Tag Archives: deployment

How to get your organization started with containerized deployments

Post Syndicated from Sarah Khalife original https://github.blog/2020-10-15-how-to-get-your-organization-started-with-containerized-deployments/

This is our second post on cloud deployment with containers. Looking for more? Join our upcoming GitHub Actions webcast with Sarah, Solutions Engineer Benedict Oleforo, and Senior Product Manager Kayla Ngan on October 22.

In the past few years, businesses have moved towards cloud-native operating models to help streamline operations and move away from costly infrastructure. When running applications in dynamic environments with Docker, Kubernetes, and other tooling, a container becomes the tool of choice as a consistent, atomic unit of packaging, deployment, and application management. This sounds straightforward: build a new application, package it into containers, and scale elastically across the infrastructure of your choice. Then you can automatically update with new images as needed and focus more on solving problems for your end users and customers.

However, organizations don’t work in vacuums. They’re part of a larger ecosystem of customers, partners, and open source communities, with unique cultures, existing processes, applications, and tooling investments in place. This adds new challenges and complexity for adopting cloud native tools such as containers, Kubernetes, and other container schedulers.

Challenges for adopting container-based strategies in organizations

At GitHub, we’re fortunate to work with many customers on their container and DevOps strategy. When it comes to adopting containers, there are a few consistent challenges we see across organizations.

  • Containerizing and maintaining applications: Most organizations have existing applications and need to make the decision about whether to keep them as-is, or to place them in containers for an easier transition to the cloud. Even then, teams need to determine whether a single container for the application is appropriate (in a lift-and-shift motion to the cloud), or if more extensive work is needed to break it down into multiple services, delivered as a set of containers.
  • Efficiently configuring and managing permissions: Adopting containers often translates to better collaboration for everyone in your organization. DevOps is now more than just core developers and IT operators. It includes release and infosec engineers, data scientists, QA, project managers, and other roles. But collaborating across multiple teams introduces new needs for configuring and managing permissions for code, along with the automation to support it.
  • Standardizing best practices across the organization: Containers help teams scale and integrate quickly, but may also require updating your CI/CD practices to match. You have to validate they work well for existing applications, while incorporating the correct user and package permissions and policies.. The best practices you set have to be flexible for others too. Individual teams—who are transitioning to new ways of working—need to be able to optimize for their own goals.

Connecting teams and cloud-native tools with GitHub

Despite the few challenges of adopting containers and leveraging Kubernetes, more and more organizations continue to use them. Stepping over those hurdles allows enterprises to automate and streamline their operations, here with a few examples of how enterprises make it work successfully with support from package managers and CI/CD tools. At GitHub, we’ve introduced container support in GitHub Packages, CI/CD through GitHub Actions, and partnered within the ecosystem to simplify cloud-native workflows. Finding the right container tools should mean less work, not more—easily integrating alongside other tools, projects, and processes your organization already uses.

See container best practices in action

Want to simplify container deployments in your organization? Join me, Solutions Engineer Benedict Oleforo, and Senior Product Manager Kayla Ngan on October 22 to learn more about successfully adopting containers. We’ll walk through how to use them in the real world and demo best practices for deploying an application to Azure with GitHub Container Registry.

When
October 22, 2020
11:00 am PT / 2:00 pm ET

Sign up for the webcast.

Complete CI/CD with AWS CodeCommit, AWS CodeBuild, AWS CodeDeploy, and AWS CodePipeline

Post Syndicated from Nitin Verma original https://aws.amazon.com/blogs/devops/complete-ci-cd-with-aws-codecommit-aws-codebuild-aws-codedeploy-and-aws-codepipeline/

Many organizations have been shifting to DevOps practices, which is the combination of cultural philosophies, practices, and tools that increases your organization’s ability to deliver applications and services at high velocity; for example, evolving and improving products at a faster pace than organizations using traditional software development and infrastructure management processes.

DevOps-Feedback-Flow

An integral part of DevOps is adopting the culture of continuous integration and continuous delivery/deployment (CI/CD), where a commit or change to code passes through various automated stage gates, all the way from building and testing to deploying applications, from development to production environments.

This post uses the AWS suite of CI/CD services to compile, build, and install a version-controlled Java application onto a set of Amazon Elastic Compute Cloud (Amazon EC2) Linux instances via a fully automated and secure pipeline. The goal is to promote a code commit or change to pass through various automated stage gates all the way from development to production environments, across AWS accounts.

AWS services

This solution uses the following AWS services:

  • AWS CodeCommit – A fully-managed source control service that hosts secure Git-based repositories. CodeCommit makes it easy for teams to collaborate on code in a secure and highly scalable ecosystem. This solution uses CodeCommit to create a repository to store the application and deployment codes.
  • AWS CodeBuild – A fully managed continuous integration service that compiles source code, runs tests, and produces software packages that are ready to deploy, on a dynamically created build server. This solution uses CodeBuild to build and test the code, which we deploy later.
  • AWS CodeDeploy – A fully managed deployment service that automates software deployments to a variety of compute services such as Amazon EC2, AWS Fargate, AWS Lambda, and your on-premises servers. This solution uses CodeDeploy to deploy the code or application onto a set of EC2 instances running CodeDeploy agents.
  • AWS CodePipeline – A fully managed continuous delivery service that helps you automate your release pipelines for fast and reliable application and infrastructure updates. This solution uses CodePipeline to create an end-to-end pipeline that fetches the application code from CodeCommit, builds and tests using CodeBuild, and finally deploys using CodeDeploy.
  • AWS CloudWatch Events – An AWS CloudWatch Events rule is created to trigger the CodePipeline on a Git commit to the CodeCommit repository.
  • Amazon Simple Storage Service (Amazon S3) – An object storage service that offers industry-leading scalability, data availability, security, and performance. This solution uses an S3 bucket to store the build and deployment artifacts created during the pipeline run.
  • AWS Key Management Service (AWS KMS) – AWS KMS makes it easy for you to create and manage cryptographic keys and control their use across a wide range of AWS services and in your applications. This solution uses AWS KMS to make sure that the build and deployment artifacts stored on the S3 bucket are encrypted at rest.

Overview of solution

This solution uses two separate AWS accounts: a dev account (111111111111) and a prod account (222222222222) in Region us-east-1.

We use the dev account to deploy and set up the CI/CD pipeline, along with the source code repo. It also builds and tests the code locally and performs a test deploy.

The prod account is any other account where the application is required to be deployed from the pipeline in the dev account.

In summary, the solution has the following workflow:

  • A change or commit to the code in the CodeCommit application repository triggers CodePipeline with the help of a CloudWatch event.
  • The pipeline downloads the code from the CodeCommit repository, initiates the Build and Test action using CodeBuild, and securely saves the built artifact on the S3 bucket.
  • If the preceding step is successful, the pipeline triggers the Deploy in Dev action using CodeDeploy and deploys the app in dev account.
  • If successful, the pipeline triggers the Deploy in Prod action using CodeDeploy and deploys the app in the prod account.

The following diagram illustrates the workflow:

cicd-overall-flow

 

Failsafe deployments

This example of CodeDeploy uses the IN_PLACE type of deployment. However, to minimize the downtime, CodeDeploy inherently supports multiple deployment strategies. This example makes use of following features: rolling deployments and automatic rollback.

CodeDeploy provides the following three predefined deployment configurations, to minimize the impact during application upgrades:

  • CodeDeployDefault.OneAtATime – Deploys the application revision to only one instance at a time
  • CodeDeployDefault.HalfAtATime – Deploys to up to half of the instances at a time (with fractions rounded down)
  • CodeDeployDefault.AllAtOnce – Attempts to deploy an application revision to as many instances as possible at once

For OneAtATime and HalfAtATime, CodeDeploy monitors and evaluates instance health during the deployment and only proceeds to the next instance or next half if the previous deployment is healthy. For more information, see Working with deployment configurations in CodeDeploy.

You can also configure a deployment group or deployment to automatically roll back when a deployment fails or when a monitoring threshold you specify is met. In this case, the last known good version of an application revision is automatically redeployed after a failure with the new application version.

How CodePipeline in the dev account deploys apps in the prod account

In this post, the deployment pipeline using CodePipeline is set up in the dev account, but it has permissions to deploy the application in the prod account. We create a special cross-account role in the prod account, which has the following:

  • Permission to use fetch artifacts (app) rom Amazon S3 and deploy it locally in the account using CodeDeploy
  • Trust with the dev account where the pipeline runs

CodePipeline in the dev account assumes this cross-account role in the prod account to deploy the app.

Do I need multiple accounts?
If you answer “yes” to any of the following questions you should consider creating more AWS accounts:

  • Does your business require administrative isolation between workloads? Administrative isolation by account is the most straightforward way to grant independent administrative groups different levels of administrative control over AWS resources based on workload, development lifecycle, business unit (BU), or data sensitivity.
  • Does your business require limited visibility and discoverability of workloads? Accounts provide a natural boundary for visibility and discoverability. Workloads cannot be accessed or viewed unless an administrator of the account enables access to users managed in another account.
  • Does your business require isolation to minimize blast radius? Separate accounts help define boundaries and provide natural blast-radius isolation to limit the impact of a critical event such as a security breach, an unavailable AWS Region or Availability Zone, account suspensions, and so on.
  • Does your business require a particular workload to operate within AWS service limits without impacting the limits of another workload? You can use AWS account service limits to impose restrictions on a business unit, development team, or project. For example, if you create an AWS account for a project group, you can limit the number of Amazon Elastic Compute Cloud (Amazon EC2) or high performance computing (HPC) instances that can be launched by the account.
  • Does your business require strong isolation of recovery or auditing data? If regulatory requirements require you to control access and visibility to auditing data, you can isolate the data in an account separate from the one where you run your workloads (for example, by writing AWS CloudTrail logs to a different account).

Prerequisites

For this walkthrough, you should complete the following prerequisites:

  1. Have access to at least two AWS accounts. For this post, the dev and prod accounts are in us-east-1. You can search and replace the Region and account IDs in all the steps and sample AWS Identity and Access Management (IAM) policies in this post.
  2. Ensure you have EC2 Linux instances with the CodeDeploy agent installed in all the accounts or VPCs where the sample Java application is to be installed (dev and prod accounts).
    • To manually create EC2 instances with CodeDeploy agent, refer Create an Amazon EC2 instance for CodeDeploy (AWS CLI or Amazon EC2 console). Keep in mind the following:
      • CodeDeploy uses EC2 instance tags to identify instances to use to deploy the application, so it’s important to set tags appropriately. For this post, we use the tag name Application with the value MyWebApp to identify instances where the sample app is installed.
      • Make sure to use an EC2 instance profile (AWS Service Role for EC2 instance) with permissions to read the S3 bucket containing artifacts built by CodeBuild. Refer to the IAM role cicd_ec2_instance_profile in the table Roles-1 below for the set of permissions required. You must update this role later with the actual KMS key and S3 bucket name created as part of the deployment process.
    • To create EC2 Linux instances via AWS Cloudformation, download and launch the AWS CloudFormation template from the GitHub repo: cicd-ec2-instance-with-codedeploy.json
      • This deploys an EC2 instance with AWS CodeDeploy agent.
      • Inputs required:
        • AMI : Enter name of the Linux AMI in your region. (This template has been tested with latest Amazon Linux 2 AMI)
        • Ec2SshKeyPairName: Name of an existing SSH KeyPair
        • Ec2IamInstanceProfile: Name of an existing EC2 instance profile. Note: Use the permissions in the template cicd_ec2_instance_profile_policy.json to create the policy for this EC2 Instance Profile role. You must update this role later with the actual KMS key and S3 bucket name created as part of the deployment process.
        • Update the EC2 instance Tags per your need.
  3. Ensure required IAM permissions. Have an IAM user with an IAM Group or Role that has the following access levels or permissions:

    AWS Service / Components Access LevelAccountsComments
    AWS CodeCommitFull (admin)DevUse AWS managed policy AWSCodeCommitFullAccess.
    AWS CodePipelineFull (admin)DevUse AWS managed policy AWSCodePipelineFullAccess.
    AWS CodeBuildFull (admin)DevUse AWS managed policy AWSCodeBuildAdminAccess.
    AWS CodeDeployFull (admin)All

    Use AWS managed policy

    AWSCodeDeployFullAccess.

    Create S3 bucket and bucket policiesFull (admin)DevIAM policies can be restricted to specific bucket.
    Create KMS key and policiesFull (admin)DevIAM policies can be restricted to specific KMS key.
    AWS CloudFormationFull (admin)Dev

    Use AWS managed policy

    AWSCloudFormationFullAccess.

    Create and pass IAM rolesFull (admin)AllAbility to create IAM roles and policies can be restricted to specific IAM roles or actions. Also, an admin team with IAM privileges could create all the required roles. Refer to the IAM table Roles-1 below.
    AWS Management Console and AWS CLIAs per IAM User permissionsAllTo access suite of Code services.

     

  4. Create Git credentials for CodeCommit in the pipeline account (dev account). AWS allows you to either use Git credentials or associate SSH public keys with your IAM user. For this post, use Git credentials associated with your IAM user (created in the previous step). For instructions on creating a Git user, see Create Git credentials for HTTPS connections to CodeCommit. Download and save the Git credentials to use later for deploying the application.
  5. Create all AWS IAM roles as per the following tables (Roles-1). Make sure to update the following references in all the given IAM roles and policies:
    • Replace the sample dev account (111111111111) and prod account (222222222222) with actual account IDs
    • Replace the S3 bucket mywebapp-codepipeline-bucket-us-east-1-111111111111 with your preferred bucket name.
    • Replace the KMS key ID key/82215457-e360-47fc-87dc-a04681c91ce1 with your KMS key ID.

Table: Roles-1

ServiceIAM Role TypeAccountIAM Role Name (used for this post)IAM Role Policy (required for this post)IAM Role Permissions
AWS CodePipelineService roleDev (111111111111)

cicd_codepipeline_service_role

Select Another AWS Account and use this account as the account ID to create the role.

