Tag Archives: libraries

What’s new in HiveMQ 3.4

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/whats-new-in-hivemq-3-4

We are pleased to announce the release of HiveMQ 3.4. This version of HiveMQ is the most resilient and advanced version of HiveMQ ever. The main focus in this release was directed towards addressing the needs for the most ambitious MQTT deployments in the world for maximum performance and resilience for millions of concurrent MQTT clients. Of course, deployments of all sizes can profit from the improvements in the latest and greatest HiveMQ.

This version is a drop-in replacement for HiveMQ 3.3 and of course supports rolling upgrades with zero-downtime.

HiveMQ 3.4 brings many features that your users, administrators and plugin developers are going to love. These are the highlights:

 

New HiveMQ 3.4 features at a glance

Cluster

HiveMQ 3.4 brings various improvements in terms of scalability, availability, resilience and observability for the cluster mechanism. Many of the new features remain under the hood, but several additions stand out:

Cluster Overload Protection

The new version has a first-of-its-kind Cluster Overload Protection. The whole cluster is able to spot MQTT clients that cause overload on nodes or the cluster as a whole and protects itself from the overload. This mechanism also protects the deployment from cascading failures due to slow or failing underlying hardware (as sometimes seen on cloud providers). This feature is enabled by default and you can learn more about the mechanism in our documentation.

Dynamic Replicates

HiveMQ’s sophisticated cluster mechanism is able to scale in a linear fashion due to extremely efficient and true data distribution mechanics based on a configured replication factor. The most important aspect of every cluster is availability, which is achieved by having eventual consistency functions in place for edge cases. The 3.4 version adds dynamic replicates to the cluster so even the most challenging edge cases involving network splits don’t lead to the sacrifice of consistency for the most important MQTT operations.

Node Stress Level Metrics

All MQTT cluster nodes are now aware of their own stress level and the stress levels of other cluster members. While all stress mitigation is handled internally by HiveMQ, experienced operators may want to monitor the individual node’s stress level (e.g with Grafana) in order to start investigating what caused the increase of load.

WebUI

Operators worldwide love the HiveMQ WebUI introduced with HiveMQ 3.3. We gathered all the fantastic feedback from our users and polished the WebUI, so it’s even more useful for day-to-day broker operations and remote debugging of MQTT clients. The most important changes and additions are:

Trace Recording Download

The unique Trace Recordings functionality is without doubt a lifesaver when the behavior of individual MQTT clients needs further investigation as all interactions with the broker can be traced — at runtime and at scale! Huge production deployments may accumulate multiple gigabytes of trace recordings. HiveMQ now offers a convenient way to collect all trace recordings from all nodes, zips them and allows the download via a simple button on the WebUI. Remote debugging was never easier!

Additional Client Detail Information in WebUI

The mission of the HiveMQ WebUI is to provide easy insights to the whole production MQTT cluster for operators and administrators. Individual MQTT client investigations are a piece of cake, as all available information about clients can be viewed in detail. We further added the ability to view the restrictions a concrete client has:

  • Maximum Inflight Queue Size
  • Client Offline Queue Messages Size
  • Client Offline Message Drop Strategy

Session Invalidation

MQTT persistent sessions are one of the outstanding features of the MQTT protocol specification. Sessions which do not expire but are never reused unnecessarily consume disk space and memory. Administrators can now invalidate individual session directly in the HiveMQ WebUI for client sessions, which can be deleted safely. HiveMQ 3.4 will take care and release the resources on all cluster nodes after a session was invalidated

Web UI Polishing

Most texts on the WebUI were revisited and are now clearer and crisper. The help texts also received a major overhaul and should now be more, well, helpful. In addition, many small improvements were added, which are most of the time invisible but are here to help when you need them most. For example, the WebUI now displays a warning if cluster nodes with old versions are in the cluster (which may happen if a rolling upgrade was not finished properly)

Plugin System

One of the most popular features of HiveMQ is the extensive Plugin System, which virtually enables the integration of HiveMQ to any system and allows hooking into all aspects of the MQTT lifecycle. We listened to the feedback and are pleased to announce many improvements, big and small, for the Plugin System:

Client Session Time-to-live for individual clients

HiveMQ 3.3 offered a global configuration for setting the Time-To-Live for MQTT sessions. With the advent of HiveMQ 3.4, users can now programmatically set Time-To-Live values for individual MQTT clients and can discard a MQTT session immediately.

Individual Inflight Queues

While the Inflight Queue configuration is typically sufficient in the HiveMQ default configuration, there are some use cases that require the adjustment of this configuration. It’s now possible to change the Inflight Queue size for individual clients via the Plugin System.
 
 

Plugin Service Overload Protection

The HiveMQ Plugin System is a power-user tool and it’s possible to do unbelievably useful modifications as well as putting major stress on the system as a whole if the programmer is not careful. In order to protect the HiveMQ instances from accidental overload, a Plugin Service Overload Protection can be configured. This rate limits the Plugin Service usage and gives feedback to the application programmer in case the rate limit is exceeded. This feature is disabled by default but we strongly recommend updating your plugins to profit from this feature.

Session Attribute Store putIfNewer

This is one of the small bits you almost never need but when you do, you’re ecstatic for being able to use it. The Session Attribute Store now offers methods to put values, if the values you want to put are newer or fresher than the values already written. This is extremely useful, if multiple cluster nodes want to write to the Session Attribute Store simultaneously, as this guarantees that outdated values can no longer overwrite newer values.
 
 
 
 

Disconnection Timestamp for OnDisconnectCallback

As the OnDisconnectCallback is executed asynchronously, the client might already be gone when the callback is executed. It’s now easy to obtain the exact timestamp when a MQTT client disconnected, even if the callback is executed later on. This feature might be very interesting for many plugin developers in conjunction with the Session Attribute Store putIfNewer functionality.

Operations

We ❤️ Operators and we strive to provide all the tools needed for operating and administrating a MQTT broker cluster at scale in any environment. A key strategy for successful operations of any system is monitoring. We added some interesting new metrics you might find useful.

System Metrics

In addition to JVM Metrics, HiveMQ now also gathers Operating System Metrics for Linux Systems. So HiveMQ is able to see for itself how the operating system views the process, including native memory, the real CPU usage, and open file usage. These metrics are particularly useful, if you don’t have a monitoring agent for Linux systems setup. All metrics can be found here.

Client Disconnection Metrics

The reality of many MQTT scenarios is that not all clients are able to disconnect gracefully by sending MQTT DISCONNECT messages. HiveMQ now also exposes metrics about clients that disconnected by closing the TCP connection instead of sending a DISCONNECT packet first. This is especially useful for monitoring, if you regularly deal with clients that don’t have a stable connection to the MQTT brokers.

 

JMX enabled by default

JMX, the Java Monitoring Extension, is now enabled by default. Many HiveMQ operators use Application Performance Monitoring tools, which are able to hook into the metrics via JMX or use plain JMX for on-the-fly debugging. While we recommend to use official off-the-shelf plugins for monitoring, it’s now easier than ever to just use JMX if other solutions are not available to you.

Other notable improvements

The 3.4 release of HiveMQ is full of hidden gems and improvements. While it would be too much to highlight all small improvements, these notable changes stand out and contribute to the best HiveMQ release ever.

Topic Level Distribution Configuration

Our recommendation for all huge deployments with millions of devices is: Start with separate topic prefixes by bringing the dynamic topic parts directly to the beginning. The reality is that many customers have topics that are constructed like the following: “devices/{deviceId}/status”. So what happens is that all topics in this example start with a common prefix, “devices”, which is the first topic level. Unfortunately the first topic level doesn’t include a dynamic topic part. In order to guarantee the best scalability of the cluster and the best performance of the topic tree, customers can now configure how many topic levels are used for distribution. In the example outlined here, a topic level distribution of 2 would be perfect and guarantees the best scalability.

Mass disconnect performance improvements

Mass disconnections of MQTT clients can happen. This might be the case when e.g. a load balancer in front of the MQTT broker cluster drops the connections or if a mobile carrier experiences connectivity problems. Prior to HiveMQ 3.4, mass disconnect events caused stress on the cluster. Mass disconnect events are now massively optimized and even tens of millions of connection losses at the same time won’t bring the cluster into stress situations.

 
 
 
 
 
 

Replication Performance Improvements

Due to the distributed nature of a HiveMQ, data needs to be replicated across the cluster in certain events, e.g. when cluster topology changes occur. There are various internal improvements in HiveMQ version 3.4, which increase the replication performance significantly. Our engineers put special love into the replication of Queued Messages, which is now faster than ever, even for multiple millions of Queued Messages that need to be transferred across the cluster.

Updated Native SSL Libraries

The Native SSL Integration of HiveMQ was updated to the newest BoringSSL version. This results in better performance and increased security. In case you’re using SSL and you are not yet using the native SSL integration, we strongly recommend to give it a try, more than 40% performance improvement can be observed for most deployments.

 
 

Improvements for Java 9

While Java 9 was already supported for older HiveMQ versions, HiveMQ 3.4 has full-blown Java 9 support. The minimum Java version still remains Java 7, although we strongly recommend to use Java 8 or newer for the best performance of HiveMQ.

Secure Build with AWS CodeBuild and LayeredInsight

Post Syndicated from Asif Khan original https://aws.amazon.com/blogs/devops/secure-build-with-aws-codebuild-and-layeredinsight/

This post is written by Asif Awan, Chief Technology Officer of Layered InsightSubin Mathew – Software Development Manager for AWS CodeBuild, and Asif Khan – Solutions Architect

Enterprises adopt containers because they recognize the benefits: speed, agility, portability, and high compute density. They understand how accelerating application delivery and deployment pipelines makes it possible to rapidly slipstream new features to customers. Although the benefits are indisputable, this acceleration raises concerns about security and corporate compliance with software governance. In this blog post, I provide a solution that shows how Layered Insight, the pioneer and global leader in container-native application protection, can be used with seamless application build and delivery pipelines like those available in AWS CodeBuild to address these concerns.

Layered Insight solutions

Layered Insight enables organizations to unify DevOps and SecOps by providing complete visibility and control of containerized applications. Using the industry’s first embedded security approach, Layered Insight solves the challenges of container performance and protection by providing accurate insight into container images, adaptive analysis of running containers, and automated enforcement of container behavior.

 

AWS CodeBuild

AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. With CodeBuild, you don’t need to provision, manage, and scale your own build servers. CodeBuild scales continuously and processes multiple builds concurrently, so your builds are not left waiting in a queue. You can get started quickly by using prepackaged build environments, or you can create custom build environments that use your own build tools.

 

Problem Definition

Security and compliance concerns span the lifecycle of application containers. Common concerns include:

Visibility into the container images. You need to verify the software composition information of the container image to determine whether known vulnerabilities associated with any of the software packages and libraries are included in the container image.

Governance of container images is critical because only certain open source packages/libraries, of specific versions, should be included in the container images. You need support for mechanisms for blacklisting all container images that include a certain version of a software package/library, or only allowing open source software that come with a specific type of license (such as Apache, MIT, GPL, and so on). You need to be able to address challenges such as:

·       Defining the process for image compliance policies at the enterprise, department, and group levels.

