Tag Archives: ECS

Simplify Your Jenkins Builds with AWS CodeBuild

Post Syndicated from Paul Roberts original https://aws.amazon.com/blogs/devops/simplify-your-jenkins-builds-with-aws-codebuild/

Jeff Bezos famously said, “There’s a lot of undifferentiated heavy lifting that stands between your idea and that success.” He went on to say, “…70% of your time, energy, and dollars go into the undifferentiated heavy lifting and only 30% of your energy, time, and dollars gets to go into the core kernel of your idea.”

If you subscribe to this maxim, you should not be spending valuable time focusing on operational issues related to maintaining the Jenkins build infrastructure. Companies such as Riot Games have over 1.25 million builds per year and have written several lengthy blog posts about their experiences designing a complex, custom Docker-powered Jenkins build farm. Dealing with Jenkins slaves at scale is a job in itself and Riot has engineers focused on managing the build infrastructure.

Typical Jenkins Build Farm

 

As with all technology, the Jenkins build farm architectures have evolved. Today, instead of manually building your own container infrastructure, there are Jenkins Docker plugins available to help reduce the operational burden of maintaining these environments. There is also a community-contributed Amazon EC2 Container Service (Amazon ECS) plugin that helps remove some of the overhead, but you still need to configure and manage the overall Amazon ECS environment.

There are various ways to create and manage your Jenkins build farm, but there has to be a way that significantly reduces your operational overhead.

Introducing AWS CodeBuild

AWS CodeBuild is a fully managed build service that removes the undifferentiated heavy lifting of provisioning, managing, and scaling your own build servers. With CodeBuild, there is no software to install, patch, or update. CodeBuild scales up automatically to meet the needs of your development teams. In addition, CodeBuild is an on-demand service where you pay as you go. You are charged based only on the number of minutes it takes to complete your build.

One AWS customer, Recruiterbox, helps companies hire simply and predictably through their software platform. Two years ago, they began feeling the operational pain of maintaining their own Jenkins build farms. They briefly considered moving to Amazon ECS, but chose an even easier path forward instead. Recuiterbox transitioned to using Jenkins with CodeBuild and are very happy with the results. You can read more about their journey here.

Solution Overview: Jenkins and CodeBuild

To remove the heavy lifting from managing your Jenkins build farm, AWS has developed a Jenkins AWS CodeBuild plugin. After the plugin has been enabled, a developer can configure a Jenkins project to pick up new commits from their chosen source code repository and automatically run the associated builds. After the build is successful, it will create an artifact that is stored inside an S3 bucket that you have configured. If an error is detected somewhere, CodeBuild will capture the output and send it to Amazon CloudWatch logs. In addition to storing the logs on CloudWatch, Jenkins also captures the error so you do not have to go hunting for log files for your build.

 

AWS CodeBuild with Jenkins Plugin

 

The following example uses AWS CodeCommit (Git) as the source control management (SCM) and Amazon S3 for build artifact storage. Logs are stored in CloudWatch. A development pipeline that uses Jenkins with CodeBuild plugin architecture looks something like this:

 

AWS CodeBuild Diagram

Initial Solution Setup

To keep this blog post succinct, I assume that you are using the following components on AWS already and have applied the appropriate IAM policies:

·         AWS CodeCommit repo.

·         Amazon S3 bucket for CodeBuild artifacts.

·         SNS notification for text messaging of the Jenkins admin password.

·         IAM user’s key and secret.

·         A role that has a policy with these permissions. Be sure to edit the ARNs with your region, account, and resource name. Use this role in the AWS CloudFormation template referred to later in this post.

 

Jenkins Installation with CodeBuild Plugin Enabled

To make the integration with Jenkins as frictionless as possible, I have created an AWS CloudFormation template here: https://s3.amazonaws.com/proberts-public/jenkins.yaml. Download the template, sign in the AWS CloudFormation console, and then use the template to create a stack.

 

CloudFormation Inputs

Jenkins Project Configuration

After the stack is complete, log in to the Jenkins EC2 instance using the user name “admin” and the password sent to your mobile device. Now that you have logged in to Jenkins, you need to create your first project. Start with a Freestyle project and configure the parameters based on your CodeBuild and CodeCommit settings.

 

AWS CodeBuild Plugin Configuration in Jenkins

 

Additional Jenkins AWS CodeBuild Plugin Configuration

 

After you have configured the Jenkins project appropriately you should be able to check your build status on the Jenkins polling log under your project settings:

 

Jenkins Polling Log

 

Now that Jenkins is polling CodeCommit, you can check the CodeBuild dashboard under your Jenkins project to confirm your build was successful:

Jenkins AWS CodeBuild Dashboard

Wrapping Up

In a matter of minutes, you have been able to provision Jenkins with the AWS CodeBuild plugin. This will greatly simplify your build infrastructure management. Now kick back and relax while CodeBuild does all the heavy lifting!


About the Author

Paul Roberts is a Strategic Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps, or Artificial Intelligence, he is often found in Lake Tahoe exploring the various mountain ranges with his family.

New Network Load Balancer – Effortless Scaling to Millions of Requests per Second

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/

Elastic Load Balancing (ELB)) has been an important part of AWS since 2009, when it was launched as part of a three-pack that also included Auto Scaling and Amazon CloudWatch. Since that time we have added many features, and also introduced the Application Load Balancer. Designed to support application-level, content-based routing to applications that run in containers, Application Load Balancers pair well with microservices, streaming, and real-time workloads.

Over the years, our customers have used ELB to support web sites and applications that run at almost any scale — from simple sites running on a T2 instance or two, all the way up to complex applications that run on large fleets of higher-end instances and handle massive amounts of traffic. Behind the scenes, ELB monitors traffic and automatically scales to meet demand. This process, which includes a generous buffer of headroom, has become quicker and more responsive over the years and works well even for our customers who use ELB to support live broadcasts, “flash” sales, and holidays. However, in some situations such as instantaneous fail-over between regions, or extremely spiky workloads, we have worked with our customers to pre-provision ELBs in anticipation of a traffic surge.

New Network Load Balancer
Today we are introducing the new Network Load Balancer (NLB). It is designed to handle tens of millions of requests per second while maintaining high throughput at ultra low latency, with no effort on your part. The Network Load Balancer is API-compatible with the Application Load Balancer, including full programmatic control of Target Groups and Targets. Here are some of the most important features:

Static IP Addresses – Each Network Load Balancer provides a single IP address for each VPC subnet in its purview. If you have targets in a subnet in us-west-2a and other targets in a subnet in us-west-2c, NLB will create and manage two IP addresses (one per subnet); connections to that IP address will spread traffic across the instances in the subnet. You can also specify an existing Elastic IP for each subnet for even greater control. With full control over your IP addresses, Network Load Balancer can be used in situations where IP addresses need to be hard-coded into DNS records, customer firewall rules, and so forth.

Zonality – The IP-per-subnet feature reduces latency with improved performance, improves availability through isolation and fault tolerance and makes the use of Network Load Balancers transparent to your client applications. Network Load Balancers also attempt to route a series of requests from a particular source to targets in a single subnet while still allowing automatic failover.

Source Address Preservation – With Network Load Balancer, the original source IP address and source ports for the incoming connections remain unmodified, so application software need not support X-Forwarded-For, proxy protocol, or other workarounds. This also means that normal firewall rules, including VPC Security Groups, can be used on targets.

Long-running Connections – NLB handles connections with built-in fault tolerance, and can handle connections that are open for months or years, making them a great fit for IoT, gaming, and messaging applications.

Failover – Powered by Route 53 health checks, NLB supports failover between IP addresses within and across regions.