Later update the trust as follows:
“Principal”: {“Service”: “codepipeline.amazonaws.com”},

Use the permissions in the template cicd_codepipeline_service_policy.json to create the policy for this role.This CodePipeline service role has appropriate permissions to the following services in a local account:

  • Manage CodeCommit repos
  • Initiate build via CodeBuild
  • Create deployments via CodeDeploy
  • Assume cross-account CodeDeploy role in prod account to deploy the application
AWS CodePipelineIAM roleDev (111111111111)

cicd_codepipeline_trigger_cwe_role

Select Another AWS Account and use this account as the account ID to create the role.

Later update the trust as follows:
“Principal”: {“Service”: “events.amazonaws.com”},

Use the permissions in the template cicd_codepipeline_trigger_cwe_policy.json to create the policy for this role.CodePipeline uses this role to set a CloudWatch event to trigger the pipeline when there is a change or commit made to the code repository.
AWS CodePipelineIAM roleProd (222222222222)

cicd_codepipeline_cross_ac_role

Choose Another AWS Account and use the dev account as the trusted account ID to create the role.

Use the permissions in the template cicd_codepipeline_cross_ac_policy.json to create the policy for this role.This role is created in the prod account and has permissions to use CodeDeploy and fetch from Amazon S3. The role is assumed by CodePipeline from the dev account to deploy the app in the prod account. Make sure to set up trust with the dev account for this IAM role on the Trust relationships tab.
AWS CodeBuildService roleDev (111111111111)

cicd_codebuild_service_role

Choose CodeBuild as the use case to create the role.

Use the permissions in the template cicd_codebuild_service_policy.json to create the policy for this role.This CodeBuild service role has appropriate permissions to:

  • The S3 bucket to store artefacts
  • Stream logs to CloudWatch Logs
  • Pull code from CodeCommit
  • Get the SSM parameter for CodeBuild
  • Miscellaneous Amazon EC2 permissions
AWS CodeDeployService roleDev (111111111111) and Prod (222222222222)

cicd_codedeploy_service_role

Choose CodeDeploy as the use case to create the role.

Use the built-in AWS managed policy AWSCodeDeployRole for this role.This CodeDeploy service role has appropriate permissions to:

  • Miscellaneous Amazon EC2 Auto Scaling
  • Miscellaneous Amazon EC2
  • Publish Amazon SNS topic
  • AWS CloudWatch metrics
  • Elastic Load Balancing
EC2 InstanceService role for EC2 instance profileDev (111111111111) and Prod (222222222222)

cicd_ec2_instance_profile

Choose EC2 as the use case to create the role.

Use the permissions in the template cicd_ec2_instance_profile_policy.json to create the policy for this role.

This is set as the EC2 instance profile for the EC2 instances where the app is deployed. It has appropriate permissions to fetch artefacts from Amazon S3 and decrypt contents using the KMS key.

 

You must update this role later with the actual KMS key and S3 bucket name created as part of the deployment process.

 

 

Setting up the prod account

To set up the prod account, complete the following steps:

  1. Download and launch the AWS CloudFormation template from the GitHub repo: cicd-codedeploy-prod.json
    • This deploys the CodeDeploy app and deployment group.
    • Make sure that you already have a set of EC2 Linux instances with the CodeDeploy agent installed in all the accounts where the sample Java application is to be installed (dev and prod accounts). If not, refer back to the Prerequisites section.
  2. Update the existing EC2 IAM instance profile (cicd_ec2_instance_profile):
    • Replace the S3 bucket name mywebapp-codepipeline-bucket-us-east-1-111111111111 with your S3 bucket name (the one used for the CodePipelineArtifactS3Bucket variable when you launched the CloudFormation template in the dev account).
    • Replace the KMS key ARN arn:aws:kms:us-east-1:111111111111:key/82215457-e360-47fc-87dc-a04681c91ce1 with your KMS key ARN (the one created as part of the CloudFormation template launch in the dev account).

Setting up the dev account

To set up your dev account, complete the following steps:

  1. Download and launch the CloudFormation template from the GitHub repo: cicd-aws-code-suite-dev.json
    The stack deploys the following services in the dev account:

    • CodeCommit repository
    • CodePipeline
    • CodeBuild environment
    • CodeDeploy app and deployment group
    • CloudWatch event rule
    • KMS key (used to encrypt the S3 bucket)
    • S3 bucket and bucket policy
  2. Use following values as inputs to the CloudFormation template. You should have created all the existing resources and roles beforehand as part of the prerequisites.

    KeyExample ValueComments
    CodeCommitWebAppRepoMyWebAppRepoName of the new CodeCommit repository for your web app.
    CodeCommitMainBranchNamemasterMain branch name on your CodeCommit repository. Default is master (which is pushed to the prod environment).
    CodeBuildProjectNameMyCBWebAppProjectName of the new CodeBuild environment.
    CodeBuildServiceRolearn:aws:iam::111111111111:role/cicd_codebuild_service_roleARN of an existing IAM service role to be associated with CodeBuild to build web app code.
    CodeDeployAppMyCDWebAppName of the new CodeDeploy app to be created for your web app. We assume that the CodeDeploy app name is the same in all accounts where deployment needs to occur (in this case, the prod account).
    CodeDeployGroupDevMyCICD-Deployment-Group-DevName of the new CodeDeploy deployment group to be created in the dev account.
    CodeDeployGroupProdMyCICD-Deployment-Group-ProdName of the existing CodeDeploy deployment group in prod account. Created as part of the prod account setup.

    CodeDeployGroupTagKey

     

    ApplicationName of the tag key that CodeDeploy uses to identify the existing EC2 fleet for the deployment group to use.

    CodeDeployGroupTagValue

     

    MyWebAppValue of the tag that CodeDeploy uses to identify the existing EC2 fleet for the deployment group to use.
    CodeDeployConfigNameCodeDeployDefault.OneAtATime

    Desired Code Deploy config name. Valid options are:

    CodeDeployDefault.OneAtATime

    CodeDeployDefault.HalfAtATime

    CodeDeployDefault.AllAtOnce

    For more information, see Deployment configurations on an EC2/on-premises compute platform.

    CodeDeployServiceRolearn:aws:iam::111111111111:role/cicd_codedeploy_service_role

    ARN of an existing IAM service role to be associated with CodeDeploy to deploy web app.

     

    CodePipelineNameMyWebAppPipelineName of the new CodePipeline to be created for your web app.
    CodePipelineArtifactS3Bucketmywebapp-codepipeline-bucket-us-east-1-111111111111Name of the new S3 bucket to be created where artifacts for the pipeline are stored for this web app.
    CodePipelineServiceRolearn:aws:iam::111111111111:role/cicd_codepipeline_service_roleARN of an existing IAM service role to be associated with CodePipeline to deploy web app.
    CodePipelineCWEventTriggerRolearn:aws:iam::111111111111:role/cicd_codepipeline_trigger_cwe_roleARN of an existing IAM role used to trigger the pipeline you named earlier upon a code push to the CodeCommit repository.
    CodeDeployRoleXAProdarn:aws:iam::222222222222:role/cicd_codepipeline_cross_ac_roleARN of an existing IAM role in the cross-account for CodePipeline to assume to deploy the app.

    It should take 5–10 minutes for the CloudFormation stack to complete. When the stack is complete, you can see that CodePipeline has built the pipeline (MyWebAppPipeline) with the CodeCommit repository and CodeBuild environment, along with actions for CodeDeploy in local (dev) and cross-account (prod). CodePipeline should be in a failed state because your CodeCommit repository is empty initially.

  3. Update the existing Amazon EC2 IAM instance profile (cicd_ec2_instance_profile):
    • Replace the S3 bucket name mywebapp-codepipeline-bucket-us-east-1-111111111111 with your S3 bucket name (the one used for the CodePipelineArtifactS3Bucket parameter when launching the CloudFormation template in the dev account).
    • Replace the KMS key ARN arn:aws:kms:us-east-1:111111111111:key/82215457-e360-47fc-87dc-a04681c91ce1 with your KMS key ARN (the one created as part of the CloudFormation template launch in the dev account).

Deploying the application

You’re now ready to deploy the application via your desktop or PC.

  1. Assuming you have the required HTTPS Git credentials for CodeCommit as part of the prerequisites, clone the CodeCommit repo that was created earlier as part of the dev account setup. Obtain the name of the CodeCommit repo to clone, from the CodeCommit console. Enter the Git user name and password when prompted. For example:
    $ git clone https://git-codecommit.us-east-1.amazonaws.com/v1/repos/MyWebAppRepo my-web-app-repo
    Cloning into 'my-web-app-repo'...
    Username for 'https://git-codecommit.us-east-1.amazonaws.com/v1/repos/MyWebAppRepo': xxxx
    Password for 'https://[email protected]/v1/repos/MyWebAppRepo': xxxx

  2. Download the MyWebAppRepo.zip file containing a sample Java application, CodeBuild configuration to build the app, and CodeDeploy config file to deploy the app.
  3. Copy and unzip the file into the my-web-app-repo Git repository folder created earlier.
  4. Assuming this is the sample app to be deployed, commit these changes to the Git repo. For example:
    $ cd my-web-app-repo 
    $ git add -A 
    $ git commit -m "initial commit" 
    $ git push

For more information, see Tutorial: Create a simple pipeline (CodeCommit repository).

After you commit the code, the CodePipeline will be triggered and all the stages and your application should be built, tested, and deployed all the way to the production environment!

The following screenshot shows the entire pipeline and its latest run:

 

Troubleshooting

To troubleshoot any service-related issues, see the following:

Cleaning up

To avoid incurring future charges or to remove any unwanted resources, delete the following:

  • EC2 instance used to deploy the application
  • CloudFormation template to remove all AWS resources created through this post
  •  IAM users or roles

Conclusion

Using this solution, you can easily set up and manage an entire CI/CD pipeline in AWS accounts using the native AWS suite of CI/CD services, where a commit or change to code passes through various automated stage gates all the way from building and testing to deploying applications, from development to production environments.

FAQs

In this section, we answer some frequently asked questions:

  1. Can I expand this deployment to more than two accounts?
    • Yes. You can deploy a pipeline in a tooling account and use dev, non-prod, and prod accounts to deploy code on EC2 instances via CodeDeploy. Changes are required to the templates and policies accordingly.
  2. Can I ensure the application isn’t automatically deployed in the prod account via CodePipeline and needs manual approval?
  3. Can I use a CodeDeploy group with an Auto Scaling group?
    • Yes. Minor changes required to the CodeDeploy group creation process. Refer to the following Solution Variations section for more information.
  4. Can I use this pattern for EC2 Windows instances?

Solution variations

In this section, we provide a few variations to our solution:

Author bio

author-pic

 Nitin Verma

Nitin is currently a Sr. Cloud Architect in the AWS Managed Services(AMS). He has many years of experience with DevOps-related tools and technologies. Speak to your AWS Managed Services representative to deploy this solution in AMS!

 

Our Journey to Continuous Delivery at Grab (Part 1)

Post Syndicated from Grab Tech original https://engineering.grab.com/our-journey-to-continuous-delivery-at-grab

This blog post is a two-part presentation of the effort that went into improving the continuous delivery processes for backend services at Grab in the past two years. In the first part, we take stock of where we started two years ago and describe the software and tools we created while introducing some of the integrations we’ve done to automate our software delivery in our staging environment.


Continuous Delivery is the principle of delivering software often, every day.

As a backend engineer at Grab, nothing matters more than the ability to innovate quickly and safely. Around the end of 2018, Grab’s transportation and deliveries backend architecture consisted of roughly 270 services (the majority being microservices). The deployment process was lengthy, required careful inputs and clear communication. The care needed to push changes in production and the risk associated with manual operations led to the introduction of a Slack bot to coordinate deployments. The bot ensures that deployments occur only during off-peak and within work hours:

Overview of the Grab Delivery Process
Overview of the Grab Delivery Process

Once the build was completed, engineers who desired to deploy their software to the Staging environment would copy release versions from the build logs, and paste them in a Jenkins job’s parameter. Tests needed to be manually triggered from another dedicated Jenkins job.

Prior to production deployments, engineers would generate their release notes via a script and update them manually in a wiki document. Deployments would be scheduled through interactions with a Slack bot that controls release notes and deployment windows. Production deployments were made once again by pasting the correct parameters into two dedicated Jenkins jobs, one for the canary (a.k.a. one-box) deployment and the other for the full deployment, spread one hour apart. During the monitoring phase, engineers would continuously observe metrics reported on our dashboards.

In spite of the fragmented process and risky manual operations impacting our velocity and stability, around 614 builds were running each business day and changes were deployed on our staging environment at an average rate of 300 new code releases per business day, while production changes averaged a rate of 28 new code releases per business day.

Our Deployment Funnel, Towards the End of 2018
Our Deployment Funnel, Towards the End of 2018

These figures meant that, on average, it took 10 business days between each service update in production, and only 10% of the staging deployments were eventually promoted to production.

Automating Continuous Deployments at Grab

With an increased focus on Engineering efficiency, in 2018 we started an internal initiative to address frictions in deployments that became known as Conveyor. To build Conveyor with a small team of engineers, we had to rely on an already mature platform which exhibited properties that are desirable to us to achieve our mission.

Hands-off deployments

Deployments should be an afterthought. Engineers should be as removed from the process as possible, and whenever possible, decisions should be taken early, during the code review process. The machine will do the heavy lifting, and only when it can’t decide for itself, should the engineer be involved. Notifications can be leveraged to ensure that engineers are only informed when something goes wrong and a human decision is required.

Hands-off Deployment Principle
Hands-off Deployment Principle

Confidence in Deployments

Grab’s focus on gathering internal Engineering NPS feedback helped us collect valuable metrics. One of the metrics we cared about was our engineers’ confidence in their production deployments. A team’s entire deployment process to production could last for more than a day and may extend up to a week for teams with large infrastructures running critical services. The possibility of losing progress in deployments when individual steps may last for hours is detrimental to the improvement of Engineering efficiency in the organisation. The deployment automation platform is the bedrock of that confidence. If the platform itself fails regularly or does provide a path of upgrade that is transparent to end-users, any features built on top of it would suffer from these downtimes and ultimately erode confidence in deployments.

