with the 12 V running the display and the 5 V running Raspberry Pi 4 and the small amp for the speakers. Raspberry Pi runs Adafruit’s Video Looper script and pulls videos from a USB thumb drive. It’s really simple, and there are no physical controls other than on/off switch and volume.”

Tune in

The bulk of the work came with the making of the project’s housing. “I wanted to nod the cap to Tom Sachs, an artist who does a lot of work I admire and my main concern was fit and finish,” Ryan reveals.

He filmed the process from start to end, showing the intricate work involved, including a base created from a cake-stand and a red-and-white panel for the controls. To ensure the components wouldn’t overheat, a fan was also included.

“The television runs 24/7 and it spends 99 percent of its time on mute,” says Ryan. “It’s literally just moving art that sits on my shelf playing my favourite films and video clips and, every now and then, I’ll look over, notice a scene I love, and turn up the volume to watch for a few minutes. It’s a great way to relax your brain and escape reality every now and then.”

Get The MagPi magazine issue 97 — out today

The MagPi magazine is out now, available in print from the Raspberry Pi Press onlinestore, your local newsagents, and the Raspberry Pi Store, Cambridge.

You can also download the PDF directly from the MagPi magazine website.

Subscribers to the MagPi for 12 months get a free Adafruit Circuit Playground, or can choose from one of our other subscription offers, including this amazing limited-time offer of three issues and a book for only £10!

The post Atomic TV | The MagPi 97 appeared first on Raspberry Pi.

Go back in time with a Raspberry Pi-powered radio

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/go-back-in-time-with-a-raspberry-pi-powered-radio/

Take a musical trip down memory lane all the way back to the 1920s.

Sick of listening to the same dozen albums on repeat, or feeling stifled by the funnel of near-identical YouTube playlist rabbit holes? If you’re looking to broaden your musical horizons and combine that quest with a vintage-themed Raspberry Pi–powered project, here’s a great idea…

Alex created a ‘Radio Time Machine’ that covers 10 decades of music, from the 1920s up to the 2020s. Each decade has its own Spotify playlist, with hundreds of songs from that decade played randomly. This project with the look of a vintage radio offers a great, immersive learning experience and should throw up tonnes of musical talent you’ve never heard of.

In the comments section of their reddit post, Alex explained that replacing the screen of the vintage shell they housed the tech in was the hardest part of the build. On the screen, each decade is represented with a unique icon, from a gramophone, through to a cassette tape and the cloud. Here’s a closer look at it:

Now let’s take a look at the hardware and software it took to pull the whole project together…

Hardware:

  • Vintage Bluetooth radio (Alex found this affordable one on Amazon)
  • Raspberry Pi 4
  • Arduino Nano
  • 2 RGB LEDs for the dial
  • 1 button (on the back) to power on/off (long press) or play the next track (short press)

The Raspberry Pi 4 audio output is connected to the auxiliary input on the radio (3.5mm jack).

Software:

    • Mopidy library (Spotify)
    • Custom NodeJS app with JohnnyFive library to read the button and potentiometer values, trigger the LEDs via the Arduino, and load the relevant playlists with Mopidy

Take a look at the video on reddit to hear the Radio Time Machine in action. The added detail of the white noise that sounds as the dial is turned to switch between decades is especially cool.

How do you find ten decades of music?

Alex even went to the trouble of sharing each decade’s playlist in the comments of their original reddit post.

Here you go:

1920s
1930s
1940s
1950s
1960s
1970s
1980s
1990s
2000s
2010s

Comment below to tell us which decade sounds the coolest to you. We’re nineties kids ourselves!

The post Go back in time with a Raspberry Pi-powered radio appeared first on Raspberry Pi.

Listen to World War II radio recordings with a Raspberry Pi Zero

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/listen-to-world-war-ii-radio-recordings-with-a-raspberry-pi-zero/

With the 50th anniversary of the D-Day landings very much in the news this year, Adam Clark found himself interested in all things relating to that era. So it wasn’t long before he found himself on the Internet Archive listening to some of the amazing recordings of radio broadcasts from that time. In this month’s HackSpace magazine, Adam details how he built his WW2 radio-broadcast time machine using a Raspberry Pi Zero W, and provides you with the code to build your own.

As good as the recordings on the Internet Archive were, it felt as if something was missing by listening to them on a modern laptop, so I wanted something to play them back on that was more evocative of that time, and would perhaps capture the feeling of listening to them on a radio set.

I also wanted to make the collection portable and to make the interface for selecting and playing the tracks as easy as possible – this wasn’t going to be screen-based!

Another important consideration was to house the project in something that would not look out of place in the living room, and not to give away the fact that it was being powered by modern tech.

So I came up with the idea of using an original radio as the project case, and to use as many of the original knobs and dials as possible. I also had the idea to repurpose the frequency dial to select individual years of the war and to play broadcasts from whichever year was selected.

Of course, the Raspberry Pi was immediately the first option to run all this, and ideally, I wanted to use a Raspberry Pi Zero to keep the costs down and perhaps to allow expansion in the future outside of being a standalone playback device.

Right off the bat, I knew that I would have a couple of obstacles to overcome as the Raspberry Pi Zero doesn’t have an easy way to play audio out, and I also wanted to have analogue inputs for the controls. So the first thing was to get some audio playing to see if this was possible.

Audio playback

The first obstacle was to find a satisfactory way to playback audio. In the past, I have had some success using PWM pins, but this needs a low-pass filter as well as an amplifier, and the quality of audio was never as good as I’d hoped for.

The other alternative is to use one of the many HATs available, but these come at a price as they are normally aimed at more serious quality of audio. I wanted to keep the cost down, so these were excluded as an option. The other option was to use a mono I2S 3W amplifier breakout board – MAX98357A from Adafruit – which is extremely simple to use.