·       Preventing the images that fail the compliance checks from being deployed in critical environments, such as staging, pre-prod, and production.

Visibility into running container instances is critical, including:

·       CPU and memory utilization.

·       Security of the build environment.

·       All activities (system, network, storage, and application layer) of the application code running in each container instance.

Protection of running container instances that is:

·       Zero-touch to the developers (not an SDK-based approach).

·       Zero touch to the DevOps team and doesn’t limit the portability of the containerized application.

·       This protection must retain the option to switch to a different container stack or orchestration layer, or even to a different Container as a Service (CaaS ).

·       And it must be a fully automated solution to SecOps, so that the SecOps team doesn’t have to manually analyze and define detailed blacklist and whitelist policies.

 

Solution Details

In AWS CodeCommit, we have three projects:
●     “Democode” is a simple Java application, with one buildspec to build the app into a Docker container (run by build-demo-image CodeBuild project), and another to instrument said container (instrument-image CodeBuild project). The resulting container is stored in ECR repo javatestasjavatest:20180415-layered. This instrumented container is running in AWS Fargate cluster demo-java-appand can be seen in the Layered Insight runtime console as the javatestapplication in us-east-1.
●     aws-codebuild-docker-imagesis a clone of the official aws-codebuild-docker-images repo on GitHub . This CodeCommit project is used by the build-python-builder CodeBuild project to build the python 3.3.6 codebuild image and is stored at the codebuild-python ECR repo. We then manually instructed the Layered Insight console to instrument the image.
●     scan-java-imagecontains just a buildspec.yml file. This file is used by the scan-java-image CodeBuild project to instruct Layered Assessment to perform a vulnerability scan of the javatest container image built previously, and then run the scan results through a compliance policy that states there should be no medium vulnerabilities. This build fails — but in this case that is a success: the scan completes successfully, but compliance fails as there are medium-level issues found in the scan.

This build is performed using the instrumented version of the Python 3.3.6 CodeBuild image, so the activity of the processes running within the build are recorded each time within the LI console.

Build container image

Create or use a CodeCommit project with your application. To build this image and store it in Amazon Elastic Container Registry (Amazon ECR), add a buildspec file to the project and build a container image and create a CodeBuild project.

Scan container image

Once the image is built, create a new buildspec in the same project or a new one that looks similar to below (update ECR URL as necessary):

version: 0.2
phases:
  pre_build:
    commands:
      - echo Pulling down LI Scan API client scripts
      - git clone https://github.com/LayeredInsight/scan-api-example-python.git
      - echo Setting up LI Scan API client
      - cd scan-api-example-python
      - pip install layint_scan_api
      - pip install -r requirements.txt
  build:
    commands:
      - echo Scanning container started on `date`
      - IMAGEID=$(./li_add_image --name <aws-region>.amazonaws.com/javatest:20180415)
      - ./li_wait_for_scan -v --imageid $IMAGEID
      - ./li_run_image_compliance -v --imageid $IMAGEID --policyid PB15260f1acb6b2aa5b597e9d22feffb538256a01fbb4e5a95

Add the buildspec file to the git repo, push it, and then build a CodeBuild project using with the instrumented Python 3.3.6 CodeBuild image at <aws-region>.amazonaws.com/codebuild-python:3.3.6-layered. Set the following environment variables in the CodeBuild project:
●     LI_APPLICATIONNAME – name of the build to display
●     LI_LOCATION – location of the build project to display
●     LI_API_KEY – ApiKey:<key-name>:<api-key>
●     LI_API_HOST – location of the Layered Insight API service

Instrument container image

Next, to instrument the new container image:

  1. In the Layered Insight runtime console, ensure that the ECR registry and credentials are defined (click the Setup icon and the ‘+’ sign on the top right of the screen to add a new container registry). Note the name given to the registry in the console, as this needs to be referenced in the li_add_imagecommand in the script, below.
  2. Next, add a new buildspec (with a new name) to the CodeCommit project, such as the one shown below. This code will download the Layered Insight runtime client, and use it to instruct the Layered Insight service to instrument the image that was just built:
    version: 0.2
    phases:
    pre_build:
    commands:
    echo Pulling down LI API Runtime client scripts
    git clone https://github.com/LayeredInsight/runtime-api-example-python
    echo Setting up LI API client
    cd runtime-api-example-python
    pip install layint-runtime-api
    pip install -r requirements.txt
    build:
    commands:
    echo Instrumentation started on `date`
    ./li_add_image --registry "Javatest ECR" --name IMAGE_NAME:TAG --description "IMAGE DESCRIPTION" --policy "Default Policy" --instrument --wait --verbose
  3. Commit and push the new buildspec file.
  4. Going back to CodeBuild, create a new project, with the same CodeCommit repo, but this time select the new buildspec file. Use a Python 3.3.6 builder – either the AWS or LI Instrumented version.
  5. Click Continue
  6. Click Save
  7. Run the build, again on the master branch.
  8. If everything runs successfully, a new image should appear in the ECR registry with a -layered suffix. This is the instrumented image.

Run instrumented container image

When the instrumented container is now run — in ECS, Fargate, or elsewhere — it will log data back to the Layered Insight runtime console. It’s appearance in the console can be modified by setting the LI_APPLICATIONNAME and LI_LOCATION environment variables when running the container.

Conclusion

In the above blog we have provided you steps needed to embed governance and runtime security in your build pipelines running on AWS CodeBuild using Layered Insight.

 

 

 

Congratulations to Oracle on MySQL 8.0

Post Syndicated from Michael "Monty" Widenius original http://monty-says.blogspot.com/2018/04/congratulations-to-oracle-on-mysql-80.html

Last week, Oracle announced the general availability of MySQL 8.0. This is good news for database users, as it means Oracle is still developing MySQL.

I decide to celebrate the event by doing a quick test of MySQL 8.0. Here follows a step-by-step description of my first experience with MySQL 8.0.
Note that I did the following without reading the release notes, as is what I have done with every MySQL / MariaDB release up to date; In this case it was not the right thing to do.

I pulled MySQL 8.0 from [email protected]:mysql/mysql-server.git
I was pleasantly surprised that ‘cmake . ; make‘ worked without without any compiler warnings! I even checked the used compiler options and noticed that MySQL was compiled with -Wall + several other warning flags. Good job MySQL team!

I did have a little trouble finding the mysqld binary as Oracle had moved it to ‘runtime_output_directory’; Unexpected, but no big thing.

Now it’s was time to install MySQL 8.0.

I did know that MySQL 8.0 has removed mysql_install_db, so I had to use the mysqld binary directly to install the default databases:
(I have specified datadir=/my/data3 in the /tmp/my.cnf file)

> cd runtime_output_directory
> mkdir /my/data3
> ./mysqld –defaults-file=/tmp/my.cnf –install

2018-04-22T12:38:18.332967Z 1 [ERROR] [MY-011011] [Server] Failed to find valid data directory.
2018-04-22T12:38:18.333109Z 0 [ERROR] [MY-010020] [Server] Data Dictionary initialization failed.
2018-04-22T12:38:18.333135Z 0 [ERROR] [MY-010119] [Server] Aborting

A quick look in mysqld –help –verbose output showed that the right command option is –-initialize. My bad, lets try again,

> ./mysqld –defaults-file=/tmp/my.cnf –initialize

2018-04-22T12:39:31.910509Z 0 [ERROR] [MY-010457] [Server] –initialize specified but the data directory has files in it. Aborting.
2018-04-22T12:39:31.910578Z 0 [ERROR] [MY-010119] [Server] Aborting

Now I used the right options, but still didn’t work.
I took a quick look around:

> ls /my/data3/
binlog.index

So even if the mysqld noticed that the data3 directory was wrong, it still wrote things into it.  This even if I didn’t have –log-binlog enabled in the my.cnf file. Strange, but easy to fix:

> rm /my/data3/binlog.index
> ./mysqld –defaults-file=/tmp/my.cnf –initialize

2018-04-22T12:40:45.633637Z 0 [ERROR] [MY-011071] [Server] unknown variable ‘max-tmp-tables=100’
2018-04-22T12:40:45.633657Z 0 [Warning] [MY-010952] [Server] The privilege system failed to initialize correctly. If you have upgraded your server, make sure you’re executing mysql_upgrade to correct the issue.
2018-04-22T12:40:45.633663Z 0 [ERROR] [MY-010119] [Server] Aborting

The warning about the privilege system confused me a bit, but I ignored it for the time being and removed from my configuration files the variables that MySQL 8.0 doesn’t support anymore. I couldn’t find a list of the removed variables anywhere so this was done with the trial and error method.

> ./mysqld –defaults-file=/tmp/my.cnf

2018-04-22T12:42:56.626583Z 0 [ERROR] [MY-010735] [Server] Can’t open the mysql.plugin table. Please run mysql_upgrade to create it.
2018-04-22T12:42:56.827685Z 0 [Warning] [MY-010015] [Repl] Gtid table is not ready to be used. Table ‘mysql.gtid_executed’ cannot be opened.
2018-04-22T12:42:56.838501Z 0 [Warning] [MY-010068] [Server] CA certificate ca.pem is self signed.
2018-04-22T12:42:56.848375Z 0 [Warning] [MY-010441] [Server] Failed to open optimizer cost constant tables
2018-04-22T12:42:56.848863Z 0 [ERROR] [MY-013129] [Server] A message intended for a client cannot be sent there as no client-session is attached. Therefore, we’re sending the information to the error-log instead: MY-001146 – Table ‘mysql.component’ doesn’t exist
2018-04-22T12:42:56.848916Z 0 [Warning] [MY-013129] [Server] A message intended for a client cannot be sent there as no client-session is attached. Therefore, we’re sending the information to the error-log instead: MY-003543 – The mysql.component table is missing or has an incorrect definition.
….
2018-04-22T12:42:56.854141Z 0 [System] [MY-010931] [Server] /home/my/mysql-8.0/runtime_output_directory/mysqld: ready for connections. Version: ‘8.0.11’ socket: ‘/tmp/mysql.sock’ port: 3306 Source distribution.

I figured out that if there is a single wrong variable in the configuration file, running mysqld –initialize will leave the database in an inconsistent state. NOT GOOD! I am happy I didn’t try this in a production system!

Time to start over from the beginning:

> rm -r /my/data3/*
> ./mysqld –defaults-file=/tmp/my.cnf –initialize

2018-04-22T12:44:45.548960Z 5 [Note] [MY-010454] [Server] A temporary password is generated for [email protected]: px)NaaSp?6um
2018-04-22T12:44:51.221751Z 0 [System] [MY-013170] [Server] /home/my/mysql-8.0/runtime_output_directory/mysqld (mysqld 8.0.11) initializing of server has completed

Success!

I wonder why the temporary password is so complex; It could easily have been something that one could easily remember without decreasing security, it’s temporary after all. No big deal, one can always paste it from the logs. (Side note: MariaDB uses socket authentication on many system and thus doesn’t need temporary installation passwords).