Tailored To Most But Extensible For The Few

Our backend engineering teams are working on diverse stacks, and so are their deployment processes. Right from the start, we wanted our product to benefit the largest population of engineers that had adopted the same process, so as to maximize returns on our investments. To ease adoption, we decided to tailor a deployment pipeline such that:

  1. It would model the exact sequence of manual processes followed by this population of engineers.
  2. Switching to use that pipeline should require as little work as possible by service teams.

However, in cases where this model would not fit a team’s specific process, our deployment platform should be open and extensible and support new customizations even when they are not originally supported by the product’s ecosystem.

Cloud-Agnosticity

While we were going to target a specific process and team, to ensure that our solution would stand the test of time, we needed to ensure that our solution would support the variety of environments currently used in production. This variety was also likely to increase, and we wanted a platform that would mature together with the rest of our ecosystem.

Overview Of Conveyor

Setting Sail With Spinnaker

Conveyor is based on Spinnaker, an open-source, multi-cloud continuous delivery platform. We’ve chosen Spinnaker over other platforms because it is a mature deployment platform with no single point of failure, supports complex workflows (referred to as pipelines in Spinnaker), and already supports a large array of cloud providers. Since Spinnaker is open-source and extensible, it allowed us to add the features we needed for the specificity of our ecosystem.

To further ease adoption within our organization, we built a tailored  user interface and created our own domain-specific language (DSL) to manage its pipelines as code.

Outline of Conveyor's Architecture
Outline of Conveyor’s Architecture

Onboarding To A Simpler Interface

Spinnaker comes with its own interface, it has all the features an engineer would want from an advanced continuous delivery system. However, Spinnaker interface is vastly different from Jenkins and makes for a steep learning curve.

To reduce our barrier to adoption, we decided early on to create a simple interface for our users. In this interface, deployment pipelines take the center stage of our application. Pipelines are objects managed by Spinnaker, they model the different steps in the workflow of each deployment. Each pipeline is made up of stages that can be assembled like lego-bricks to form the final pipeline. An instance of a pipeline is called an execution.

Conveyor dashboard. Sensitive information like authors and service names are redacted.
Conveyor Dashboard

With this interface, each engineer can focus on what matters to them immediately: the pipeline they have started, or those started by other teammates working on the same services as they are. Conveyor also provides a search bar (on the top) and filters (on the left) that work in concert to explore all pipelines executed at Grab.

We adopted a consistent set of colours to model all information in our interface:

  • blue: represent stages that are currently running;
  • red: stages that have failed or important information;
  • yellow: stages that require human interaction;
  • and finally, in green: stages that were successfully completed.

Conveyor also provides a task and notifications area, where all stages requiring human intervention are listed in one location. Manual interactions are often no more than just YES or NO questions:

Conveyor tasks. Sensitive information like author/service names is redacted.
Conveyor Tasks

Finally, in addition to supporting automated deployments, we greatly simplified the start of manual deployments. Instead of being required to copy/paste information, each parameter can be selected on the interface from a set of predefined items, sorted chronologically, and presented with contextual information to help engineers in their decision.

Several parameters are required for our deployments and their values are selected from the UI to ensure correctness.

Simplified manual deployments
Simplified Manual Deployments

Ease Of Adoption With Our Pipeline-As-Code DSL

Ease of adoption for the team is not simply about the learning curve of the new tools. We needed to make it easy for teams to configure their services to deploy with Conveyor. Since we focused on automating tasks that were already performed manually, we needed only to configure the layer that would enable the integration.

We set on creating a pipeline-as-code implementation when none were widely being developed in the Spinnaker community. It’s interesting to see that two years on, this idea has grown in parallel in the community, with the birth of other pipeline-as-code implementations. Our pipeline-as-code is referred to as the Pipeline DSL, and its configuration is located inside each team’s repository. Artificer is the name of our Pipeline DSL interpreter and it runs with every change inside our monorepository:

Artificer: Our Pipeline DSL
Artificer: Our Pipeline DSL

Pipelines are being updated at every commit if necessary.

Creating a conveyor.jsonnet file inside with the service’s directory of our monorepository with the few lines below is all that’s required for Artificer to do its work and get the benefits of automation provided by Conveyor’s pipeline:

local default = import 'default.libsonnet';
[
 {
 name: "service-name",
 group: [
 "group-name",
 ]
 }
]

Sample minimal conveyor.jsonnet configuration to onboard services.

In this file, engineers simply specify the name of their service and the group that a user should belong to, to have deployment rights for the service.

Once the build is completed, teams can log in to Conveyor and start manual deployments of their services with our pipelines. Three pipelines are provided by default: the integration pipeline used for tests and developments, the staging pipeline used for pre-production tests, and the production pipeline for production deployment.

Thanks to the simplicity of this minimal configuration file, we were able to generate these configuration files for all existing services of our monorepository. This resulted in the automatic onboarding of a large number of teams and was a major contributing factor to the adoption of Conveyor throughout our organisation.

Our Journey To Engineering Efficiency (for backend services)

The sections below relate some of the improvements in engineering efficiency we’ve delivered since Conveyor’s inception. They were not made precisely in this order but for readability, they have been mapped to each step of the software development lifecycle.

Automate Deployments at Build Time

Continuous Integration Job
Continuous Integration Job

Continuous delivery begins with a pushed code commit in our trunk-based development flow. Whenever a developer pushes changes onto their development branch or onto the trunk, a continuous integration job is triggered on Jenkins. The products of this job (binaries, docker images, etc) are all uploaded into our artefact repositories. We’ve made two additions to our continuous integration process.

The first modification happens at the step “Upload & Register artefacts”. At this step, each artefact created is now registered in Conveyor with its associated metadata. When and if an engineer needs to trigger a deployment manually, Conveyor can display the list of versions to choose from, eliminating the need for error-prone manual inputs:

 Staging
Staging

Each selectable version shows contextual information: title, author, version and link to the code change where it originated. During registration, the commit time is also recorded and used to order entries chronologically in the interface. To ensure this integration is not a single point of failure for deployments, manual input is still available optionally.

The second modification implements one of the essential feature continuous delivery: your deployments should happen often, automatically. Engineers are now given the possibility to start automatic deployments once continuous integration has successfully completed, by simply modifying their project’s continuous integration settings:

 "AfterBuild": [
  {
      "AutoDeploy": {
      "OnDiff": false,
      "OnLand": true
    }
    "TYPE": "conveyor"
  }
 ],

Sample settings needed to trigger auto-deployments. ‘Diff’ refers to code review submissions, and ‘Land’ refers to merged code changes.

Staging Pipeline

Before deploying a new artefact to a service in production, changes are validated on the staging environment. During the staging deployment, we verify that canary (one-box) deployments and full deployments with automated smoke and functional tests suites.

Staging Pipeline
Staging Pipeline

We start by acquiring a deployment lock for this service and this environment. This prevents another deployment of the same service on the same environment to happen concurrently, other deployments will be waiting in a FIFO queue until the lock is released.

The stage “Compute Changeset” ensures that the deployment is not a rollback. It verifies that the new version deployed does not correspond to a rollback by comparing the ancestry of the commits provided during the artefact registration at build time: since we automate deployments after the build process has completed, cases of rollback may occur when two changes are created in quick succession and the latest build completes earlier than the older one.

After the stage “Deploy Canary” has completed, smoke test run. There are three kinds of tests executed at different stages of the pipeline: smoke, functional and security tests. Smoke tests directly reach the canary instance’s endpoint, by-passing load-balancers. If the smoke tests fail,  the canary is immediately rolled back and this deployment is terminated.

All tests are generated from the same builds as the artefact being tested and their versions must match during testing. To ensure that the right version of the test run and distinguish between the different kind of tests to perform, we provide additional metadata that will be passed by Conveyor to the tests system, known internally as Gandalf:

local default = import 'default.libsonnet';
[
  {
    name: "service-name",
    group: [
    "group-name",
    ],
    gandalf_smoke_tests: [
    {
        path: "repo.internal/path/to/my/smoke/tests"
      }
      ],
      gandalf_functional_tests: [
      {
        path: "repo.internal/path/to/my/functional/tests"
      }
      gandalf_security_tests: [
      {
        path: "repo.internal/path/to/my/security/tests"
      }
      ]
    }
]

Sample conveyor.jsonnet configuration with integration tests added.

Additionally, in parallel to the execution of the smoke tests, the canary is also being monitored from the moment its deployment has completed and for a predetermined duration. We leverage our integration with Datadog to allow engineers to select the alerts to monitor. If an alert is triggered during the monitoring period, and while the tests are executed, the canary is again rolled back, and the pipeline is terminated. Engineers can specify the alerts by adding them to the conveyor.jsonnet configuration file together with the monitoring duration:

local default = import 'default.libsonnet';
[
 {
   name: "service-name",
   group: [
   "group-name",
   ],
    gandalf_smoke_tests: [
    {
      path: "repo.internal/path/to/my/smoke/tests"
   }
   ],
   gandalf_functional_tests: [
   {
   path: "repo.internal/path/to/my/functional/tests"
  }
     gandalf_security_tests: [
     {
     path: "repo.internal/path/to/my/security/tests"
     }
     ],
     monitor: {
     stg: {
     duration_seconds: 300,
     alarms: [
     {
   type: "datadog",
   alert_id: 12345678
   },
   {
   type: "datadog",
   alert_id: 23456789
      }
      ]
      }
    }
  }
]

Sample conveyor.jsonnet configuration with alerts in staging added.

When the smoke tests and monitor pass and the deployment of new artefacts is completed, the pipeline execution triggers functional and security tests. Unlike smoke tests, functional & security tests run only after that step, as they communicate with the cluster through load-balancers, impersonating other services.

Before releasing the lock, release notes are generated to inform engineers of the delta of changes between the version they just released and the one currently running in production. Once the lock is released, the stage “Check Policies” verifies that the parameters and variable of the deployment obeys a specific set of criteria, for example: if its service metadata is up-to-date in our service inventory, or if the base image used during deployment is sufficiently recent.

Here’s how the policy stage, the engine, and the providers interact with each other:

Check Policy Stage
Check Policy Stage

In Spinnaker, each event of a pipeline’s execution updates the pipeline’s state in the database. The current state of the pipeline can be fetched by its API as a single JSON document, describing all information related to its execution: including its parameters, the contextual information related to each stage or even the response from the various interfacing components. The role of our “Policy Check” stage is to query this JSON representation of the pipeline, to extract and transform the variables which are forwarded to our policy engine for validation. Our policy engine gathers judgements passed by different policy providers. If the validation by the policy engine fails, the deployment is not rolled back this time; however, promotion to production is not possible and the pipeline is immediately terminated.

The journey through staging deployment finally ends with the stage “Register Deployment”. This stage registers that a successful deployment was made in our staging environment as an artefact. Similarly to the policy check above, certain parameters of the deployment are picked up and consolidated into this document. We use this kind of artefact as proof for upcoming production deployment.

Continuing Our Journey to Engineering Efficiency

With the advancements made in continuous integration and deployment to staging, Conveyor has reduced the efforts needed by our engineers to just three clicks in its interface, when automated deployment is used. Even when the deployment is triggered manually, Conveyor gives the assurance that the parameters selected are valid and it does away with copy/pasting and human interactions across heterogeneous tools.

In the sequel to this blog post, we’ll dive into the improvements that we’ve made to our production deployments and introduce a crucial concept that led to the creation of our proof for successful staging deployment. Finally, we’ll cover the impact that Conveyor had on the continuous delivery of our backend services, by comparing our deployment velocity when we started two years ago versus where we are today.


All these improvements in efficiency for our engineers would never have been possible without the hard work of all team members involved in the project, past and present: Evan Sebastian, Tanun Chalermsinsuwan, Aufar Gilbran, Deepak Ramakrishnaiah, Repon Kumar Roy (Kowshik), Su Han, Voislav Dimitrijevikj, Qijia Wang, Oscar Ng, Jacob Sunny, Subhodip Mandal, and many others who have contributed and collaborated with them.


Join us

Grab is more than just the leading ride-hailing and mobile payments platform in Southeast Asia. We use data and technology to improve everything from transportation to payments and financial services across a region of more than 620 million people. We aspire to unlock the true potential of Southeast Asia and look for like-minded individuals to join us on this ride.

If you share our vision of driving South East Asia forward, apply to join our team today.

AWS Online Tech Talks – June 2018

Post Syndicated from Devin Watson original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-june-2018/

AWS Online Tech Talks – June 2018

Join us this month to learn about AWS services and solutions. New this month, we have a fireside chat with the GM of Amazon WorkSpaces and our 2nd episode of the “How to re:Invent” series. We’ll also cover best practices, deep dives, use cases and more! Join us and register today!

Note – All sessions are free and in Pacific Time.

Tech talks featured this month:

 

Analytics & Big Data

June 18, 2018 | 11:00 AM – 11:45 AM PTGet Started with Real-Time Streaming Data in Under 5 Minutes – Learn how to use Amazon Kinesis to capture, store, and analyze streaming data in real-time including IoT device data, VPC flow logs, and clickstream data.
June 20, 2018 | 11:00 AM – 11:45 AM PT – Insights For Everyone – Deploying Data across your Organization – Learn how to deploy data at scale using AWS Analytics and QuickSight’s new reader role and usage based pricing.

 

AWS re:Invent
June 13, 2018 | 05:00 PM – 05:30 PM PTEpisode 2: AWS re:Invent Breakout Content Secret Sauce – Hear from one of our own AWS content experts as we dive deep into the re:Invent content strategy and how we maintain a high bar.
Compute

June 25, 2018 | 01:00 PM – 01:45 PM PTAccelerating Containerized Workloads with Amazon EC2 Spot Instances – Learn how to efficiently deploy containerized workloads and easily manage clusters at any scale at a fraction of the cost with Spot Instances.