Creating a Network Load Balancer
I can create a Network Load Balancer opening up the EC2 Console, selecting Load Balancers, and clicking on Create Load Balancer:

I choose Network Load Balancer and click on Create, then enter the details. I can choose an Elastic IP address for each subnet in the target VPC and I can tag the Network Load Balancer:

Then I click on Configure Routing and create a new target group. I enter a name, and then choose the protocol and port. I can also set up health checks that go to the traffic port or to the alternate of my choice:

Then I click on Register Targets and the EC2 instances that will receive traffic, and click on Add to registered:

I make sure that everything looks good and then click on Create:

The state of my new Load Balancer is provisioning, switching to active within a minute or so:

For testing purposes, I simply grab the DNS name of the Load Balancer from the console (in practice I would use Amazon Route 53 and a more friendly name):

Then I sent it a ton of traffic (I intended to let it run for just a second or two but got distracted and it created a huge number of processes, so this was a happy accident):

$ while true;
> do
>   wget http://nlb-1-6386cc6bf24701af.elb.us-west-2.amazonaws.com/phpinfo2.php &
> done

A more disciplined test would use a tool like Bees with Machine Guns, of course!

I took a quick break to let some traffic flow and then checked the CloudWatch metrics for my Load Balancer, finding that it was able to handle the sudden onslaught of traffic with ease:

I also looked at my EC2 instances to see how they were faring under the load (really well, it turns out):

It turns out that my colleagues did run a more disciplined test than I did. They set up a Network Load Balancer and backed it with an Auto Scaled fleet of EC2 instances. They set up a second fleet composed of hundreds of EC2 instances, each running Bees with Machine Guns and configured to generate traffic with highly variable request and response sizes. Beginning at 1.5 million requests per second, they quickly turned the dial all the way up, reaching over 3 million requests per second and 30 Gbps of aggregate bandwidth before maxing out their test resources.

Choosing a Load Balancer
As always, you should consider the needs of your application when you choose a load balancer. Here are some guidelines:

Network Load Balancer (NLB) – Ideal for load balancing of TCP traffic, NLB is capable of handling millions of requests per second while maintaining ultra-low latencies. NLB is optimized to handle sudden and volatile traffic patterns while using a single static IP address per Availability Zone.

Application Load Balancer (ALB) – Ideal for advanced load balancing of HTTP and HTTPS traffic, ALB provides advanced request routing that supports modern application architectures, including microservices and container-based applications.

Classic Load Balancer (CLB) – Ideal for applications that were built within the EC2-Classic network.

For a side-by-side feature comparison, see the Elastic Load Balancer Details table.

If you are currently using a Classic Load Balancer and would like to migrate to a Network Load Balancer, take a look at our new Load Balancer Copy Utility. This Python tool will help you to create a Network Load Balancer with the same configuration as an existing Classic Load Balancer. It can also register your existing EC2 instances with the new load balancer.

Pricing & Availability
Like the Application Load Balancer, pricing is based on Load Balancer Capacity Units, or LCUs. Billing is $0.006 per LCU, based on the highest value seen across the following dimensions:

  • Bandwidth – 1 GB per LCU.
  • New Connections – 800 per LCU.
  • Active Connections – 100,000 per LCU.

Most applications are bandwidth-bound and should see a cost reduction (for load balancing) of about 25% when compared to Application or Classic Load Balancers.

Network Load Balancers are available today in all AWS commercial regions except China (Beijing), supported by AWS CloudFormation, Auto Scaling, and Amazon ECS.

Jeff;

 

Deploying an NGINX Reverse Proxy Sidecar Container on Amazon ECS

Post Syndicated from Nathan Peck original https://aws.amazon.com/blogs/compute/nginx-reverse-proxy-sidecar-container-on-amazon-ecs/

Reverse proxies are a powerful software architecture primitive for fetching resources from a server on behalf of a client. They serve a number of purposes, from protecting servers from unwanted traffic to offloading some of the heavy lifting of HTTP traffic processing.

This post explains the benefits of a reverse proxy, and explains how to use NGINX and Amazon EC2 Container Service (Amazon ECS) to easily implement and deploy a reverse proxy for your containerized application.

Components

NGINX is a high performance HTTP server that has achieved significant adoption because of its asynchronous event driven architecture. It can serve thousands of concurrent requests with a low memory footprint. This efficiency also makes it ideal as a reverse proxy.

Amazon ECS is a highly scalable, high performance container management service that supports Docker containers. It allows you to run applications easily on a managed cluster of Amazon EC2 instances. Amazon ECS helps you get your application components running on instances according to a specified configuration. It also helps scale out these components across an entire fleet of instances.

Sidecar containers are a common software pattern that has been embraced by engineering organizations. It’s a way to keep server side architecture easier to understand by building with smaller, modular containers that each serve a simple purpose. Just like an application can be powered by multiple microservices, each microservice can also be powered by multiple containers that work together. A sidecar container is simply a way to move part of the core responsibility of a service out into a containerized module that is deployed alongside a core application container.

The following diagram shows how an NGINX reverse proxy sidecar container operates alongside an application server container:

In this architecture, Amazon ECS has deployed two copies of an application stack that is made up of an NGINX reverse proxy side container and an application container. Web traffic from the public goes to an Application Load Balancer, which then distributes the traffic to one of the NGINX reverse proxy sidecars. The NGINX reverse proxy then forwards the request to the application server and returns its response to the client via the load balancer.

Reverse proxy for security

Security is one reason for using a reverse proxy in front of an application container. Any web server that serves resources to the public can expect to receive lots of unwanted traffic every day. Some of this traffic is relatively benign scans by researchers and tools, such as Shodan or nmap:

[18/May/2017:15:10:10 +0000] "GET /YesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScann HTTP/1.1" 404 1389 - Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36
[18/May/2017:18:19:51 +0000] "GET /clientaccesspolicy.xml HTTP/1.1" 404 322 - Cloud mapping experiment. Contact [email protected]

But other traffic is much more malicious. For example, here is what a web server sees while being scanned by the hacking tool ZmEu, which scans web servers trying to find PHPMyAdmin installations to exploit:

[18/May/2017:16:27:39 +0000] "GET /mysqladmin/scripts/setup.php HTTP/1.1" 404 391 - ZmEu
[18/May/2017:16:27:39 +0000] "GET /web/phpMyAdmin/scripts/setup.php HTTP/1.1" 404 394 - ZmEu
[18/May/2017:16:27:39 +0000] "GET /xampp/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /apache-default/phpmyadmin/scripts/setup.php HTTP/1.1" 404 405 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /phpMyAdmin-2.10.0.0/scripts/setup.php HTTP/1.1" 404 397 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /mysql/scripts/setup.php HTTP/1.1" 404 386 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /admin/scripts/setup.php HTTP/1.1" 404 386 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /forum/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /typo3/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:42 +0000] "GET /phpMyAdmin-2.10.0.1/scripts/setup.php HTTP/1.1" 404 399 - ZmEu
[18/May/2017:16:27:44 +0000] "GET /administrator/components/com_joommyadmin/phpmyadmin/scripts/setup.php HTTP/1.1" 404 418 - ZmEu
[18/May/2017:18:34:45 +0000] "GET /phpmyadmin/scripts/setup.php HTTP/1.1" 404 390 - ZmEu
[18/May/2017:16:27:45 +0000] "GET /w00tw00t.at.blackhats.romanian.anti-sec:) HTTP/1.1" 404 401 - ZmEu

In addition, servers can also end up receiving unwanted web traffic that is intended for another server. In a cloud environment, an application may end up reusing an IP address that was formerly connected to another service. It’s common for misconfigured or misbehaving DNS servers to send traffic intended for a different host to an IP address now connected to your server.