Now lets start the MySQL server for real to do some testing:

> ./mysqld –defaults-file=/tmp/my.cnf

2018-04-22T12:45:43.683484Z 0 [System] [MY-010931] [Server] /home/my/mysql-8.0/runtime_output_directory/mysqld: ready for connections. Version: ‘8.0.11’ socket: ‘/tmp/mysql.sock’ port: 3306 Source distribution.

And the lets start the client:

> ./client/mysql –socket=/tmp/mysql.sock –user=root –password=”px)NaaSp?6um”
ERROR 2059 (HY000): Plugin caching_sha2_password could not be loaded: /usr/local/mysql/lib/plugin/caching_sha2_password.so: cannot open shared object file: No such file or directory

Apparently MySQL 8.0 doesn’t work with old MySQL / MariaDB clients by default 🙁

I was testing this in a system with MariaDB installed, like all modern Linux system today, and didn’t want to use the MySQL clients or libraries.

I decided to try to fix this by changing the authentication to the native (original) MySQL authentication method.

> mysqld –skip-grant-tables

> ./client/mysql –socket=/tmp/mysql.sock –user=root
ERROR 1045 (28000): Access denied for user ‘root’@’localhost’ (using password: NO)

Apparently –skip-grant-tables is not good enough anymore. Let’s try again with:

> mysqld –skip-grant-tables –default_authentication_plugin=mysql_native_password

> ./client/mysql –socket=/tmp/mysql.sock –user=root mysql
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 8.0.11 Source distribution

Great, we are getting somewhere, now lets fix “root”  to work with the old authenticaion:

MySQL [mysql]> update mysql.user set plugin=”mysql_native_password”,authentication_string=password(“test”) where user=”root”;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ‘(“test”) where user=”root”‘ at line 1

A quick look in the MySQL 8.0 release notes told me that the PASSWORD() function is removed in 8.0. Why???? I don’t know how one in MySQL 8.0 is supposed to generate passwords compatible with old installations of MySQL. One could of course start an old MySQL or MariaDB version, execute the password() function and copy the result.

I decided to fix this the easy way and use an empty password:

(Update:: I later discovered that the right way would have been to use: FLUSH PRIVILEGES;  ALTER USER’ root’@’localhost’ identified by ‘test’  ; I however dislike this syntax as it has the password in clear text which is easy to grab and the command can’t be used to easily update the mysql.user table. One must also disable the –skip-grant mode to do use this)

MySQL [mysql]> update mysql.user set plugin=”mysql_native_password”,authentication_string=”” where user=”root”;
Query OK, 1 row affected (0.077 sec)
Rows matched: 1 Changed: 1 Warnings: 0
 
I restarted mysqld:
> mysqld –default_authentication_plugin=mysql_native_password

> ./client/mysql –user=root –password=”” mysql
ERROR 1862 (HY000): Your password has expired. To log in you must change it using a client that supports expired passwords.

Ouch, forgot that. Lets try again:

> mysqld –skip-grant-tables –default_authentication_plugin=mysql_native_password

> ./client/mysql –user=root –password=”” mysql
MySQL [mysql]> update mysql.user set password_expired=”N” where user=”root”;

Now restart and test worked:

> ./mysqld –default_authentication_plugin=mysql_native_password

>./client/mysql –user=root –password=”” mysql

Finally I had a working account that I can use to create other users!

When looking at mysqld –help –verbose again. I noticed the option:

–initialize-insecure
Create the default database and exit. Create a super user
with empty password.

I decided to check if this would have made things easier:

> rm -r /my/data3/*
> ./mysqld –defaults-file=/tmp/my.cnf –initialize-insecure

2018-04-22T13:18:06.629548Z 5 [Warning] [MY-010453] [Server] [email protected] is created with an empty password ! Please consider switching off the –initialize-insecure option.

Hm. Don’t understand the warning as–initialize-insecure is not an option that one would use more than one time and thus nothing one would ‘switch off’.

> ./mysqld –defaults-file=/tmp/my.cnf

> ./client/mysql –user=root –password=”” mysql
ERROR 2059 (HY000): Plugin caching_sha2_password could not be loaded: /usr/local/mysql/lib/plugin/caching_sha2_password.so: cannot open shared object file: No such file or directory

Back to the beginning 🙁

To get things to work with old clients, one has to initialize the database with:
> ./mysqld –defaults-file=/tmp/my.cnf –initialize-insecure –default_authentication_plugin=mysql_native_password

Now I finally had MySQL 8.0 up and running and thought I would take it up for a spin by running the “standard” MySQL/MariaDB sql-bench test suite. This was removed in MySQL 5.7, but as I happened to have MariaDB 10.3 installed, I decided to run it from there.

sql-bench is a single threaded benchmark that measures the “raw” speed for some common operations. It gives you the ‘maximum’ performance for a single query. Its different from other benchmarks that measures the maximum throughput when you have a lot of users, but sql-bench still tells you a lot about what kind of performance to expect from the database.

I tried first to be clever and create the “test” database, that I needed for sql-bench, with
> mkdir /my/data3/test

but when I tried to run the benchmark, MySQL 8.0 complained that the test database didn’t exist.

MySQL 8.0 has gone away from the original concept of MySQL where the user can easily
create directories and copy databases into the database directory. This may have serious
implication for anyone doing backup of databases and/or trying to restore a backup with normal OS commands.

I created the ‘test’ database with mysqladmin and then tried to run sql-bench:

> ./run-all-tests –user=root

The first run failed in test-ATIS:

Can’t execute command ‘create table class_of_service (class_code char(2) NOT NULL,rank tinyint(2) NOT NULL,class_description char(80) NOT NULL,PRIMARY KEY (class_code))’
Error: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ‘rank tinyint(2) NOT NULL,class_description char(80) NOT NULL,PRIMARY KEY (class_’ at line 1

This happened because ‘rank‘ is now a reserved word in MySQL 8.0. This is also reserved in ANSI SQL, but I don’t know of any other database that has failed to run test-ATIS before. I have in the past run it against Oracle, PostgreSQL, Mimer, MSSQL etc without any problems.

MariaDB also has ‘rank’ as a keyword in 10.2 and 10.3 but one can still use it as an identifier.

I fixed test-ATIS and then managed to run all tests on MySQL 8.0.

I did run the test both with MySQL 8.0 and MariaDB 10.3 with the InnoDB storage engine and by having identical values for all InnoDB variables, table-definition-cache and table-open-cache. I turned off performance schema for both databases. All test are run with a user with an empty password (to keep things comparable and because it’s was too complex to generate a password in MySQL 8.0)

The result are as follows
Results per test in seconds:

Operation         |MariaDB|MySQL-8|

———————————–
ATIS              | 153.00| 228.00|
alter-table       |  92.00| 792.00|
big-tables        | 990.00|2079.00|
connect           | 186.00| 227.00|
create            | 575.00|4465.00|
insert            |4552.00|8458.00|
select            | 333.00| 412.00|
table-elimination |1900.00|3916.00|
wisconsin         | 272.00| 590.00|
———————————–

This is of course just a first view of the performance of MySQL 8.0 in a single user environment. Some reflections about the results:

  • Alter-table test is slower (as expected) in 8.0 as some of the alter tests benefits of the instant add column in MariaDB 10.3.
  • connect test is also better for MariaDB as we put a lot of efforts to speed this up in MariaDB 10.2
  • table-elimination shows an optimization in MariaDB for the  Anchor table model, which MySQL doesn’t have.
  • CREATE and DROP TABLE is almost 8 times slower in MySQL 8.0 than in MariaDB 10.3. I assume this is the cost of ‘atomic DDL’. This may also cause performance problems for any thread using the data dictionary when another thread is creating/dropping tables.
  • When looking at the individual test results, MySQL 8.0 was slower in almost every test, in many significantly slower.
  • The only test where MySQL was faster was “update_with_key_prefix”. I checked this and noticed that there was a bug in the test and the columns was updated to it’s original value (which should be instant with any storage engine). This is an old bug that MySQL has found and fixed and that we have not been aware of in the test or in MariaDB.
  • While writing this, I noticed that MySQL 8.0 is now using utf8mb4 as the default character set instead of latin1. This may affect some of the benchmarks slightly (not much as most tests works with numbers and Oracle claims that utf8mb4 is only 20% slower than latin1), but needs to be verified.
  • Oracle claims that MySQL 8.0 is much faster on multi user benchmarks. The above test indicates that they may have done this by sacrificing single user performance.
  •  We need to do more and many different benchmarks to better understand exactly what is going on. Stay tuned!

Short summary of my first run with MySQL 8.0:

  • Using the new caching_sha2_password authentication as default for new installation is likely to cause a lot of problems for users. No old application will be able to use MySQL 8.0, installed with default options, without moving to MySQL’s client libraries. While working on this blog I saw MySQL users complain on IRC that not even MySQL Workbench can authenticate with MySQL 8.0. This is the first time in MySQL’s history where such an incompatible change has ever been done!
  • Atomic DDL is a good thing (We plan to have this in MariaDB 10.4), but it should not have such a drastic impact on performance. I am also a bit skeptical of MySQL 8.0 having just one copy of the data dictionary as if this gets corrupted you will lose all your data. (Single point of failure)
  • MySQL 8.0 has several new reserved words and has removed a lot of variables, which makes upgrades hard. Before upgrading to MySQL 8.0 one has to check all one’s databases and applications to ensure that there are no conflicts.
  • As my test above shows, if you have a single deprecated variable in your configuration files, the installation of MySQL will abort and can leave the database in inconsistent state. I did of course my tests by installing into an empty data dictionary, but one can assume that some of the problems may also happen when upgrading an old installation.

Conclusions:
In many ways, MySQL 8.0 has caught up with some earlier versions of MariaDB. For instance, in MariaDB 10.0, we introduced roles (four years ago). In MariaDB 10.1, we introduced encrypted redo/undo logs (three years ago). In MariaDB 10.2, we introduced window functions and CTEs (a year ago). However, some catch-up of MariaDB Server 10.2 features still remains for MySQL (such as check constraints, binlog compression, and log-based rollback).

MySQL 8.0 has a few new interesting features (mostly Atomic DDL and JSON TABLE functions), but at the same time MySQL has strayed away from some of the fundamental corner stone principles of MySQL:

From the start of the first version of MySQL in 1995, all development has been focused around 3 core principles:

  • Ease of use
  • Performance
  • Stability

With MySQL 8.0, Oracle has sacrifices 2 of 3 of these.

In addition (as part of ease of use), while I was working on MySQL, we did our best to ensure that the following should hold:

  • Upgrades should be trivial
  • Things should be kept compatible, if possible (don’t remove features/options/functions that are used)
  • Minimize reserved words, don’t remove server variables
  • One should be able to use normal OS commands to create and drop databases, copy and move tables around within the same system or between different systems. With 8.0 and data dictionary taking backups of specific tables will be hard, even if the server is not running.
  • mysqldump should always be usable backups and to move to new releases
  • Old clients and application should be able to use ‘any’ MySQL server version unchanged. (Some Oracle client libraries, like C++, by default only supports the new X protocol and can thus not be used with older MySQL or any MariaDB version)

We plan to add a data dictionary to MariaDB 10.4 or MariaDB 10.5, but in a way to not sacrifice any of the above principles!