June 26, 2018 | 01:00 PM – 01:45 PM PTEnsuring Your Windows Server Workloads Are Well-Architected – Get the benefits, best practices and tools on running your Microsoft Workloads on AWS leveraging a well-architected approach.

 

Containers
June 25, 2018 | 09:00 AM – 09:45 AM PTRunning Kubernetes on AWS – Learn about the basics of running Kubernetes on AWS including how setup masters, networking, security, and add auto-scaling to your cluster.

 

Databases

June 18, 2018 | 01:00 PM – 01:45 PM PTOracle to Amazon Aurora Migration, Step by Step – Learn how to migrate your Oracle database to Amazon Aurora.
DevOps

June 20, 2018 | 09:00 AM – 09:45 AM PTSet Up a CI/CD Pipeline for Deploying Containers Using the AWS Developer Tools – Learn how to set up a CI/CD pipeline for deploying containers using the AWS Developer Tools.

 

Enterprise & Hybrid
June 18, 2018 | 09:00 AM – 09:45 AM PTDe-risking Enterprise Migration with AWS Managed Services – Learn how enterprise customers are de-risking cloud adoption with AWS Managed Services.

June 19, 2018 | 11:00 AM – 11:45 AM PTLaunch AWS Faster using Automated Landing Zones – Learn how the AWS Landing Zone can automate the set up of best practice baselines when setting up new

 

AWS Environments

June 21, 2018 | 11:00 AM – 11:45 AM PTLeading Your Team Through a Cloud Transformation – Learn how you can help lead your organization through a cloud transformation.

June 21, 2018 | 01:00 PM – 01:45 PM PTEnabling New Retail Customer Experiences with Big Data – Learn how AWS can help retailers realize actual value from their big data and deliver on differentiated retail customer experiences.

June 28, 2018 | 01:00 PM – 01:45 PM PTFireside Chat: End User Collaboration on AWS – Learn how End User Compute services can help you deliver access to desktops and applications anywhere, anytime, using any device.
IoT

June 27, 2018 | 11:00 AM – 11:45 AM PTAWS IoT in the Connected Home – Learn how to use AWS IoT to build innovative Connected Home products.

 

Machine Learning

June 19, 2018 | 09:00 AM – 09:45 AM PTIntegrating Amazon SageMaker into your Enterprise – Learn how to integrate Amazon SageMaker and other AWS Services within an Enterprise environment.

June 21, 2018 | 09:00 AM – 09:45 AM PTBuilding Text Analytics Applications on AWS using Amazon Comprehend – Learn how you can unlock the value of your unstructured data with NLP-based text analytics.

 

Management Tools

June 20, 2018 | 01:00 PM – 01:45 PM PTOptimizing Application Performance and Costs with Auto Scaling – Learn how selecting the right scaling option can help optimize application performance and costs.

 

Mobile
June 25, 2018 | 11:00 AM – 11:45 AM PTDrive User Engagement with Amazon Pinpoint – Learn how Amazon Pinpoint simplifies and streamlines effective user engagement.

 

Security, Identity & Compliance

June 26, 2018 | 09:00 AM – 09:45 AM PTUnderstanding AWS Secrets Manager – Learn how AWS Secrets Manager helps you rotate and manage access to secrets centrally.
June 28, 2018 | 09:00 AM – 09:45 AM PTUsing Amazon Inspector to Discover Potential Security Issues – See how Amazon Inspector can be used to discover security issues of your instances.

 

Serverless

June 19, 2018 | 01:00 PM – 01:45 PM PTProductionize Serverless Application Building and Deployments with AWS SAM – Learn expert tips and techniques for building and deploying serverless applications at scale with AWS SAM.

 

Storage

June 26, 2018 | 11:00 AM – 11:45 AM PTDeep Dive: Hybrid Cloud Storage with AWS Storage Gateway – Learn how you can reduce your on-premises infrastructure by using the AWS Storage Gateway to connecting your applications to the scalable and reliable AWS storage services.
June 27, 2018 | 01:00 PM – 01:45 PM PTChanging the Game: Extending Compute Capabilities to the Edge – Discover how to change the game for IIoT and edge analytics applications with AWS Snowball Edge plus enhanced Compute instances.
June 28, 2018 | 11:00 AM – 11:45 AM PTBig Data and Analytics Workloads on Amazon EFS – Get best practices and deployment advice for running big data and analytics workloads on Amazon EFS.

Storing Encrypted Credentials In Git

Post Syndicated from Bozho original https://techblog.bozho.net/storing-encrypted-credentials-in-git/

We all know that we should not commit any passwords or keys to the repo with our code (no matter if public or private). Yet, thousands of production passwords can be found on GitHub (and probably thousands more in internal company repositories). Some have tried to fix that by removing the passwords (once they learned it’s not a good idea to store them publicly), but passwords have remained in the git history.

Knowing what not to do is the first and very important step. But how do we store production credentials. Database credentials, system secrets (e.g. for HMACs), access keys for 3rd party services like payment providers or social networks. There doesn’t seem to be an agreed upon solution.

I’ve previously argued with the 12-factor app recommendation to use environment variables – if you have a few that might be okay, but when the number of variables grow (as in any real application), it becomes impractical. And you can set environment variables via a bash script, but you’d have to store it somewhere. And in fact, even separate environment variables should be stored somewhere.

This somewhere could be a local directory (risky), a shared storage, e.g. FTP or S3 bucket with limited access, or a separate git repository. I think I prefer the git repository as it allows versioning (Note: S3 also does, but is provider-specific). So you can store all your environment-specific properties files with all their credentials and environment-specific configurations in a git repo with limited access (only Ops people). And that’s not bad, as long as it’s not the same repo as the source code.

Such a repo would look like this:

project
└─── production
|   |   application.properites
|   |   keystore.jks
└─── staging
|   |   application.properites
|   |   keystore.jks
└─── on-premise-client1
|   |   application.properites
|   |   keystore.jks
└─── on-premise-client2
|   |   application.properites
|   |   keystore.jks

Since many companies are using GitHub or BitBucket for their repositories, storing production credentials on a public provider may still be risky. That’s why it’s a good idea to encrypt the files in the repository. A good way to do it is via git-crypt. It is “transparent” encryption because it supports diff and encryption and decryption on the fly. Once you set it up, you continue working with the repo as if it’s not encrypted. There’s even a fork that works on Windows.

You simply run git-crypt init (after you’ve put the git-crypt binary on your OS Path), which generates a key. Then you specify your .gitattributes, e.g. like that:

secretfile filter=git-crypt diff=git-crypt
*.key filter=git-crypt diff=git-crypt
*.properties filter=git-crypt diff=git-crypt
*.jks filter=git-crypt diff=git-crypt

And you’re done. Well, almost. If this is a fresh repo, everything is good. If it is an existing repo, you’d have to clean up your history which contains the unencrypted files. Following these steps will get you there, with one addition – before calling git commit, you should call git-crypt status -f so that the existing files are actually encrypted.

You’re almost done. We should somehow share and backup the keys. For the sharing part, it’s not a big issue to have a team of 2-3 Ops people share the same key, but you could also use the GPG option of git-crypt (as documented in the README). What’s left is to backup your secret key (that’s generated in the .git/git-crypt directory). You can store it (password-protected) in some other storage, be it a company shared folder, Dropbox/Google Drive, or even your email. Just make sure your computer is not the only place where it’s present and that it’s protected. I don’t think key rotation is necessary, but you can devise some rotation procedure.

git-crypt authors claim to shine when it comes to encrypting just a few files in an otherwise public repo. And recommend looking at git-remote-gcrypt. But as often there are non-sensitive parts of environment-specific configurations, you may not want to encrypt everything. And I think it’s perfectly fine to use git-crypt even in a separate repo scenario. And even though encryption is an okay approach to protect credentials in your source code repo, it’s still not necessarily a good idea to have the environment configurations in the same repo. Especially given that different people/teams manage these credentials. Even in small companies, maybe not all members have production access.

The outstanding questions in this case is – how do you sync the properties with code changes. Sometimes the code adds new properties that should be reflected in the environment configurations. There are two scenarios here – first, properties that could vary across environments, but can have default values (e.g. scheduled job periods), and second, properties that require explicit configuration (e.g. database credentials). The former can have the default values bundled in the code repo and therefore in the release artifact, allowing external files to override them. The latter should be announced to the people who do the deployment so that they can set the proper values.

The whole process of having versioned environment-speific configurations is actually quite simple and logical, even with the encryption added to the picture. And I think it’s a good security practice we should try to follow.

The post Storing Encrypted Credentials In Git appeared first on Bozho's tech blog.

Protecting your API using Amazon API Gateway and AWS WAF — Part I

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/protecting-your-api-using-amazon-api-gateway-and-aws-waf-part-i/

This post courtesy of Thiago Morais, AWS Solutions Architect

When you build web applications or expose any data externally, you probably look for a platform where you can build highly scalable, secure, and robust REST APIs. As APIs are publicly exposed, there are a number of best practices for providing a secure mechanism to consumers using your API.

Amazon API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, authorization and access control, monitoring, and API version management.

In this post, I show you how to take advantage of the regional API endpoint feature in API Gateway, so that you can create your own Amazon CloudFront distribution and secure your API using AWS WAF.

AWS WAF is a web application firewall that helps protect your web applications from common web exploits that could affect application availability, compromise security, or consume excessive resources.

As you make your APIs publicly available, you are exposed to attackers trying to exploit your services in several ways. The AWS security team published a whitepaper solution using AWS WAF, How to Mitigate OWASP’s Top 10 Web Application Vulnerabilities.

Regional API endpoints

Edge-optimized APIs are endpoints that are accessed through a CloudFront distribution created and managed by API Gateway. Before the launch of regional API endpoints, this was the default option when creating APIs using API Gateway. It primarily helped to reduce latency for API consumers that were located in different geographical locations than your API.

When API requests predominantly originate from an Amazon EC2 instance or other services within the same AWS Region as the API is deployed, a regional API endpoint typically lowers the latency of connections. It is recommended for such scenarios.

For better control around caching strategies, customers can use their own CloudFront distribution for regional APIs. They also have the ability to use AWS WAF protection, as I describe in this post.

Edge-optimized API endpoint

The following diagram is an illustrated example of the edge-optimized API endpoint where your API clients access your API through a CloudFront distribution created and managed by API Gateway.

Regional API endpoint

For the regional API endpoint, your customers access your API from the same Region in which your REST API is deployed. This helps you to reduce request latency and particularly allows you to add your own content delivery network, as needed.

Walkthrough

In this section, you implement the following steps:

  • Create a regional API using the PetStore sample API.
  • Create a CloudFront distribution for the API.
  • Test the CloudFront distribution.
  • Set up AWS WAF and create a web ACL.
  • Attach the web ACL to the CloudFront distribution.
  • Test AWS WAF protection.

Create the regional API

For this walkthrough, use an existing PetStore API. All new APIs launch by default as the regional endpoint type. To change the endpoint type for your existing API, choose the cog icon on the top right corner:

After you have created the PetStore API on your account, deploy a stage called “prod” for the PetStore API.

On the API Gateway console, select the PetStore API and choose Actions, Deploy API.

For Stage name, type prod and add a stage description.

Choose Deploy and the new API stage is created.

Use the following AWS CLI command to update your API from edge-optimized to regional:

aws apigateway update-rest-api \
--rest-api-id {rest-api-id} \
--patch-operations op=replace,path=/endpointConfiguration/types/EDGE,value=REGIONAL

A successful response looks like the following:

{
    "description": "Your first API with Amazon API Gateway. This is a sample API that integrates via HTTP with your demo Pet Store endpoints", 
    "createdDate": 1511525626, 
    "endpointConfiguration": {
        "types": [
            "REGIONAL"
        ]
    }, 
    "id": "{api-id}", 
    "name": "PetStore"
}

After you change your API endpoint to regional, you can now assign your own CloudFront distribution to this API.

Create a CloudFront distribution

To make things easier, I have provided an AWS CloudFormation template to deploy a CloudFront distribution pointing to the API that you just created. Click the button to deploy the template in the us-east-1 Region.

For Stack name, enter RegionalAPI. For APIGWEndpoint, enter your API FQDN in the following format:

{api-id}.execute-api.us-east-1.amazonaws.com

After you fill out the parameters, choose Next to continue the stack deployment. It takes a couple of minutes to finish the deployment. After it finishes, the Output tab lists the following items:

  • A CloudFront domain URL
  • An S3 bucket for CloudFront access logs
Output from CloudFormation

Output from CloudFormation

Test the CloudFront distribution

To see if the CloudFront distribution was configured correctly, use a web browser and enter the URL from your distribution, with the following parameters:

https://{your-distribution-url}.cloudfront.net/{api-stage}/pets

You should get the following output:

[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Set up AWS WAF and create a web ACL

With the new CloudFront distribution in place, you can now start setting up AWS WAF to protect your API.

For this demo, you deploy the AWS WAF Security Automations solution, which provides fine-grained control over the requests attempting to access your API.

For more information about deployment, see Automated Deployment. If you prefer, you can launch the solution directly into your account using the following button.

For CloudFront Access Log Bucket Name, add the name of the bucket created during the deployment of the CloudFormation stack for your CloudFront distribution.

The solution allows you to adjust thresholds and also choose which automations to enable to protect your API. After you finish configuring these settings, choose Next.

To start the deployment process in your account, follow the creation wizard and choose Create. It takes a few minutes do finish the deployment. You can follow the creation process through the CloudFormation console.

After the deployment finishes, you can see the new web ACL deployed on the AWS WAF console, AWSWAFSecurityAutomations.

Attach the AWS WAF web ACL to the CloudFront distribution

With the solution deployed, you can now attach the AWS WAF web ACL to the CloudFront distribution that you created earlier.

To assign the newly created AWS WAF web ACL, go back to your CloudFront distribution. After you open your distribution for editing, choose General, Edit.

Select the new AWS WAF web ACL that you created earlier, AWSWAFSecurityAutomations.

Save the changes to your CloudFront distribution and wait for the deployment to finish.