It’s the responsibility of anyone running a web server to handle and reject potentially malicious traffic or unwanted traffic. Ideally, the web server can reject this traffic as early as possible, before it actually reaches the core application code. A reverse proxy is one way to provide this layer of protection for an application server. It can be configured to reject these requests before they reach the application server.

Reverse proxy for performance

Another advantage of using a reverse proxy such as NGINX is that it can be configured to offload some heavy lifting from your application container. For example, every HTTP server should support gzip. Whenever a client requests gzip encoding, the server compresses the response before sending it back to the client. This compression saves network bandwidth, which also improves speed for clients who now don’t have to wait as long for a response to fully download.

NGINX can be configured to accept a plaintext response from your application container and gzip encode it before sending it down to the client. This allows your application container to focus 100% of its CPU allotment on running business logic, while NGINX handles the encoding with its efficient gzip implementation.

An application may have security concerns that require SSL termination at the instance level instead of at the load balancer. NGINX can also be configured to terminate SSL before proxying the request to a local application container. Again, this also removes some CPU load from the application container, allowing it to focus on running business logic. It also gives you a cleaner way to patch any SSL vulnerabilities or update SSL certificates by updating the NGINX container without needing to change the application container.

NGINX configuration

Configuring NGINX for both traffic filtering and gzip encoding is shown below:

http {
  # NGINX will handle gzip compression of responses from the app server
  gzip on;
  gzip_proxied any;
  gzip_types text/plain application/json;
  gzip_min_length 1000;
 
  server {
    listen 80;
 
    # NGINX will reject anything not matching /api
    location /api {
      # Reject requests with unsupported HTTP method
      if ($request_method !~ ^(GET|POST|HEAD|OPTIONS|PUT|DELETE)$) {
        return 405;
      }
 
      # Only requests matching the whitelist expectations will
      # get sent to the application server
      proxy_pass http://app:3000;
      proxy_http_version 1.1;
      proxy_set_header Upgrade $http_upgrade;
      proxy_set_header Connection 'upgrade';
      proxy_set_header Host $host;
      proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
      proxy_cache_bypass $http_upgrade;
    }
  }
}

The above configuration only accepts traffic that matches the expression /api and has a recognized HTTP method. If the traffic matches, it is forwarded to a local application container accessible at the local hostname app. If the client requested gzip encoding, the plaintext response from that application container is gzip-encoded.

Amazon ECS configuration

Configuring ECS to run this NGINX container as a sidecar is also simple. ECS uses a core primitive called the task definition. Each task definition can include one or more containers, which can be linked to each other:

 {
  "containerDefinitions": [
     {
       "name": "nginx",
       "image": "<NGINX reverse proxy image URL here>",
       "memory": "256",
       "cpu": "256",
       "essential": true,
       "portMappings": [
         {
           "containerPort": "80",
           "protocol": "tcp"
         }
       ],
       "links": [
         "app"
       ]
     },
     {
       "name": "app",
       "image": "<app image URL here>",
       "memory": "256",
       "cpu": "256",
       "essential": true
     }
   ],
   "networkMode": "bridge",
   "family": "application-stack"
}

This task definition causes ECS to start both an NGINX container and an application container on the same instance. Then, the NGINX container is linked to the application container. This allows the NGINX container to send traffic to the application container using the hostname app.

The NGINX container has a port mapping that exposes port 80 on a publically accessible port but the application container does not. This means that the application container is not directly addressable. The only way to send it traffic is to send traffic to the NGINX container, which filters that traffic down. It only forwards to the application container if the traffic passes the whitelisted rules.

Conclusion

Running a sidecar container such as NGINX can bring significant benefits by making it easier to provide protection for application containers. Sidecar containers also improve performance by freeing your application container from various CPU intensive tasks. Amazon ECS makes it easy to run sidecar containers, and automate their deployment across your cluster.

To see the full code for this NGINX sidecar reference, or to try it out yourself, you can check out the open source NGINX reverse proxy reference architecture on GitHub.

– Nathan
 @nathankpeck

Create Multiple Builds from the Same Source Using Different AWS CodeBuild Build Specification Files

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/create-multiple-builds-from-the-same-source-using-different-aws-codebuild-build-specification-files/

In June 2017, AWS CodeBuild announced you can now specify an alternate build specification file name or location in an AWS CodeBuild project.

In this post, I’ll show you how to use different build specification files in the same repository to create different builds. You’ll find the source code for this post in our GitHub repo.

Requirements

The AWS CLI must be installed and configured.

Solution Overview

I have created a C program (cbsamplelib.c) that will be used to create a shared library and another utility program (cbsampleutil.c) to use that library. I’ll use a Makefile to compile these files.

I need to put this sample application in RPM and DEB packages so end users can easily deploy them. I have created a build specification file for RPM. It will use make to compile this code and the RPM specification file (cbsample.rpmspec) configured in the build specification to create the RPM package. Similarly, I have created a build specification file for DEB. It will create the DEB package based on the control specification file (cbsample.control) configured in this build specification.

RPM Build Project:

The following build specification file (buildspec-rpm.yml) uses build specification version 0.2. As described in the documentation, this version has different syntax for environment variables. This build specification includes multiple phases:

  • As part of the install phase, the required packages is installed using yum.
  • During the pre_build phase, the required directories are created and the required files, including the RPM build specification file, are copied to the appropriate location.
  • During the build phase, the code is compiled, and then the RPM package is created based on the RPM specification.

As defined in the artifact section, the RPM file will be uploaded as a build artifact.

version: 0.2

env:
  variables:
    build_version: "0.1"

phases:
  install:
    commands:
      - yum install rpm-build make gcc glibc -y
  pre_build:
    commands:
      - curr_working_dir=`pwd`
      - mkdir -p ./{RPMS,SRPMS,BUILD,SOURCES,SPECS,tmp}
      - filename="cbsample-$build_version"
      - echo $filename
      - mkdir -p $filename
      - cp ./*.c ./*.h Makefile $filename
      - tar -zcvf /root/$filename.tar.gz $filename
      - cp /root/$filename.tar.gz ./SOURCES/
      - cp cbsample.rpmspec ./SPECS/
  build:
    commands:
      - echo "Triggering RPM build"
      - rpmbuild --define "_topdir `pwd`" -ba SPECS/cbsample.rpmspec
      - cd $curr_working_dir

artifacts:
  files:
    - RPMS/x86_64/cbsample*.rpm
  discard-paths: yes

Using cb-centos-project.json as a reference, create the input JSON file for the CLI command. This project uses an AWS CodeCommit repository named codebuild-multispec and a file named buildspec-rpm.yml as the build specification file. To create the RPM package, we need to specify a custom image name. I’m using the latest CentOS 7 image available in the Docker Hub. I’m using a role named CodeBuildServiceRole. It contains permissions similar to those defined in CodeBuildServiceRole.json. (You need to change the resource fields in the policy, as appropriate.)

{
    "name": "rpm-build-project",
    "description": "Project which will build RPM from the source.",
    "source": {
        "type": "CODECOMMIT",
        "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec",
        "buildspec": "buildspec-rpm.yml"
    },
    "artifacts": {
        "type": "S3",
        "location": "codebuild-demo-artifact-repository"
    },
    "environment": {
        "type": "LINUX_CONTAINER",
        "image": "centos:7",
        "computeType": "BUILD_GENERAL1_SMALL"
    },
    "serviceRole": "arn:aws:iam::012345678912:role/service-role/CodeBuildServiceRole",
    "timeoutInMinutes": 15,
    "encryptionKey": "arn:aws:kms:eu-west-1:012345678912:alias/aws/s3",
    "tags": [
        {
            "key": "Name",
            "value": "RPM Demo Build"
        }
    ]
}

After the cli-input-json file is ready, execute the following command to create the build project.