As the BBC didn’t start broadcasting stereo commercially until the late 1950s, this was also very apt for the radio (which only has one speaker).
Connecting up this board is very easy – it just requires three GPIO pins, power, and the speaker. For this, I just soldered some female jumper leads to the breakout board and connected them to the header pins of the Raspberry Pi Zero. There are detailed instructions on the Adafruit website for this which basically entails running their install script.

I’d now got a nice playback device that would easily play the MP3 files downloaded from archive.org and so the next task was to find a suitable second-hand radio set.

Preparing the case

After a lot of searching on auction sites, I eventually found a radio that was going to be suitable: wasn’t too large, was constructed from wood, and looked old enough to convince the casual observer. I had to settle for something that actually came from the early 1950s, but it drew on design influences from earlier years and wasn’t too large as a lot of the real period ones tended to be (and it was only £15). This is a fun project, so a bit of leeway was fine by me in this respect.

When the radio arrived, my first thought as a tinkerer was perhaps I should get the valves running, but a quick piece of research turned up that I’d probably have to replace all the resistors and capacitors and all the old wiring and then hope that the valves still worked. Then discovering that the design used a live chassis running at 240 V soon convinced me that I should get back on track and replace everything.

With a few bolts and screws removed, I soon had an empty case.

I then stripped out all the interior components and set about restoring the case and dial glass, seeing what I could use by way of the volume and power controls. Sadly, there didn’t seem to be any way to hook into the old controls, so I needed to design a new chassis to mount all the components, which I did in Tinkercad, an online 3D CAD package. The design was then downloaded and printed on my 3D printer.

It took a couple of iterations, and during this phase, I wondered if I could use the original speaker. It turned out to be absolutely great, and the audio took on a new quality and brought even more authenticity to the project.

The case itself was pretty worn and faded, and the varnish had cracked, so I decided to strip it back. The surface was actually veneer, but you can still sand this. After a few applications of Nitromors to remove the varnish, it was sanded to remove the scratches and finished off with fine sanding.

The wood around the speaker grille was pretty cracked and had started to delaminate. I carefully removed the speaker grille cloth, and fixed these with a few dabs of wood glue, then used some Tamiya brown paint to colour the edges of the wood to blend it back in with the rest of the case. I was going to buy replacement cloth, but it’s fairly pricey – I had discovered a trick of soaking the cloth overnight in neat washing-up liquid and cold water, and it managed to lift the years of grime out and give it a new lease of life.

At this point, I should have just varnished or used Danish oil on the case, but bitten by the restoration bug I thought I would have a go at French polishing. This gave me a huge amount of respect for anyone that can do this properly. It’s messy, time-consuming, and a lot of work. I ended up having to do several coats, and with all the polishing involved, this was probably one of the most time-consuming tasks, plus I ended up with some pretty stained fingers as a result.

The rest of the case was pretty easy to clean, and the brass dial pointer polished up nice and shiny with some Silvo polish. The cloth was glued back in place, and the next step was to sort out the dial and glass.

Frequency, volume, glass, and knobs

Unfortunately, the original glass was cracked, so a replacement part was cut from some Makrolon sheet, also known as Lexan. I prefer this to acrylic as it’s much easier to cut and far less likely to crack when drilling it. It’s used as machine guards as well and can even be bent if necessary.

With the dial, I scanned it into the PC and then in PaintShop I replaced the existing frequency scale with a range of years running from 1939 to 1945, as the aim was for anyone using the radio to just dial the year they wanted to listen to. The program will then read the value of the potentiometer, and randomly select a file to play from that year.

It was also around about now that I had to come up with some means of having the volume control the sound and an interface for the frequency dial. Again there are always several options to consider, and I originally toyed with using a couple of rotary encoders and using one of these with the built-in push button as the power switch, but eventually decided to just use some potentiometers. Now I just had to come up with an easy way to read the analogue value of the pots and get that into the program.

There are quite a few good analogue-to-digital boards and HATs available, but with simplicity in mind, I chose to use an MCP3002 chip as it was only about £2. This is a two-channel analogue-to-digital converter (ADC) and outputs the data as a 10-bit value onto the SPI bus. This sounds easy when you say it, but it proved to be one of the trickier technical tasks as none of the code around for the four-channel MCP3008 seemed to work for the MCP3002, nor did many of the examples that were around for the MCP3002 – I think I went through about a dozen examples. At long last, I did find some code examples that worked, and with a bit of modification, I had a simple way of reading the values from the two potentiometers. You can download the original code by Stéphane Guerreau from GitHub. To use this on your Raspberry Pi, you’ll also need to run up raspi-config and switch on the SPI interface. Then it is simply a case of hooking up the MCP3002 and connecting the pots between the 3v3 line and ground and reading the voltage level from the wiper of the pots. When coding this, I just opted for some simple if-then statements in cap-Python to determine where the dial was pointing, and just tweaked the values in the code until I got each year to be picked out.

Power supply and control

One of the challenges when using a Raspberry Pi in headless mode is that it likes to be shut down in an orderly fashion rather than just having the power cut. There are lots of examples that show how you can hook up a push button to a GPIO pin and initiate a shutdown script, but to get the Raspberry Pi to power back up you need to physically reset the power. To overcome this piece of the puzzle, I use a Pimoroni OnOff SHIM which cleverly lets you press a button to start up, and then press and hold it for a second to start a shutdown. It’s costly in comparison to the price of a Raspberry Pi Zero, but I’ve not found a more convenient option. The power itself is supplied by using an old power bank that I had which is ample enough to power the radio long enough to be shown off, and can be powered by USB connector if longer-term use is required.