Test AWS WAF protection

To validate the AWS WAF Web ACL setup, use Artillery to load test your API and see AWS WAF in action.

To install Artillery on your machine, run the following command:

$ npm install -g artillery

After the installation completes, you can check if Artillery installed successfully by running the following command:

$ artillery -V
$ 1.6.0-12

As the time of publication, Artillery is on version 1.6.0-12.

One of the WAF web ACL rules that you have set up is a rate-based rule. By default, it is set up to block any requesters that exceed 2000 requests under 5 minutes. Try this out.

First, use cURL to query your distribution and see the API output:

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets
[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Based on the test above, the result looks good. But what if you max out the 2000 requests in under 5 minutes?

Run the following Artillery command:

artillery quick -n 2000 --count 10  https://{distribution-name}.cloudfront.net/prod/pets

What you are doing is firing 2000 requests to your API from 10 concurrent users. For brevity, I am not posting the Artillery output here.

After Artillery finishes its execution, try to run the cURL request again and see what happens:

 

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML><HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE>ERROR: The request could not be satisfied</TITLE>
</HEAD><BODY>
<H1>ERROR</H1>
<H2>The request could not be satisfied.</H2>
<HR noshade size="1px">
Request blocked.
<BR clear="all">
<HR noshade size="1px">
<PRE>
Generated by cloudfront (CloudFront)
Request ID: [removed]
</PRE>
<ADDRESS>
</ADDRESS>
</BODY></HTML>

As you can see from the output above, the request was blocked by AWS WAF. Your IP address is removed from the blocked list after it falls below the request limit rate.

Conclusion

In this first part, you saw how to use the new API Gateway regional API endpoint together with Amazon CloudFront and AWS WAF to secure your API from a series of attacks.

In the second part, I will demonstrate some other techniques to protect your API using API keys and Amazon CloudFront custom headers.

Use Slack ChatOps to Deploy Your Code – How to Integrate Your Pipeline in AWS CodePipeline with Your Slack Channel

Post Syndicated from Rumi Olsen original https://aws.amazon.com/blogs/devops/use-slack-chatops-to-deploy-your-code-how-to-integrate-your-pipeline-in-aws-codepipeline-with-your-slack-channel/

Slack is widely used by DevOps and development teams to communicate status. Typically, when a build has been tested and is ready to be promoted to a staging environment, a QA engineer or DevOps engineer kicks off the deployment. Using Slack in a ChatOps collaboration model, the promotion can be done in a single click from a Slack channel. And because the promotion happens through a Slack channel, the whole development team knows what’s happening without checking email.

In this blog post, I will show you how to integrate AWS services with a Slack application. I use an interactive message button and incoming webhook to promote a stage with a single click.

To follow along with the steps in this post, you’ll need a pipeline in AWS CodePipeline. If you don’t have a pipeline, the fastest way to create one for this use case is to use AWS CodeStar. Go to the AWS CodeStar console and select the Static Website template (shown in the screenshot). AWS CodeStar will create a pipeline with an AWS CodeCommit repository and an AWS CodeDeploy deployment for you. After the pipeline is created, you will need to add a manual approval stage.

You’ll also need to build a Slack app with webhooks and interactive components, write two Lambda functions, and create an API Gateway API and a SNS topic.

As you’ll see in the following diagram, when I make a change and merge a new feature into the master branch in AWS CodeCommit, the check-in kicks off my CI/CD pipeline in AWS CodePipeline. When CodePipeline reaches the approval stage, it sends a notification to Amazon SNS, which triggers an AWS Lambda function (ApprovalRequester).

The Slack channel receives a prompt that looks like the following screenshot. When I click Yes to approve the build promotion, the approval result is sent to CodePipeline through API Gateway and Lambda (ApprovalHandler). The pipeline continues on to deploy the build to the next environment.

Create a Slack app

For App Name, type a name for your app. For Development Slack Workspace, choose the name of your workspace. You’ll see in the following screenshot that my workspace is AWS ChatOps.

After the Slack application has been created, you will see the Basic Information page, where you can create incoming webhooks and enable interactive components.

To add incoming webhooks:

  1. Under Add features and functionality, choose Incoming Webhooks. Turn the feature on by selecting Off, as shown in the following screenshot.
  2. Now that the feature is turned on, choose Add New Webhook to Workspace. In the process of creating the webhook, Slack lets you choose the channel where messages will be posted.
  3. After the webhook has been created, you’ll see its URL. You will use this URL when you create the Lambda function.

If you followed the steps in the post, the pipeline should look like the following.

Write the Lambda function for approval requests

This Lambda function is invoked by the SNS notification. It sends a request that consists of an interactive message button to the incoming webhook you created earlier.  The following sample code sends the request to the incoming webhook. WEBHOOK_URL and SLACK_CHANNEL are the environment variables that hold values of the webhook URL that you created and the Slack channel where you want the interactive message button to appear.

# This function is invoked via SNS when the CodePipeline manual approval action starts.
# It will take the details from this approval notification and sent an interactive message to Slack that allows users to approve or cancel the deployment.

import os
import json
import logging
import urllib.parse

from base64 import b64decode
from urllib.request import Request, urlopen
from urllib.error import URLError, HTTPError

# This is passed as a plain-text environment variable for ease of demonstration.
# Consider encrypting the value with KMS or use an encrypted parameter in Parameter Store for production deployments.
SLACK_WEBHOOK_URL = os.environ['SLACK_WEBHOOK_URL']
SLACK_CHANNEL = os.environ['SLACK_CHANNEL']

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    print("Received event: " + json.dumps(event, indent=2))
    message = event["Records"][0]["Sns"]["Message"]
    
    data = json.loads(message) 
    token = data["approval"]["token"]
    codepipeline_name = data["approval"]["pipelineName"]
    
    slack_message = {
        "channel": SLACK_CHANNEL,
        "text": "Would you like to promote the build to production?",
        "attachments": [
            {
                "text": "Yes to deploy your build to production",
                "fallback": "You are unable to promote a build",
                "callback_id": "wopr_game",
                "color": "#3AA3E3",
                "attachment_type": "default",
                "actions": [
                    {
                        "name": "deployment",
                        "text": "Yes",
                        "style": "danger",
                        "type": "button",
                        "value": json.dumps({"approve": True, "codePipelineToken": token, "codePipelineName": codepipeline_name}),
                        "confirm": {
                            "title": "Are you sure?",
                            "text": "This will deploy the build to production",
                            "ok_text": "Yes",
                            "dismiss_text": "No"
                        }
                    },
                    {
                        "name": "deployment",
                        "text": "No",
                        "type": "button",
                        "value": json.dumps({"approve": False, "codePipelineToken": token, "codePipelineName": codepipeline_name})
                    }  
                ]
            }
        ]
    }

    req = Request(SLACK_WEBHOOK_URL, json.dumps(slack_message).encode('utf-8'))

    response = urlopen(req)
    response.read()
    
    return None

 

Create a SNS topic

Create a topic and then create a subscription that invokes the ApprovalRequester Lambda function. You can configure the manual approval action in the pipeline to send a message to this SNS topic when an approval action is required. When the pipeline reaches the approval stage, it sends a notification to this SNS topic. SNS publishes a notification to all of the subscribed endpoints. In this case, the Lambda function is the endpoint. Therefore, it invokes and executes the Lambda function. For information about how to create a SNS topic, see Create a Topic in the Amazon SNS Developer Guide.

Write the Lambda function for handling the interactive message button

This Lambda function is invoked by API Gateway. It receives the result of the interactive message button whether or not the build promotion was approved. If approved, an API call is made to CodePipeline to promote the build to the next environment. If not approved, the pipeline stops and does not move to the next stage.

The Lambda function code might look like the following. SLACK_VERIFICATION_TOKEN is the environment variable that contains your Slack verification token. You can find your verification token under Basic Information on Slack manage app page. When you scroll down, you will see App Credential. Verification token is found under the section.

# This function is triggered via API Gateway when a user acts on the Slack interactive message sent by approval_requester.py.

from urllib.parse import parse_qs
import json
import os
import boto3

SLACK_VERIFICATION_TOKEN = os.environ['SLACK_VERIFICATION_TOKEN']

#Triggered by API Gateway
#It kicks off a particular CodePipeline project
def lambda_handler(event, context):
	#print("Received event: " + json.dumps(event, indent=2))
	body = parse_qs(event['body'])
	payload = json.loads(body['payload'][0])

	# Validate Slack token
	if SLACK_VERIFICATION_TOKEN == payload['token']:
		send_slack_message(json.loads(payload['actions'][0]['value']))
		
		# This will replace the interactive message with a simple text response.
		# You can implement a more complex message update if you would like.
		return  {
			"isBase64Encoded": "false",
			"statusCode": 200,
			"body": "{\"text\": \"The approval has been processed\"}"
		}
	else:
		return  {
			"isBase64Encoded": "false",
			"statusCode": 403,
			"body": "{\"error\": \"This request does not include a vailid verification token.\"}"
		}


def send_slack_message(action_details):
	codepipeline_status = "Approved" if action_details["approve"] else "Rejected"
	codepipeline_name = action_details["codePipelineName"]
	token = action_details["codePipelineToken"] 

	client = boto3.client('codepipeline')
	response_approval = client.put_approval_result(
							pipelineName=codepipeline_name,
							stageName='Approval',
							actionName='ApprovalOrDeny',
							result={'summary':'','status':codepipeline_status},
							token=token)
	print(response_approval)

 

Create the API Gateway API

  1. In the Amazon API Gateway console, create a resource called InteractiveMessageHandler.
  2. Create a POST method.
    • For Integration type, choose Lambda Function.
    • Select Use Lambda Proxy integration.
    • From Lambda Region, choose a region.
    • In Lambda Function, type a name for your function.
  3.  Deploy to a stage.

For more information, see Getting Started with Amazon API Gateway in the Amazon API Developer Guide.

Now go back to your Slack application and enable interactive components.

To enable interactive components for the interactive message (Yes) button:

  1. Under Features, choose Interactive Components.
  2. Choose Enable Interactive Components.
  3. Type a request URL in the text box. Use the invoke URL in Amazon API Gateway that will be called when the approval button is clicked.

Now that all the pieces have been created, run the solution by checking in a code change to your CodeCommit repo. That will release the change through CodePipeline. When the CodePipeline comes to the approval stage, it will prompt to your Slack channel to see if you want to promote the build to your staging or production environment. Choose Yes and then see if your change was deployed to the environment.

Conclusion

That is it! You have now created a Slack ChatOps solution using AWS CodeCommit, AWS CodePipeline, AWS Lambda, Amazon API Gateway, and Amazon Simple Notification Service.

Now that you know how to do this Slack and CodePipeline integration, you can use the same method to interact with other AWS services using API Gateway and Lambda. You can also use Slack’s slash command to initiate an action from a Slack channel, rather than responding in the way demonstrated in this post.

Amazon Sumerian – Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sumerian-now-generally-available/

We announced Amazon Sumerian at AWS re:Invent 2017. As you can see from Tara‘s blog post (Presenting Amazon Sumerian: An Easy Way to Create VR, AR, and 3D Experiences), Sumerian does not require any specialized programming or 3D graphics expertise. You can build VR, AR, and 3D experiences for a wide variety of popular hardware platforms including mobile devices, head-mounted displays, digital signs, and web browsers.

I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.

Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.

Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.

During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:

Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.

Jeff;

 

From Framework to Function: Deploying AWS Lambda Functions for Java 8 using Apache Maven Archetype

Post Syndicated from Ryosuke Iwanaga original https://aws.amazon.com/blogs/compute/from-framework-to-function-deploying-aws-lambda-functions-for-java-8-using-apache-maven-archetype/

As a serverless computing platform that supports Java 8 runtime, AWS Lambda makes it easy to run any type of Java function simply by uploading a JAR file. To help define not only a Lambda serverless application but also Amazon API Gateway, Amazon DynamoDB, and other related services, the AWS Serverless Application Model (SAM) allows developers to use a simple AWS CloudFormation template.

AWS provides the AWS Toolkit for Eclipse that supports both Lambda and SAM. AWS also gives customers an easy way to create Lambda functions and SAM applications in Java using the AWS Command Line Interface (AWS CLI). After you build a JAR file, all you have to do is type the following commands:

aws cloudformation package 
aws cloudformation deploy

To consolidate these steps, customers can use Archetype by Apache Maven. Archetype uses a predefined package template that makes getting started to develop a function exceptionally simple.

In this post, I introduce a Maven archetype that allows you to create a skeleton of AWS SAM for a Java function. Using this archetype, you can generate a sample Java code example and an accompanying SAM template to deploy it on AWS Lambda by a single Maven action.

Prerequisites

Make sure that the following software is installed on your workstation:

  • Java
  • Maven
  • AWS CLI
  • (Optional) AWS SAM CLI

Install Archetype

After you’ve set up those packages, install Archetype with the following commands:

git clone https://github.com/awslabs/aws-serverless-java-archetype
cd aws-serverless-java-archetype
mvn install

These are one-time operations, so you don’t run them for every new package. If you’d like, you can add Archetype to your company’s Maven repository so that other developers can use it later.

With those packages installed, you’re ready to develop your new Lambda Function.