$ aws codebuild create-project --name CodeBuild-RPM-Demo --cli-input-json file://cb-centos-project.json

{
    "project": {
        "name": "CodeBuild-RPM-Demo", 
        "serviceRole": "arn:aws:iam::012345678912:role/service-role/CodeBuildServiceRole", 
        "tags": [
            {
                "value": "RPM Demo Build", 
                "key": "Name"
            }
        ], 
        "artifacts": {
            "namespaceType": "NONE", 
            "packaging": "NONE", 
            "type": "S3", 
            "location": "codebuild-demo-artifact-repository", 
            "name": "CodeBuild-RPM-Demo"
        }, 
        "lastModified": 1500559811.13, 
        "timeoutInMinutes": 15, 
        "created": 1500559811.13, 
        "environment": {
            "computeType": "BUILD_GENERAL1_SMALL", 
            "privilegedMode": false, 
            "image": "centos:7", 
            "type": "LINUX_CONTAINER", 
            "environmentVariables": []
        }, 
        "source": {
            "buildspec": "buildspec-rpm.yml", 
            "type": "CODECOMMIT", 
            "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
        }, 
        "encryptionKey": "arn:aws:kms:eu-west-1:012345678912:alias/aws/s3", 
        "arn": "arn:aws:codebuild:eu-west-1:012345678912:project/CodeBuild-RPM-Demo", 
        "description": "Project which will build RPM from the source."
    }
}

When the project is created, run the following command to start the build. After the build has started, get the build ID. You can use the build ID to get the status of the build.

$ aws codebuild start-build --project-name CodeBuild-RPM-Demo
{
    "build": {
        "buildComplete": false, 
        "initiator": "prakash", 
        "artifacts": {
            "location": "arn:aws:s3:::codebuild-demo-artifact-repository/CodeBuild-RPM-Demo"
        }, 
        "projectName": "CodeBuild-RPM-Demo", 
        "timeoutInMinutes": 15, 
        "buildStatus": "IN_PROGRESS", 
        "environment": {
            "computeType": "BUILD_GENERAL1_SMALL", 
            "privilegedMode": false, 
            "image": "centos:7", 
            "type": "LINUX_CONTAINER", 
            "environmentVariables": []
        }, 
        "source": {
            "buildspec": "buildspec-rpm.yml", 
            "type": "CODECOMMIT", 
            "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
        }, 
        "currentPhase": "SUBMITTED", 
        "startTime": 1500560156.761, 
        "id": "CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc", 
        "arn": "arn:aws:codebuild:eu-west-1: 012345678912:build/CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc"
    }
}

$ aws codebuild list-builds-for-project --project-name CodeBuild-RPM-Demo
{
    "ids": [
        "CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc"
    ]
}

$ aws codebuild batch-get-builds --ids CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc
{
    "buildsNotFound": [], 
    "builds": [
        {
            "buildComplete": true, 
            "phases": [
                {
                    "phaseStatus": "SUCCEEDED", 
                    "endTime": 1500560157.164, 
                    "phaseType": "SUBMITTED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560156.761
                }, 
                {
                    "contexts": [], 
                    "phaseType": "PROVISIONING", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 24, 
                    "startTime": 1500560157.164, 
                    "endTime": 1500560182.066
                }, 
                {
                    "contexts": [], 
                    "phaseType": "DOWNLOAD_SOURCE", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 15, 
                    "startTime": 1500560182.066, 
                    "endTime": 1500560197.906
                }, 
                {
                    "contexts": [], 
                    "phaseType": "INSTALL", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 19, 
                    "startTime": 1500560197.906, 
                    "endTime": 1500560217.515
                }, 
                {
                    "contexts": [], 
                    "phaseType": "PRE_BUILD", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560217.515, 
                    "endTime": 1500560217.662
                }, 
                {
                    "contexts": [], 
                    "phaseType": "BUILD", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560217.662, 
                    "endTime": 1500560217.995
                }, 
                {
                    "contexts": [], 
                    "phaseType": "POST_BUILD", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560217.995, 
                    "endTime": 1500560218.074
                }, 
                {
                    "contexts": [], 
                    "phaseType": "UPLOAD_ARTIFACTS", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560218.074, 
                    "endTime": 1500560218.542
                }, 
                {
                    "contexts": [], 
                    "phaseType": "FINALIZING", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 4, 
                    "startTime": 1500560218.542, 
                    "endTime": 1500560223.128
                }, 
                {
                    "phaseType": "COMPLETED", 
                    "startTime": 1500560223.128
                }
            ], 
            "logs": {
                "groupName": "/aws/codebuild/CodeBuild-RPM-Demo", 
                "deepLink": "https://console.aws.amazon.com/cloudwatch/home?region=eu-west-1#logEvent:group=/aws/codebuild/CodeBuild-RPM-Demo;stream=57a36755-4d37-4b08-9c11-1468e1682abc", 
                "streamName": "57a36755-4d37-4b08-9c11-1468e1682abc"
            }, 
            "artifacts": {
                "location": "arn:aws:s3:::codebuild-demo-artifact-repository/CodeBuild-RPM-Demo"
            }, 
            "projectName": "CodeBuild-RPM-Demo", 
            "timeoutInMinutes": 15, 
            "initiator": "prakash", 
            "buildStatus": "SUCCEEDED", 
            "environment": {
                "computeType": "BUILD_GENERAL1_SMALL", 
                "privilegedMode": false, 
                "image": "centos:7", 
                "type": "LINUX_CONTAINER", 
                "environmentVariables": []
            }, 
            "source": {
                "buildspec": "buildspec-rpm.yml", 
                "type": "CODECOMMIT", 
                "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
            }, 
            "currentPhase": "COMPLETED", 
            "startTime": 1500560156.761, 
            "endTime": 1500560223.128, 
            "id": "CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc", 
            "arn": "arn:aws:codebuild:eu-west-1:012345678912:build/CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc"
        }
    ]
}

DEB Build Project:

In this project, we will use the build specification file named buildspec-deb.yml. Like the RPM build project, this specification includes multiple phases. Here I use a Debian control file to create the package in DEB format. After a successful build, the DEB package will be uploaded as build artifact.

version: 0.2

env:
  variables:
    build_version: "0.1"

phases:
  install:
    commands:
      - apt-get install gcc make -y
  pre_build:
    commands:
      - mkdir -p ./cbsample-$build_version/DEBIAN
      - mkdir -p ./cbsample-$build_version/usr/lib
      - mkdir -p ./cbsample-$build_version/usr/include
      - mkdir -p ./cbsample-$build_version/usr/bin
      - cp -f cbsample.control ./cbsample-$build_version/DEBIAN/control
  build:
    commands:
      - echo "Building the application"
      - make
      - cp libcbsamplelib.so ./cbsample-$build_version/usr/lib
      - cp cbsamplelib.h ./cbsample-$build_version/usr/include
      - cp cbsampleutil ./cbsample-$build_version/usr/bin
      - chmod +x ./cbsample-$build_version/usr/bin/cbsampleutil
      - dpkg-deb --build ./cbsample-$build_version

artifacts:
  files:
    - cbsample-*.deb

Here we use cb-ubuntu-project.json as a reference to create the CLI input JSON file. This project uses the same AWS CodeCommit repository (codebuild-multispec) but a different buildspec file in the same repository (buildspec-deb.yml). We use the default CodeBuild image to create the DEB package. We use the same IAM role (CodeBuildServiceRole).

