All posts by Nathan Taber

Capturing Custom, High-Resolution Metrics from Containers Using AWS Step Functions and AWS Lambda

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/capturing-custom-high-resolution-metrics-from-containers-using-aws-step-functions-and-aws-lambda/

Contributed by Trevor Sullivan, AWS Solutions Architect

When you deploy containers with Amazon ECS, are you gathering all of the key metrics so that you can correctly monitor the overall health of your ECS cluster?

By default, ECS writes metrics to Amazon CloudWatch in 5-minute increments. For complex or large services, this may not be sufficient to make scaling decisions quickly. You may want to respond immediately to changes in workload or to identify application performance problems. Last July, CloudWatch announced support for high-resolution metrics, up to a per-second basis.

These high-resolution metrics can be used to give you a clearer picture of the load and performance for your applications, containers, clusters, and hosts. In this post, I discuss how you can use AWS Step Functions, along with AWS Lambda, to cost effectively record high-resolution metrics into CloudWatch. You implement this solution using a serverless architecture, which keeps your costs low and makes it easier to troubleshoot the solution.

To show how this works, you retrieve some useful metric data from an ECS cluster running in the same AWS account and region (Oregon, us-west-2) as the Step Functions state machine and Lambda function. However, you can use this architecture to retrieve any custom application metrics from any resource in any AWS account and region.

Why Step Functions?

Step Functions enables you to orchestrate multi-step tasks in the AWS Cloud that run for any period of time, up to a year. Effectively, you’re building a blueprint for an end-to-end process. After it’s built, you can execute the process as many times as you want.

For this architecture, you gather metrics from an ECS cluster, every five seconds, and then write the metric data to CloudWatch. After your ECS cluster metrics are stored in CloudWatch, you can create CloudWatch alarms to notify you. An alarm can also trigger an automated remediation activity such as scaling ECS services, when a metric exceeds a threshold defined by you.

When you build a Step Functions state machine, you define the different states inside it as JSON objects. The bulk of the work in Step Functions is handled by the common task state, which invokes Lambda functions or Step Functions activities. There is also a built-in library of other useful states that allow you to control the execution flow of your program.

One of the most useful state types in Step Functions is the parallel state. Each parallel state in your state machine can have one or more branches, each of which is executed in parallel. Another useful state type is the wait state, which waits for a period of time before moving to the next state.

In this walkthrough, you combine these three states (parallel, wait, and task) to create a state machine that triggers a Lambda function, which then gathers metrics from your ECS cluster.

Step Functions pricing

This state machine is executed every minute, resulting in 60 executions per hour, and 1,440 executions per day. Step Functions is billed per state transition, including the Start and End state transitions, and giving you approximately 37,440 state transitions per day. To reach this number, I’m using this estimated math:

26 state transitions per-execution x 60 minutes x 24 hours

Based on current pricing, at $0.000025 per state transition, the daily cost of this metric gathering state machine would be $0.936.

Step Functions offers an indefinite 4,000 free state transitions every month. This benefit is available to all customers, not just customers who are still under the 12-month AWS Free Tier. For more information and cost example scenarios, see Step Functions pricing.

Why Lambda?

The goal is to capture metrics from an ECS cluster, and write the metric data to CloudWatch. This is a straightforward, short-running process that makes Lambda the perfect place to run your code. Lambda is one of the key services that makes up “Serverless” application architectures. It enables you to consume compute capacity only when your code is actually executing.

The process of gathering metric data from ECS and writing it to CloudWatch takes a short period of time. In fact, my average Lambda function execution time, while developing this post, is only about 250 milliseconds on average. For every five-second interval that occurs, I’m only using 1/20th of the compute time that I’d otherwise be paying for.

Lambda pricing

For billing purposes, Lambda execution time is rounded up to the nearest 100-ms interval. In general, based on the metrics that I observed during development, a 250-ms runtime would be billed at 300 ms. Here, I calculate the cost of this Lambda function executing on a daily basis.

Assuming 31 days in each month, there would be 535,680 five-second intervals (31 days x 24 hours x 60 minutes x 12 five-second intervals = 535,680). The Lambda function is invoked every five-second interval, by the Step Functions state machine, and runs for a 300-ms period. At current Lambda pricing, for a 128-MB function, you would be paying approximately the following:

Total compute

Total executions = 535,680
Total compute = total executions x (3 x $0.000000208 per 100 ms) = $0.334 per day

Total requests

Total requests = (535,680 / 1000000) * $0.20 per million requests = $0.11 per day

Total Lambda Cost

$0.11 requests + $0.334 compute time = $0.444 per day

Similar to Step Functions, Lambda offers an indefinite free tier. For more information, see Lambda Pricing.

Walkthrough

In the following sections, I step through the process of configuring the solution just discussed. If you follow along, at a high level, you will:

  • Configure an IAM role and policy
  • Create a Step Functions state machine to control metric gathering execution
  • Create a metric-gathering Lambda function
  • Configure a CloudWatch Events rule to trigger the state machine
  • Validate the solution

Prerequisites

You should already have an AWS account with a running ECS cluster. If you don’t have one running, you can easily deploy a Docker container on an ECS cluster using the AWS Management Console. In the example produced for this post, I use an ECS cluster running Windows Server (currently in beta), but either a Linux or Windows Server cluster works.

Create an IAM role and policy

First, create an IAM role and policy that enables Step Functions, Lambda, and CloudWatch to communicate with each other.

  • The CloudWatch Events rule needs permissions to trigger the Step Functions state machine.
  • The Step Functions state machine needs permissions to trigger the Lambda function.
  • The Lambda function needs permissions to query ECS and then write to CloudWatch Logs and metrics.

When you create the state machine, Lambda function, and CloudWatch Events rule, you assign this role to each of those resources. Upon execution, each of these resources assumes the specified role and executes using the role’s permissions.

  1. Open the IAM console.
  2. Choose Roles, create New Role.
  3. For Role Name, enter WriteMetricFromStepFunction.
  4. Choose Save.

Create the IAM role trust relationship
The trust relationship (also known as the assume role policy document) for your IAM role looks like the following JSON document. As you can see from the document, your IAM role needs to trust the Lambda, CloudWatch Events, and Step Functions services. By configuring your role to trust these services, they can assume this role and inherit the role permissions.

  1. Open the IAM console.
  2. Choose Roles and select the IAM role previously created.
  3. Choose Trust RelationshipsEdit Trust Relationships.
  4. Enter the following trust policy text and choose Save.
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "lambda.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "events.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "states.us-west-2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create an IAM policy

After you’ve finished configuring your role’s trust relationship, grant the role access to the other AWS resources that make up the solution.

The IAM policy is what gives your IAM role permissions to access various resources. You must whitelist explicitly the specific resources to which your role has access, because the default IAM behavior is to deny access to any AWS resources.

I’ve tried to keep this policy document as generic as possible, without allowing permissions to be too open. If the name of your ECS cluster is different than the one in the example policy below, make sure that you update the policy document before attaching it to your IAM role. You can attach this policy as an inline policy, instead of creating the policy separately first. However, either approach is valid.

  1. Open the IAM console.
  2. Select the IAM role, and choose Permissions.
  3. Choose Add in-line policy.
  4. Choose Custom Policy and then enter the following policy. The inline policy name does not matter.
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [ "logs:*" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "cloudwatch:PutMetricData" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "states:StartExecution" ],
            "Resource": [
                "arn:aws:states:*:*:stateMachine:WriteMetricFromStepFunction"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [ "lambda:InvokeFunction" ],
            "Resource": "arn:aws:lambda:*:*:function:WriteMetricFromStepFunction"
        },
        {
            "Effect": "Allow",
            "Action": [ "ecs:Describe*" ],
            "Resource": "arn:aws:ecs:*:*:cluster/ECSEsgaroth"
        }
    ]
}

Create a Step Functions state machine

In this section, you create a Step Functions state machine that invokes the metric-gathering Lambda function every five (5) seconds, for a one-minute period. If you divide a minute (60) seconds into equal parts of five-second intervals, you get 12. Based on this math, you create 12 branches, in a single parallel state, in the state machine. Each branch triggers the metric-gathering Lambda function at a different five-second marker, throughout the one-minute period. After all of the parallel branches finish executing, the Step Functions execution completes and another begins.