To illuminate the dial, I connected a small LED in series with a 270R resistor to the 3v3 rail so that it would come on as soon as the Raspberry Pi received power, and this lets you easily see when it’s on without waiting for the Raspberry Pi to start up.

The code






If you’re interested in the code Adam used to build his time machine, especially if you’re considering making your own, you’ll find it all in this month’s HackSpace magazine. Download the latest issue for free here, subscribe for more issues here, or visit your local newsagent or the Raspberry Pi Store, Cambridge to pick up the magazine in physical, real-life, in-your-hands print.

The post Listen to World War II radio recordings with a Raspberry Pi Zero appeared first on Raspberry Pi.

Retrofit a vintage camera flash with a Raspberry Pi Camera Module

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/retrofit-vintage-camera-flash-with-camera-module/

Wanting to break from the standard practice of updating old analogue cameras with digital technology, Alan Wang decided to retrofit a broken vintage camera flash with a Raspberry Pi Zero W to produce a video-capturing action cam.

Raspberry Pi Zero Flash Cam Video Test

Full story of this project: https://www.hackster.io/alankrantas/raspberry-pi-zero-flash-cam-359875

By hacking a somewhat gnarly hole into the body of the broken flash unit, Alan fit in the Raspberry Pi Zero W and Camera Module, along with a few other components. He powers the whole unit via a USB power bank.

At every touch of the onboard touchpad, the retrofit camera films 12 seconds of footage and saves it as an MP4 file on the onboard SD card or an optional USB flash drive.

While the project didn’t technically bring the flash unit back to life — as the flash function is still broken — it’s a nice example of upcycling old tech, and it looks pretty sweet. Plus, you can attach it to your existing film camera to produce some cool side-by-side comparison imagery, as seen in the setup above.

For a full breakdown of the build, including the code needed to run the camera, check out the project’s Hackster.io page.

The post Retrofit a vintage camera flash with a Raspberry Pi Camera Module appeared first on Raspberry Pi.

Build your own Raspberry Pi night vision camera

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-your-own-raspberry-pi-night-vision-camera/

A Raspberry Pi Zero W, Pimoroni HyperPixel screen, and Raspberry Pi IR Camera Module are all you need to build this homemade night vision camera.

How to build a night vision camera

How to build a night vision camera, video showing the process and problems that I came across when building this camera

Raspberry Pi night vison camera

Built into the body of an old camera flash, Dan’s Raspberry Pi night vision camera is a homage to a childhood spent sneaking around the levels of Splinter Cell. Says Dan:

The iconic image from the game is the night vision goggles that Sam Fisher wears. I have always been fascinated by the idea that you can see in the dark and this formed the foundation of my idea to build a portable hand-held night vision piece of equipment.

The camera, running on Raspbian, boasts several handy functions, including touchscreen controls courtesy of the Pimoroni HyperPixel, realtime video and image capture, and a viewing distance of two to five metres.

It’s okay to FAIL

Embracing the FAIL (First Attempt In Learning) principle, Dan goes into detail about the issues he had to overcome while building the camera, which is another reason why we really enjoyed this project. It’s okay to fail when trying your hand at digital making, because you learn from your mistakes! Dan’s explanations of the struggles he faced and how he overcame them are 👌.

For a full rundown of the project and tips on building your own, check out its Hackster.io page.

The post Build your own Raspberry Pi night vision camera appeared first on Raspberry Pi.

Chat to Ada Lovelace via a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/chat-ada-lovelace-raspberry-pi/

Our friends, 8 Bits and a Byte, have built a Historic Voicebot, allowing users to chat to their favourite historical figures.

It’s rather marvellous.

The Historic Voicebot

Have a chat with your favourite person from the past with the Historic Voicebot! With this interactive installation, you can talk to a historical figure through both chat and voice. Made using Dialogflow, Node.js, HTML Canvas, an AIY Voice Kit, a Raspberry Pi and a vintage phone.

All the skills

Coding? Check. Woodwork? Check. Tearing apart a Google AIY Kit in order to retrofit it into a vintage telephone while ensuring it can still pick up voice via the handset? Check, check, check – this project has it all.

The concept consists of two parts:

  • A touchscreen with animations of a historical figure. The touchscreen also displays the dialog and has buttons so people can ask an FAQ.
  • A physical phone that captures speech and gives audio output, so it can be used to ask questions and listen to the answer.

While Nicole doesn’t go into full detail in the video, the Ada animation uses Dialogflow, Node.js, and HTML Canvas to work, and pairs up with the existing tech in the Google AIY Kit.

And, if you don’t have an AIY Kit to hand, don’t worry; you can have the same functionality using a standard USB speaker and microphone, and Google Home running on a Raspberry Pi.

You can find a tutorial for the whole project on hackster.io.

Follow 8 Bits and a Byte

There are a lot of YouTube channels out there that don’t have the follow count we reckon they deserve, and 8 Bits and a Byte is one of them. So, head to their channel and click that subscribe button, and be sure to check out their other videos for some more Raspberry Pi goodness.

The post Chat to Ada Lovelace via a Raspberry Pi appeared first on Raspberry Pi.

Retrofit a handheld Casio portable TV with a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/retrofit-raspberry-pi-handheld-casio-portable-tv/

What do we say to the god of outdated tech? Not today! Revive an old portable television with a Raspberry Pi 3!

Pocket televisions

In the late 1980s, when I was a gadget-savvy kid, my mother bought me a pocket TV as a joint Christmas and birthday present. The TV’s image clarity was questionable, its sound tinny, and its aerial so long that I often poked myself and others in the eye while trying to find a signal. Despite all this, it was one of the coolest, most futuristic things I’d ever seen, and I treasured it. But, as most tech of its day, the pocket TV no longer needed: I can watch TV in high definition on my phone — a device half the size, with a screen thrice as large, and no insatiable hunger for AA batteries.