{
    "name": "deb-build-project",
    "description": "Project which will build DEB from the source.",
    "source": {
        "type": "CODECOMMIT",
        "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec",
        "buildspec": "buildspec-deb.yml"
    },
    "artifacts": {
        "type": "S3",
        "location": "codebuild-demo-artifact-repository"
    },
    "environment": {
        "type": "LINUX_CONTAINER",
        "image": "aws/codebuild/ubuntu-base:14.04",
        "computeType": "BUILD_GENERAL1_SMALL"
    },
    "serviceRole": "arn:aws:iam::012345678912:role/service-role/CodeBuildServiceRole",
    "timeoutInMinutes": 15,
    "encryptionKey": "arn:aws:kms:eu-west-1:012345678912:alias/aws/s3",
    "tags": [
        {
            "key": "Name",
            "value": "Debian Demo Build"
        }
    ]
}

Using the CLI input JSON file, create the project, start the build, and check the status of the project.

$ aws codebuild create-project --name CodeBuild-DEB-Demo --cli-input-json file://cb-ubuntu-project.json

$ aws codebuild list-builds-for-project --project-name CodeBuild-DEB-Demo

$ aws codebuild batch-get-builds --ids CodeBuild-DEB-Demo:e535c4b0-7067-4fbe-8060-9bb9de203789

After successful completion of the RPM and DEB builds, check the S3 bucket configured in the artifacts section for the build packages. Build projects will create a directory in the name of the build project and copy the artifacts inside it.

$ aws s3 ls s3://codebuild-demo-artifact-repository/CodeBuild-RPM-Demo/
2017-07-20 16:16:59       8108 cbsample-0.1-1.el7.centos.x86_64.rpm

$ aws s3 ls s3://codebuild-demo-artifact-repository/CodeBuild-DEB-Demo/
2017-07-20 16:37:22       5420 cbsample-0.1.deb

Override Buildspec During Build Start:

It’s also possible to override the build specification file of an existing project when starting a build. If we want to create the libs RPM package instead of the whole RPM, we will use the build specification file named buildspec-libs-rpm.yml. This build specification file is similar to the earlier RPM build. The only difference is that it uses a different RPM specification file to create libs RPM.

version: 0.2

env:
  variables:
    build_version: "0.1"

phases:
  install:
    commands:
      - yum install rpm-build make gcc glibc -y
  pre_build:
    commands:
      - curr_working_dir=`pwd`
      - mkdir -p ./{RPMS,SRPMS,BUILD,SOURCES,SPECS,tmp}
      - filename="cbsample-libs-$build_version"
      - echo $filename
      - mkdir -p $filename
      - cp ./*.c ./*.h Makefile $filename
      - tar -zcvf /root/$filename.tar.gz $filename
      - cp /root/$filename.tar.gz ./SOURCES/
      - cp cbsample-libs.rpmspec ./SPECS/
  build:
    commands:
      - echo "Triggering RPM build"
      - rpmbuild --define "_topdir `pwd`" -ba SPECS/cbsample-libs.rpmspec
      - cd $curr_working_dir

artifacts:
  files:
    - RPMS/x86_64/cbsample-libs*.rpm
  discard-paths: yes

Using the same RPM build project that we created earlier, start a new build and set the value of the `–buildspec-override` parameter to buildspec-libs-rpm.yml .

$ aws codebuild start-build --project-name CodeBuild-RPM-Demo --buildspec-override buildspec-libs-rpm.yml
{
    "build": {
        "buildComplete": false, 
        "initiator": "prakash", 
        "artifacts": {
            "location": "arn:aws:s3:::codebuild-demo-artifact-repository/CodeBuild-RPM-Demo"
        }, 
        "projectName": "CodeBuild-RPM-Demo", 
        "timeoutInMinutes": 15, 
        "buildStatus": "IN_PROGRESS", 
        "environment": {
            "computeType": "BUILD_GENERAL1_SMALL", 
            "privilegedMode": false, 
            "image": "centos:7", 
            "type": "LINUX_CONTAINER", 
            "environmentVariables": []
        }, 
        "source": {
            "buildspec": "buildspec-libs-rpm.yml", 
            "type": "CODECOMMIT", 
            "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
        }, 
        "currentPhase": "SUBMITTED", 
        "startTime": 1500562366.239, 
        "id": "CodeBuild-RPM-Demo:82d05f8a-b161-401c-82f0-83cb41eba567", 
        "arn": "arn:aws:codebuild:eu-west-1:012345678912:build/CodeBuild-RPM-Demo:82d05f8a-b161-401c-82f0-83cb41eba567"
    }
}

After the build is completed successfully, check to see if the package appears in the artifact S3 bucket under the CodeBuild-RPM-Demo build project folder.

$ aws s3 ls s3://codebuild-demo-artifact-repository/CodeBuild-RPM-Demo/
2017-07-20 16:16:59       8108 cbsample-0.1-1.el7.centos.x86_64.rpm
2017-07-20 16:53:54       5320 cbsample-libs-0.1-1.el7.centos.x86_64.rpm

Conclusion

In this post, I have shown you how multiple buildspec files in the same source repository can be used to run multiple AWS CodeBuild build projects. I have also shown you how to provide a different buildspec file when starting the build.

For more information about AWS CodeBuild, see the AWS CodeBuild documentation. You can get started with AWS CodeBuild by using this step by step guide.


About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

Now Available: Three New AWS Specialty Training Courses

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-available-three-new-aws-specialty-training-courses/

AWS Training allows you to learn from the experts so you can advance your knowledge with practical skills and get more out of the AWS Cloud. Today I am happy to announce that three of our most popular training bootcamps (a staple at AWS re:Invent and AWS Global Summits) are becoming part of our permanent instructor-led training portfolio:

These one-day courses are intended for individuals who would like to dive deeper into a specialized topic with an expert trainer.

You can explore our complete course catalog, and you can search for a public class near you within the AWS Training and Certification Portal. You can also request a private onsite training session for your team by contacting us.

Jeff;

 

 

Deploying Java Microservices on Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/deploying-java-microservices-on-amazon-ec2-container-service/

This post and accompanying code graciously contributed by:

Huy Huynh
Sr. Solutions Architect
Magnus Bjorkman
Solutions Architect

Java is a popular language used by many enterprises today. To simplify and accelerate Java application development, many companies are moving from a monolithic to microservices architecture. For some, it has become a strategic imperative. Containerization technology, such as Docker, lets enterprises build scalable, robust microservice architectures without major code rewrites.

In this post, I cover how to containerize a monolithic Java application to run on Docker. Then, I show how to deploy it on AWS using Amazon EC2 Container Service (Amazon ECS), a high-performance container management service. Finally, I show how to break the monolith into multiple services, all running in containers on Amazon ECS.

Application Architecture

For this example, I use the Spring Pet Clinic, a monolithic Java application for managing a veterinary practice. It is a simple REST API, which allows the client to manage and view Owners, Pets, Vets, and Visits.

It is a simple three-tier architecture:

  • Client
    You simulate this by using curl commands.
  • Web/app server
    This is the Java and Spring-based application that you run using the embedded Tomcat. As part of this post, you run this within Docker containers.
  • Database server
    This is the relational database for your application that stores information about owners, pets, vets, and visits. For this post, use MySQL RDS.

I decided to not put the database inside a container as containers were designed for applications and are transient in nature. The choice was made even easier because you have a fully managed database service available with Amazon RDS.

RDS manages the work involved in setting up a relational database, from provisioning the infrastructure capacity that you request to installing the database software. After your database is up and running, RDS automates common administrative tasks, such as performing backups and patching the software that powers your database. With optional Multi-AZ deployments, Amazon RDS also manages synchronous data replication across Availability Zones with automatic failover.