The competition between MySQL and MariaDB is not just about a tactical arms race on features. It’s about design philosophy, or strategic vision, if you will.

This shows in two main ways: our respective view of the Storage Engine structure, and of the top-level direction of the roadmap.

On the Storage Engine side, MySQL is converging on InnoDB, even for clustering and partitioning. In doing so, they are abandoning the advantages of multiple ways of storing data. By contrast, MariaDB sees lots of value in the Storage Engine architecture: MariaDB Server 10.3 will see the general availability of MyRocks (for write-intensive workloads) and Spider (for scalable workloads). On top of that, we have ColumnStore for analytical workloads. One can use the CONNECT engine to join with other databases. The use of different storage engines for different workloads and different hardware is a competitive differentiator, now more than ever.

On the roadmap side, MySQL is carefully steering clear of features that close the gap between MySQL and Oracle. MariaDB has no such constraints. With MariaDB 10.3, we are introducing PL/SQL compatibility (Oracle’s stored procedures) and AS OF (built-in system versioned tables with point-in-time querying). For both of those features, MariaDB is the first Open Source database doing so. I don’t except Oracle to provide any of the above features in MySQL!

Also on the roadmap side, MySQL is not working with the ecosystem in extending the functionality. In 2017, MariaDB accepted more code contributions in one year, than MySQL has done during its entire lifetime, and the rate is increasing!

I am sure that the experience I had with testing MySQL 8.0 would have been significantly better if MySQL would have an open development model where the community could easily participate in developing and testing MySQL continuously. Most of the confusing error messages and strange behavior would have been found and fixed long before the GA release.

Before upgrading to MySQL 8.0 please read https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html to see what problems you can run into! Don’t expect that old installations or applications will work out of the box without testing as a lot of features and options has been removed (query cache, partition of myisam tables etc)! You probably also have to revise your backup methods, especially if you want to ever restore just a few tables. (With 8.0, I don’t know how this can be easily done).

According to the MySQL 8.0 release notes, one can’t use mysqldump to copy a database to MySQL 8.0. One has to first to move to a MySQL 5.7 GA version (with mysqldump, as recommended by Oracle) and then to MySQL 8.0 with in-place update. I assume this means that all old mysqldump backups are useless for MySQL 8.0?

MySQL 8.0 seams to be a one way street to an unknown future. Up to MySQL 5.7 it has been trivial to move to MariaDB and one could always move back to MySQL with mysqldump. All MySQL client libraries has worked with MariaDB and all MariaDB client libraries has worked with MySQL. With MySQL 8.0 this has changed in the wrong direction.

As long as you are using MySQL 5.7 and below you have choices for your future, after MySQL 8.0 you have very little choice. But don’t despair, as MariaDB will always be able to load a mysqldump file and it’s very easy to upgrade your old MySQL installation to MariaDB 🙂

I wish you good luck to try MySQL 8.0 (and also the upcoming MariaDB 10.3)!

[$] A new package index for Python

Post Syndicated from jake original https://lwn.net/Articles/751458/rss

The Python Package Index (PyPI) is
the principal repository of libraries for the Python programming language,
serving more than 170 million downloads each week. Fifteen years after PyPI
launched, a new edition is in beta at pypi.org, with features like better
search, a refreshed layout, and Markdown README files
(and with some old
features removed, like viewing GPG package signatures). Starting
April 16, users visiting the site or running pip install will
be
seamlessly redirected to the new site. Two weeks after that, the legacy site is
expected to be shut down and the team will turn toward new
features; in the meantime, it is worth a look at what the new PyPI brings
to the table.

Artefacts in the classroom with Museum in a Box

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/museum-in-a-box/

Museum in a Box bridges the gap between museums and schools by creating a more hands-on approach to conservation education through 3D printing and digital making.

Artefacts in the classroom with Museum in a Box || Raspberry Pi Stories

Learn more: http://rpf.io/ Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Fantastic collections and where to find them

Large, impressive statues are truly a sight to be seen. Take for example the 2.4m Hoa Hakananai’a at the British Museum. Its tall stature looms over you as you read its plaque to learn of the statue’s journey from Easter Island to the UK under the care of Captain Cook in 1774, and you can’t help but wonder at how it made it here in one piece.

Hoa Hakananai’a Captain Cook British Museum
Hoa Hakananai’a Captain Cook British Museum

But unless you live near a big city where museums are plentiful, you’re unlikely to see the likes of Hoa Hakananai’a in person. Instead, you have to content yourself with online photos or videos of world-famous artefacts.

And that only accounts for the objects that are on display: conservators estimate that only approximately 5 to 10% of museums’ overall collections are actually on show across the globe. The rest is boxed up in storage, inaccessible to the public due to risk of damage, or simply due to lack of space.

Museum in a Box

Museum in a Box aims to “put museum collections and expert knowledge into your hand, wherever you are in the world,” through modern maker practices such as 3D printing and digital making. With the help of the ‘Scan the World’ movement, an “ambitious initiative whose mission is to archive objects of cultural significance using 3D scanning technologies”, the Museum in a Box team has been able to print small, handheld replicas of some of the world’s most recognisable statues and sculptures.

Museum in a Box Raspberry Pi

Each 3D print gets NFC tags so it can initiate audio playback from a Raspberry Pi that sits snugly within the laser-cut housing of a ‘brain box’. Thus the print can talk directly to us through the magic of wireless technology, replacing the dense, dry text of a museum plaque with engaging speech.

Museum in a Box Raspberry Pi

The Museum in a Box team headed by CEO George Oates (featured in the video above) makes use of these 3D-printed figures alongside original artefacts, postcards, and more to bridge the gap between large, crowded, distant museums and local schools. Modeled after the museum handling collections that used to be sent to schools, Museum in a Box is a cheaper, more accessible alternative. Moreover, it not only allows for hands-on learning, but also encourages children to get directly involved by hacking its technology! With NFC technology readily available to the public, students can curate their own collections about their local area, record their own messages, and send their own box-sized museums on to schools in other towns or countries. In this way, Museum in a Box enables students to explore, and expand the reach of, their own histories.

Moving forward

With the technology perfected and interest in the project ever-growing, Museum in a Box has a busy year ahead. Supporting the new ‘Unstacked’ learning initiative, the team will soon be delivering ten boxes to the Smithsonian Libraries. The team has curated two collections specifically for this: an exploration into Asia-Pacific America experiences of migration to the USA throughout the 20th century, and a look into the history of science.

Smithsonian Library Museum in a Box Raspberry Pi

The team will also be making a box for the British Museum to support their Iraq Scheme initiative, and another box will be heading to the V&A to support their See Red programme. While primarily installed in the Lansbury Micro Museum, the box will also take to the road to visit the local Spotlight high school.

Museum in a Box at Raspberry Fields

Lastly, by far the most exciting thing the Museum in a Box team will be doing this year — in our opinion at least — is showcasing at Raspberry Fields! This is our brand-new festival of digital making that’s taking place on 30 June and 1 July 2018 here in Cambridge, UK. Find more information about it and get your ticket here.

The post Artefacts in the classroom with Museum in a Box appeared first on Raspberry Pi.

Piracy & Money Are Virtually Inseparable & People Probably Don’t Care Anymore

Post Syndicated from Andy original https://torrentfreak.com/piracy-money-are-virtually-inseparable-people-probably-dont-care-anymore-180408/

Long before peer-to-peer file-sharing networks were a twinkle in developers’ eyes, piracy of software and games flourished under the radar. Cassettes, floppy discs and CDs were the physical media of choice, while the BBS became the haunt of the need-it-now generation.

Sharing was the name of the game. When someone had game ‘X’ on tape, it was freely shared with friends and associates because when they got game ‘Y’, the favor had to be returned. The content itself became the currency and for most, the thought of asking for money didn’t figure into the equation.

Even when P2P networks first took off, money wasn’t really a major part of the equation. Sure, the people running Kazaa and the like were generating money from advertising but for millions of users, sharing content between friends and associates was still the name of the game.

Even when the torrent site scene began to gain traction, money wasn’t the driving force. Everything was so new that developers were much more concerned with getting half written/half broken tracker scripts to work than anything else. Having people care enough to simply visit the sites and share something with others was the real payoff. Ironically, it was a reward that money couldn’t buy.

But as the scene began to develop, so did the influx of minor and even major businessmen. The ratio economy of the private tracker scene meant that bandwidth could essentially be converted to cash, something which gave site operators revenue streams that had never previously existed. That was both good and bad for the scene.

The fact is that running a torrent site costs money and if time is factored in too, that becomes lots of money. If site admins have to fund everything themselves, a tipping point is eventually reached. If the site becomes unaffordable, it closes, meaning that everyone loses. So, by taking in some donations or offering users other perks in exchange for financial assistance, the whole thing remains viable.

Counter-intuitively, the success of such a venture then becomes the problem, at least as far as maintaining the old “sharing is caring” philosophy goes. A well-run private site, with enthusiastic donors, has the potential to bring in quite a bit of cash. Initially, the excess can be saved away for that rainy day when things aren’t so good. Having a few thousand in the bank when chaos rains down is rarely a bad thing.

But what happens when a site does really well and is making money hand over fist? What happens when advertisers on public sites begin to queue up, offering lots of cash to get involved? Is a site operator really expected to turn down the donations and tell the advertisers to go away? Amazingly, some do. Less amazingly, most don’t.

Although there are some notable exceptions, particularly in the niche private tracker scene, these days most ‘pirate’ sites are in it for the money.

In the current legal climate, some probably consider this their well-earned ‘danger money’ yet others are so far away from the sharing ethos it hurts. Quite often, these sites are incapable of taking in a new member due to alleged capacity issues yet a sizeable ‘donation’ miraculously solves the problem and gets the user in. It’s like magic.

As it happens, two threads on Reddit this week sparked this little rant. Both discuss whether someone should consider paying $20 and 37 euros respectively to get invitations to a pair of torrent sites.

Ask a purist and the answer is always ‘NO’, whether that’s buying an invitation from the operator of a torrent site or from someone selling invites for profit.

Aside from the fact that no one on these sites has paid content owners a dime, sites that demand cash for entry are doing so for one reason and one reason only – profit. Ridiculous when it’s the users of those sites that are paying to distribute the content.

On the other hand, others see no wrong in it.

They argue that paying a relatively small amount to access huge libraries of content is preferable to spending hundreds of dollars on a legitimate service that doesn’t carry all the content they need. Others don’t bother making any excuses at all, spending sizable sums with pirate IPTV/VOD services that dispose of sharing morals by engaging in a different business model altogether.

But the bottom line, whether we like it or not, is that money and Internet piracy have become so intertwined, so enmeshed in each other’s existence, that it’s become virtually impossible to separate them.

Even those running the handful of non-profit sites still around today would be forced to reconsider if they had to start all over again in today’s climate. The risk model is entirely different and quite often, only money tips those scales.

The same holds true for the people putting together the next big streaming portals. These days it’s about getting as many eyeballs on content as possible, making the money, and getting out the other end unscathed.