So what do we do with this old tech to save it from the tip?

We put a Raspberry Pi in it, of course!

JaguarWong’s Raspberry Pi 3 pocket TV!

“I picked up a broken Casio TV-400 for the princely sum of ‘free’ a few weeks back. And I knew immediately what I wanted to do with it,” imgur user JaguarWong states in the introduction for the project.

I got the Pi for Christmas a couple of years back and have never really had any plans for it. Not long after I got it, I picked up the little screen from eBay to play with but again, with no real purpose in mind — but when I got the pocket TV everything fell into place.

Isn’t it wonderful when things fall so perfectly into place?

Thanks to an online pinout guide, JW was able to determine how to  connect the screen and the Raspberry Pi; fortunately, only a few jumper wires were needed — “which was handy given the limits on space.”

With slots cut into the base of the TV for the USB and Ethernet ports, the whole project fit together like a dream, with little need for modification of the original housing.

The final result is wonderful. And while JW describes the project as “fun, if mostly pointless”, we think it’s great — another brilliant example of retrofitting old tech with Raspberry Pi!

10/10 would recommend to a friend.

The post Retrofit a handheld Casio portable TV with a Raspberry Pi appeared first on Raspberry Pi.

Video call with a Raspberry Pi and Google Duo

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/video-call-with-a-raspberry-pi-and-google-duo/

Use Google Duo and a Raspberry Pi to build a video doorbell for your home so you can always be there to answer your door, even when you’re not actually there to answer your door.

“Martin Mander builds a good build,” I reply to Liz Upton as she shares this project, Martin’s latest one, with me on Slack. We’re pretty familiar with his work here at Raspberry Pi! Previously, we’ve shared his Google AIY retrofit intercom, upcycled 1970s TV with built-in Raspberry Pi TV HAT, and Batinator. We love the extra step that Martin always takes to ensure the final result of each project is clean-cut and gorgeous-looking, with not even a hint of hot glue in sight.

Raspberry Pi video doorbell

“I’ve always fancied making a video doorbell using a Raspberry Pi,” explains Martin in the introduction to his project on Hackster.io. “[B]ut until recently I couldn’t find an easy way to make video calls that would both work in a project and be straightforward for others to recreate.”

By ‘recently’, he means February of this year, when Google released their Duo video chat application for web browsers.

With a Raspberry Pi 3B+ and a webcam in hand, Martin tested the new release, and lo and behold, he was able to video-call his wife with relative ease via Chromium, Raspbian‘s default browser.

“The webcam I tested had a built-in microphone, and even on the first thrown-together test call, the quality was great. This was a very exciting moment, unlocking the potential of the video doorbell project as well as many other possibilities.”

By accident, Martin also discovered that you can run Google Duo out of the browser, even on the Raspberry Pi. This allowed him to strip away all the unnecessary “Chromium furniture”.

But, if this was to be a video doorbell, how was he to tell the Raspberry Pi to call his mobile phone when the doorbell was activated?

“If Duo were a full app, then command line options might be available, for example to launch the app and immediately call a specific contact. In the absence of this (for now?) I needed to find a way to automatically start a call with a GPIO button press.”

To accomplish this, Martin decided to use PyUserInput, a community-built cross-platform module for Python. “The idea was to set up a script to wait for a button press, then move the mouse to the Contacts textbox, type the name of the contact, press Enter and click Video Call“, Martin explains. And after some trial and error — and calls to the wrong person — his project was a working success.

To complete the build, Martin fitted the doorbell components into a 1980s intercom (see his previous intercom build), wired them through to a base unit inside the home, and then housed it all within an old Sony cassette player.

The final result? A functional video doorbell that is both gorgeous and practical. You can find out more about the project on the Hackster.io project page.

The post Video call with a Raspberry Pi and Google Duo appeared first on Raspberry Pi.

Hacking an Etch-A-Sketch with a Raspberry Pi and camera: Etch-A-Snap!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/hacking-etch-a-sketch-raspberry-pi-camera-etch-a-snap/

Kids of the 1980s, rejoice: the age of the digital Etch-A-Sketch is now!

What is an Etch-A-Sketch

Introduced in 1960, the Etch-A-Sketch was invented by Frenchman André Cassagnes and manufactured by the Ohio Art Company.

The back of the Etch-A-Sketch screen is covered in very fine aluminium powder. Turning one of the two directional knobs runs a stylus across the back of the screen, displacing the powder and creating a dark grey line visible in the front side.

can it run DOOM?

yes

The Etch-A-Sketch was my favourite childhood toy. So you can imagine how excited I was to see the Etch-A-Snap project when I logged into Reddit this morning!

Digital Etch-A-Sketch

Yesterday, Martin Fitzpatrick shared on Reddit how he designed and built Etch-A-Snap, a Raspberry Pi Zero– and Camera Module–connected Etch-A-Sketch that (slowly) etches photographs using one continuous line.

Etch-A-Snap is (probably) the world’s first Etch-A-Sketch Camera. Powered by a Raspberry Pi Zero (or Zero W), it snaps photos just like any other camera, but outputs them by drawing to an Pocket Etch-A-Sketch screen. Quite slowly.

Unless someone can show us another Etch-A-Sketch camera like this, we’re happy to agree that this is a first!

Raspberry Pi–powered Etch-A-Sketch

Powered by four AA batteries and three 18650 LiPo cells, Etch-A-Snap houses the $5 Raspberry Pi Zero and two 5V stepper motors within a 3D-printed case mounted on the back of a pocket-sized Etch-A-Sketch.