Follow these steps to create your Step Functions state machine:

  1. Open the Step Functions console.
  2. Choose DashboardCreate State Machine.
  3. For State Machine Name, enter WriteMetricFromStepFunction.
  4. Enter the state machine code below into the editor. Make sure that you insert your own AWS account ID for every instance of “676655494xxx”
  5. Choose Create State Machine.
  6. Select the WriteMetricFromStepFunction IAM role that you previously created.
{
    "Comment": "Writes ECS metrics to CloudWatch every five seconds, for a one-minute period.",
    "StartAt": "ParallelMetric",
    "States": {
      "ParallelMetric": {
        "Type": "Parallel",
        "Branches": [
          {
            "StartAt": "WriteMetricLambda",
            "States": {
             	"WriteMetricLambda": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFive",
            "States": {
            	"WaitFive": {
            		"Type": "Wait",
            		"Seconds": 5,
            		"Next": "WriteMetricLambdaFive"
          		},
             	"WriteMetricLambdaFive": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitTen",
            "States": {
            	"WaitTen": {
            		"Type": "Wait",
            		"Seconds": 10,
            		"Next": "WriteMetricLambda10"
          		},
             	"WriteMetricLambda10": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFifteen",
            "States": {
            	"WaitFifteen": {
            		"Type": "Wait",
            		"Seconds": 15,
            		"Next": "WriteMetricLambda15"
          		},
             	"WriteMetricLambda15": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait20",
            "States": {
            	"Wait20": {
            		"Type": "Wait",
            		"Seconds": 20,
            		"Next": "WriteMetricLambda20"
          		},
             	"WriteMetricLambda20": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait25",
            "States": {
            	"Wait25": {
            		"Type": "Wait",
            		"Seconds": 25,
            		"Next": "WriteMetricLambda25"
          		},
             	"WriteMetricLambda25": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait30",
            "States": {
            	"Wait30": {
            		"Type": "Wait",
            		"Seconds": 30,
            		"Next": "WriteMetricLambda30"
          		},
             	"WriteMetricLambda30": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait35",
            "States": {
            	"Wait35": {
            		"Type": "Wait",
            		"Seconds": 35,
            		"Next": "WriteMetricLambda35"
          		},
             	"WriteMetricLambda35": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait40",
            "States": {
            	"Wait40": {
            		"Type": "Wait",
            		"Seconds": 40,
            		"Next": "WriteMetricLambda40"
          		},
             	"WriteMetricLambda40": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait45",
            "States": {
            	"Wait45": {
            		"Type": "Wait",
            		"Seconds": 45,
            		"Next": "WriteMetricLambda45"
          		},
             	"WriteMetricLambda45": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait50",
            "States": {
            	"Wait50": {
            		"Type": "Wait",
            		"Seconds": 50,
            		"Next": "WriteMetricLambda50"
          		},
             	"WriteMetricLambda50": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait55",
            "States": {
            	"Wait55": {
            		"Type": "Wait",
            		"Seconds": 55,
            		"Next": "WriteMetricLambda55"
          		},
             	"WriteMetricLambda55": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          }
        ],
        "End": true
      }
  }
}

Now you’ve got a shiny new Step Functions state machine! However, you might ask yourself, “After the state machine has been created, how does it get executed?” Before I answer that question, create the Lambda function that writes the custom metric, and then you get the end-to-end process moving.

Create a Lambda function

The meaty part of the solution is a Lambda function, written to consume the Python 3.6 runtime, that retrieves metric values from ECS, and then writes them to CloudWatch. This Lambda function is what the Step Functions state machine is triggering every five seconds, via the Task states. Key points to remember:

The Lambda function needs permission to:

  • Write CloudWatch metrics (PutMetricData API).
  • Retrieve metrics from ECS clusters (DescribeCluster API).
  • Write StdOut to CloudWatch Logs.

Boto3, the AWS SDK for Python, is included in the Lambda execution environment for Python 2.x and 3.x.

Because Lambda includes the AWS SDK, you don’t have to worry about packaging it up and uploading it to Lambda. You can focus on writing code and automatically take a dependency on boto3.

As for permissions, you’ve already created the IAM role and attached a policy to it that enables your Lambda function to access the necessary API actions. When you create your Lambda function, make sure that you select the correct IAM role, to ensure it is invoked with the correct permissions.

The following Lambda function code is generic. So how does the Lambda function know which ECS cluster to gather metrics for? Your Step Functions state machine automatically passes in its state to the Lambda function. When you create your CloudWatch Events rule, you specify a simple JSON object that passes the desired ECS cluster name into your Step Functions state machine, which then passes it to the Lambda function.

Use the following property values as you create your Lambda function:

Function Name: WriteMetricFromStepFunction
Description: This Lambda function retrieves metric values from an ECS cluster and writes them to Amazon CloudWatch.
Runtime: Python3.6
Memory: 128 MB
IAM Role: WriteMetricFromStepFunction

import boto3

def handler(event, context):
    cw = boto3.client('cloudwatch')
    ecs = boto3.client('ecs')
    print('Got boto3 client objects')
    
    Dimension = {
        'Name': 'ClusterName',
        'Value': event['ECSClusterName']
    }

    cluster = get_ecs_cluster(ecs, Dimension['Value'])
    
    cw_args = {
       'Namespace': 'ECS',
       'MetricData': [
           {
               'MetricName': 'RunningTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['runningTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'PendingTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['pendingTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'ActiveServices',
               'Dimensions': [ Dimension ],
               'Value': cluster['activeServicesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'RegisteredContainerInstances',
               'Dimensions': [ Dimension ],
               'Value': cluster['registeredContainerInstancesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           }
        ]
    }
    cw.put_metric_data(**cw_args)
    print('Finished writing metric data')
    
def get_ecs_cluster(client, cluster_name):
    cluster = client.describe_clusters(clusters = [ cluster_name ])
    print('Retrieved cluster details from ECS')
    return cluster['clusters'][0]

Create the CloudWatch Events rule

Now you’ve created an IAM role and policy, Step Functions state machine, and Lambda function. How do these components actually start communicating with each other? The final step in this process is to set up a CloudWatch Events rule that triggers your metric-gathering Step Functions state machine every minute. You have two choices for your CloudWatch Events rule expression: rate or cron. In this example, use the cron expression.

A couple key learning points from creating the CloudWatch Events rule:

  • You can specify one or more targets, of different types (for example, Lambda function, Step Functions state machine, SNS topic, and so on).
  • You’re required to specify an IAM role with permissions to trigger your target.
    NOTE: This applies only to certain types of targets, including Step Functions state machines.
  • Each target that supports IAM roles can be triggered using a different IAM role, in the same CloudWatch Events rule.
  • Optional: You can provide custom JSON that is passed to your target Step Functions state machine as input.

Follow these steps to create the CloudWatch Events rule:

  1. Open the CloudWatch console.
  2. Choose Events, RulesCreate Rule.
  3. Select Schedule, Cron Expression, and then enter the following rule:
    0/1 * * * ? *
  4. Choose Add Target, Step Functions State MachineWriteMetricFromStepFunction.
  5. For Configure Input, select Constant (JSON Text).
  6. Enter the following JSON input, which is passed to Step Functions, while changing the cluster name accordingly:
    { "ECSClusterName": "ECSEsgaroth" }
  7. Choose Use Existing Role, WriteMetricFromStepFunction (the IAM role that you previously created).

After you’ve completed with these steps, your screen should look similar to this:

Validate the solution

Now that you have finished implementing the solution to gather high-resolution metrics from ECS, validate that it’s working properly.

  1. Open the CloudWatch console.
  2. Choose Metrics.
  3. Choose custom and select the ECS namespace.
  4. Choose the ClusterName metric dimension.

You should see your metrics listed below.

Troubleshoot configuration issues

If you aren’t receiving the expected ECS cluster metrics in CloudWatch, check for the following common configuration issues. Review the earlier procedures to make sure that the resources were properly configured.