This is not what most early pirates envisioned. This is certainly not what the early sharing masses wanted. Yet arguably, through the influx of business people and the desire to generate profit among the general population, the pirating masses have never had it so good.

As revealed in a recent study, volumes of piracy are on the up and it is now possible – still possible – to access almost any item of content on pirate sites, despite the so-called “follow the money” approach championed by the authorities.

While ‘Sharing is Caring’ still lives today, it’s slowly being drowned out and at this point, there’s probably no way back. The big question is whether anyone cares anymore and the answer to that is “probably not”.

So, if the driving force isn’t sharing or love, it’ll probably have to be money. And that works everywhere else, doesn’t it?

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Tinkernut’s hidden Coke bottle spy cam

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/tinkernuts-spy-cam/

Go undercover and keep an eye on your stuff with this brilliant secret Coke bottle spy cam from Tinkernut!

Secret Coke Bottle SPY CAM! – Weekend Hacker #1803

SPECIAL NOTE*** THE FULL TUTORIAL WILL BE AVAILABLE NEXT WEEK April Fools! What a terrible day. So many pranks. You can’t believe anything you read. People invading your space. The mental and physical anguish of enduring the day. It’s time to fight back! Let’s catch the perps in action by making a device that always watches.

Keeping tabs

A Raspberry Pi Zero W, a small camera, and a rechargeable Lithium Polymer (LiPo) battery constitute the bulk of this project’s tech. A pair of 3D-printed parts, and gelatine-solidified Coke Zero make up the fake fizzy body.

Tinkernut Coke bottle Raspberry Pi Spy Cam

“So let’s make this video as short as possible and just buy a cheap pre-made spy cam off of Amazon. Just kidding,” Tinkernut jokes in the tutorial video for the project, before going through the step-by-step process of using the Raspberry Pi to “DIY this the right way”.

After accessing the Zero W from his laptop via SSH, Tinkernut opted for using the rpi_camera_surveillance_system Python script written by GitHub user RuiSantosdotme to control the spy cam. Luckily, this meant no additional library setup, and basically no lag on the video feed.

What we want to do is create a script that activates the camera and serves it to a web page so that we can access it from any web browser. There are plenty of different ways to do this (Motion, Raspivid, etc), but I found a simple Python script that does everything I need it to do and doesn’t require any extra software or libraries to install. The best thing about it is that the lag time is practically unnoticeable.

With the code in place, every boot-up of the Raspberry Pi automatically launches both the script and a web page of the live video, allowing for constant monitoring of potential sneaks and thieves.

Tinkernut Coke bottle Raspberry Pi Spy Cam

The projects is powered by a 1500mAh LiPo battery and the Adafruit LiPo charger. It also includes a simple on/off switch, which Tinkernut wired to the charger and the Pi’s PP1 and PP6 connector pads.

Tinkernut Coke bottle Raspberry Pi Spy Cam

Tinkernut decided to use a Coke Zero bottle for the build, incorporating 3D-printed parts to house the Pi, and a mix of Coke and gelatine to create a realistic-looking filling for the bottle. However, the setup can be transferred to pretty much any hollow item in your home, say, a cookie jar or a cracker box. So get creative and get spying!

A complete spy cam how-to

If you’d like to make your own secret spy cam, you can find a tutorial for Tinkernut’s build at hackster.io, or follow along with his video below. Also make sure to subscribe his YouTube channel to be updated on all his newest builds — they’re rather splendid.

BUILD: Coke Bottle SPY CAM! – Tinkernut Workbench

Learn how to take a regular Coke Zero bottle, cram a Raspberry Pi and webcam inside of it, and have it still look like a regular Coke Zero bottle. Why would you want to do this? To spy on those irritating April Fooligans!!!

And if you’re interested in more spy-themed digital making projects, check out our complete 007 how-to guide for links to tutorials such as our Sense HAT puzzle box, Parent detector, and Laser tripwire.

The post Tinkernut’s hidden Coke bottle spy cam appeared first on Raspberry Pi.

New – Machine Learning Inference at the Edge Using AWS Greengrass

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-machine-learning-inference-at-the-edge-using-aws-greengrass/

What happens when you combine the Internet of Things, Machine Learning, and Edge Computing? Before I tell you, let’s review each one and discuss what AWS has to offer.

Internet of Things (IoT) – Devices that connect the physical world and the digital one. The devices, often equipped with one or more types of sensors, can be found in factories, vehicles, mines, fields, homes, and so forth. Important AWS services include AWS IoT Core, AWS IoT Analytics, AWS IoT Device Management, and Amazon FreeRTOS, along with others that you can find on the AWS IoT page.

Machine Learning (ML) – Systems that can be trained using an at-scale dataset and statistical algorithms, and used to make inferences from fresh data. At Amazon we use machine learning to drive the recommendations that you see when you shop, to optimize the paths in our fulfillment centers, fly drones, and much more. We support leading open source machine learning frameworks such as TensorFlow and MXNet, and make ML accessible and easy to use through Amazon SageMaker. We also provide Amazon Rekognition for images and for video, Amazon Lex for chatbots, and a wide array of language services for text analysis, translation, speech recognition, and text to speech.

Edge Computing – The power to have compute resources and decision-making capabilities in disparate locations, often with intermittent or no connectivity to the cloud. AWS Greengrass builds on AWS IoT, giving you the ability to run Lambda functions and keep device state in sync even when not connected to the Internet.

ML Inference at the Edge
Today I would like to toss all three of these important new technologies into a blender! You can now perform Machine Learning inference at the edge using AWS Greengrass. This allows you to use the power of the AWS cloud (including fast, powerful instances equipped with GPUs) to build, train, and test your ML models before deploying them to small, low-powered, intermittently-connected IoT devices running in those factories, vehicles, mines, fields, and homes that I mentioned.

Here are a few of the many ways that you can put Greengrass ML Inference to use:

Precision Farming – With an ever-growing world population and unpredictable weather that can affect crop yields, the opportunity to use technology to increase yields is immense. Intelligent devices that are literally in the field can process images of soil, plants, pests, and crops, taking local corrective action and sending status reports to the cloud.

Physical Security – Smart devices (including the AWS DeepLens) can process images and scenes locally, looking for objects, watching for changes, and even detecting faces. When something of interest or concern arises, the device can pass the image or the video to the cloud and use Amazon Rekognition to take a closer look.

Industrial Maintenance – Smart, local monitoring can increase operational efficiency and reduce unplanned downtime. The monitors can run inference operations on power consumption, noise levels, and vibration to flag anomalies, predict failures, detect faulty equipment.

Greengrass ML Inference Overview
There are several different aspects to this new AWS feature. Let’s take a look at each one:

Machine Learning ModelsPrecompiled TensorFlow and MXNet libraries, optimized for production use on the NVIDIA Jetson TX2 and Intel Atom devices, and development use on 32-bit Raspberry Pi devices. The optimized libraries can take advantage of GPU and FPGA hardware accelerators at the edge in order to provide fast, local inferences.

Model Building and Training – The ability to use Amazon SageMaker and other cloud-based ML tools to build, train, and test your models before deploying them to your IoT devices. To learn more about SageMaker, read Amazon SageMaker – Accelerated Machine Learning.

Model Deployment – SageMaker models can (if you give them the proper IAM permissions) be referenced directly from your Greengrass groups. You can also make use of models stored in S3 buckets. You can add a new machine learning resource to a group with a couple of clicks:

These new features are available now and you can start using them today! To learn more read Perform Machine Learning Inference.

Jeff;

 

Amazon SageMaker Now Supports Additional Instance Types, Local Mode, Open Sourced Containers, MXNet and Tensorflow Updates

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-sagemaker-roundup-sf/

Amazon SageMaker continues to iterate quickly and release new features on behalf of customers. Starting today, SageMaker adds support for many new instance types, local testing with the SDK, and Apache MXNet 1.1.0 and Tensorflow 1.6.0. Let’s take a quick look at each of these updates.

New Instance Types

Amazon SageMaker customers now have additional options for right-sizing their workloads for notebooks, training, and hosting. Notebook instances now support almost all T2, M4, P2, and P3 instance types with the exception of t2.micro, t2.small, and m4.large instances. Model training now supports nearly all M4, M5, C4, C5, P2, and P3 instances with the exception of m4.large, c4.large, and c5.large instances. Finally, model hosting now supports nearly all T2, M4, M5, C4, C5, P2, and P3 instances with the exception of m4.large instances. Many customers can take advantage of the newest P3, C5, and M5 instances to get the best price/performance for their workloads. Customers also take advantage of the burstable compute model on T2 instances for endpoints or notebooks that are used less frequently.

Open Sourced Containers, Local Mode, and TensorFlow 1.6.0 and MXNet 1.1.0

Today Amazon SageMaker has open sourced the MXNet and Tensorflow deep learning containers that power the MXNet and Tensorflow estimators in the SageMaker SDK. The ability to write Python scripts that conform to simple interface is still one of my favorite SageMaker features and now those containers can be additionally customized to include any additional libraries. You can download these containers locally to iterate and experiment which can accelerate your debugging cycle. When you’re ready go from local testing to production training and hosting you just change one line of code.

These containers launch with support for Tensorflow 1.6.0 and MXNet 1.1.0 as well. Tensorflow has a number of new 1.6.0 features including support for CUDA 9.0, cuDNN 7, and AVX instructions which allows for significant speedups in many training applications. MXNet 1.1.0 adds a number of new features including a Text API mxnet.text with support for text processing, indexing, glossaries, and more. Two of the really cool pre-trained embeddings included are GloVe and fastText.
<

Available Now
All of the features mentioned above are available today. As always please let us know on Twitter or in the comments below if you have any questions or if you’re building something interesting. Now, if you’ll excuse me I’m going to go experiment with some of those new MXNet APIs!

Randall

Innovation Flywheels and the AWS Serverless Application Repository

Post Syndicated from Tim Wagner original https://aws.amazon.com/blogs/compute/innovation-flywheels-and-the-aws-serverless-application-repository/

At AWS, our customers have always been the motivation for our innovation. In turn, we’re committed to helping them accelerate the pace of their own innovation. It was in the spirit of helping our customers achieve their objectives faster that we launched AWS Lambda in 2014, eliminating the burden of server management and enabling AWS developers to focus on business logic instead of the challenges of provisioning and managing infrastructure.

 

In the years since, our customers have built amazing things using Lambda and other serverless offerings, such as Amazon API Gateway, Amazon Cognito, and Amazon DynamoDB. Together, these services make it easy to build entire applications without the need to provision, manage, monitor, or patch servers. By removing much of the operational drudgery of infrastructure management, we’ve helped our customers become more agile and achieve faster time-to-market for their applications and services. By eliminating cold servers and cold containers with request-based pricing, we’ve also eliminated the high cost of idle capacity and helped our customers achieve dramatically higher utilization and better economics.

After we launched Lambda, though, we quickly learned an important lesson: A single Lambda function rarely exists in isolation. Rather, many functions are part of serverless applications that collectively deliver customer value. Whether it’s the combination of event sources and event handlers, as serverless web apps that combine APIs with functions for dynamic content with static content repositories, or collections of functions that together provide a microservice architecture, our customers were building and delivering serverless architectures for every conceivable problem. Despite the economic and agility benefits that hundreds of thousands of AWS customers were enjoying with Lambda, we realized there was still more we could do.