Walkthrough

You can find the code for the example covered in this post at amazon-ecs-java-microservices on GitHub.

Prerequisites

You need the following to walk through this solution:

  • An AWS account
  • An access key and secret key for a user in the account
  • The AWS CLI installed

Also, install the latest versions of the following:

  • Java
  • Maven
  • Python
  • Docker

Step 1: Move the existing Java Spring application to a container deployed using Amazon ECS

First, move the existing monolith application to a container and deploy it using Amazon ECS. This is a great first step before breaking the monolith apart because you still get some benefits before breaking apart the monolith:

  • An improved pipeline. The container also allows an engineering organization to create a standard pipeline for the application lifecycle.
  • No mutations to machines.

You can find the monolith example at 1_ECS_Java_Spring_PetClinic.

Container deployment overview

The following diagram is an overview of what the setup looks like for Amazon ECS and related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The load balancer that distributes requests across all available ports and instances registered in the application’s target group using round-robin.
  • The target group that is updated by Amazon ECS to always have an up-to-date list of all the service containers in the cluster. This includes the port on which they are accessible.
  • One Amazon ECS cluster that hosts the container for the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Each container has a single application process that is bound to port 8080 within its namespace. In reality, all the containers are exposed on a different, randomly assigned port on the host.

The architecture is containerized but still monolithic because each container has all the same features of the rest of the containers

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon EC2 Container Registry (Amazon ECR) repository for the application.
  • A service/task definition that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers, so that the application can connect to the MySQL RDS instance.

I have automated setup with the 1_ECS_Java_Spring_PetClinic/ecs-cluster.cf AWS CloudFormation template and a Python script.

The Python script calls the CloudFormation template for the initial setup of the VPC, Amazon ECS cluster, and RDS instance. It then extracts the outputs from the template and uses those for API calls to create Amazon ECR repositories, tasks, services, Application Load Balancer, and target groups.

Environment variables and Spring properties binding

As part of the Python script, you pass in a number of environment variables to the container as part of the task/container definition:

'environment': [
{
'name': 'SPRING_PROFILES_ACTIVE',
'value': 'mysql'
},
{
'name': 'SPRING_DATASOURCE_URL',
'value': my_sql_options['dns_name']
},
{
'name': 'SPRING_DATASOURCE_USERNAME',
'value': my_sql_options['username']
},
{
'name': 'SPRING_DATASOURCE_PASSWORD',
'value': my_sql_options['password']
}
],

The preceding environment variables work in concert with the Spring property system. The value in the variable SPRING_PROFILES_ACTIVE, makes Spring use the MySQL version of the application property file. The other environment files override the following properties in that file:

  • spring.datasource.url
  • spring.datasource.username
  • spring.datasource.password

Optionally, you can also encrypt sensitive values by using Amazon EC2 Systems Manager Parameter Store. Instead of handing in the password, you pass in a reference to the parameter and fetch the value as part of the container startup. For more information, see Managing Secrets for Amazon ECS Applications Using Parameter Store and IAM Roles for Tasks.

Spotify Docker Maven plugin

Use the Spotify Docker Maven plugin to create the image and push it directly to Amazon ECR. This allows you to do this as part of the regular Maven build. It also integrates the image generation as part of the overall build process. Use an explicit Dockerfile as input to the plugin.

FROM frolvlad/alpine-oraclejdk8:slim
VOLUME /tmp
ADD spring-petclinic-rest-1.7.jar app.jar
RUN sh -c 'touch /app.jar'
ENV JAVA_OPTS=""
ENTRYPOINT [ "sh", "-c", "java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar" ]

The Python script discussed earlier uses the AWS CLI to authenticate you with AWS. The script places the token in the appropriate location so that the plugin can work directly against the Amazon ECR repository.

Test setup

You can test the setup by running the Python script:
python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:
curl <your endpoint from output above>/owner

You can clean this up before going to the next section:
python setup.py -m cleanup -r <your region>

Step 2: Converting the monolith into microservices running on Amazon ECS

The second step is to convert the monolith into microservices. For a real application, you would likely not do this as one step, but re-architect an application piece by piece. You would continue to run your monolith but it would keep getting smaller for each piece that you are breaking apart.

By migrating microservices, you would get four benefits associated with microservices:

  • Isolation of crashes
    If one microservice in your application is crashing, then only that part of your application goes down. The rest of your application continues to work properly.
  • Isolation of security
    When microservice best practices are followed, the result is that if an attacker compromises one service, they only gain access to the resources of that service. They can’t horizontally access other resources from other services without breaking into those services as well.
  • Independent scaling
    When features are broken out into microservices, then the amount of infrastructure and number of instances of each microservice class can be scaled up and down independently.
  • Development velocity
    In a monolith, adding a new feature can potentially impact every other feature that the monolith contains. On the other hand, a proper microservice architecture has new code for a new feature going into a new service. You can be confident that any code you write won’t impact the existing code at all, unless you explicitly write a connection between two microservices.

Find the monolith example at 2_ECS_Java_Spring_PetClinic_Microservices.
You break apart the Spring Pet Clinic application by creating a microservice for each REST API operation, as well as creating one for the system services.

Java code changes

Comparing the project structure between the monolith and the microservices version, you can see that each service is now its own separate build.
First, the monolith version:

You can clearly see how each API operation is its own subpackage under the org.springframework.samples.petclinic package, all part of the same monolithic application.
This changes as you break it apart in the microservices version:

Now, each API operation is its own separate build, which you can build independently and deploy. You have also duplicated some code across the different microservices, such as the classes under the model subpackage. This is intentional as you don’t want to introduce artificial dependencies among the microservices and allow these to evolve differently for each microservice.

Also, make the dependencies among the API operations more loosely coupled. In the monolithic version, the components are tightly coupled and use object-based invocation.

Here is an example of this from the OwnerController operation, where the class is directly calling PetRepository to get information about pets. PetRepository is the Repository class (Spring data access layer) to the Pet table in the RDS instance for the Pet API:

@RestController
class OwnerController {

    @Inject
    private PetRepository pets;
    @Inject
    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> visitList.addAll(pet.getVisits()));
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);
    }
}

In the microservice version, call the Pet API operation and not PetRepository directly. Decouple the components by using interprocess communication; in this case, the Rest API. This provides for fault tolerance and disposability.

@RestController
class OwnerController {

    @Value("#{environment['SERVICE_ENDPOINT'] ?: 'localhost:8080'}")
    private String serviceEndpoint;

    @Inject
    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> {
            logger.info(getPetVisits(pet.getId()).toString());
            visitList.addAll(getPetVisits(pet.getId()));
        });
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);
    }

    private List<Visit> getPetVisits(int petId){
        List<Visit> visitList = new ArrayList<Visit>();
        RestTemplate restTemplate = new RestTemplate();
        Pet pet = restTemplate.getForObject("http://"+serviceEndpoint+"/pet/"+petId, Pet.class);
        logger.info(pet.getVisits().toString());
        return pet.getVisits();
    }
}

You now have an additional method that calls the API. You are also handing in the service endpoint that should be called, so that you can easily inject dynamic endpoints based on the current deployment.