Photos taken using the Raspberry Pi Camera Module are converted into 1-bit, 100px × 60px, black-and-white images using Pillow and OpenCV. Next, these smaller images are turned into plotter commands using networkx. Finally, the Raspberry Pi engages the two 5V stepper motors to move the Etch-A-Sketch control knobs, producing a sketch within 15 minutes to an hour, depending on the level of detail in the image.

Build your own Etch-A-Snap

On his website, Martin goes into some serious detail about Etch-A-Snap, perfect for anyone interested in building their own, or in figuring out how it all works. You’ll find an overview with videos, along with breakdowns of the build, processing, drawing, and plotter.

The post Hacking an Etch-A-Sketch with a Raspberry Pi and camera: Etch-A-Snap! appeared first on Raspberry Pi.

Play Heverlee’s Sjoelen and win beer

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/play-heverlees-sjoelen-win-beer/

Chances are you’ve never heard of the Dutch table shuffleboard variant Sjoelen. But if you have, then you’ll know it has a basic premise – to slide wooden pucks into a set of four scoring boxes – but some rather complex rules.

Sjoelen machine

Uploaded by Grant Gibson on 2018-07-10.

Sjoelen

It may seem odd that a game which relies so much on hand-eye coordination and keeping score could be deemed a perfect match for a project commissioned by a beer brand. Yet Grant Gibson is toasting success with his refreshing interpretation of Sjoelen, having simplified the rules and incorporated a Raspberry Pi to serve special prizes to the winners.

“Sjoelen’s traditional scoring requires lots of addition and multiplication, but our version simply gives players ten pucks and gets them to slide three through any one of the four gates within 30 seconds,” Grant explains.

As they do this, the Pi (a Model 3B) keeps track of how many pucks are sliding through each gate, figures how much time the player has left, and displays a winning message on a screen. A Logitech HD webcam films the player in action, so bystanders can watch their reactions as they veer between frustration and success.

Taking the plunge

Grant started the project with a few aims in mind: “I wanted something that could be transported in a small van and assembled by a two-person team, and I wanted it to have a vintage look.” Inspired by pinball tables, he came up with a three-piece unit that could be flat-packed for transport, then quickly assembled on site. The Pi 3B proved a perfect component.

Grant has tended to use full-size PCs in his previous builds, but he says the Pi allowed him to use less complex software, and less hardware to control input and output. He used Python for the input and output tasks and to get the Pi to communicate with a full-screen Chromium browser, via JSON, in order to handle the scoring and display tasks in JavaScript.

“We used infrared (IR) sensors to detect when a puck passed through the gate bar to score a point,” Grant adds. “Because of the speed of the pucks, we had to poll each of the four IR sensors over 100 times per second to ensure that the pucks were always detected. Optimising the Python code to run fast enough, whilst also leaving enough processing power to run a full-screen web browser and HD webcam, was definitely the biggest software challenge on this project.”

Bottoms up

The Raspberry Pi’s GPIO pins are used to trigger the dispensing of a can of Heverlee beer to the winner. These are stocked inside the machine, but building the vending mechanism was a major headache, since it needed to be lightweight and compact, and to keep the cans cool.

No off-the-shelf vending unit offered a solution, and Grant’s initial attempts with stepper motors and clear laser-cut acrylic gears proved disastrous. “After a dozen successful vends, the prototype went out of alignment and started slicing through cans, creating a huge frothy fountain of beer. Impressive to watch, but not a great mix with electronics,” Grant laughs.

Instead, he drew up a final design that was laser‑cut from poplar plywood. “It uses automotive central locking motors to operate a see-saw mechanism that serve the cans. A custom Peltier-effect heat exchanger, and a couple of salvaged PC fans, keep the cans cool inside the machine,” reveals Grant.

“I’d now love to make a lightweight version sometime, perhaps with a folding Sjoelen table and pop-up scoreboard screen, that could be carried by one person,” he adds. We’d certainly drink to that.

More from The MagPi magazine

Get your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from The MagPi magazine website.

MagPi 79 cover

Subscribe now

Subscribe to The MagPi on a monthly, quarterly, or twelve-monthly basis to save money against newsstand prices!

Twelve-month print subscribers get a free Raspberry Pi 3A+, the perfect Raspberry Pi to try your hand at some of the latest projects covered in The MagPi magazine.

The post Play Heverlee’s Sjoelen and win beer appeared first on Raspberry Pi.

FREE NOODS with FOODBEAST and Nissin

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/free-ramen-foodbeast-nissin/

Push a button and share a hashtag to get free ramen, games, or swag with the Dream Machine, a Raspberry Pi–driven vending machine built by FOODBEAST and Nissin.

foodbeast.com on Twitter

This Instagram-powered vending machine gives away FREE @OrigCupNoodles and VIDEO GAMES 🍜🎮!! Where should it travel next? #ad https://t.co/W0YyWOCFVv

Raspberry Pi and marketing

Digital viral marketing campaigns are super popular right now, thanks to the low cost of the technology necessary to build bespoke projects for them. From story-telling phoneboxes to beer-pouring bicycles, we see more and more examples of such projects appear in our inbox every week.

The latest campaign we like is the Dream Machine, a retrofit vending machine that dispenses ramen noodles, video games, and swag in exchange for the use of an Instagram hashtag.

Free ramen from FOODBEAST and Nissin

With Dream Machines in Torrance, California and Las Vegas, Nevada, I’ve yet to convince Liz that it’s worth the time and money for me to fly out and do some field research. But, as those who have interacted with a Dream Machine know, the premise is pretty simple.