How Customer Feedback Inspired Us to Innovate

We heard from our customers that getting started—either from scratch or when augmenting their implementation with new techniques or technologies—remained a challenge. When we looked for serverless assets to share, we found stellar examples built by serverless pioneers that represented a multitude of solutions across industries.

There were apps to facilitate monitoring and logging, to process image and audio files, to create Alexa skills, and to integrate with notification and location services. These apps ranged from “getting started” examples to complete, ready-to-run assets. What was missing, however, was a unified place for customers to discover this diversity of serverless applications and a step-by-step interface to help them configure and deploy them.

We also heard from customers and partners that building their own ecosystems—ecosystems increasingly composed of functions, APIs, and serverless applications—remained a challenge. They wanted a simple way to share samples, create extensibility, and grow consumer relationships on top of serverless approaches.

 

We built the AWS Serverless Application Repository to help solve both of these challenges by offering publishers and consumers of serverless apps a simple, fast, and effective way to share applications and grow user communities around them. Now, developers can easily learn how to apply serverless approaches to their implementation and business challenges by discovering, customizing, and deploying serverless applications directly from the Serverless Application Repository. They can also find libraries, components, patterns, and best practices that augment their existing knowledge, helping them bring services and applications to market faster than ever before.

How the AWS Serverless Application Repository Inspires Innovation for All Customers

Companies that want to create ecosystems, share samples, deliver extensibility and customization options, and complement their existing SaaS services use the Serverless Application Repository as a distribution channel, producing apps that can be easily discovered and consumed by their customers. AWS partners like HERE have introduced their location and transit services to thousands of companies and developers. Partners like Datadog, Splunk, and TensorIoT have showcased monitoring, logging, and IoT applications to the serverless community.

Individual developers are also publishing serverless applications that push the boundaries of innovation—some have published applications that leverage machine learning to predict the quality of wine while others have published applications that monitor crypto-currencies, instantly build beautiful image galleries, or create fast and simple surveys. All of these publishers are using serverless apps, and the Serverless Application Repository, as the easiest way to share what they’ve built. Best of all, their customers and fellow community members can find and deploy these applications with just a few clicks in the Lambda console. Apps in the Serverless Application Repository are free of charge, making it easy to explore new solutions or learn new technologies.

Finally, we at AWS continue to publish apps for the community to use. From apps that leverage Amazon Cognito to sync user data across applications to our latest collection of serverless apps that enable users to quickly execute common financial calculations, we’re constantly looking for opportunities to contribute to community growth and innovation.

At AWS, we’re more excited than ever by the growing adoption of serverless architectures and the innovation that services like AWS Lambda make possible. Helping our customers create and deliver new ideas drives us to keep inventing ways to make building and sharing serverless apps even easier. As the number of applications in the Serverless Application Repository grows, so too will the innovation that it fuels for both the owners and the consumers of those apps. With the general availability of the Serverless Application Repository, our customers become more than the engine of our innovation—they become the engine of innovation for one another.

To browse, discover, deploy, and publish serverless apps in minutes, visit the Serverless Application Repository. Go serverless—and go innovate!

Dr. Tim Wagner is the General Manager of AWS Lambda and Amazon API Gateway.

Performing Unit Testing in an AWS CodeStar Project

Post Syndicated from Jerry Mathen Jacob original https://aws.amazon.com/blogs/devops/performing-unit-testing-in-an-aws-codestar-project/

In this blog post, I will show how you can perform unit testing as a part of your AWS CodeStar project. AWS CodeStar helps you quickly develop, build, and deploy applications on AWS. With AWS CodeStar, you can set up your continuous delivery (CD) toolchain and manage your software development from one place.

Because unit testing tests individual units of application code, it is helpful for quickly identifying and isolating issues. As a part of an automated CI/CD process, it can also be used to prevent bad code from being deployed into production.

Many of the AWS CodeStar project templates come preconfigured with a unit testing framework so that you can start deploying your code with more confidence. The unit testing is configured to run in the provided build stage so that, if the unit tests do not pass, the code is not deployed. For a list of AWS CodeStar project templates that include unit testing, see AWS CodeStar Project Templates in the AWS CodeStar User Guide.

The scenario

As a big fan of superhero movies, I decided to list my favorites and ask my friends to vote on theirs by using a WebService endpoint I created. The example I use is a Python web service running on AWS Lambda with AWS CodeCommit as the code repository. CodeCommit is a fully managed source control system that hosts Git repositories and works with all Git-based tools.

Here’s how you can create the WebService endpoint:

Sign in to the AWS CodeStar console. Choose Start a project, which will take you to the list of project templates.

create project

For code edits I will choose AWS Cloud9, which is a cloud-based integrated development environment (IDE) that you use to write, run, and debug code.

choose cloud9

Here are the other tasks required by my scenario:

  • Create a database table where the votes can be stored and retrieved as needed.
  • Update the logic in the Lambda function that was created for posting and getting the votes.
  • Update the unit tests (of course!) to verify that the logic works as expected.

For a database table, I’ve chosen Amazon DynamoDB, which offers a fast and flexible NoSQL database.

Getting set up on AWS Cloud9

From the AWS CodeStar console, go to the AWS Cloud9 console, which should take you to your project code. I will open up a terminal at the top-level folder under which I will set up my environment and required libraries.

Use the following command to set the PYTHONPATH environment variable on the terminal.

export PYTHONPATH=/home/ec2-user/environment/vote-your-movie

You should now be able to use the following command to execute the unit tests in your project.

python -m unittest discover vote-your-movie/tests

cloud9 setup

Start coding

Now that you have set up your local environment and have a copy of your code, add a DynamoDB table to the project by defining it through a template file. Open template.yml, which is the Serverless Application Model (SAM) template file. This template extends AWS CloudFormation to provide a simplified way of defining the Amazon API Gateway APIs, AWS Lambda functions, and Amazon DynamoDB tables required by your serverless application.

AWSTemplateFormatVersion: 2010-09-09
Transform:
- AWS::Serverless-2016-10-31
- AWS::CodeStar

Parameters:
  ProjectId:
    Type: String
    Description: CodeStar projectId used to associate new resources to team members

Resources:
  # The DB table to store the votes.
  MovieVoteTable:
    Type: AWS::Serverless::SimpleTable
    Properties:
      PrimaryKey:
        # Name of the "Candidate" is the partition key of the table.
        Name: Candidate
        Type: String
  # Creating a new lambda function for retrieving and storing votes.
  MovieVoteLambda:
    Type: AWS::Serverless::Function
    Properties:
      Handler: index.handler
      Runtime: python3.6
      Environment:
        # Setting environment variables for your lambda function.
        Variables:
          TABLE_NAME: !Ref "MovieVoteTable"
          TABLE_REGION: !Ref "AWS::Region"
      Role:
        Fn::ImportValue:
          !Join ['-', [!Ref 'ProjectId', !Ref 'AWS::Region', 'LambdaTrustRole']]
      Events:
        GetEvent:
          Type: Api
          Properties:
            Path: /
            Method: get
        PostEvent:
          Type: Api
          Properties:
            Path: /
            Method: post

We’ll use Python’s boto3 library to connect to AWS services. And we’ll use Python’s mock library to mock AWS service calls for our unit tests.
Use the following command to install these libraries:

pip install --upgrade boto3 mock -t .

install dependencies

Add these libraries to the buildspec.yml, which is the YAML file that is required for CodeBuild to execute.

version: 0.2

phases:
  install:
    commands:

      # Upgrade AWS CLI to the latest version
      - pip install --upgrade awscli boto3 mock

  pre_build:
    commands:

      # Discover and run unit tests in the 'tests' directory. For more information, see <https://docs.python.org/3/library/unittest.html#test-discovery>
      - python -m unittest discover tests

  build:
    commands:

      # Use AWS SAM to package the application by using AWS CloudFormation
      - aws cloudformation package --template template.yml --s3-bucket $S3_BUCKET --output-template template-export.yml

artifacts:
  type: zip
  files:
    - template-export.yml

Open the index.py where we can write the simple voting logic for our Lambda function.

import json
import datetime
import boto3
import os

table_name = os.environ['TABLE_NAME']
table_region = os.environ['TABLE_REGION']

VOTES_TABLE = boto3.resource('dynamodb', region_name=table_region).Table(table_name)
CANDIDATES = {"A": "Black Panther", "B": "Captain America: Civil War", "C": "Guardians of the Galaxy", "D": "Thor: Ragnarok"}

def handler(event, context):
    if event['httpMethod'] == 'GET':
        resp = VOTES_TABLE.scan()
        return {'statusCode': 200,
                'body': json.dumps({item['Candidate']: int(item['Votes']) for item in resp['Items']}),
                'headers': {'Content-Type': 'application/json'}}

    elif event['httpMethod'] == 'POST':
        try:
            body = json.loads(event['body'])
        except:
            return {'statusCode': 400,
                    'body': 'Invalid input! Expecting a JSON.',
                    'headers': {'Content-Type': 'application/json'}}
        if 'candidate' not in body:
            return {'statusCode': 400,
                    'body': 'Missing "candidate" in request.',
                    'headers': {'Content-Type': 'application/json'}}
        if body['candidate'] not in CANDIDATES.keys():
            return {'statusCode': 400,
                    'body': 'You must vote for one of the following candidates - {}.'.format(get_allowed_candidates()),
                    'headers': {'Content-Type': 'application/json'}}

        resp = VOTES_TABLE.update_item(
            Key={'Candidate': CANDIDATES.get(body['candidate'])},
            UpdateExpression='ADD Votes :incr',
            ExpressionAttributeValues={':incr': 1},
            ReturnValues='ALL_NEW'
        )
        return {'statusCode': 200,
                'body': "{} now has {} votes".format(CANDIDATES.get(body['candidate']), resp['Attributes']['Votes']),
                'headers': {'Content-Type': 'application/json'}}

def get_allowed_candidates():
    l = []
    for key in CANDIDATES:
        l.append("'{}' for '{}'".format(key, CANDIDATES.get(key)))
    return ", ".join(l)

What our code basically does is take in the HTTPS request call as an event. If it is an HTTP GET request, it gets the votes result from the table. If it is an HTTP POST request, it sets a vote for the candidate of choice. We also validate the inputs in the POST request to filter out requests that seem malicious. That way, only valid calls are stored in the table.

In the example code provided, we use a CANDIDATES variable to store our candidates, but you can store the candidates in a JSON file and use Python’s json library instead.