Start a project

Now that you have the archetype, customize it and run the code:

cd /path/to/project_home
mvn archetype:generate \
  -DarchetypeGroupId=com.amazonaws.serverless.archetypes \
  -DarchetypeArtifactId=aws-serverless-java-archetype \
  -DarchetypeVersion=1.0.0 \
  -DarchetypeRepository=local \ # Forcing to use local maven repository
  -DinteractiveMode=false \ # For batch mode
  # You can also specify properties below interactively if you omit the line for batch mode
  -DgroupId=YOUR_GROUP_ID \
  -DartifactId=YOUR_ARTIFACT_ID \
  -Dversion=YOUR_VERSION \
  -DclassName=YOUR_CLASSNAME

You should have a directory called YOUR_ARTIFACT_ID that contains the files and folders shown below:

├── event.json
├── pom.xml
├── src
│   └── main
│       ├── java
│       │   └── Package
│       │       └── Example.java
│       └── resources
│           └── log4j2.xml
└── template.yaml

The sample code is a working example. If you install SAM CLI, you can invoke it just by the command below:

cd YOUR_ARTIFACT_ID
mvn -P invoke verify
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- maven-jar-plugin:3.0.2:jar (default-jar) @ foo ---
[INFO] Building jar: /private/tmp/foo/target/foo-1.0.jar
[INFO]
[INFO] --- maven-shade-plugin:3.1.0:shade (shade) @ foo ---
[INFO] Including com.amazonaws:aws-lambda-java-core:jar:1.2.0 in the shaded jar.
[INFO] Replacing /private/tmp/foo/target/lambda.jar with /private/tmp/foo/target/foo-1.0-shaded.jar
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-local-invoke) @ foo ---
2018/04/06 16:34:35 Successfully parsed template.yaml
2018/04/06 16:34:35 Connected to Docker 1.37
2018/04/06 16:34:35 Fetching lambci/lambda:java8 image for java8 runtime...
java8: Pulling from lambci/lambda
Digest: sha256:14df0a5914d000e15753d739612a506ddb8fa89eaa28dcceff5497d9df2cf7aa
Status: Image is up to date for lambci/lambda:java8
2018/04/06 16:34:37 Invoking Package.Example::handleRequest (java8)
2018/04/06 16:34:37 Decompressing /tmp/foo/target/lambda.jar
2018/04/06 16:34:37 Mounting /private/var/folders/x5/ldp7c38545v9x5dg_zmkr5kxmpdprx/T/aws-sam-local-1523000077594231063 as /var/task:ro inside runtime container
START RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74 Version: $LATEST
Log output: Greeting is 'Hello Tim Wagner.'
END RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74
REPORT RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74	Duration: 96.60 ms	Billed Duration: 100 ms	Memory Size: 128 MB	Max Memory Used: 7 MB

{"greetings":"Hello Tim Wagner."}


[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 10.452 s
[INFO] Finished at: 2018-04-06T16:34:40+09:00
[INFO] ------------------------------------------------------------------------

This maven goal invokes sam local invoke -e event.json, so you can see the sample output to greet Tim Wagner.

To deploy this application to AWS, you need an Amazon S3 bucket to upload your package. You can use the following command to create a bucket if you want:

aws s3 mb s3://YOUR_BUCKET --region YOUR_REGION

Now, you can deploy your application by just one command!

mvn deploy \
    -DawsRegion=YOUR_REGION \
    -Ds3Bucket=YOUR_BUCKET \
    -DstackName=YOUR_STACK
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-package) @ foo ---
Uploading to aws-serverless-java/com.riywo:foo:1.0/924732f1f8e4705c87e26ef77b080b47  11657 / 11657.0  (100.00%)
Successfully packaged artifacts and wrote output template to file target/sam.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file /private/tmp/foo/target/sam.yaml --stack-name <YOUR STACK NAME>
[INFO]
[INFO] --- maven-deploy-plugin:2.8.2:deploy (default-deploy) @ foo ---
[INFO] Skipping artifact deployment
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-deploy) @ foo ---

Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - archetype
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 37.176 s
[INFO] Finished at: 2018-04-06T16:41:02+09:00
[INFO] ------------------------------------------------------------------------

Maven automatically creates a shaded JAR file, uploads it to your S3 bucket, replaces template.yaml, and creates and updates the CloudFormation stack.

To customize the process, modify the pom.xml file. For example, to avoid typing values for awsRegion, s3Bucket or stackName, write them inside pom.xml and check in your VCS. Afterward, you and the rest of your team can deploy the function by typing just the following command:

mvn deploy

Options

Lambda Java 8 runtime has some types of handlers: POJO, Simple type and Stream. The default option of this archetype is POJO style, which requires to create request and response classes, but they are baked by the archetype by default. If you want to use other type of handlers, you can use handlerType property like below:

## POJO type (default)
mvn archetype:generate \
 ...
 -DhandlerType=pojo

## Simple type - String
mvn archetype:generate \
 ...
 -DhandlerType=simple

### Stream type
mvn archetype:generate \
 ...
 -DhandlerType=stream

See documentation for more details about handlers.

Also, Lambda Java 8 runtime supports two types of Logging class: Log4j 2 and LambdaLogger. This archetype creates LambdaLogger implementation by default, but you can use Log4j 2 if you want:

## LambdaLogger (default)
mvn archetype:generate \
 ...
 -Dlogger=lambda

## Log4j 2
mvn archetype:generate \
 ...
 -Dlogger=log4j2

If you use LambdaLogger, you can delete ./src/main/resources/log4j2.xml. See documentation for more details.

Conclusion

So, what’s next? Develop your Lambda function locally and type the following command: mvn deploy !

With this Archetype code example, available on GitHub repo, you should be able to deploy Lambda functions for Java 8 in a snap. If you have any questions or comments, please submit them below or leave them on GitHub.

Firefox 60 released

Post Syndicated from ris original https://lwn.net/Articles/754040/rss

Mozilla has released Firefox 60. From the release
notes
: “Firefox 60 offers something for everyone and a little
something extra for everyone who deploys Firefox in an enterprise environment. This release includes changes that give you more content and more ways to customize your New Tab/Firefox Home. It also introduces support for the Web Authentication API, which means you can log in to websites in Firefox with USB tokens like YubiKey.
Firefox 60 also brings a new policy engine and Group Policy support for
enterprise deployments. For more info about why and how to use Firefox in
the enterprise, see this blog post.

CI/CD with Data: Enabling Data Portability in a Software Delivery Pipeline with AWS Developer Tools, Kubernetes, and Portworx

Post Syndicated from Kausalya Rani Krishna Samy original https://aws.amazon.com/blogs/devops/cicd-with-data-enabling-data-portability-in-a-software-delivery-pipeline-with-aws-developer-tools-kubernetes-and-portworx/

This post is written by Eric Han – Vice President of Product Management Portworx and Asif Khan – Solutions Architect

Data is the soul of an application. As containers make it easier to package and deploy applications faster, testing plays an even more important role in the reliable delivery of software. Given that all applications have data, development teams want a way to reliably control, move, and test using real application data or, at times, obfuscated data.

For many teams, moving application data through a CI/CD pipeline, while honoring compliance and maintaining separation of concerns, has been a manual task that doesn’t scale. At best, it is limited to a few applications, and is not portable across environments. The goal should be to make running and testing stateful containers (think databases and message buses where operations are tracked) as easy as with stateless (such as with web front ends where they are often not).

Why is state important in testing scenarios? One reason is that many bugs manifest only when code is tested against real data. For example, we might simply want to test a database schema upgrade but a small synthetic dataset does not exercise the critical, finer corner cases in complex business logic. If we want true end-to-end testing, we need to be able to easily manage our data or state.

In this blog post, we define a CI/CD pipeline reference architecture that can automate data movement between applications. We also provide the steps to follow to configure the CI/CD pipeline.

 

Stateful Pipelines: Need for Portable Volumes

As part of continuous integration, testing, and deployment, a team may need to reproduce a bug found in production against a staging setup. Here, the hosting environment is comprised of a cluster with Kubernetes as the scheduler and Portworx for persistent volumes. The testing workflow is then automated by AWS CodeCommit, AWS CodePipeline, and AWS CodeBuild.

Portworx offers Kubernetes storage that can be used to make persistent volumes portable between AWS environments and pipelines. The addition of Portworx to the AWS Developer Tools continuous deployment for Kubernetes reference architecture adds persistent storage and storage orchestration to a Kubernetes cluster. The example uses MongoDB as the demonstration of a stateful application. In practice, the workflow applies to any containerized application such as Cassandra, MySQL, Kafka, and Elasticsearch.

Using the reference architecture, a developer calls CodePipeline to trigger a snapshot of the running production MongoDB database. Portworx then creates a block-based, writable snapshot of the MongoDB volume. Meanwhile, the production MongoDB database continues serving end users and is uninterrupted.

Without the Portworx integrations, a manual process would require an application-level backup of the database instance that is outside of the CI/CD process. For larger databases, this could take hours and impact production. The use of block-based snapshots follows best practices for resilient and non-disruptive backups.

As part of the workflow, CodePipeline deploys a new MongoDB instance for staging onto the Kubernetes cluster and mounts the second Portworx volume that has the data from production. CodePipeline triggers the snapshot of a Portworx volume through an AWS Lambda function, as shown here

 

 

 

AWS Developer Tools with Kubernetes: Integrated Workflow with Portworx

In the following workflow, a developer is testing changes to a containerized application that calls on MongoDB. The tests are performed against a staging instance of MongoDB. The same workflow applies if changes were on the server side. The original production deployment is scheduled as a Kubernetes deployment object and uses Portworx as the storage for the persistent volume.

The continuous deployment pipeline runs as follows:

  • Developers integrate bug fix changes into a main development branch that gets merged into a CodeCommit master branch.
  • Amazon CloudWatch triggers the pipeline when code is merged into a master branch of an AWS CodeCommit repository.
  • AWS CodePipeline sends the new revision to AWS CodeBuild, which builds a Docker container image with the build ID.
  • AWS CodeBuild pushes the new Docker container image tagged with the build ID to an Amazon ECR registry.
  • Kubernetes downloads the new container (for the database client) from Amazon ECR and deploys the application (as a pod) and staging MongoDB instance (as a deployment object).
  • AWS CodePipeline, through a Lambda function, calls Portworx to snapshot the production MongoDB and deploy a staging instance of MongoDB• Portworx provides a snapshot of the production instance as the persistent storage of the staging MongoDB
    • The MongoDB instance mounts the snapshot.

At this point, the staging setup mimics a production environment. Teams can run integration and full end-to-end tests, using partner tooling, without impacting production workloads. The full pipeline is shown here.

 

Summary

This reference architecture showcases how development teams can easily move data between production and staging for the purposes of testing. Instead of taking application-specific manual steps, all operations in this CodePipeline architecture are automated and tracked as part of the CI/CD process.

This integrated experience is part of making stateful containers as easy as stateless. With AWS CodePipeline for CI/CD process, developers can easily deploy stateful containers onto a Kubernetes cluster with Portworx storage and automate data movement within their process.

The reference architecture and code are available on GitHub:

● Reference architecture: https://github.com/portworx/aws-kube-codesuite
● Lambda function source code for Portworx additions: https://github.com/portworx/aws-kube-codesuite/blob/master/src/kube-lambda.py

For more information about persistent storage for containers, visit the Portworx website. For more information about Code Pipeline, see the AWS CodePipeline User Guide.

Secure Build with AWS CodeBuild and LayeredInsight

Post Syndicated from Asif Khan original https://aws.amazon.com/blogs/devops/secure-build-with-aws-codebuild-and-layeredinsight/

This post is written by Asif Awan, Chief Technology Officer of Layered InsightSubin Mathew – Software Development Manager for AWS CodeBuild, and Asif Khan – Solutions Architect

Enterprises adopt containers because they recognize the benefits: speed, agility, portability, and high compute density. They understand how accelerating application delivery and deployment pipelines makes it possible to rapidly slipstream new features to customers. Although the benefits are indisputable, this acceleration raises concerns about security and corporate compliance with software governance. In this blog post, I provide a solution that shows how Layered Insight, the pioneer and global leader in container-native application protection, can be used with seamless application build and delivery pipelines like those available in AWS CodeBuild to address these concerns.

Layered Insight solutions

Layered Insight enables organizations to unify DevOps and SecOps by providing complete visibility and control of containerized applications. Using the industry’s first embedded security approach, Layered Insight solves the challenges of container performance and protection by providing accurate insight into container images, adaptive analysis of running containers, and automated enforcement of container behavior.

 

AWS CodeBuild

AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. With CodeBuild, you don’t need to provision, manage, and scale your own build servers. CodeBuild scales continuously and processes multiple builds concurrently, so your builds are not left waiting in a queue. You can get started quickly by using prepackaged build environments, or you can create custom build environments that use your own build tools.

 

Problem Definition

Security and compliance concerns span the lifecycle of application containers. Common concerns include:

Visibility into the container images. You need to verify the software composition information of the container image to determine whether known vulnerabilities associated with any of the software packages and libraries are included in the container image.

Governance of container images is critical because only certain open source packages/libraries, of specific versions, should be included in the container images. You need support for mechanisms for blacklisting all container images that include a certain version of a software package/library, or only allowing open source software that come with a specific type of license (such as Apache, MIT, GPL, and so on). You need to be able to address challenges such as:

·       Defining the process for image compliance policies at the enterprise, department, and group levels.

·       Preventing the images that fail the compliance checks from being deployed in critical environments, such as staging, pre-prod, and production.

Visibility into running container instances is critical, including:

·       CPU and memory utilization.

·       Security of the build environment.

·       All activities (system, network, storage, and application layer) of the application code running in each container instance.

Protection of running container instances that is:

·       Zero-touch to the developers (not an SDK-based approach).

·       Zero touch to the DevOps team and doesn’t limit the portability of the containerized application.

·       This protection must retain the option to switch to a different container stack or orchestration layer, or even to a different Container as a Service (CaaS ).

·       And it must be a fully automated solution to SecOps, so that the SecOps team doesn’t have to manually analyze and define detailed blacklist and whitelist policies.

 

Solution Details

In AWS CodeCommit, we have three projects:
●     “Democode” is a simple Java application, with one buildspec to build the app into a Docker container (run by build-demo-image CodeBuild project), and another to instrument said container (instrument-image CodeBuild project). The resulting container is stored in ECR repo javatestasjavatest:20180415-layered. This instrumented container is running in AWS Fargate cluster demo-java-appand can be seen in the Layered Insight runtime console as the javatestapplication in us-east-1.
●     aws-codebuild-docker-imagesis a clone of the official aws-codebuild-docker-images repo on GitHub . This CodeCommit project is used by the build-python-builder CodeBuild project to build the python 3.3.6 codebuild image and is stored at the codebuild-python ECR repo. We then manually instructed the Layered Insight console to instrument the image.
●     scan-java-imagecontains just a buildspec.yml file. This file is used by the scan-java-image CodeBuild project to instruct Layered Assessment to perform a vulnerability scan of the javatest container image built previously, and then run the scan results through a compliance policy that states there should be no medium vulnerabilities. This build fails — but in this case that is a success: the scan completes successfully, but compliance fails as there are medium-level issues found in the scan.