  • The IAM role’s trust relationship is incorrectly configured.
    Make sure that the IAM role trusts Lambda, CloudWatch Events, and Step Functions in the correct region.
  • The IAM role does not have the correct policies attached to it.
    Make sure that you have copied the IAM policy correctly as an inline policy on the IAM role.
  • The CloudWatch Events rule is not triggering new Step Functions executions.
    Make sure that the target configuration on the rule has the correct Step Functions state machine and IAM role selected.
  • The Step Functions state machine is being executed, but failing part way through.
    Examine the detailed error message on the failed state within the failed Step Functions execution. It’s possible that the
  • IAM role does not have permissions to trigger the target Lambda function, that the target Lambda function may not exist, or that the Lambda function failed to complete successfully due to invalid permissions.
    Although the above list covers several different potential configuration issues, it is not comprehensive. Make sure that you understand how each service is connected to each other, how permissions are granted through IAM policies, and how IAM trust relationships work.

Conclusion

In this post, you implemented a Serverless solution to gather and record high-resolution application metrics from containers running on Amazon ECS into CloudWatch. The solution consists of a Step Functions state machine, Lambda function, CloudWatch Events rule, and an IAM role and policy. The data that you gather from this solution helps you rapidly identify issues with an ECS cluster.

To gather high-resolution metrics from any service, modify your Lambda function to gather the correct metrics from your target. If you prefer not to use Python, you can implement a Lambda function using one of the other supported runtimes, including Node.js, Java, or .NET Core. However, this post should give you the fundamental basics about capturing high-resolution metrics in CloudWatch.

If you found this post useful, or have questions, please comment below.

Introducing Cloud Native Networking for Amazon ECS Containers

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/introducing-cloud-native-networking-for-ecs-containers/

This post courtesy of ECS Sr. Software Dev Engineer Anirudh Aithal.

Today, AWS announced Task Networking for Amazon ECS. This feature brings Amazon EC2 networking capabilities to tasks using elastic network interfaces.

An elastic network interface is a virtual network interface that you can attach to an instance in a VPC. When you launch an EC2 virtual machine, an elastic network interface is automatically provisioned to provide networking capabilities for the instance.

A task is a logical group of running containers. Previously, tasks running on Amazon ECS shared the elastic network interface of their EC2 host. Now, the new awsvpc networking mode lets you attach an elastic network interface directly to a task.

This simplifies network configuration, allowing you to treat each container just like an EC2 instance with full networking features, segmentation, and security controls in the VPC.

In this post, I cover how awsvpc mode works and show you how you can start using elastic network interfaces with your tasks running on ECS.

Background:  Elastic network interfaces in EC2

When you launch EC2 instances within a VPC, you don’t have to configure an additional overlay network for those instances to communicate with each other. By default, routing tables in the VPC enable seamless communication between instances and other endpoints. This is made possible by virtual network interfaces in VPCs called elastic network interfaces. Every EC2 instance that launches is automatically assigned an elastic network interface (the primary network interface). All networking parameters—such as subnets, security groups, and so on—are handled as properties of this primary network interface.

Furthermore, an IPv4 address is allocated to every elastic network interface by the VPC at creation (the primary IPv4 address). This primary address is unique and routable within the VPC. This effectively makes your VPC a flat network, resulting in a simple networking topology.

Elastic network interfaces can be treated as fundamental building blocks for connecting various endpoints in a VPC, upon which you can build higher-level abstractions. This allows elastic network interfaces to be leveraged for:

  • VPC-native IPv4 addressing and routing (between instances and other endpoints in the VPC)
  • Network traffic isolation
  • Network policy enforcement using ACLs and firewall rules (security groups)
  • IPv4 address range enforcement (via subnet CIDRs)

Why use awsvpc?

Previously, ECS relied on the networking capability provided by Docker’s default networking behavior to set up the network stack for containers. With the default bridge network mode, containers on an instance are connected to each other using the docker0 bridge. Containers use this bridge to communicate with endpoints outside of the instance, using the primary elastic network interface of the instance on which they are running. Containers share and rely on the networking properties of the primary elastic network interface, including the firewall rules (security group subscription) and IP addressing.

This means you cannot address these containers with the IP address allocated by Docker (it’s allocated from a pool of locally scoped addresses), nor can you enforce finely grained network ACLs and firewall rules. Instead, containers are addressable in your VPC by the combination of the IP address of the primary elastic network interface of the instance, and the host port to which they are mapped (either via static or dynamic port mapping). Also, because a single elastic network interface is shared by multiple containers, it can be difficult to create easily understandable network policies for each container.

The awsvpc networking mode addresses these issues by provisioning elastic network interfaces on a per-task basis. Hence, containers no longer share or contend use these resources. This enables you to:

  • Run multiple copies of the container on the same instance using the same container port without needing to do any port mapping or translation, simplifying the application architecture.
  • Extract higher network performance from your applications as they no longer contend for bandwidth on a shared bridge.
  • Enforce finer-grained access controls for your containerized applications by associating security group rules for each Amazon ECS task, thus improving the security for your applications.

Associating security group rules with a container or containers in a task allows you to restrict the ports and IP addresses from which your application accepts network traffic. For example, you can enforce a policy allowing SSH access to your instance, but blocking the same for containers. Alternatively, you could also enforce a policy where you allow HTTP traffic on port 80 for your containers, but block the same for your instances. Enforcing such security group rules greatly reduces the surface area of attack for your instances and containers.

ECS manages the lifecycle and provisioning of elastic network interfaces for your tasks, creating them on-demand and cleaning them up after your tasks stop. You can specify the same properties for the task as you would when launching an EC2 instance. This means that containers in such tasks are:

  • Addressable by IP addresses and the DNS name of the elastic network interface
  • Attachable as ‘IP’ targets to Application Load Balancers and Network Load Balancers
  • Observable from VPC flow logs
  • Access controlled by security groups

­This also enables you to run multiple copies of the same task definition on the same instance, without needing to worry about port conflicts. You benefit from higher performance because you don’t need to perform any port translations or contend for bandwidth on the shared docker0 bridge, as you do with the bridge networking mode.

Getting started

If you don’t already have an ECS cluster, you can create one using the create cluster wizard. In this post, I use “awsvpc-demo” as the cluster name. Also, if you are following along with the command line instructions, make sure that you have the latest version of the AWS CLI or SDK.

Registering the task definition

The only change to make in your task definition for task networking is to set the networkMode parameter to awsvpc. In the ECS console, enter this value for Network Mode.

 

If you plan on registering a container in this task definition with an ECS service, also specify a container port in the task definition. This example specifies an NGINX container exposing port 80:

This creates a task definition named “nginx-awsvpc" with networking mode set to awsvpc. The following commands illustrate registering the task definition from the command line:

$ cat nginx-awsvpc.json
{
        "family": "nginx-awsvpc",
        "networkMode": "awsvpc",
        "containerDefinitions": [
            {
                "name": "nginx",
                "image": "nginx:latest",
                "cpu": 100,
                "memory": 512,
                "essential": true,
                "portMappings": [
                  {
                    "containerPort": 80,
                    "protocol": "tcp"
                  }
                ]
            }
        ]
}

$ aws ecs register-task-definition --cli-input-json file://./nginx-awsvpc.json

Running the task

To run a task with this task definition, navigate to the cluster in the Amazon ECS console and choose Run new task. Specify the task definition as “nginx-awsvpc“. Next, specify the set of subnets in which to run this task. You must have instances registered with ECS in at least one of these subnets. Otherwise, ECS can’t find a candidate instance to attach the elastic network interface.

You can use the console to narrow down the subnets by selecting a value for Cluster VPC:

 

Next, select a security group for the task. For the purposes of this example, create a new security group that allows ingress only on port 80. Alternatively, you can also select security groups that you’ve already created.

Next, run the task by choosing Run Task.