The Dream Machine vending machine from FOODBEAST and NissanPress the big yellow button on the front of the vending machine, and it will tell you a unique hashtag to use for posting a selfie with the Dream Machine on Instagram. The machine’s internet-enabled Raspberry Pi brain then uses its magic noodle powers (or, more likely, custom software) to detect the hashtag and pop out a tasty treat, video game, or gift card as a reward.

The Dream Machine vending machine from FOODBEAST and Nissan

The Dream Machines appeared at the start of March, and online sources suggest they’ll stay in their current locations throughout the month. I’d like to take this moment to suggest their next locations: Cambridge, UK and Oakland, California. Please and thank you!

Hold your horses…

We know this is a marketing ploy. We know its intention is to get Joe Public to spread the brand across social media. We know it’s all about money. We know. But still, it’s cool, harmless, and delicious. So let’s not have another robocall debate, OK 😂

The post FREE NOODS with FOODBEAST and Nissin appeared first on Raspberry Pi.

Upcycle a vintage TV with the Raspberry Pi TV HAT | The MagPi #78

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/magpi-78-upcycled-vintage-tv-hat/

When Martin Mander’s portable Hitachi television was manufactured in 1975, there were just three UK channels and you’d need to leave the comfort of your sofa in order to switch between them.

A page layout of the upcycled vintage television project using the Raspberry Pi TV HAT from The MagPi issue 78

Today, we have multiple viewing options and even a cool Raspberry Pi TV HAT that lets us enjoy DVB-T2 broadcasts via a suitable antenna. So what did nostalgia-nut Martin decide to do when he connected his newly purchased TV HAT to the Pi’s 40-pin GPIO header? Why, he stuck it in his old-fashioned TV set with a butt-busting rotary switch and limited the number of channels to those he could count on one hand – dubbing it “the 1982 experience” because he wanted to enjoy Channel 4 which was launched that year.

Going live

Martin is a dab hand at CRT television conversions (he’s created six since 2012, using monitors, photo frames, and neon signs to replace the displays). “For my latest project, I wanted to have some fun with the new HAT and see if I’d be able to easily display and control its TV streams on some of my converted televisions,” he says. It’s now being promoted to his office, for some background viewing as he works. “I had great fun getting the TV HAT streams working with the rotary dial,” he adds.

Raspberry Pi TV HAT

The project was made possible thanks to the new Raspberry Pi TV HAT

Although Martin jumped straight into the HAT without reading the instructions or connecting an aerial, he eventually followed the guide and found getting it up-and-running to be rather straightforward. He then decided to repurpose his Hitachi Pi project, which he’d already fitted with an 8-inch 4:3 screen.

Upcycled television using the Raspberry Pi TV HAT

The boards, screen, and switches installed inside the repurposed Hitachi television

“It’s powered by a Pi 3 and it already had the rotary dial set up and connected to the GPIO,” he explains. “This meant I could mess about with the TV HAT, but still fall back on the original project’s script if needed, with no hardware changes required.”

Change the channel

Indeed, Martin’s main task was to ensure he could switch channels using the rotary dial and this, he says, was easier to achieve than he expected. “When you go to watch a show from the Tvheadend web interface, it downloads an M3U playlist file for you which you can then open in VLC or another media player,” he says.

Upcycled television using the Raspberry Pi TV HAT

– The Hitachi television is fitted with a Pimoroni 8-inch 4:3 screen and a Raspberry Pi 3
– Programmes stream from a Pi 2 server and the channels are changed by turning the dial
– The name of the channel briefly appears at the bottom of the screen – the playlist files are edited in Notepad

“At first, I thought the playlist file was specific to the individual TV programme, as the show’s name is embedded in the file, but actually each playlist file is specific to the channel itself, so it meant I could download a set of playlists, one per channel, and store them in a folder to give me a full range of watching options.”

Sticking to his theme, he stored playlists for the four main channels of 1982 (BBC1, BBC2, ITV, and Channel 4) in a folder and renamed them channel1, channel2, channel3, and channel4.

Upcycled television using the Raspberry Pi TV HAT

A young Martin Mander decides the blank screen of his black and white Philips TX with six manual preset buttons is preferable to the shows (but he’d like to convert one of these in the future)

“Next, I created a script with an infinite loop that would look out for any action on the GPIO pin that was wired to the rotary dial,” he continues. “If the script detects that the switch has been moved, then it opens the first playlist file in VLC, full-screen. The next time the switch moves, the script loops around and adds ‘1’ to the playlist name, so that it will open the next one in the folder.”

Martin is now planning the next stage of the project, considering expanding the channel-changing script to include streams from his IP cameras, replacing a rechargeable speaker with a speaker HAT, and looking to make the original volume controls work with the Pi’s audio. “It been really satisfying to get this project working, and there are many possibilities ahead,” he says.

More from The MagPi magazine

The MagPi magazine issue 78 is out today. Buy your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from The MagPi magazine website.

The MagPi magazine issue 78

Subscribe now

Subscribe to The MagPi magazine on a monthly, quarterly, or twelve-month basis to save money against newsstand prices!

Twelve-month print subscribers get a free Raspberry Pi 3A+, the perfect Raspberry Pi to try your hand at some of the latest projects covered in The MagPi magazine.

The post Upcycle a vintage TV with the Raspberry Pi TV HAT | The MagPi #78 appeared first on Raspberry Pi.

Spirit Animal: a guitar with a built-in synthesiser

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/spirit-animal-synth-guitar/

UK-based Lucem Custom Instruments has teamed up with Seattle’s Tracktion Corporation to create an electric guitar with a built-in Raspberry Pi synthesiser, which they call Spirit Animal.