Let’s update the tests now. Under the tests folder, open the test_handler.py and modify it to verify the logic.

import os
# Some mock environment variables that would be used by the mock for DynamoDB
os.environ['TABLE_NAME'] = "MockHelloWorldTable"
os.environ['TABLE_REGION'] = "us-east-1"

# The library containing our logic.
import index

# Boto3's core library
import botocore
# For handling JSON.
import json
# Unit test library
import unittest
## Getting StringIO based on your setup.
try:
    from StringIO import StringIO
except ImportError:
    from io import StringIO
## Python mock library
from mock import patch, call
from decimal import Decimal

@patch('botocore.client.BaseClient._make_api_call')
class TestCandidateVotes(unittest.TestCase):

    ## Test the HTTP GET request flow. 
    ## We expect to get back a successful response with results of votes from the table (mocked).
    def test_get_votes(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'GET'}
        # The mocked values in our DynamoDB table.
        items_in_db = [{'Candidate': 'Black Panther', 'Votes': Decimal('3')},
                        {'Candidate': 'Captain America: Civil War', 'Votes': Decimal('8')},
                        {'Candidate': 'Guardians of the Galaxy', 'Votes': Decimal('8')},
                        {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('1')}
                    ]
        # The mocked DynamoDB response.
        expected_ddb_response = {'Items': items_in_db}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB Scan function during execution with these parameters.
        expected_calls = [call('Scan', {'TableName': os.environ['TABLE_NAME']})]

        # Call the function to test.
        result = index.handler(expected_event, {})

        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        result_body = json.loads(result.get('body'))
        # Verifying that the results match to that from the table.
        assert len(result_body) == len(items_in_db)
        for i in range(len(result_body)):
            assert result_body.get(items_in_db[i].get("Candidate")) == int(items_in_db[i].get("Votes"))

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for a selected candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_valid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"D\"}"}
        # The mocked response in our DynamoDB table.
        expected_ddb_response = {'Attributes': {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('2')}}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB UpdateItem function during execution with these parameters.
        expected_calls = [call('UpdateItem', {
                                                'TableName': os.environ['TABLE_NAME'], 
                                                'Key': {'Candidate': 'Thor: Ragnarok'},
                                                'UpdateExpression': 'ADD Votes :incr',
                                                'ExpressionAttributeValues': {':incr': 1},
                                                'ReturnValues': 'ALL_NEW'
                                            })]
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        assert result.get('body') == "{} now has {} votes".format(
            expected_ddb_response['Attributes']['Candidate'], 
            expected_ddb_response['Attributes']['Votes'])

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for an non-existant candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_invalid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        # The valid IDs for the candidates are A, B, C, and D
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"E\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'You must vote for one of the following candidates - {}.'.format(index.get_allowed_candidates())

    ## Test the HTTP POST request flow that places a vote for a selected candidate but associated with an invalid key in the POST body.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_invalid_data_vote(self, boto_mock):
        # Input event to our method to test.
        # "name" is not the expected input key.
        expected_event = {'httpMethod': 'POST', 'body': "{\"name\": \"D\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Missing "candidate" in request.'

    ## Test the HTTP POST request flow that places a vote for a selected candidate but not as a JSON string which the body of the request expects.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_malformed_json_vote(self, boto_mock):
        # Input event to our method to test.
        # "body" receives a string rather than a JSON string.
        expected_event = {'httpMethod': 'POST', 'body': "Thor: Ragnarok"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Invalid input! Expecting a JSON.'

if __name__ == '__main__':
    unittest.main()

I am keeping the code samples well commented so that it’s clear what each unit test accomplishes. It tests the success conditions and the failure paths that are handled in the logic.

In my unit tests I use the patch decorator (@patch) in the mock library. @patch helps mock the function you want to call (in this case, the botocore library’s _make_api_call function in the BaseClient class).
Before we commit our changes, let’s run the tests locally. On the terminal, run the tests again. If all the unit tests pass, you should expect to see a result like this:

You:~/environment $ python -m unittest discover vote-your-movie/tests
.....
----------------------------------------------------------------------
Ran 5 tests in 0.003s

OK
You:~/environment $

Upload to AWS

Now that the tests have passed, it’s time to commit and push the code to source repository!

Add your changes

From the terminal, go to the project’s folder and use the following command to verify the changes you are about to push.

git status

To add the modified files only, use the following command:

git add -u

Commit your changes

To commit the changes (with a message), use the following command:

git commit -m "Logic and tests for the voting webservice."

Push your changes to AWS CodeCommit

To push your committed changes to CodeCommit, use the following command:

git push

In the AWS CodeStar console, you can see your changes flowing through the pipeline and being deployed. There are also links in the AWS CodeStar console that take you to this project’s build runs so you can see your tests running on AWS CodeBuild. The latest link under the Build Runs table takes you to the logs.

unit tests at codebuild

After the deployment is complete, AWS CodeStar should now display the AWS Lambda function and DynamoDB table created and synced with this project. The Project link in the AWS CodeStar project’s navigation bar displays the AWS resources linked to this project.

codestar resources

Because this is a new database table, there should be no data in it. So, let’s put in some votes. You can download Postman to test your application endpoint for POST and GET calls. The endpoint you want to test is the URL displayed under Application endpoints in the AWS CodeStar console.

Now let’s open Postman and look at the results. Let’s create some votes through POST requests. Based on this example, a valid vote has a value of A, B, C, or D.
Here’s what a successful POST request looks like:

POST success

Here’s what it looks like if I use some value other than A, B, C, or D:

 

POST Fail

Now I am going to use a GET request to fetch the results of the votes from the database.

GET success

And that’s it! You have now created a simple voting web service using AWS Lambda, Amazon API Gateway, and DynamoDB and used unit tests to verify your logic so that you ship good code.
Happy coding!

Another Branch Prediction Attack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/another_branch_.html

When Spectre and Meltdown were first announced earlier this year, pretty much everyone predicted that there would be many more attacks targeting branch prediction in microprocessors. Here’s another one:

In the new attack, an attacker primes the PHT and running branch instructions so that the PHT will always assume a particular branch is taken or not taken. The victim code then runs and makes a branch, which is potentially disturbing the PHT. The attacker then runs more branch instructions of its own to detect that disturbance to the PHT; the attacker knows that some branches should be predicted in a particular direction and tests to see if the victim’s code has changed that prediction.

The researchers looked only at Intel processors, using the attacks to leak information protected using Intel’s SGX (Software Guard Extensions), a feature found on certain chips to carve out small sections of encrypted code and data such that even the operating system (or virtualization software) cannot access it. They also described ways the attack could be used against address space layout randomization and to infer data in encryption and image libraries.

Research paper.

EU Content Rules to Improve Access & Reduce Piracy Start April 1

Post Syndicated from Andy original https://torrentfreak.com/eu-content-rules-to-improve-access-reduce-piracy-start-april-1-180328/

Any subscriber of a service like Netflix will tell you that where you live can have a big impact on the content made available. Customers in the US enjoy large libraries while less populous countries are treated less well.

For many years and before Netflix largely closed the loophole, customers would bypass these restrictions, using VPNs to trick Netflix into thinking they were elsewhere. Some wouldn’t bother with the complication, choosing to pirate content instead.

But for citizens of the EU, things were even more complex. While the EU mandates free movement of people, the same can’t be said about licensing deals. While a viewer in the Netherlands could begin watching a movie at home, he could travel to France for a weekend break only to find that the content he paid for is not available, or only in French.

Last May, this problem was addressed by the European Parliament with an agreement to introduce new ‘Cross-border portability’ rules that will give citizens the freedom to enjoy their media wherever they are in the EU, without having to resort to piracy or VPNs – if they can find one that still works for any length of time with the service.

Now, almost 11 months on, the rules are about to come into force. From Sunday, content portability in the EU will become a reality.

“Citizens are at the core of all our digital initiatives. As of 1 April, wherever you are traveling to in the EU, you will no longer miss out on your favorite films, TV series, sports broadcasts, games or e-books, that you have digitally subscribed to at home,” European Commission Vice-President Andrus Ansip said in a statement.

“Removing the boundaries that prevented Europeans from traveling with digital media and content subscriptions is yet another success of the Digital Single Market for our citizens, following the effective abolition of roaming charges that consumers all over Europe have enjoyed since June 2017.”

This is how it will work. Consumers in the EU who buy or subscribe to films, sports broadcasts, music, e-books or games in their home Member States will now be able to access this content when they reside temporarily in another EU country.

So, if a person in the UK purchases Netflix to gain access to a TV show to watch in their home country, Netflix will have to add this content to the customer’s library so they can still access it wherever they travel in the EU, regardless of its general availability elsewhere.

“[P]roviders of paid-for online content services (such as online movie, TV or music streaming services) have to provide their subscribers with the same service wherever the subscriber is in the EU,” the Commission explains.

“The service needs to be provided in the same way in other Member States, as in the Member State of residence. So for Netflix for example, you will have access to the same selection (or catalog) anywhere in the EU, if you are temporarily abroad, just as if you were at home.”

The same should hold true for all other digital content. If it’s available at home, it must be made available elsewhere in Europe in order to comply with the regulations. In doing so, providers are allowed some freedom, provided it’s in the customer’s favor. If they want to give customers additional access to full home and overseas catalogs when they’re traveling, for example, that is fine.

There’s also a plus in there for content providers. While a company like Netflix will sometimes acquire rights on a per country basis, when a citizen travels abroad within the EU they will not be required to obtain licenses for those other territories where their subscribers stay temporarily.

There is, however, a question of what “temporarily” means since it’s not tightly defined in the regulations. The term will cover business trips and holidays, for example, but providers will be required to clearly inform their customers of their precise terms and conditions.

Providers will also need to determine a customer’s home country, something that will be established when a customer signs up or renews his contract. This can be achieved in a number of ways, including via payment details, a contract for an Internet or telephone connection, verifying a home address, or using a simple IP address check.

For providers of free online services, which are allowed to choose whether they want to be included in the new rules or not, there are special conditions in place.

“Once they opt-in and allow portability under the Regulation, all rules will apply to them in the same manner as for the paid services. This means that the subscribers will have to log-in to be able to access and use content when temporarily abroad, and service providers will have to verify the Member State of residence of the subscriber,” the Commission explains.

“If providers of free of charge online content services decide to make use of the new portability rules, they are required to inform their subscribers about this decision prior to providing the service. Such information could, for example, be announced on the providers’ websites.”

The good news for consumers is that providers will not be able to charge for offering content portability and if they don’t provide it as required, they’ll be in breach of EU rules. The EU believes that all providers are ready to meet the standard – the public will find out on Sunday.

The new rules can be found here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Our 2017 Annual Review

Post Syndicated from Oliver Quinlan original https://www.raspberrypi.org/blog/annual-review-2017/

Each year we take stock at the Raspberry Pi Foundation, looking back at what we’ve achieved over the previous twelve months. We’ve just published our Annual Review for 2017, reflecting on the progress we’ve made as a foundation and a community towards putting the power of digital making in the hands of people all over the world.

In the review, you can find out about all the different education programmes we run. Moreover, you can hear from people who have taken part, learned through making, and discovered they can do things with technology that they never thought they could.

Growing our reach

Our reach grew hugely in 2017, and the numbers tell this story.

By the end of 2017, we’d sold over 17 million Raspberry Pi computers, bringing tools for learning programming and physical computing to people all over the world.

Vibrant learning and making communities

Code Club grew by 2964 clubs in 2017, to over 10000 clubs across the world reaching over 150000 9- to 13-year-olds.