You should have a running task now. If you look at the details of the task, you see that it has an elastic network interface allocated to it, along with the IP address of the elastic network interface:

You can also use the command line to do this:

$ aws ecs run-task --cluster awsvpc-ecs-demo --network-configuration "awsvpcConfiguration={subnets=["subnet-c070009b"],securityGroups=["sg-9effe8e4"]}" nginx-awsvpc $ aws ecs describe-tasks --cluster awsvpc-ecs-demo --task $ECS_TASK_ARN --query tasks[0]
{
    "taskArn": "arn:aws:ecs:us-west-2:xx..x:task/f5xx-...",
    "group": "family:nginx-awsvpc",
    "attachments": [
        {
            "status": "ATTACHED",
            "type": "ElasticNetworkInterface",
            "id": "xx..",
            "details": [
                {
                    "name": "subnetId",
                    "value": "subnet-c070009b"
                },
                {
                    "name": "networkInterfaceId",
                    "value": "eni-b0aaa4b2"
                },
                {
                    "name": "macAddress",
                    "value": "0a:47:e4:7a:2b:02"
                },
                {
                    "name": "privateIPv4Address",
                    "value": "10.0.0.35"
                }
            ]
        }
    ],
    ...
    "desiredStatus": "RUNNING",
    "taskDefinitionArn": "arn:aws:ecs:us-west-2:xx..x:task-definition/nginx-awsvpc:2",
    "containers": [
        {
            "containerArn": "arn:aws:ecs:us-west-2:xx..x:container/62xx-...",
            "taskArn": "arn:aws:ecs:us-west-2:xx..x:task/f5x-...",
            "name": "nginx",
            "networkBindings": [],
            "lastStatus": "RUNNING",
            "networkInterfaces": [
                {
                    "privateIpv4Address": "10.0.0.35",
                    "attachmentId": "xx.."
                }
            ]
        }
    ]
}

When you describe an “awsvpc” task, details of the elastic network interface are returned via the “attachments” object. You can also get this information from the “containers” object. For example:

$ aws ecs describe-tasks --cluster awsvpc-ecs-demo --task $ECS_TASK_ARN --query tasks[0].containers[0].networkInterfaces[0].privateIpv4Address
"10.0.0.35"

Conclusion

The nginx container is now addressable in your VPC via the 10.0.0.35 IPv4 address. You did not have to modify the security group on the instance to allow requests on port 80, thus improving instance security. Also, you ensured that all ports apart from port 80 were blocked for this application without modifying the application itself, which makes it easier to manage your task on the network. You did not have to interact with any of the elastic network interface API operations, as ECS handled all of that for you.

You can read more about the task networking feature in the ECS documentation. For a detailed look at how this new networking mode is implemented on an instance, see Under the Hood: Task Networking for Amazon ECS.

Please use the comments section below to send your feedback.

Under the Hood: Task Networking for Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/under-the-hood-task-networking-for-amazon-ecs/

This post courtsey of ECS Sr. Software Dev Engineer Anirudh Aithal.

Today, AWS announced Task Networking for Amazon ECS, which enables elastic network interfaces to be attached to containers.

In this post, I take a closer look at how this new container-native “awsvpc” network mode is implemented using container networking interface plugins on ECS managed instances (referred to as container instances).

This post is a deep dive into how task networking works with Amazon ECS. If you want to learn more about how you can start using task networking for your containerized applications, see Introducing Cloud Native Networking for Amazon ECS Containers. Cloud Native Computing Foundation (CNCF) hosts the Container Networking Interface (CNI) project, which consists of a specification and libraries for writing plugins to configure network interfaces in Linux containers. For more about cloud native computing in AWS, see Adrian Cockcroft’s post on Cloud Native Computing.

Container instance setup

Before I discuss the details of enabling task networking on container instances, look at how a typical instance looks in ECS.

The diagram above shows a typical container instance. The ECS agent, which itself is running as a container, is responsible for:

  • Registering the EC2 instance with the ECS backend
  • Ensuring that task state changes communicated to it by the ECS backend are enacted on the container instance
  • Interacting with the Docker daemon to create, start, stop, and monitor
  • Relaying container state and task state transitions to the ECS backend

Because the ECS agent is just acting as the supervisor for containers under its management, it offloads the problem of setting up networking for containers to either the Docker daemon (for containers configured with one of Docker’s default networking modes) or a set of CNI plugins (for containers in task with networking mode set to awsvpc).

In either case, network stacks of containers are configured via network namespaces. As per the ip-netns(8) manual, “A network namespace is logically another copy of the network stack, with its own routes, firewall rules, and network devices.” The network namespace construct makes the partitioning of network stack between processes and containers running on a host possible.

Network namespaces and CNI plugins

CNI plugins are executable files that comply with the CNI specification and configure the network connectivity of containers. The CNI project defines a specification for the plugins and provides a library for interacting with plugins, thus providing a consistent, reliable, and simple interface with which to interact with the plugins.

You specify the container or its network namespace and invoke the plugin with the ADD command to add network interfaces to a container, and then the DEL command to tear them down. For example, the reference bridge plugin adds all containers on the same host into a bridge that resides in the host network namespace.

This plugin model fits in nicely with the ECS agent’s “minimal intrusion in the container lifecycle” model, as the agent doesn’t need to concern itself with the details of the network setup for containers. It’s also an extensible model, which allows the agent to switch to a different set of plugins if the need arises in future. Finally, the ECS agent doesn’t need to monitor the liveliness of these plugins as they are only invoked when required.

Invoking CNI plugins from the ECS agent

When ECS attaches an elastic network interface to the instance and sends the message to the agent to provision the elastic network interface for containers in a task, the elastic network interface (as with any network device) shows up in the global default network namespace of the host. The ECS agent invokes a chain of CNI plugins to ensure that the elastic network interface is configured appropriately in the container’s network namespace. You can review these plugins in the amazon-ecs-cni-plugins GitHub repo.

The first plugin invoked in this chain is the ecs-eni plugin, which ensures that the elastic network interface is attached to container’s network namespace and configured with the VPC-allocated IP addresses and the default route to use the subnet gateway. The container also needs to make HTTP requests to the credentials endpoint (hosted by the ECS agent) for getting IAM role credentials. This is handled by the ecs-bridge and ecs-ipam plugins, which are invoked next. The CNI library provides mechanisms to interpret the results from the execution of these plugins, which results in an efficient error handling in the agent. The following diagram illustrates the different steps in this process:

To avoid the race condition between configuring the network stack and commands being invoked in application containers, the ECS agent creates an additional “pause” container for each task before starting the containers in the task definition. It then sets up the network namespace of the pause container by executing the previously mentioned CNI plugins. It also starts the rest of the containers in the task so that they share their network stack of the pause container. This means that all containers in a task are addressable by the IP addresses of the elastic network interface, and they can communicate with each other over the localhost interface.

In this example setup, you have two containers in a task behind an elastic network interface. The following commands show that they have a similar view of the network stack and can talk to each other over the localhost interface.

List the last three containers running on the host (you launched a task with two containers and the ECS agent launched the additional container to configure the network namespace):

$ docker ps -n 3 --format "{{.ID}}\t{{.Names}}\t{{.Command}}\t{{.Status}}"
7d7b7fbc30b9	ecs-front-envoy-5-envoy-sds-ecs-ce8bd9eca6dd81a8d101	"/bin/sh -c '/usr/..."	Up 3 days
dfdcb2acfc91	ecs-front-envoy-5-front-envoy-faeae686adf9c1d91000	"/bin/sh -c '/usr/..."	Up 3 days
f731f6dbb81c	ecs-front-envoy-5-internalecspause-a8e6e19e909fa9c9e901	"./pause"	Up 3 days

List interfaces for these containers and make sure that they are the same:

$ for id in `docker ps -n 3 -q`; do pid=`docker inspect $id -f '{{.State.Pid}}'`; echo container $id; sudo nsenter -t $pid -n ip link show; done
container 7d7b7fbc30b9
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container dfdcb2acfc91
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container f731f6dbb81c
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

Conclusion

All of this work means that you can use the new awsvpc networking mode and benefit from native networking support for your containers. You can learn more about using awsvpc mode in Introducing Cloud Native Networking for Amazon ECS Containers or the ECS documentation.

I appreciate your feedback in the comments section. You can also reach me on GitHub in either the ECS CNI Plugins or the ECS Agent repositories.

Clean up Your Container Images with Amazon ECR Lifecycle Policies

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/clean-up-your-container-images-with-amazon-ecr-lifecycle-policies/

This post comes from the desk of Brent Langston.

Starting today, customers can keep their container image repositories tidy by automatically removing old or unused images using lifecycle policies, now available as part of Amazon E2 Container Repository (Amazon ECR).

Amazon ECR is a fully managed Docker container registry that makes it easy to store manage and deploy Docker container images without worrying about the typical challenges of scaling a service to handle pulling hundreds of images at one time. This scale means that development teams using Amazon ECR actively often find that their repositories fill up with many container image versions. This makes it difficult to find the code changes that matter and incurs unnecessary storage costs. Previously, cleaning up your repository meant spending time to manually delete old images, or writing and executing scripts.