Container deployment overview

Here is an overview of what the setup looks like for Amazon ECS and the related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The Application Load Balancer that inspects the client request. Based on routing rules, it directs the request to an instance and port from the target group that matches the rule.
  • The Application Load Balancer that has a target group for each microservice. The target groups are used by the corresponding services to register available container instances. Each target group has a path, so when you call the path for a particular microservice, it is mapped to the correct target group. This allows you to use one Application Load Balancer to serve all the different microservices, accessed by the path. For example, https:///owner/* would be mapped and directed to the Owner microservice.
  • One Amazon ECS cluster that hosts the containers for each microservice of the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Because you are running multiple containers on the same instances, use dynamic port mapping to avoid port clashing. By using dynamic port mapping, the container is allocated an anonymous port on the host to which the container port (8080) is mapped. The anonymous port is registered with the Application Load Balancer and target group so that traffic is routed correctly.

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon ECR repository for each microservice.
  • A service/task definition per microservice that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers. That way, the application can connect to the MySQL RDS instance.

I have again automated setup with the 2_ECS_Java_Spring_PetClinic_Microservices/ecs-cluster.cf CloudFormation template and a Python script.

The CloudFormation template remains the same as in the previous section. In the Python script, you are now building five different Java applications, one for each microservice (also includes a system application). There is a separate Maven POM file for each one. The resulting Docker image gets pushed to its own Amazon ECR repository, and is deployed separately using its own service/task definition. This is critical to get the benefits described earlier for microservices.

Here is an example of the POM file for the Owner microservice:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.springframework.samples</groupId>
    <artifactId>spring-petclinic-rest</artifactId>
    <version>1.7</version>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.5.2.RELEASE</version>
    </parent>
    <properties>
        <!-- Generic properties -->
        <java.version>1.8</java.version>
        <docker.registry.host>${env.docker_registry_host}</docker.registry.host>
    </properties>
    <dependencies>
        <dependency>
            <groupId>javax.inject</groupId>
            <artifactId>javax.inject</artifactId>
            <version>1</version>
        </dependency>
        <!-- Spring and Spring Boot dependencies -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-rest</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-cache</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <!-- Databases - Uses HSQL by default -->
        <dependency>
            <groupId>org.hsqldb</groupId>
            <artifactId>hsqldb</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <scope>runtime</scope>
        </dependency>
        <!-- caching -->
        <dependency>
            <groupId>javax.cache</groupId>
            <artifactId>cache-api</artifactId>
        </dependency>
        <dependency>
            <groupId>org.ehcache</groupId>
            <artifactId>ehcache</artifactId>
        </dependency>
        <!-- end of webjars -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
            <plugin>
                <groupId>com.spotify</groupId>
                <artifactId>docker-maven-plugin</artifactId>
                <version>0.4.13</version>
                <configuration>
                    <imageName>${env.docker_registry_host}/${project.artifactId}</imageName>
                    <dockerDirectory>src/main/docker</dockerDirectory>
                    <useConfigFile>true</useConfigFile>
                    <registryUrl>${env.docker_registry_host}</registryUrl>
                    <!--dockerHost>https://${docker.registry.host}</dockerHost-->
                    <resources>
                        <resource>
                            <targetPath>/</targetPath>
                            <directory>${project.build.directory}</directory>
                            <include>${project.build.finalName}.jar</include>
                        </resource>
                    </resources>
                    <forceTags>false</forceTags>
                    <imageTags>
                        <imageTag>${project.version}</imageTag>
                    </imageTags>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

Test setup

You can test this by running the Python script:

python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:

curl <your endpoint from output above>/owner

Conclusion

Migrating a monolithic application to a containerized set of microservices can seem like a daunting task. Following the steps outlined in this post, you can begin to containerize monolithic Java apps, taking advantage of the container runtime environment, and beginning the process of re-architecting into microservices. On the whole, containerized microservices are faster to develop, easier to iterate on, and more cost effective to maintain and secure.

This post focused on the first steps of microservice migration. You can learn more about optimizing and scaling your microservices with components such as service discovery, blue/green deployment, circuit breakers, and configuration servers at http://aws.amazon.com/containers.

If you have questions or suggestions, please comment below.

Burner laptops for DEF CON

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/burner-laptops-for-def-con.html

Hacker summer camp (Defcon, Blackhat, BSidesLV) is upon us, so I thought I’d write up some quick notes about bringing a “burner” laptop. Chrome is your best choice in terms of security, but I need Windows/Linux tools, so I got a Windows laptop.

I chose the Asus e200ha for $199 from Amazon with free (and fast) shipping. There are similar notebooks with roughly the same hardware and price from other manufacturers (HP, Dell, etc.), so I’m not sure how this compares against those other ones. However, it fits my needs as a “burner” laptop, namely:

  • cheap
  • lasts 10 hours easily on battery
  • weighs 2.2 pounds (1 kilogram)
  • 11.6 inch and thin

Some other specs are:

  • 4 gigs of RAM
  • 32 gigs of eMMC flash memory
  • quad core 1.44 GHz Intel Atom CPU
  • Windows 10
  • free Microsoft Office 365 for one year
  • good, large keyboard
  • good, large touchpad
  • USB 3.0
  • microSD
  • WiFi ac
  • no fans, completely silent

There are compromises, of course.

  • The Atom CPU is slow, thought it’s only noticeable when churning through heavy webpages. Adblocking addons or Brave are a necessity. Most things are usably fast, such as using Microsoft Word.
  • Crappy sound and video, though VLC does a fine job playing movies with headphones on the airplane. Using in bright sunlight will be difficult.
  • micro-HDMI, keep in mind if intending to do presos from it, you’ll need an HDMI adapter
  • It has limited storage, 32gigs in theory, about half that usable.
  • Does special Windows 10 compressed install that you can’t actually upgrade without a completely new install. It doesn’t have the latest Windows 10 Creators update. I lost a gig thinking I could compress system files.

Copying files across the 802.11ac WiFi to the disk was quite fast, several hundred megabits-per-second. The eMMC isn’t as fast as an SSD, but its a lot faster than typical SD card speeds.

The first thing I did once I got the notebook was to install the free VeraCrypt full disk encryption. The CPU has AES acceleration, so it’s fast. There is a problem with the keyboard driver during boot that makes it really hard to enter long passwords — you have to carefully type one key at a time to prevent extra keystrokes from being entered.

You can’t really install Linux on this computer, but you can use virtual machines. I installed VirtualBox and downloaded the Kali VM. I had some problems attaching USB devices to the VM. First of all, VirtualBox requires a separate downloaded extension to get USB working. Second, it conflicts with USBpcap that I installed for Wireshark.

It comes with one year of free Office 365. Obviously, Microsoft is hoping to hook the user into a longer term commitment, but in practice next year at this time I’d get another burner $200 laptop rather than spend $99 on extending the Office 365 license.

Let’s talk about the CPU. It’s Intel’s “Atom” processor, not their mainstream (Core i3 etc.) processor. Even though it has roughly the same GHz as the processor in a 11inch MacBook Air and twice the cores, it’s noticeably and painfully slower. This is especially noticeable on ad-heavy web pages, while other things seem to work just fine. It has hardware acceleration for most video formats, though I had trouble getting Netflix to work.

The tradeoff for a slow CPU is phenomenal battery life. It seems to last forever on battery. It’s really pretty cool.

Conclusion

A Chromebook is likely more secure, but for my needs, this $200 is perfect.

Manage Kubernetes Clusters on AWS Using Kops

Post Syndicated from Arun Gupta original https://aws.amazon.com/blogs/compute/kubernetes-clusters-aws-kops/

Any containerized application typically consists of multiple containers. There is a container for the application itself, one for database, possibly another for web server, and so on. During development, its normal to build and test this multi-container application on a single host. This approach works fine during early dev and test cycles but becomes a single point of failure for production where the availability of the application is critical. In such cases, this multi-container application is deployed on multiple hosts. There is a need for an external tool to manage such a multi-container multi-host deployment. Container orchestration frameworks provides the capability of cluster management, scheduling containers on different hosts, service discovery and load balancing, crash recovery and other related functionalities. There are multiple options for container orchestration on Amazon Web Services: Amazon ECS, Docker for AWS, and DC/OS.