This build is performed using the instrumented version of the Python 3.3.6 CodeBuild image, so the activity of the processes running within the build are recorded each time within the LI console.

Build container image

Create or use a CodeCommit project with your application. To build this image and store it in Amazon Elastic Container Registry (Amazon ECR), add a buildspec file to the project and build a container image and create a CodeBuild project.

Scan container image

Once the image is built, create a new buildspec in the same project or a new one that looks similar to below (update ECR URL as necessary):

version: 0.2
phases:
  pre_build:
    commands:
      - echo Pulling down LI Scan API client scripts
      - git clone https://github.com/LayeredInsight/scan-api-example-python.git
      - echo Setting up LI Scan API client
      - cd scan-api-example-python
      - pip install layint_scan_api
      - pip install -r requirements.txt
  build:
    commands:
      - echo Scanning container started on `date`
      - IMAGEID=$(./li_add_image --name <aws-region>.amazonaws.com/javatest:20180415)
      - ./li_wait_for_scan -v --imageid $IMAGEID
      - ./li_run_image_compliance -v --imageid $IMAGEID --policyid PB15260f1acb6b2aa5b597e9d22feffb538256a01fbb4e5a95

Add the buildspec file to the git repo, push it, and then build a CodeBuild project using with the instrumented Python 3.3.6 CodeBuild image at <aws-region>.amazonaws.com/codebuild-python:3.3.6-layered. Set the following environment variables in the CodeBuild project:
●     LI_APPLICATIONNAME – name of the build to display
●     LI_LOCATION – location of the build project to display
●     LI_API_KEY – ApiKey:<key-name>:<api-key>
●     LI_API_HOST – location of the Layered Insight API service

Instrument container image

Next, to instrument the new container image:

  1. In the Layered Insight runtime console, ensure that the ECR registry and credentials are defined (click the Setup icon and the ‘+’ sign on the top right of the screen to add a new container registry). Note the name given to the registry in the console, as this needs to be referenced in the li_add_imagecommand in the script, below.
  2. Next, add a new buildspec (with a new name) to the CodeCommit project, such as the one shown below. This code will download the Layered Insight runtime client, and use it to instruct the Layered Insight service to instrument the image that was just built:
    version: 0.2
    phases:
    pre_build:
    commands:
    echo Pulling down LI API Runtime client scripts
    git clone https://github.com/LayeredInsight/runtime-api-example-python
    echo Setting up LI API client
    cd runtime-api-example-python
    pip install layint-runtime-api
    pip install -r requirements.txt
    build:
    commands:
    echo Instrumentation started on `date`
    ./li_add_image --registry "Javatest ECR" --name IMAGE_NAME:TAG --description "IMAGE DESCRIPTION" --policy "Default Policy" --instrument --wait --verbose
  3. Commit and push the new buildspec file.
  4. Going back to CodeBuild, create a new project, with the same CodeCommit repo, but this time select the new buildspec file. Use a Python 3.3.6 builder – either the AWS or LI Instrumented version.
  5. Click Continue
  6. Click Save
  7. Run the build, again on the master branch.
  8. If everything runs successfully, a new image should appear in the ECR registry with a -layered suffix. This is the instrumented image.

Run instrumented container image

When the instrumented container is now run — in ECS, Fargate, or elsewhere — it will log data back to the Layered Insight runtime console. It’s appearance in the console can be modified by setting the LI_APPLICATIONNAME and LI_LOCATION environment variables when running the container.

Conclusion

In the above blog we have provided you steps needed to embed governance and runtime security in your build pipelines running on AWS CodeBuild using Layered Insight.

 

 

 

Continued: the answers to your questions for Eben Upton

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eben-q-a-2/

Last week, we shared the first half of our Q&A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. Today we follow up with all your other questions, including your expectations for a Raspberry Pi 4, Eben’s dream add-ons, and whether we really could go smaller than the Zero.

Live Q&A with Eben Upton, creator of the Raspberry Pi

Get your questions to us now using #AskRaspberryPi on Twitter

With internet security becoming more necessary, will there be automated versions of VPN on an SD card?

There are already third-party tools which turn your Raspberry Pi into a VPN endpoint. Would we do it ourselves? Like the power button, it’s one of those cases where there are a million things we could do and so it’s more efficient to let the community get on with it.

Just to give a counterexample, while we don’t generally invest in optimising for particular use cases, we did invest a bunch of money into optimising Kodi to run well on Raspberry Pi, because we found that very large numbers of people were using it. So, if we find that we get half a million people a year using a Raspberry Pi as a VPN endpoint, then we’ll probably invest money into optimising it and feature it on the website as we’ve done with Kodi. But I don’t think we’re there today.

Have you ever seen any Pis running and doing important jobs in the wild, and if so, how does it feel?

It’s amazing how often you see them driving displays, for example in radio and TV studios. Of course, it feels great. There’s something wonderful about the geographic spread as well. The Raspberry Pi desktop is quite distinctive, both in its previous incarnation with the grey background and logo, and the current one where we have Greg Annandale’s road picture.

The PIXEL desktop on Raspberry Pi

And so it’s funny when you see it in places. Somebody sent me a video of them teaching in a classroom in rural Pakistan and in the background was Greg’s picture.

Raspberry Pi 4!?!

There will be a Raspberry Pi 4, obviously. We get asked about it a lot. I’m sticking to the guidance that I gave people that they shouldn’t expect to see a Raspberry Pi 4 this year. To some extent, the opportunity to do the 3B+ was a surprise: we were surprised that we’ve been able to get 200MHz more clock speed, triple the wireless and wired throughput, and better thermals, and still stick to the $35 price point.

We’re up against the wall from a silicon perspective; we’re at the end of what you can do with the 40nm process. It’s not that you couldn’t clock the processor faster, or put a larger processor which can execute more instructions per clock in there, it’s simply about the energy consumption and the fact that you can’t dissipate the heat. So we’ve got to go to a smaller process node and that’s an order of magnitude more challenging from an engineering perspective. There’s more effort, more risk, more cost, and all of those things are challenging.

With 3B+ out of the way, we’re going to start looking at this now. For the first six months or so we’re going to be figuring out exactly what people want from a Raspberry Pi 4. We’re listening to people’s comments about what they’d like to see in a new Raspberry Pi, and I’m hoping by early autumn we should have an idea of what we want to put in it and a strategy for how we might achieve that.

Could you go smaller than the Zero?

The challenge with Zero as that we’re periphery-limited. If you run your hand around the unit, there is no edge of that board that doesn’t have something there. So the question is: “If you want to go smaller than Zero, what feature are you willing to throw out?”

It’s a single-sided board, so you could certainly halve the PCB area if you fold the circuitry and use both sides, though you’d have to lose something. You could give up some GPIO and go back to 26 pins like the first Raspberry Pi. You could give up the camera connector, you could go to micro HDMI from mini HDMI. You could remove the SD card and just do USB boot. I’m inventing a product live on air! But really, you could get down to two thirds and lose a bunch of GPIO – it’s hard to imagine you could get to half the size.

What’s the one feature that you wish you could outfit on the Raspberry Pi that isn’t cost effective at this time? Your dream feature.

Well, more memory. There are obviously technical reasons why we don’t have more memory on there, but there are also market reasons. People ask “why doesn’t the Raspberry Pi have more memory?”, and my response is typically “go and Google ‘DRAM price’”. We’re used to the price of memory going down. And currently, we’re going through a phase where this has turned around and memory is getting more expensive again.

Machine learning would be interesting. There are machine learning accelerators which would be interesting to put on a piece of hardware. But again, they are not going to be used by everyone, so according to our method of pricing what we might add to a board, machine learning gets treated like a $50 chip. But that would be lovely to do.

Which citizen science projects using the Pi have most caught your attention?

I like the wildlife camera projects. We live out in the countryside in a little village, and we’re conscious of being surrounded by nature but we don’t see a lot of it on a day-to-day basis. So I like the nature cam projects, though, to my everlasting shame, I haven’t set one up yet. There’s a range of them, from very professional products to people taking a Raspberry Pi and a camera and putting them in a plastic box. So those are good fun.

Raspberry Shake seismometer

The Raspberry Shake seismometer

And there’s Meteor Pi from the Cambridge Science Centre, that’s a lot of fun. And the seismometer Raspberry Shake – that sort of thing is really nice. We missed the recent South Wales earthquake; perhaps we should set one up at our Californian office.

How does it feel to go to bed every day knowing you’ve changed the world for the better in such a massive way?

What feels really good is that when we started this in 2006 nobody else was talking about it, but now we’re part of a very broad movement.

We were in a really bad way: we’d seen a collapse in the number of applicants applying to study Computer Science at Cambridge and elsewhere. In our view, this reflected a move away from seeing technology as ‘a thing you do’ to seeing it as a ‘thing that you have done to you’. It is problematic from the point of view of the economy, industry, and academia, but most importantly it damages the life prospects of individual children, particularly those from disadvantaged backgrounds. The great thing about STEM subjects is that you can’t fake being good at them. There are a lot of industries where your Dad can get you a job based on who he knows and then you can kind of muddle along. But if your dad gets you a job building bridges and you suck at it, after the first or second bridge falls down, then you probably aren’t going to be building bridges anymore. So access to STEM education can be a great driver of social mobility.

By the time we were launching the Raspberry Pi in 2012, there was this wonderful movement going on. Code Club, for example, and CoderDojo came along. Lots of different ways of trying to solve the same problem. What feels really, really good is that we’ve been able to do this as part of an enormous community. And some parts of that community became part of the Raspberry Pi Foundation – we merged with Code Club, we merged with CoderDojo, and we continue to work alongside a lot of these other organisations. So in the two seconds it takes me to fall asleep after my face hits the pillow, that’s what I think about.

We’re currently advertising a Programme Manager role in New Delhi, India. Did you ever think that Raspberry Pi would be advertising a role like this when you were bringing together the Foundation?

No, I didn’t.

But if you told me we were going to be hiring somewhere, India probably would have been top of my list because there’s a massive IT industry in India. When we think about our interaction with emerging markets, India, in a lot of ways, is the poster child for how we would like it to work. There have already been some wonderful deployments of Raspberry Pi, for example in Kerala, without our direct involvement. And we think we’ve got something that’s useful for the Indian market. We have a product, we have clubs, we have teacher training. And we have a body of experience in how to teach people, so we have a physical commercial product as well as a charitable offering that we think are a good fit.

It’s going to be massive.

What is your favourite BBC type-in listing?

There was a game called Codename: Druid. There is a famous game called Codename: Droid which was the sequel to Stryker’s Run, which was an awesome, awesome game. And there was a type-in game called Codename: Druid, which was at the bottom end of what you would consider a commercial game.

codename druid

And I remember typing that in. And what was really cool about it was that the next month, the guy who wrote it did another article that talks about the memory map and which operating system functions used which bits of memory. So if you weren’t going to do disc access, which bits of memory could you trample on and know the operating system would survive.

babbage versus bugs Raspberry Pi annual

See the full listing for Babbage versus Bugs in the Raspberry Pi 2018 Annual

I still like type-in listings. The Raspberry Pi 2018 Annual has a type-in listing that I wrote for a Babbage versus Bugs game. I will say that’s not the last type-in listing you will see from me in the next twelve months. And if you download the PDF, you could probably copy and paste it into your favourite text editor to save yourself some time.

The post Continued: the answers to your questions for Eben Upton appeared first on Raspberry Pi.

Announcing the new AWS Certified Security – Specialty exam

Post Syndicated from Janna Pellegrino original https://aws.amazon.com/blogs/architecture/announcing-the-new-aws-certified-security-specialty-exam/

Good news for cloud security experts: following our most popular beta exam ever, the AWS Certified Security – Specialty exam is here. This new exam allows experienced cloud security professionals to demonstrate and validate their knowledge of how to secure the AWS platform.

About the exam
The security exam covers incident response, logging and monitoring, infrastructure security, identity and access management, and data protection. The exam is open to anyone who currently holds a Cloud Practitioner or Associate-level certification. We recommend candidates have five years of IT security experience designing and implementing security solutions, and at least two years of hands-on experience securing AWS workloads.

The exam validates:

  • An understanding of specialized data classifications and AWS data protection mechanisms.
  • An understanding of data encryption methods and AWS mechanisms to implement them.
  • An understanding of secure Internet protocols and AWS mechanisms to implement them.
  • A working knowledge of AWS security services and features of services to provide a secure production environment.
  • Competency gained from two or more years of production deployment experience using AWS security services and features.
  • Ability to make trade-off decisions with regard to cost, security, and deployment complexity given a set of application requirements.
  • An understanding of security operations and risk.

Learn more and register >>

How to prepare
We have training and other resources to help you prepare for the exam:

AWS Training (aws.amazon.com/training)

Additional Resources

Learn more and register >>

Please contact us if you have questions about exam registration.

Good luck!

Announcing the new AWS Certified Security – Specialty exam

Post Syndicated from Ozlem Yilmaz original https://aws.amazon.com/blogs/security/announcing-the-new-aws-certified-security-specialty-exam/

Good news for cloud security experts: the AWS Certified Security — Specialty exam is here. This new exam allows experienced cloud security professionals to demonstrate and validate their knowledge of how to secure the AWS platform.

About the exam

The security exam covers incident response, logging and monitoring, infrastructure security, identity and access management, and data protection. The exam is open to anyone who currently holds a Cloud Practitioner or Associate-level certification. We recommend candidates have five years of IT security experience designing and implementing security solutions, and at least two years of hands-on experience securing AWS workloads.