Now, lifecycle policies allow you to define a set of rules to remove old container images automatically. You can also preview rules to see exactly which container images are affected when the rule runs. This allows repositories to be better organized, makes it easier to find the code revisions that matter, and lowers storage costs.

Look at how lifecycle policies work.

Ground Rules

One of the biggest benefits of deploying code in containers is the ability to quickly and easily roll back to a previous version. You can deploy with less risk because, if something goes wrong, it is easy to revert back to the previous container version and know that your application will run like it did before the failed deployment. Most people probably never roll back past a few versions. If your situation is similar, then one simple lifecycle rule might be to just keep the last 30 images.

Last 30 Images

In your ECR registry, choose Dry-Run Lifecycle Rules, Add.

  • For Image Status, select Untagged.
  • Under Match criteria, for Count Type, enter Image Count More Than.
  • For Count Number, enter 30.
  • For Rule action, choose expire.

Choose Save. To see which images would be cleaned up, Save and dry-run rules.

Of course, there are teams who, for compliance reasons, might prefer to keep certain images for a period of time, rather than keeping by count. For that situation, you can choose to clean up images older than 90 days.

Last 90 Days

Select the rule that you just created and choose Edit. Change the parameters to keep only 90 days of untagged images:

  • Under Match criteria, for Count Type, enter Since Image Pushed
  • For Count Number, enter 90.
  • For Count Unit, enter days.

Tags

Certainly 90 days is an arbitrary timeframe, and your team might have policies in place that would require a longer timeframe for certain kinds of images. If that’s the case, but you still want to continue with the spring cleaning, you can consider getting rid of images that are tag prefixed.

Here is the list of rules I came up with to groom untagged, development, staging, and production images:

  • Remove untagged images over 90 days old
  • Remove development tagged images over 90 days old
  • Remove staging tagged images over 180 days old
  • Remove production tagged images over 1 year old

As you can see, the new Amazon ECR lifecycle policies are powerful, and help you easily keep the images you need, while cleaning out images you may never use again. This feature is available starting today, in all regions where Amazon ECR is available, at no extra charge. For more information, see Amazon ECR Lifecycle Policies in the AWS technical documentation.

— Brent
@brentContained

Creating a Cost-Efficient Amazon ECS Cluster for Scheduled Tasks

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/creating-a-cost-efficient-amazon-ecs-cluster-for-scheduled-tasks/

Madhuri Peri
Sr. DevOps Consultant

When you use Amazon Relational Database Service (Amazon RDS), depending on the logging levels on the RDS instances and the volume of transactions, you could generate a lot of log data. To ensure that everything is running smoothly, many customers search for log error patterns using different log aggregation and visualization systems, such as Amazon Elasticsearch Service, Splunk, or other tool of their choice. A module needs to periodically retrieve the RDS logs using the SDK, and then send them to Amazon S3. From there, you can stream them to your log aggregation tool.

One option is writing an AWS Lambda function to retrieve the log files. However, because of the time that this function needs to execute, depending on the volume of log files retrieved and transferred, it is possible that Lambda could time out on many instances.  Another approach is launching an Amazon EC2 instance that runs this job periodically. However, this would require you to run an EC2 instance continuously, not an optimal use of time or money.

Using the new Amazon CloudWatch integration with Amazon EC2 Container Service, you can trigger this job to run in a container on an existing Amazon ECS cluster. Additionally, this would allow you to improve costs by running containers on a fleet of Spot Instances.

In this post, I will show you how to use the new scheduled tasks (cron) feature in Amazon ECS and launch tasks using CloudWatch events, while leveraging Spot Fleet to maximize availability and cost optimization for containerized workloads.

Architecture

The following diagram shows how the various components described schedule a task that retrieves log files from Amazon RDS database instances, and deposits the logs into an S3 bucket.

Amazon ECS cluster container instances are using Spot Fleet, which is a perfect match for the workload that needs to run when it can. This improves cluster costs.

The task definition defines which Docker image to retrieve from the Amazon EC2 Container Registry (Amazon ECR) repository and run on the Amazon ECS cluster.

The container image has Python code functions to make AWS API calls using boto3. It iterates over the RDS database instances, retrieves the logs, and deposits them in the S3 bucket. Many customers choose these logs to be delivered to their centralized log-store. CloudWatch Events defines the schedule for when the container task has to be launched.

Walkthrough

To provide the basic framework, we have built an AWS CloudFormation template that creates the following resources:

  • Amazon ECR repository for storing the Docker image to be used in the task definition
  • S3 bucket that holds the transferred logs
  • Task definition, with image name and S3 bucket as environment variables provided via input parameter
  • CloudWatch Events rule
  • Amazon ECS cluster
  • Amazon ECS container instances using Spot Fleet
  • IAM roles required for the container instance profiles

Before you begin

Ensure that Git, Docker, and the AWS CLI are installed on your computer.

In your AWS account, instantiate one Amazon Aurora instance using the console. For more information, see Creating an Amazon Aurora DB Cluster.

Implementation Steps

  1. Clone the code from GitHub that performs RDS API calls to retrieve the log files.
    git clone https://github.com/awslabs/aws-ecs-scheduled-tasks.git
  2. Build and tag the image.
    cd aws-ecs-scheduled-tasks/container-code/src && ls

    Dockerfile		rdslogsshipper.py	requirements.txt

    docker build -t rdslogsshipper .

    Sending build context to Docker daemon 9.728 kB
    Step 1 : FROM python:3
     ---> 41397f4f2887
    Step 2 : WORKDIR /usr/src/app
     ---> Using cache
     ---> 59299c020e7e
    Step 3 : COPY requirements.txt ./
     ---> 8c017e931c3b
    Removing intermediate container df09e1bed9f2
    Step 4 : COPY rdslogsshipper.py /usr/src/app
     ---> 099a49ca4325
    Removing intermediate container 1b1da24a6699
    Step 5 : RUN pip install --no-cache-dir -r requirements.txt
     ---> Running in 3ed98b30901d
    Collecting boto3 (from -r requirements.txt (line 1))
      Downloading boto3-1.4.6-py2.py3-none-any.whl (128kB)
    Collecting botocore (from -r requirements.txt (line 2))
      Downloading botocore-1.6.7-py2.py3-none-any.whl (3.6MB)
    Collecting s3transfer<0.2.0,>=0.1.10 (from boto3->-r requirements.txt (line 1))
      Downloading s3transfer-0.1.10-py2.py3-none-any.whl (54kB)
    Collecting jmespath<1.0.0,>=0.7.1 (from boto3->-r requirements.txt (line 1))
      Downloading jmespath-0.9.3-py2.py3-none-any.whl
    Collecting python-dateutil<3.0.0,>=2.1 (from botocore->-r requirements.txt (line 2))
      Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)
    Collecting docutils>=0.10 (from botocore->-r requirements.txt (line 2))
      Downloading docutils-0.14-py3-none-any.whl (543kB)
    Collecting six>=1.5 (from python-dateutil<3.0.0,>=2.1->botocore->-r requirements.txt (line 2))
      Downloading six-1.10.0-py2.py3-none-any.whl
    Installing collected packages: six, python-dateutil, docutils, jmespath, botocore, s3transfer, boto3
    Successfully installed boto3-1.4.6 botocore-1.6.7 docutils-0.14 jmespath-0.9.3 python-dateutil-2.6.1 s3transfer-0.1.10 six-1.10.0
     ---> f892d3cb7383
    Removing intermediate container 3ed98b30901d
    Step 6 : COPY . .
     ---> ea7550c04fea
    Removing intermediate container b558b3ebd406
    Successfully built ea7550c04fea
  3. Run the CloudFormation stack and get the names for the Amazon ECR repo and S3 bucket. In the stack, choose Outputs.
  4. Open the ECS console and choose Repositories. The rdslogs repo has been created. Choose View Push Commands and follow the instructions to connect to the repository and push the image for the code that you built in Step 2. The screenshot shows the final result:
  5. Associate the CloudWatch scheduled task with the created Amazon ECS Task Definition, using a new CloudWatch event rule that is scheduled to run at intervals. The following rule is scheduled to run every 15 minutes:
    aws --profile default --region us-west-2 events put-rule --name demo-ecs-task-rule  --schedule-expression "rate(15 minutes)"