“The best moment is seeing a child discover something for the first time. It is amazing.”
– Code Club volunteer

In 2017 CoderDojo became part of the Raspberry Pi family. Over the year, it grew by 41% to 1556 active Dojos, involving nearly 40000 7- to 17-year-olds in creating with code and collaborating to learn about technology.

Raspberry Jams continued to grow, with 18700 people attending events organised by our amazing community members.



Supporting teaching and learning

We reached 208 projects in our online resources in 2017, and 8.5 million people visited these to get making.

“I like coding because it’s like a whole other language that you have to learn, and it creates something very interesting in the end.”
– Betty, Year 10 student

2017 was also the year we began offering online training courses. 19000 people joined us to learn about programming, physical computing, and running a Code Club.



Over 6800 young people entered Mission Zero and Mission Space Lab, 2017’s two Astro Pi challenges. They created code that ran on board the International Space Station or will run soon.

More than 600 educators joined our face-to-face Picademy training last year. Our community of Raspberry Pi Certified Educators grew to 1500, all leading digital making across schools, libraries, and other settings where young people learn.

Being social

Well over a million people follow us on social media, and in 2017 we’ve seen big increases in our YouTube and Instagram followings. We have been creating much more video content to share what we do with audiences on these and other social networks.

The future

It’s been a big year, as we continue to reach even more people. This wouldn’t be possible without the amazing work of volunteers and community members who do so much to create opportunities for others to get involved. Behind each of these numbers is a person discovering digital making for the first time, learning new skills, or succeeding with a project that makes a difference to something they care about.

You can read our 2017 Annual Review in full over on our About Us page.

The post Our 2017 Annual Review appeared first on Raspberry Pi.

The Rust 2018 roadmap

Post Syndicated from corbet original https://lwn.net/Articles/749098/rss

Here is the
Rust community’s plan
for the rest of this year. “This year, we
will deliver Rust 2018, marking the first major new edition of Rust since
1.0 (aka Rust 2015). We will continue to publish releases every six weeks
as usual. But we will designate a release in the latter third of the year
(Rust 1.29 – 1.31) as Rust 2018. This new ‘edition’ of Rust will be the
culmination of feature stabilization throughout the year, and will ship
with polished documentation, tooling, and libraries that tie in to those
features.

Backblaze Cuts B2 Download Price In Half

Post Syndicated from Ahin Thomas original https://www.backblaze.com/blog/backblaze-b2-drops-download-price-in-half/

Backblaze B2 downloads now cost 50% less
Backblaze is pleased to announce that, effective immediately, we are reducing the price of Backblaze B2 Cloud Storage downloads by 50%. This means that B2 download pricing drops from $0.02 to $0.01 per GB. As always, the first gigabyte of data downloaded each day remains free.

If some of this sounds familiar, that’s because a little under a year ago, we dropped our download price from $0.05 to $0.02. While that move solidified our position as the affordability leader in the high performance cloud storage space, we continue to innovate on our platform and are excited to provide this additional value to our customers.

This price reduction applies immediately to all existing and new customers. In keeping with Backblaze’s overall approach to providing services, there are no tiers or minimums. It’s automatic and it starts today.

Why Is Backblaze Lowering What Is Already The Industry’s Lowest Price?

Because it makes cloud storage more useful for more people.

When we decided to use Backblaze B2 as our cloud storage service, their download pricing at the time enabled us to offer our broadcasters unlimited audio uploads so they can upload past decades of preaching to our extensive library for streaming and downloading. With Backblaze cutting the bandwidth prices 50% to just one penny a gigabyte, we are excited about offering much higher quality video. — Ian Wagner, Senior Developer, Sermon Audio

Since our founding in 2007, Backblaze’s mission has been to make storing data astonishingly easy and affordable. We have a well documented, relentless pursuit of lowering storage costs — it starts with our storage pods and runs through everything we do. Today, we have over 500 petabytes of customer data stored. B2’s storage pricing already being 14 that of Amazon’s S3 has certainly helped us get there. Today’s pricing reduction puts our download pricing 15 that of S3. The “affordable” part of our story is well established.

I’d like to take a moment to discuss the “easy” part. Our industry has historically done a poor job of putting ourselves in our customers’ shoes. When customers are faced with the decision of where to put their data, price is certainly a factor. But it’s not just the price of storage that customers must consider. There’s a cost to download your data. The business need for providers to charge for this is reasonable — downloading data requires bandwidth, and bandwidth costs money. We discussed that in a prior post on the Cost of Cloud Storage.

But there’s a difference between the costs of bandwidth and what the industry is charging today. There’s a joke that some of the storage clouds are competing to become “Hotel California” — you can check out anytime you want, but your data can never leave.1 Services that make it expensive to restore data or place time lag impediments to data access are reducing the usefulness of your data. Customers should not have to wonder if they can afford to access their own data.

When replacing LTO with StarWind VTL and cloud storage, our customers had only one concern left: the possible cost of data retrieval. Backblaze just wiped this concern out of the way by lowering that cost to just one penny per gig. — Max Kolomyeytsev, Director of Product Management, StarWind

Many businesses have not yet been able to back up their data to the cloud because of the costs. Many of those companies are forced to continue backing up to tape. That tape is an inefficient means for data storage is clear. Solution providers like StarWind VTL specialize in helping businesses move off of antiquated tape libraries. However, as Max Kolomyeytsev, Director of Product Management at StarWind points out, “When replacing LTO with StarWind VTL and cloud storage our customers had only one concern left: the possible cost of data retrieval. Backblaze just wiped this concern out of the way by lowering that cost to just one penny per gig.”

Customers that have already adopted the cloud often are forced to make difficult tradeoffs between data they want to access and the cost associated with that access. Surrendering the use of your own data defeats many of the benefits that “the cloud” brings in the first place. Because of B2’s download price, Ian Wagner, a Senior Developer at Sermon Audio, is able to lower his costs and expand his product offering. “When we decided to use Backblaze B2 as our cloud storage service, their download pricing at the time enabled us to offer our broadcasters unlimited audio uploads so they can upload past decades of preaching to our extensive library for streaming and downloading. With Backblaze cutting the bandwidth prices 50% to just one penny a gigabyte, we are excited about offering much higher quality video.”

Better Download Pricing Also Helps Third Party Applications Deliver Customer Solutions

Many organizations use third party applications or devices to help manage their workflows. Those applications are the hub for customers getting their data to where it needs to go. Leaders in verticals like Media Asset Management, Server & NAS Backup, and Enterprise Storage have already chosen to integrate with B2.

With Backblaze lowering their download price to an amazing one penny a gigabyte, our CloudNAS is even a better fit for photographers, videographers and business owners who need to have their files at their fingertips, with an easy, reliable, low cost way to use Backblaze for unlimited primary storage and active archive. — Paul Tian, CEO, Morro Data

For Paul Tian, founder of Ready NAS and CEO of Morro Data, reasonable download pricing also helps his company better serve its customers. “With Backblaze lowering their download price to an amazing one penny a gigabyte, our CloudNAS is even a better fit for photographers, videographers and business owners who need to have their files at their fingertips, with an easy, reliable, low cost way to use Backblaze for unlimited primary storage and active archive.”

If you use an application that hasn’t yet integrated with B2, please ask your provider to add B2 Cloud Storage and mention the application in the comments below.

 

How Do the Major Cloud Storage Providers Compare on Pricing?

Not only is Backblaze B2 storage 14 the price of Amazon S3, Google Cloud, or Azure, but our download pricing is now 15 their price as well.

Pricing Tier Backblaze B2 Amazon S3 Microsoft Azure Google Cloud
First 1 TB $0.01 $0.09 $0.09 $0.12
Next 9 TB $0.01 $0.09 $0.09 $0.11
Next 40 TB $0.01 $0.085 $0.09 $0.08
Next 100 TB $0.01 $0.07 $0.07 $0.08
Next 350 TB+ $0.01 $0.05 $0.05 $0.08

Using the chart above, let’s compute a few examples of download costs…

Data Backblaze B2 Amazon S3 Microsoft Azure Google Cloud
1 terabyte $10 $90 $90 $120
10 terabytes $100 $900 $900 $1,200
50 terabytes $500 $4,300 $4,500 $4,310
500 terabytes $5,000 $28,800 $29,000 $40,310
Not only is Backblaze B2 pricing dramatically lower cost, it’s also simple — one price for any amount of data downloaded to anywhere. In comparison, to compute the cost of downloading 500 TB of data with S3 you start with the following formula:
(($0.09 * 10) + ($0.085 * 40) + ($0.07 * 100) + ($0.05 * 350)) * 1,000
Want to see this comparison for the amount of data you manage?
Use our cloud storage calculator.

Customers Want to Avoid Vendor Lock In

Halving the price of downloads is a crazy move — the kind of crazy our customers will be excited about. When using our Transmit 5 app on the Mac to upload their data to B2 Cloud Storage, our users can sleep soundly knowing they’ll be getting a truly affordable price when they need to restore that data. Cool beans, Backblaze. — Cabel Sasser, Co-Founder, Panic

As the cloud storage industry grows, customers are increasingly concerned with getting locked in to one vendor. No business wants to be fully dependent on one vendor for anything. In addition, customers want multiple copies of their data to mitigate against a vendor outage or other issues.

Many vendors offer the ability for customers to replicate data across “regions.” This enables customers to store data in two physical locations of the customer’s choosing. Of course, customers pay for storing both copies of the data and for the data transfer between regions.

At 1¢ per GB, transferring data out of Backblaze is more affordable than transferring data between most other vendor regions. For example, if a customer is storing data in Amazon S3’s Northern California region (US West) and wants to replicate data to S3 in Northern Virginia (US East), she will pay 2¢ per GB to simply move the data.

However, if that same customer wanted to replicate data from Backblaze B2 to S3 in Northern Virginia, she would pay 1¢ per GB to move the data. She can achieve her replication strategy while also mitigating against vendor risk — all while cutting the bandwidth bill by 50%. Of course, this is also before factoring the savings on her storage bill as B2 storage is 14 of the price of S3.

How Is Backblaze Doing This?

Simple. We just changed our pricing table and updated our website.

The longer answer is that the cost of bandwidth is a function of a few factors, including how it’s being used and the volume of usage. With another year of data for B2, over a decade of experience in the cloud storage industry, and data growth exceeding 100 PB per quarter, we know we can sustainably offer this pricing to our customers; we also know how better download pricing can make our customers and partners more effective in their work. So it is an easy call to make.

Our pricing is simple. Storage is $0.005/GB/Month, Download costs are $0.01/GB. There are no tiers or minimums and you can get started any time you wish.

Our desire is to provide a great service at a fair price. We’re proud to be the affordability leader in the Cloud Storage space and hope you’ll give us the opportunity to show you what B2 Cloud Storage can enable for you.

Enjoy the service and I’d love to hear what this price reduction does for you in the comments below…or, if you are attending NAB this year, come by to visit and tell us in person!


1 For those readers who don’t get the Eagles reference there, please click here…I promise you won’t regret the next 7 minutes of your life.

The post Backblaze Cuts B2 Download Price In Half appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.