Raspberry Pi inside a guitar body - Spirit Animal

The Spirit Animal concept guitar

We love seeing the Raspberry Pi incorporated into old technology such as radios, games consoles and unwanted toys. And we also love Pi-based music projects. So can you imagine how happy we were to see an electric guitar with an onboard Raspberry Pi synthesiser?

Raspberry Pi inside a guitar body - Spirit Animal

Tracktion, responsible for synth software BioTek 2, ran their product on a Raspberry Pi, and Lucem fitted this Pi and associated tech inside the hollow body of a through-neck Visceral guitar. The concept guitar made its debut at NAMM 2019 last weekend, where attendees at the National Association of Music Merchants event had the chance to get hands-on with the new instrument.

Raspberry Pi inside a guitar body - Spirit Animal

The instrument boasts an onboard Li-ion battery granting about 8 hours of play time, and a standard 1/4″ audio jack for connecting to an amp. To permit screen-sharing, updates, and control via SSH, the guitar allows access to the Pi’s Ethernet port and wireless functionality.

See more

You can find more information about the design on the Gear News website, and see the instrument in action at NAMM on the Lucem Custom Instruments Facebook page. We look forward to seeing where this collaboration will lead!

Music and Pi

If you’re a guitarist and keen to incorporate a Raspberry Pi into your music, then also check out these other projects:

  • pisound — the Raspberry Pi–powered guitar pedal

PiSound with hardware and peripherals

  • Pedalumi — the illuminated pedal board

  • Guitarboy — is it a Gameboy? Is it a guitar? Unclear, but it’s awesome!

Guitar Boy video

The Guitar Boy is a guitar. The Guitar Boy is a Game Boy. The Guitar Boy is the best of both worlds! Created for the BitFix Gaming 2015 Game Boy Classic build-off, this Game Boy guitar plays both Pokemon and rock and roll!

The post Spirit Animal: a guitar with a built-in synthesiser appeared first on Raspberry Pi.

Is this the most ‘all-in-one’ a computer can possibly be?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/electronic-grenade-computer-mouse/

Electronic Grenade’s Computer Mouse is the turducken of the tech world, stuffed so full of computing gubbins that you genuinely don’t need anything else. Don’t believe us? See for yourself:

The “Computer” Mouse: A DIY Project

The computer mouse is an entire laptop computer in mouse form that uses the raspberry pi zero W as its brain. I originally wanted to just put a raspberry pi into a mouse but I soon discovered that that large of a mouse didn’t exist.

See what we mean?

The Computer Mouse

Sure, your laptop may be considered an all-in-one computer, but if you’re not a fan of trackpads, you’ll still need a mouse to complete the experience. Electronic Grenade‘s Computer Mouse truly has everything — a mouse, a screen, a keyboard — and while the screen is tiny, it’s still enough to get started.

A GIF of the Computer Mouse in action

Electronic Grenade designed the device using Autodesk Fusion 360, housing a Raspberry Pi Zero W, the guts of two USB mice, a slideout Bluetooth keyboard, and a flip-up 1.5″ full-colour OLED display. For power, the mouse also plays host to a 500mAh battery, charged by an Adafruit Micro-LiPo charger.

It’s very cool. Very, very cool.

A GIF from the movie Storks

Homemade Raspberry Pi laptops

From cardboard pizza boxes to ornate, wooden creations, our community members love making Raspberry Pi laptops out of whatever they can get their hands on.


Steampunk Raspberry Pi laptop

Variations on a theme include projects such as Jeremy Lee’s wrist computer with onboard gyromouse, perfect for any Captain Jack cosplay; and Scripto, the Raspberry Pi word processor that processes words and nothing more.


Photo: a red-cased Scripto sits open on a white work surface. It is on, and Its screen is filled with text.

Electronic Grenade

If you’re a fan of retrofit Raspberry Pi projects, check out Electronic Grenade’s Xbox controller hack. And while you’re skimming through their YouTube channel (as you should), be sure to subscribe, and watch the videos of their other Raspberry Pi–based projects, such as this wooden Raspberry Pi 3 laptop. You can also help Electronic Grenade design and build more projects such as the Computer Mouse by supporting them on Patreon.

Notes

  • A turducken is a chicken stuffed into a duck, that is then in turn stuffed into a turkey, and it sounds all kinds of wrong. Do you know what doesn’t sound all kinds of wrong? Electronic Grenade’s Computer Mouse.
  • The ‘cool, cool, cool’ GIF is from the movie Storks. If you haven’t watched Storks yet, you really should: it’s very underrated and quite wonderful.
  • I meant this Captain Jack and not this Captain Jack.

The post Is this the most ‘all-in-one’ a computer can possibly be? appeared first on Raspberry Pi.

Google AIY Projects Kit vs Star Wars Porgs

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/star-wars-porg-google-aiy-translator/

Here at Pi Towers, we have a love/hate relationship with the Star Wars creatures known as Porgs. Love, because anything cute and annoying will instantly get our attention; hate, primarily because of this GIF:

Star Wars Porg Raspberry Pi Google AIY Projects Kit translator

So when hackster.io tweeted about the following project, you can imagine the unfiltered excitement and fear with which I shared the link in the comms team Slack channel.

It looked a little something like this:

Star Wars Porg Raspberry Pi Google AIY Projects Kit translator

Google AIY Projects Kit

When we announced the Google AIY Projects Kit as a freebie included in issue 57 of The MagPi, I don’t think we realised how well it would do. OK, no, we knew it would do well. After we gave away a free $5 computer on the front cover of issue 40, we knew giving tech away with The MagPi would always do well. But the wave of projects and applications that started on the day of the release was a wonderful surprise, as community members across the world immediately began to implement voice control in their builds.