    {
        "RuleArn": "arn:aws:events:us-west-2:12345678901:rule/demo-ecs-task-rule"
    }
  6. CloudWatch requires IAM permissions to place a task on the Amazon ECS cluster when the CloudWatch event rule is executed, in addition to an IAM role that can be assumed by CloudWatch Events. This is done in three steps:
    1. Create the IAM role to be assumed by CloudWatch.
      aws --profile default --region us-west-2 iam create-role --role-name Test-Role --assume-role-policy-document file://event-role.json

      {
          "Role": {
              "AssumeRolePolicyDocument": {
                  "Version": "2012-10-17", 
                  "Statement": [
                      {
                          "Action": "sts:AssumeRole", 
                          "Effect": "Allow", 
                          "Principal": {
                              "Service": "events.amazonaws.com"
                          }
                      }
                  ]
              }, 
              "RoleId": "AROAIRYYLDCVZCUACT7FS", 
              "CreateDate": "2017-07-14T22:44:52.627Z", 
              "RoleName": "Test-Role", 
              "Path": "/", 
              "Arn": "arn:aws:iam::12345678901:role/Test-Role"
          }
      }

      The following is an example of the event-role.json file used earlier:

      {
          "Version": "2012-10-17",
          "Statement": [
              {
                  "Effect": "Allow",
                  "Principal": {
                    "Service": "events.amazonaws.com"
                  },
                  "Action": "sts:AssumeRole"
              }
          ]
      }
    2. Create the IAM policy defining the ECS cluster and task definition. You need to get these values from the CloudFormation outputs and resources.
      aws --profile default --region us-west-2 iam create-policy --policy-name test-policy --policy-document file://event-policy.json

      {
          "Policy": {
              "PolicyName": "test-policy", 
              "CreateDate": "2017-07-14T22:51:20.293Z", 
              "AttachmentCount": 0, 
              "IsAttachable": true, 
              "PolicyId": "ANPAI7XDIQOLTBUMDWGJW", 
              "DefaultVersionId": "v1", 
              "Path": "/", 
              "Arn": "arn:aws:iam::123455678901:policy/test-policy", 
              "UpdateDate": "2017-07-14T22:51:20.293Z"
          }
      }

      The following is an example of the event-policy.json file used earlier:

      {
          "Version": "2012-10-17",
          "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ecs:RunTask"
                ],
                "Resource": [
                    "arn:aws:ecs:*::task-definition/"
                ],
                "Condition": {
                    "ArnLike": {
                        "ecs:cluster": "arn:aws:ecs:*::cluster/"
                    }
                }
            }
          ]
      }
    3. Attach the IAM policy to the role.
      aws --profile default --region us-west-2 iam attach-role-policy --role-name Test-Role --policy-arn arn:aws:iam::1234567890:policy/test-policy
  7. Associate the CloudWatch rule created earlier to place the task on the ECS cluster. The following command shows an example. Replace the AWS account ID and region with your settings.
    aws events put-targets --rule demo-ecs-task-rule --targets "Id"="1","Arn"="arn:aws:ecs:us-west-2:12345678901:cluster/test-cwe-blog-ecsCluster-15HJFWCH4SP67","EcsParameters"={"TaskDefinitionArn"="arn:aws:ecs:us-west-2:12345678901:task-definition/test-cwe-blog-taskdef:8"},"RoleArn"="arn:aws:iam::12345678901:role/Test-Role"

    {
        "FailedEntries": [], 
        "FailedEntryCount": 0
    }

That’s it. The logs now run based on the defined schedule.

To test this, open the Amazon ECS console, select the Amazon ECS cluster that you created, and then choose Tasks, Run New Task. Select the task definition created by the CloudFormation template, and the cluster should be selected automatically. As this runs, the S3 bucket should be populated with the RDS logs for the instance.

Conclusion

In this post, you’ve seen that the choices for workloads that need to run at a scheduled time include Lambda with CloudWatch events or EC2 with cron. However, sometimes the job could run outside of Lambda execution time limits or be not cost-effective for an EC2 instance.

In such cases, you can schedule the tasks on an ECS cluster using CloudWatch rules. In addition, you can use a Spot Fleet cluster with Amazon ECS for cost-conscious workloads that do not have hard requirements on execution time or instance availability in the Spot Fleet. For more information, see Powering your Amazon ECS Cluster with Amazon EC2 Spot Instances and Scheduled Events.

If you have questions or suggestions, please comment below.

Deploying Java Microservices on Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/deploying-java-microservices-on-amazon-ec2-container-service/

This post and accompanying code graciously contributed by:

Huy Huynh
Sr. Solutions Architect
Magnus Bjorkman
Solutions Architect

Java is a popular language used by many enterprises today. To simplify and accelerate Java application development, many companies are moving from a monolithic to microservices architecture. For some, it has become a strategic imperative. Containerization technology, such as Docker, lets enterprises build scalable, robust microservice architectures without major code rewrites.

In this post, I cover how to containerize a monolithic Java application to run on Docker. Then, I show how to deploy it on AWS using Amazon EC2 Container Service (Amazon ECS), a high-performance container management service. Finally, I show how to break the monolith into multiple services, all running in containers on Amazon ECS.

Application Architecture

For this example, I use the Spring Pet Clinic, a monolithic Java application for managing a veterinary practice. It is a simple REST API, which allows the client to manage and view Owners, Pets, Vets, and Visits.

It is a simple three-tier architecture:

  • Client
    You simulate this by using curl commands.
  • Web/app server
    This is the Java and Spring-based application that you run using the embedded Tomcat. As part of this post, you run this within Docker containers.
  • Database server
    This is the relational database for your application that stores information about owners, pets, vets, and visits. For this post, use MySQL RDS.

I decided to not put the database inside a container as containers were designed for applications and are transient in nature. The choice was made even easier because you have a fully managed database service available with Amazon RDS.

RDS manages the work involved in setting up a relational database, from provisioning the infrastructure capacity that you request to installing the database software. After your database is up and running, RDS automates common administrative tasks, such as performing backups and patching the software that powers your database. With optional Multi-AZ deployments, Amazon RDS also manages synchronous data replication across Availability Zones with automatic failover.

Walkthrough

You can find the code for the example covered in this post at amazon-ecs-java-microservices on GitHub.

Prerequisites

You need the following to walk through this solution:

  • An AWS account
  • An access key and secret key for a user in the account
  • The AWS CLI installed

Also, install the latest versions of the following:

  • Java
  • Maven
  • Python
  • Docker

Step 1: Move the existing Java Spring application to a container deployed using Amazon ECS

First, move the existing monolith application to a container and deploy it using Amazon ECS. This is a great first step before breaking the monolith apart because you still get some benefits before breaking apart the monolith:

  • An improved pipeline. The container also allows an engineering organization to create a standard pipeline for the application lifecycle.
  • No mutations to machines.

You can find the monolith example at 1_ECS_Java_Spring_PetClinic.

Container deployment overview

The following diagram is an overview of what the setup looks like for Amazon ECS and related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The load balancer that distributes requests across all available ports and instances registered in the application’s target group using round-robin.
  • The target group that is updated by Amazon ECS to always have an up-to-date list of all the service containers in the cluster. This includes the port on which they are accessible.
  • One Amazon ECS cluster that hosts the container for the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Each container has a single application process that is bound to port 8080 within its namespace. In reality, all the containers are exposed on a different, randomly assigned port on the host.

The architecture is containerized but still monolithic because each container has all the same features of the rest of the containers

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon EC2 Container Registry (Amazon ECR) repository for the application.
  • A service/task definition that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers, so that the application can connect to the MySQL RDS instance.

I have automated setup with the 1_ECS_Java_Spring_PetClinic/ecs-cluster.cf AWS CloudFormation template and a Python script.

The Python script calls the CloudFormation template for the initial setup of the VPC, Amazon ECS cluster, and RDS instance. It then extracts the outputs from the template and uses those for API calls to create Amazon ECR repositories, tasks, services, Application Load Balancer, and target groups.