The exam validates your understanding of:

  • Specialized data classifications and AWS data protection mechanisms
  • Data encryption methods and AWS mechanisms to implement them
  • Secure Internet protocols and AWS mechanisms to implement them
  • AWS security services and features of services to provide a secure production environment
  • Making tradeoff decisions with regard to cost, security, and deployment complexity given a set of application requirements
  • Security operations and risk

How to prepare

We have training and other resources to help you prepare for the exam.

AWS Training that includes:

Additional Resources

Learn more and register here, and please contact us if you have questions about exam registration.

Want more AWS Security news? Follow us on Twitter.

Implement continuous integration and delivery of serverless AWS Glue ETL applications using AWS Developer Tools

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/

AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.

AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.

When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:

  • Iterative development with unit tests
  • Continuous integration and build
  • Pushing the ETL pipeline to a test environment
  • Pushing the ETL pipeline to a production environment
  • Testing ETL applications using real data (live test)
  • Exploring and validating data

In this post, I walk you through a solution that implements a CI/CD pipeline for serverless AWS Glue ETL applications supported by AWS Developer Tools (including AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild) and AWS CloudFormation.

Solution overview

The following diagram shows the pipeline workflow:

This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:

1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.

To get the ETL job source code and AWS CloudFormation template, download the gluedemoetl.zip file. This solution is developed based on a previous post, Build a Data Lake Foundation with AWS Glue and Amazon S3.

2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.

The LiveTest stage includes the following actions:

  • Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
  • AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
  • LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
  • LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval

3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.

Try it out

This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).

To get started with this solution, choose Launch Stack:

This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.

In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.

After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.

Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.

In the CodeCommit console, choose Code in the navigation pane to view the solution files.

Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.

At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.

At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.

Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:

Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.

SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";

The following shows the raw data:

The following shows the transformed data:

The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.

Add comments as needed, and choose Approve.

The LiveTestApproval stage now appears as Approved on the console.

After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.

Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.

After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.

Conclusion

In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.

If you have questions or suggestions, please comment below.

 


Additional Reading

If you found this post useful, be sure to check out Implement Continuous Integration and Delivery of Apache Spark Applications using AWS and Build a Data Lake Foundation with AWS Glue and Amazon S3.

 


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

Implementing safe AWS Lambda deployments with AWS CodeDeploy

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-safe-aws-lambda-deployments-with-aws-codedeploy/

This post courtesy of George Mao, AWS Senior Serverless Specialist – Solutions Architect

AWS Lambda and AWS CodeDeploy recently made it possible to automatically shift incoming traffic between two function versions based on a preconfigured rollout strategy. This new feature allows you to gradually shift traffic to the new function. If there are any issues with the new code, you can quickly rollback and control the impact to your application.

Previously, you had to manually move 100% of traffic from the old version to the new version. Now, you can have CodeDeploy automatically execute pre- or post-deployment tests and automate a gradual rollout strategy. Traffic shifting is built right into the AWS Serverless Application Model (SAM), making it easy to define and deploy your traffic shifting capabilities. SAM is an extension of AWS CloudFormation that provides a simplified way of defining serverless applications.

In this post, I show you how to use SAM, CloudFormation, and CodeDeploy to accomplish an automated rollout strategy for safe Lambda deployments.

Scenario

For this walkthrough, you write a Lambda application that returns a count of the S3 buckets that you own. You deploy it and use it in production. Later on, you receive requirements that tell you that you need to change your Lambda application to count only buckets that begin with the letter “a”.

Before you make the change, you need to be sure that your new Lambda application works as expected. If it does have issues, you want to minimize the number of impacted users and roll back easily. To accomplish this, you create a deployment process that publishes the new Lambda function, but does not send any traffic to it. You use CodeDeploy to execute a PreTraffic test to ensure that your new function works as expected. After the test succeeds, CodeDeploy automatically shifts traffic gradually to the new version of the Lambda function.

Your Lambda function is exposed as a REST service via an Amazon API Gateway deployment. This makes it easy to test and integrate.

Prerequisites

To execute the SAM and CloudFormation deployment, you must have the following IAM permissions:

  • cloudformation:*
  • lambda:*
  • codedeploy:*
  • iam:create*

You may use the AWS SAM Local CLI or the AWS CLI to package and deploy your Lambda application. If you choose to use SAM Local, be sure to install it onto your system. For more information, see AWS SAM Local Installation.

All of the code used in this post can be found in this GitHub repository: https://github.com/aws-samples/aws-safe-lambda-deployments.

Walkthrough

For this post, use SAM to define your resources because it comes with built-in CodeDeploy support for safe Lambda deployments.  The deployment is handled and automated by CloudFormation.

SAM allows you to define your Serverless applications in a simple and concise fashion, because it automatically creates all necessary resources behind the scenes. For example, if you do not define an execution role for a Lambda function, SAM automatically creates one. SAM also creates the CodeDeploy application necessary to drive the traffic shifting, as well as the IAM service role that CodeDeploy uses to execute all actions.

Create a SAM template

To get started, write your SAM template and call it template.yaml.

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An example SAM template for Lambda Safe Deployments.

Resources:

  returnS3Buckets:
    Type: AWS::Serverless::Function
    Properties:
      Handler: returnS3Buckets.handler
      Runtime: nodejs6.10
      AutoPublishAlias: live
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "s3:ListAllMyBuckets"
            Resource: '*'
      DeploymentPreference:
          Type: Linear10PercentEvery1Minute
          Hooks:
            PreTraffic: !Ref preTrafficHook
      Events:
        Api:
          Type: Api
          Properties:
            Path: /test
            Method: get

  preTrafficHook:
    Type: AWS::Serverless::Function
    Properties:
      Handler: preTrafficHook.handler
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "codedeploy:PutLifecycleEventHookExecutionStatus"
            Resource:
              !Sub 'arn:aws:codedeploy:${AWS::Region}:${AWS::AccountId}:deploymentgroup:${ServerlessDeploymentApplication}/*'
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "lambda:InvokeFunction"
            Resource: !Ref returnS3Buckets.Version
      Runtime: nodejs6.10
      FunctionName: 'CodeDeployHook_preTrafficHook'
      DeploymentPreference:
        Enabled: false
      Timeout: 5
      Environment:
        Variables:
          NewVersion: !Ref returnS3Buckets.Version

This template creates two functions:

  • returnS3Buckets
  • preTrafficHook

The returnS3Buckets function is where your application logic lives. It’s a simple piece of code that uses the AWS SDK for JavaScript in Node.JS to call the Amazon S3 listBuckets API action and return the number of buckets.

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			callback(null, {
				statusCode: 200,
				body: allBuckets.length
			});
		}
	});	
}

Review the key parts of the SAM template that defines returnS3Buckets:

  • The AutoPublishAlias attribute instructs SAM to automatically publish a new version of the Lambda function for each new deployment and link it to the live alias.
  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides the function with permission to call listBuckets.
  • The DeploymentPreference attribute configures the type of rollout pattern to use. In this case, you are shifting traffic in a linear fashion, moving 10% of traffic every minute to the new version. For more information about supported patterns, see Serverless Application Model: Traffic Shifting Configurations.
  • The Hooks attribute specifies that you want to execute the preTrafficHook Lambda function before CodeDeploy automatically begins shifting traffic. This function should perform validation testing on the newly deployed Lambda version. This function invokes the new Lambda function and checks the results. If you’re satisfied with the tests, instruct CodeDeploy to proceed with the rollout via an API call to: codedeploy.putLifecycleEventHookExecutionStatus.
  • The Events attribute defines an API-based event source that can trigger this function. It accepts requests on the /test path using an HTTP GET method.
'use strict';

const AWS = require('aws-sdk');
const codedeploy = new AWS.CodeDeploy({apiVersion: '2014-10-06'});
var lambda = new AWS.Lambda();

exports.handler = (event, context, callback) => {

	console.log("Entering PreTraffic Hook!");
	
	// Read the DeploymentId & LifecycleEventHookExecutionId from the event payload
    var deploymentId = event.DeploymentId;
	var lifecycleEventHookExecutionId = event.LifecycleEventHookExecutionId;

	var functionToTest = process.env.NewVersion;
	console.log("Testing new function version: " + functionToTest);

	// Perform validation of the newly deployed Lambda version
	var lambdaParams = {
		FunctionName: functionToTest,
		InvocationType: "RequestResponse"
	};

	var lambdaResult = "Failed";
	lambda.invoke(lambdaParams, function(err, data) {
		if (err){	// an error occurred
			console.log(err, err.stack);
			lambdaResult = "Failed";
		}
		else{	// successful response
			var result = JSON.parse(data.Payload);
			console.log("Result: " +  JSON.stringify(result));

			// Check the response for valid results
			// The response will be a JSON payload with statusCode and body properties. ie:
			// {
			//		"statusCode": 200,
			//		"body": 51
			// }
			if(result.body == 9){	
				lambdaResult = "Succeeded";
				console.log ("Validation testing succeeded!");
			}
			else{
				lambdaResult = "Failed";
				console.log ("Validation testing failed!");
			}

			// Complete the PreTraffic Hook by sending CodeDeploy the validation status
			var params = {
				deploymentId: deploymentId,
				lifecycleEventHookExecutionId: lifecycleEventHookExecutionId,
				status: lambdaResult // status can be 'Succeeded' or 'Failed'
			};
			
			// Pass AWS CodeDeploy the prepared validation test results.
			codedeploy.putLifecycleEventHookExecutionStatus(params, function(err, data) {
				if (err) {
					// Validation failed.
					console.log('CodeDeploy Status update failed');
					console.log(err, err.stack);
					callback("CodeDeploy Status update failed");
				} else {
					// Validation succeeded.
					console.log('Codedeploy status updated successfully');
					callback(null, 'Codedeploy status updated successfully');
				}
			});
		}  
	});
}

The hook is hardcoded to check that the number of S3 buckets returned is 9.

Review the key parts of the SAM template that defines preTrafficHook:

  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides permissions to call the CodeDeploy PutLifecycleEventHookExecutionStatus API action. The second statement provides permissions to invoke the specific version of the returnS3Buckets function to test
  • This function has traffic shifting features disabled by setting the DeploymentPreference option to false.
  • The FunctionName attribute explicitly tells CloudFormation what to name the function. Otherwise, CloudFormation creates the function with the default naming convention: [stackName]-[FunctionName]-[uniqueID].  Name the function with the “CodeDeployHook_” prefix because the CodeDeployServiceRole role only allows InvokeFunction on functions named with that prefix.
  • Set the Timeout attribute to allow enough time to complete your validation tests.
  • Use an environment variable to inject the ARN of the newest deployed version of the returnS3Buckets function. The ARN allows the function to know the specific version to invoke and perform validation testing on.

Deploy the function

Your SAM template is all set and the code is written—you’re ready to deploy the function for the first time. Here’s how to do it via the SAM CLI. Replace “sam” with “cloudformation” to use CloudFormation instead.

First, package the function. This command returns a CloudFormation importable file, packaged.yaml.

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml

Now deploy everything:

sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

At this point, both Lambda functions have been deployed within the CloudFormation stack mySafeDeployStack. The returnS3Buckets has been deployed as Version 1:

SAM automatically created a few things, including the CodeDeploy application, with the deployment pattern that you specified (Linear10PercentEvery1Minute). There is currently one deployment group, with no action, because no deployments have occurred. SAM also created the IAM service role that this CodeDeploy application uses:

There is a single managed policy attached to this role, which allows CodeDeploy to invoke any Lambda function that begins with “CodeDeployHook_”.

An API has been set up called safeDeployStack. It targets your Lambda function with the /test resource using the GET method. When you test the endpoint, API Gateway executes the returnS3Buckets function and it returns the number of S3 buckets that you own. In this case, it’s 51.

Publish a new Lambda function version

Now implement the requirements change, which is to make returnS3Buckets count only buckets that begin with the letter “a”. The code now looks like the following (see returnS3BucketsNew.js in GitHub):

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			//callback(null, allBuckets.length);

			//  New Code begins here
			var counter=0;
			for(var i  in allBuckets){
				if(allBuckets[i].Name[0] === "a")
					counter++;
			}
			console.log("Total buckets starting with a: " + counter);

			callback(null, {
				statusCode: 200,
				body: counter
			});
			
		}
	});	
}

Repackage and redeploy with the same two commands as earlier:

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml
	
sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

CloudFormation understands that this is a stack update instead of an entirely new stack. You can see that reflected in the CloudFormation console:

During the update, CloudFormation deploys the new Lambda function as version 2 and adds it to the “live” alias. There is no traffic routing there yet. CodeDeploy now takes over to begin the safe deployment process.

The first thing CodeDeploy does is invoke the preTrafficHook function. Verify that this happened by reviewing the Lambda logs and metrics:

The function should progress successfully, invoke Version 2 of returnS3Buckets, and finally invoke the CodeDeploy API with a success code. After this occurs, CodeDeploy begins the predefined rollout strategy. Open the CodeDeploy console to review the deployment progress (Linear10PercentEvery1Minute):

Verify the traffic shift

During the deployment, verify that the traffic shift has started to occur by running the test periodically. As the deployment shifts towards the new version, a larger percentage of the responses return 9 instead of 51. These numbers match the S3 buckets.

A minute later, you see 10% more traffic shifting to the new version. The whole process takes 10 minutes to complete. After completion, open the Lambda console and verify that the “live” alias now points to version 2:

After 10 minutes, the deployment is complete and CodeDeploy signals success to CloudFormation and completes the stack update.

Check the results

If you invoke the function alias manually, you see the results of the new implementation.

aws lambda invoke –function [lambda arn to live alias] out.txt

You can also execute the prod stage of your API and verify the results by issuing an HTTP GET to the invoke URL:

Summary

This post has shown you how you can safely automate your Lambda deployments using the Lambda traffic shifting feature. You used the Serverless Application Model (SAM) to define your Lambda functions and configured CodeDeploy to manage your deployment patterns. Finally, you used CloudFormation to automate the deployment and updates to your function and PreTraffic hook.

Now that you know all about this new feature, you’re ready to begin automating Lambda deployments with confidence that things will work as designed. I look forward to hearing about what you’ve built with the AWS Serverless Platform.