Star Wars Porg Raspberry Pi Google AIY Projects Kit translator

And now, twenty months later, we’re still seeing some wonderful applications of the kit, including this glorious Porg project.

Learn Spanish with a Porg — because of course

Hackster.io user Paul Trebilcox-Ruiz shared his Translation Toy project on the site yesterday, providing a step-by-step guide to hacking the motors of the Star Wars Porg toy so that it moves in time with verbal responses from the AIY kit. It’s all rather nifty, and apart from a Raspberry Pi you only need some wires and a soldering iron to complete the project yourself.

…some wires, a soldering iron, and the cold-heartedness to pull apart the innards of a stuffed toy, Paul, you monster!

“Hello” Translation Toy

Uploaded by Paul Trebilcox-Ruiz on 2018-12-10.

As soon as Paul realised that the Porg’s motors would run if he simply applied voltage, he extended the wires inside the Porg with the help of jumper leads and so attached the Porg to the GPIO pins on his Raspberry Pi.

For this setup, I hooked the two speaker wires from the Porg into the speaker connectors on the HAT, the button wires into the GPIO pin 24 and ground connectors under the ‘Servos’ heading, and for the motors I needed to hook up a relay for a 5V connection driven by the signal off of GPIO pin 26. The microphone that came with the AIY Voice Projects Kit was attached to the board using the pre-defined mic connector.

Then Paul wrote code that uses the AIY kit to translate any voice command it hears into Spanish.

For the full code and instructions, check out Paul’s hackster.io project page. And for more Porg love, here’s every Porg scene from The Last Jedi:

Porgs! Love Them Or Hate Them – Every Porg Scene in Star Wars: The Last Jedi HD

Porgs are now part of the Star Wars universe for better or worse thanks to director Rian Johnson. How do you feel about the tasty critters? Thanks for watching

Bonus facts

  • Porgs were introduced into the Star Wars universe as a means of hiding the many puffins that traipse the landscape of Skellig Michael, the location used for filming Luke Skywalker’s home, Ahch-To. Bless you.
  • A group of Porgs is called a murder.
  • A baby Porg is called a Porglet.
  • And no, you can’t get a physical copy of The MagPi issue 40 or issue 57. They’re gone now. Done. Forever. But you can still download the PDFs.

 

The post Google AIY Projects Kit vs Star Wars Porgs appeared first on Raspberry Pi.

Brutus 2: the gaming PC case of your dreams

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/brutus-2-gaming-pc-case/

Attention, case modders: take a look at the Brutus 2, an extremely snazzy computer case with a partly transparent, animated side panel that’s powered by a Pi. Daniel Otto and Carsten Lehman have a current crowdfunder for the case; their video is in German, but the looks of the build speak for themselves. There are some truly gorgeous effects here.

der BRUTUS 2 by 3nb Gaming

Vorbestellungen ab sofort auf https://www.startnext.com/brutus2 Weitere Infos zu uns auf: https://3nb.de https://www.facebook.com/3nb.de https://www.instagram.com/3nb.de Über 3nb: – GbR aus Leipzig, gegründet 2017 – wir kommen aus den Bereichen Elektronik und Informatik – erstes Produkt: der Brutus One ein Gaming PC mit transparentem Display in der Seite Kurzinfo Brutus 2: – Markencomputergehäuse für Gaming- /Casemoddingszene – Besonderheit: animiertes Seitenfenster angesteuert mit einem Raspberry Pi – Vorteile von unserem Case: o Case ist einzeln lieferbar und nicht nur als komplett-PC o kein Leistungsverbrauch der Grafikkarte dank integriertem Raspberry Pi o bessere Darstellung von Texten und Grafiken durch unscharfen Hintergrund

What’s case modding?

Case modding just means modifying your computer or gaming console’s case, and it’s very popular in the gaming community. Some mods are functional, while others improve the way the case looks. Lots of dedicated gamers don’t only want a powerful computer, they also want it to look amazing — at home, or at LAN parties and games tournaments.

The Brutus 2 case

The Brutus 2 case is made by Daniel and Carsten’s startup, 3nb electronics, and it’s a product that is officially Powered by Raspberry Pi. Its standout feature is the semi-transparent TFT screen, which lets you play any video clip you choose while keeping your gaming hardware on display. It looks incredibly cool. All the graphics for the case’s screen are handled by a Raspberry Pi, so it doesn’t use any of your main PC’s GPU power and your gaming won’t suffer.

Brutus 2 PC case powered by Raspberry Pi

The software

To use Brutus 2, you just need to run a small desktop application on your PC to choose what you want to display on the case. A number of neat animations are included, and you can upload your own if you want.

So far, the app only runs on Windows, but 3nb electronics are planning to make the code open-source, so you can modify it for other operating systems, or to display other file types. This is true to the spirit of the case modding and Raspberry Pi communities, who love adapting, retrofitting, and overhauling projects and code to fit their needs.

Brutus 2 PC case powered by Raspberry Pi

Daniel and Carsten say that one of their campaign’s stretch goals is to implement more functionality in the Brutus 2 app. So in the future, the case could also show things like CPU temperature, gaming stats, and in-game messages. Of course, there’s nothing stopping you from integrating features like that yourself.

If you have any questions about the case, you can post them directly to Daniel and Carsten here.

The crowdfunding campaign

The Brutus 2 campaign on Startnext is currently halfway to its first funding goal of €10000, with over three weeks to go until it closes. If you’re quick, you still be may be able to snatch one of the early-bird offers. And if your whole guild NEEDS this, that’s OK — there are discounts for bulk orders.

The post Brutus 2: the gaming PC case of your dreams appeared first on Raspberry Pi.