Environment variables and Spring properties binding

As part of the Python script, you pass in a number of environment variables to the container as part of the task/container definition:

'environment': [
{
'name': 'SPRING_PROFILES_ACTIVE',
'value': 'mysql'
},
{
'name': 'SPRING_DATASOURCE_URL',
'value': my_sql_options['dns_name']
},
{
'name': 'SPRING_DATASOURCE_USERNAME',
'value': my_sql_options['username']
},
{
'name': 'SPRING_DATASOURCE_PASSWORD',
'value': my_sql_options['password']
}
],

The preceding environment variables work in concert with the Spring property system. The value in the variable SPRING_PROFILES_ACTIVE, makes Spring use the MySQL version of the application property file. The other environment files override the following properties in that file:

  • spring.datasource.url
  • spring.datasource.username
  • spring.datasource.password

Optionally, you can also encrypt sensitive values by using Amazon EC2 Systems Manager Parameter Store. Instead of handing in the password, you pass in a reference to the parameter and fetch the value as part of the container startup. For more information, see Managing Secrets for Amazon ECS Applications Using Parameter Store and IAM Roles for Tasks.

Spotify Docker Maven plugin

Use the Spotify Docker Maven plugin to create the image and push it directly to Amazon ECR. This allows you to do this as part of the regular Maven build. It also integrates the image generation as part of the overall build process. Use an explicit Dockerfile as input to the plugin.

FROM frolvlad/alpine-oraclejdk8:slim
VOLUME /tmp
ADD spring-petclinic-rest-1.7.jar app.jar
RUN sh -c 'touch /app.jar'
ENV JAVA_OPTS=""
ENTRYPOINT [ "sh", "-c", "java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar" ]

The Python script discussed earlier uses the AWS CLI to authenticate you with AWS. The script places the token in the appropriate location so that the plugin can work directly against the Amazon ECR repository.

Test setup

You can test the setup by running the Python script:
python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:
curl <your endpoint from output above>/owner

You can clean this up before going to the next section:
python setup.py -m cleanup -r <your region>

Step 2: Converting the monolith into microservices running on Amazon ECS

The second step is to convert the monolith into microservices. For a real application, you would likely not do this as one step, but re-architect an application piece by piece. You would continue to run your monolith but it would keep getting smaller for each piece that you are breaking apart.

By migrating microservices, you would get four benefits associated with microservices:

  • Isolation of crashes
    If one microservice in your application is crashing, then only that part of your application goes down. The rest of your application continues to work properly.
  • Isolation of security
    When microservice best practices are followed, the result is that if an attacker compromises one service, they only gain access to the resources of that service. They can’t horizontally access other resources from other services without breaking into those services as well.
  • Independent scaling
    When features are broken out into microservices, then the amount of infrastructure and number of instances of each microservice class can be scaled up and down independently.
  • Development velocity
    In a monolith, adding a new feature can potentially impact every other feature that the monolith contains. On the other hand, a proper microservice architecture has new code for a new feature going into a new service. You can be confident that any code you write won’t impact the existing code at all, unless you explicitly write a connection between two microservices.

Find the monolith example at 2_ECS_Java_Spring_PetClinic_Microservices.
You break apart the Spring Pet Clinic application by creating a microservice for each REST API operation, as well as creating one for the system services.

Java code changes

Comparing the project structure between the monolith and the microservices version, you can see that each service is now its own separate build.
First, the monolith version:

You can clearly see how each API operation is its own subpackage under the org.springframework.samples.petclinic package, all part of the same monolithic application.
This changes as you break it apart in the microservices version:

Now, each API operation is its own separate build, which you can build independently and deploy. You have also duplicated some code across the different microservices, such as the classes under the model subpackage. This is intentional as you don’t want to introduce artificial dependencies among the microservices and allow these to evolve differently for each microservice.

Also, make the dependencies among the API operations more loosely coupled. In the monolithic version, the components are tightly coupled and use object-based invocation.

Here is an example of this from the OwnerController operation, where the class is directly calling PetRepository to get information about pets. PetRepository is the Repository class (Spring data access layer) to the Pet table in the RDS instance for the Pet API:

@RestController
class OwnerController {

    @Inject
    private PetRepository pets;
    @Inject
    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> visitList.addAll(pet.getVisits()));
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);
    }
}

In the microservice version, call the Pet API operation and not PetRepository directly. Decouple the components by using interprocess communication; in this case, the Rest API. This provides for fault tolerance and disposability.

@RestController
class OwnerController {

    @Value("#{environment['SERVICE_ENDPOINT'] ?: 'localhost:8080'}")
    private String serviceEndpoint;

    @Inject
    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> {
            logger.info(getPetVisits(pet.getId()).toString());
            visitList.addAll(getPetVisits(pet.getId()));
        });
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);
    }

    private List<Visit> getPetVisits(int petId){
        List<Visit> visitList = new ArrayList<Visit>();
        RestTemplate restTemplate = new RestTemplate();
        Pet pet = restTemplate.getForObject("http://"+serviceEndpoint+"/pet/"+petId, Pet.class);
        logger.info(pet.getVisits().toString());
        return pet.getVisits();
    }
}

You now have an additional method that calls the API. You are also handing in the service endpoint that should be called, so that you can easily inject dynamic endpoints based on the current deployment.

Container deployment overview

Here is an overview of what the setup looks like for Amazon ECS and the related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The Application Load Balancer that inspects the client request. Based on routing rules, it directs the request to an instance and port from the target group that matches the rule.
  • The Application Load Balancer that has a target group for each microservice. The target groups are used by the corresponding services to register available container instances. Each target group has a path, so when you call the path for a particular microservice, it is mapped to the correct target group. This allows you to use one Application Load Balancer to serve all the different microservices, accessed by the path. For example, https:///owner/* would be mapped and directed to the Owner microservice.
  • One Amazon ECS cluster that hosts the containers for each microservice of the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Because you are running multiple containers on the same instances, use dynamic port mapping to avoid port clashing. By using dynamic port mapping, the container is allocated an anonymous port on the host to which the container port (8080) is mapped. The anonymous port is registered with the Application Load Balancer and target group so that traffic is routed correctly.

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon ECR repository for each microservice.
  • A service/task definition per microservice that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers. That way, the application can connect to the MySQL RDS instance.

I have again automated setup with the 2_ECS_Java_Spring_PetClinic_Microservices/ecs-cluster.cf CloudFormation template and a Python script.

The CloudFormation template remains the same as in the previous section. In the Python script, you are now building five different Java applications, one for each microservice (also includes a system application). There is a separate Maven POM file for each one. The resulting Docker image gets pushed to its own Amazon ECR repository, and is deployed separately using its own service/task definition. This is critical to get the benefits described earlier for microservices.

Here is an example of the POM file for the Owner microservice:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.springframework.samples</groupId>
    <artifactId>spring-petclinic-rest</artifactId>
    <version>1.7</version>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.5.2.RELEASE</version>
    </parent>
    <properties>
        <!-- Generic properties -->
        <java.version>1.8</java.version>
        <docker.registry.host>${env.docker_registry_host}</docker.registry.host>
    </properties>
    <dependencies>
        <dependency>
            <groupId>javax.inject</groupId>
            <artifactId>javax.inject</artifactId>
            <version>1</version>
        </dependency>
        <!-- Spring and Spring Boot dependencies -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-rest</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-cache</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <!-- Databases - Uses HSQL by default -->
        <dependency>
            <groupId>org.hsqldb</groupId>
            <artifactId>hsqldb</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <scope>runtime</scope>
        </dependency>
        <!-- caching -->
        <dependency>
            <groupId>javax.cache</groupId>
            <artifactId>cache-api</artifactId>
        </dependency>
        <dependency>
            <groupId>org.ehcache</groupId>
            <artifactId>ehcache</artifactId>
        </dependency>
        <!-- end of webjars -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
            <plugin>
                <groupId>com.spotify</groupId>
                <artifactId>docker-maven-plugin</artifactId>
                <version>0.4.13</version>
                <configuration>
                    <imageName>${env.docker_registry_host}/${project.artifactId}</imageName>
                    <dockerDirectory>src/main/docker</dockerDirectory>
                    <useConfigFile>true</useConfigFile>
                    <registryUrl>${env.docker_registry_host}</registryUrl>
                    <!--dockerHost>https://${docker.registry.host}</dockerHost-->
                    <resources>
                        <resource>
                            <targetPath>/</targetPath>
                            <directory>${project.build.directory}</directory>
                            <include>${project.build.finalName}.jar</include>
                        </resource>
                    </resources>
                    <forceTags>false</forceTags>
                    <imageTags>
                        <imageTag>${project.version}</imageTag>
                    </imageTags>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

Test setup

You can test this by running the Python script:

python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:

curl <your endpoint from output above>/owner

Conclusion

Migrating a monolithic application to a containerized set of microservices can seem like a daunting task. Following the steps outlined in this post, you can begin to containerize monolithic Java apps, taking advantage of the container runtime environment, and beginning the process of re-architecting into microservices. On the whole, containerized microservices are faster to develop, easier to iterate on, and more cost effective to maintain and secure.

This post focused on the first steps of microservice migration. You can learn more about optimizing and scaling your microservices with components such as service discovery, blue/green deployment, circuit breakers, and configuration servers at http://aws.amazon.com/containers.

If you have questions or suggestions, please comment below.

Blue/Green Deployments with Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/bluegreen-deployments-with-amazon-ecs/

This post and accompanying code was generously contributed by:

Jeremy Cowan
Solutions Architect
Anuj Sharma
DevOps Cloud Architect
Peter Dalbhanjan
Solutions Architect

Deploying software updates in traditional non-containerized environments is hard and fraught with risk. When you write your deployment package or script, you have to assume that the target machine is in a particular state. If your staging environment is not an exact mirror image of your production environment, your deployment could fail. These failures frequently cause outages that persist until you re-deploy the last known good version of your application. If you are an Operations Manager, this is what keeps you up at night.

Increasingly, customers want to do testing in production environments without exposing customers to the new version until the release has been vetted. Others want to expose a small percentage of their customers to the new release to gather feedback about a feature before it’s released to the broader population. This is often referred to as canary analysis or canary testing. In this post, I introduce patterns to implement blue/green and canary deployments using Application Load Balancers and target groups.

If you’d like to try this approach to blue/green deployments, we have open sourced the code and AWS CloudFormation templates in the ecs-blue-green-deployment GitHub repo. The workflow builds an automated CI/CD pipeline that deploys your service onto an ECS cluster and offers a controlled process to swap target groups when you’re ready to promote the latest version of your code to production. You can quickly set up the environment in three steps and see the blue/green swap in action. We’d love for you to try it and send us your feedback!

Benefits of blue/green

Blue/green deployments are a type of immutable deployment that help you deploy software updates with less risk. The risk is reduced by creating separate environments for the current running or “blue” version of your application, and the new or “green” version of your application.

This type of deployment gives you an opportunity to test features in the green environment without impacting the current running version of your application. When you’re satisfied that the green version is working properly, you can gradually reroute the traffic from the old blue environment to the new green environment by modifying DNS. By following this method, you can update and roll back features with near zero downtime.

A typical blue/green deployment involves shifting traffic between 2 distinct environments.

This ability to quickly roll traffic back to the still-operating blue environment is one of the key benefits of blue/green deployments. With blue/green, you should be able to roll back to the blue environment at any time during the deployment process. This limits downtime to the time it takes to realize there’s an issue in the green environment and shift the traffic back to the blue environment. Furthermore, the impact of the outage is limited to the portion of traffic going to the green environment, not all traffic. If the blast radius of deployment errors is reduced, so is the overall deployment risk.

Containers make it simpler

Historically, blue/green deployments were not often used to deploy software on-premises because of the cost and complexity associated with provisioning and managing multiple environments. Instead, applications were upgraded in place.

Although this approach worked, it had several flaws, including the ability to roll back quickly from failures. Rollbacks typically involved re-deploying a previous version of the application, which could affect the length of an outage caused by a bad release. Fixing the issue took precedence over the need to debug, so there were fewer opportunities to learn from your mistakes.

Containers can ease the adoption of blue/green deployments because they’re easily packaged and behave consistently as they’re moved between environments. This consistency comes partly from their immutability. To change the configuration of a container, update its Dockerfile and rebuild and re-deploy the container rather than updating the software in place.

Containers also provide process and namespace isolation for your applications, which allows you to run multiple versions of them side by side on the same Docker host without conflicts. Given their small sizes relative to virtual machines, you can binpack more containers per host than VMs. This lets you make more efficient use of your computing resources, reducing the cost of blue/green deployments.

Fully Managed Updates with Amazon ECS

Amazon EC2 Container Service (ECS) performs rolling updates when you update an existing Amazon ECS service. A rolling update involves replacing the current running version of the container with the latest version. The number of containers Amazon ECS adds or removes from service during a rolling update is controlled by adjusting the minimum and maximum number of healthy tasks allowed during service deployments.

When you update your service’s task definition with the latest version of your container image, Amazon ECS automatically starts replacing the old version of your container with the latest version. During a deployment, Amazon ECS drains connections from the current running version and registers your new containers with the Application Load Balancer as they come online.

Target groups

A target group is a logical construct that allows you to run multiple services behind the same Application Load Balancer. This is possible because each target group has its own listener.

When you create an Amazon ECS service that’s fronted by an Application Load Balancer, you have to designate a target group for your service. Ordinarily, you would create a target group for each of your Amazon ECS services. However, the approach we’re going to explore here involves creating two target groups: one for the blue version of your service, and one for the green version of your service. We’re also using a different listener port for each target group so that you can test the green version of your service using the same path as the blue service.

With this configuration, you can run both environments in parallel until you’re ready to cut over to the green version of your service. You can also do things such as restricting access to the green version to testers on your internal network, using security group rules and placement constraints. For example, you can target the green version of your service to only run on instances that are accessible from your corporate network.

Swapping Over

When you’re ready to replace the old blue service with the new green service, call the ModifyListener API operation to swap the listener’s rules for the target group rules. The change happens instantaneously. Afterward, the green service is running in the target group with the port 80 listener and the blue service is running in the target group with the port 8080 listener. The diagram below is an illustration of the approach described.

Scenario

Two services are defined, each with their own target group registered to the same Application Load Balancer but listening on different ports. Deployment is completed by swapping the listener rules between the two target groups.

The second service is deployed with a new target group listening on a different port but registered to the same Application Load Balancer.

By using 2 listeners, requests to blue services are directed to the target group with the port 80 listener, while requests to the green services are directed to target group with the port 8080 listener.

After automated or manual testing, the deployment can be completed by swapping the listener rules on the Application Load Balancer and sending traffic to the green service.

Caveats

There are a few caveats to be mindful of when using this approach. This method:

  • Assumes that your application code is completely stateless. Store state outside of the container.
  • Doesn’t gracefully drain connections. The swapping of target groups is sudden and abrupt. Therefore, be cautious about using this approach if your service has long-running transactions.
  • Doesn’t allow you to perform canary deployments. While the method gives you the ability to quickly switch between different versions of your service, it does not allow you to divert a portion of the production traffic to a canary or control the rate at which your service is deployed across the cluster.

Canary testing

While this type of deployment automates much of the heavy lifting associated with rolling deployments, it doesn’t allow you to interrupt the deployment if you discover an issue midstream. Rollbacks using the standard Amazon ECS deployment require updating the service’s task definition with the last known good version of the container. Then, you wait for Amazon ECS to schedule and deploy it across the cluster. If the latest version introduces a breaking change that went undiscovered during testing, this might be too slow.

With canary testing, if you discover the green environment is not operating as expected, there is no impact on the blue environment. You can route traffic back to it, minimizing impaired operation or downtime, and limiting the blast radius of impact.

This type of deployment is particularly useful for A/B testing where you want to expose a new feature to a subset of users to get their feedback before making it broadly available.

For canary style deployments, you can use a variation of the blue/green swap that involves deploying the blue and the green service to the same target group. Although this method is not as fast as the swap, it allows you to control the rate at which your containers are replaced by adjusting the task count for each service. Furthermore, it gives you the ability to roll back by adjusting the number of tasks for the blue and green services respectively. Unlike the swap approach described above, connections to your containers are drained gracefully. We plan to address canary style deployments for Amazon ECS in a future post.

Conclusion

With AWS, you can operationalize your blue/green deployments using Amazon ECS, an Application Load Balancer, and target groups. I encourage you to adapt the code published to the ecs-blue-green-deployment GitHub repo for your use cases and look forward to reading your feedback.

If you’re interested in learning more, I encourage you to read the Blue/Green Deployments on AWS and Practicing Continuous Integration and Continuous Delivery on AWS whitepapers.

If you have questions or suggestions, please comment below.