Another popular option for container orchestration on AWS is Kubernetes. There are multiple ways to run a Kubernetes cluster on AWS. This multi-part blog series provides a brief overview and explains some of these approaches in detail. This first post explains how to create a Kubernetes cluster on AWS using kops.

Kubernetes and Kops overview

Kubernetes is an open source, container orchestration platform. Applications packaged as Docker images can be easily deployed, scaled, and managed in a Kubernetes cluster. Some of the key features of Kubernetes are:

  • Self-healing
    Failed containers are restarted to ensure that the desired state of the application is maintained. If a node in the cluster dies, then the containers are rescheduled on a different node. Containers that do not respond to application-defined health check are terminated, and thus rescheduled.
  • Horizontal scaling
    Number of containers can be easily scaled up and down automatically based upon CPU utilization, or manually using a command.
  • Service discovery and load balancing
    Multiple containers can be grouped together discoverable using a DNS name. The service can be load balanced with integration to the native LB provided by the cloud provider.
  • Application upgrades and rollbacks
    Applications can be upgraded to a newer version without an impact to the existing one. If something goes wrong, Kubernetes rolls back the change.

Kops, short for Kubernetes Operations, is a set of tools for installing, operating, and deleting Kubernetes clusters in the cloud. A rolling upgrade of an older version of Kubernetes to a new version can also be performed. It also manages the cluster add-ons. After the cluster is created, the usual kubectl CLI can be used to manage resources in the cluster.

Download Kops and Kubectl

There is no need to download the Kubernetes binary distribution for creating a cluster using kops. However, you do need to download the kops CLI. It then takes care of downloading the right Kubernetes binary in the cloud, and provisions the cluster.

The different download options for kops are explained at github.com/kubernetes/kops#installing. On MacOS, the easiest way to install kops is using the brew package manager.

brew update && brew install kops

The version of kops can be verified using the kops version command, which shows:

Version 1.6.1

In addition, download kubectl. This is required to manage the Kubernetes cluster. The latest version of kubectl can be downloaded using the following command:

curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/darwin/amd64/kubectl

Make sure to include the directory where kubectl is downloaded in your PATH.

IAM user permission

The IAM user to create the Kubernetes cluster must have the following permissions:

  • AmazonEC2FullAccess
  • AmazonRoute53FullAccess
  • AmazonS3FullAccess
  • IAMFullAccess
  • AmazonVPCFullAccess

Alternatively, a new IAM user may be created and the policies attached as explained at github.com/kubernetes/kops/blob/master/docs/aws.md#setup-iam-user.

Create an Amazon S3 bucket for the Kubernetes state store

Kops needs a “state store” to store configuration information of the cluster.  For example, how many nodes, instance type of each node, and Kubernetes version. The state is stored during the initial cluster creation. Any subsequent changes to the cluster are also persisted to this store as well. As of publication, Amazon S3 is the only supported storage mechanism. Create a S3 bucket and pass that to the kops CLI during cluster creation.

This post uses the bucket name kubernetes-aws-io. Bucket names must be unique; you have to use a different name. Create an S3 bucket:

aws s3api create-bucket --bucket kubernetes-aws-io

I strongly recommend versioning this bucket in case you ever need to revert or recover a previous version of the cluster. This can be enabled using the AWS CLI as well:

aws s3api put-bucket-versioning --bucket kubernetes-aws-io --versioning-configuration Status=Enabled

For convenience, you can also define KOPS_STATE_STORE environment variable pointing to the S3 bucket. For example:

export KOPS_STATE_STORE=s3://kubernetes-aws-io

This environment variable is then used by the kops CLI.

DNS configuration

As of Kops 1.6.1, a top-level domain or a subdomain is required to create the cluster. This domain allows the worker nodes to discover the master and the master to discover all the etcd servers. This is also needed for kubectl to be able to talk directly with the master.

This domain may be registered with AWS, in which case a Route 53 hosted zone is created for you. Alternatively, this domain may be at a different registrar. In this case, create a Route 53 hosted zone. Specify the name server (NS) records from the created zone as NS records with the domain registrar.

This post uses a kubernetes-aws.io domain registered at a third-party registrar.

Generate a Route 53 hosted zone using the AWS CLI. Download jq to run this command:

ID=$(uuidgen) && \
aws route53 create-hosted-zone \
--name cluster.kubernetes-aws.io \
--caller-reference $ID \
| jq .DelegationSet.NameServers

This shows an output such as the following:

[
"ns-94.awsdns-11.com",
"ns-1962.awsdns-53.co.uk",
"ns-838.awsdns-40.net",
"ns-1107.awsdns-10.org"
]

Create NS records for the domain with your registrar. Different options on how to configure DNS for the cluster are explained at github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns.

Experimental support to create a gossip-based cluster was added in Kops 1.6.2. This post uses a DNS-based approach, as that is more mature and well tested.

Create the Kubernetes cluster

The Kops CLI can be used to create a highly available cluster, with multiple master nodes spread across multiple Availability Zones. Workers can be spread across multiple zones as well. Some of the tasks that happen behind the scene during cluster creation are:

  • Provisioning EC2 instances
  • Setting up AWS resources such as networks, Auto Scaling groups, IAM users, and security groups
  • Installing Kubernetes.

Start the Kubernetes cluster using the following command:

kops create cluster \
--name cluster.kubernetes-aws.io \
--zones us-west-2a \
--state s3://kubernetes-aws-io \
--yes

In this command:

  • --zones
    Defines the zones in which the cluster is going to be created. Multiple comma-separated zones can be specified to span the cluster across multiple zones.
  • --name
    Defines the cluster’s name.
  • --state
    Points to the S3 bucket that is the state store.
  • --yes
    Immediately creates the cluster. Otherwise, only the cloud resources are created and the cluster needs to be started explicitly using the command kops update --yes. If the cluster needs to be edited, then the kops edit cluster command can be used.

This starts a single master and two worker node Kubernetes cluster. The master is in an Auto Scaling group and the worker nodes are in a separate group. By default, the master node is m3.medium and the worker node is t2.medium. Master and worker nodes are assigned separate IAM roles as well.

Wait for a few minutes for the cluster to be created. The cluster can be verified using the command kops validate cluster --state=s3://kubernetes-aws-io. It shows the following output:

Using cluster from kubectl context: cluster.kubernetes-aws.io

Validating cluster cluster.kubernetes-aws.io

INSTANCE GROUPS
NAME                 ROLE      MACHINETYPE    MIN    MAX    SUBNETS
master-us-west-2a    Master    m3.medium      1      1      us-west-2a
nodes                Node      t2.medium      2      2      us-west-2a

NODE STATUS
NAME                                           ROLE      READY
ip-172-20-38-133.us-west-2.compute.internal    node      True
ip-172-20-38-177.us-west-2.compute.internal    master    True
ip-172-20-46-33.us-west-2.compute.internal     node      True

Your cluster cluster.kubernetes-aws.io is ready

It shows the different instances started for the cluster, and their roles. If multiple cluster states are stored in the same bucket, then --name <NAME> can be used to specify the exact cluster name.

Check all nodes in the cluster using the command kubectl get nodes:

NAME                                          STATUS         AGE       VERSION
ip-172-20-38-133.us-west-2.compute.internal   Ready,node     14m       v1.6.2
ip-172-20-38-177.us-west-2.compute.internal   Ready,master   15m       v1.6.2
ip-172-20-46-33.us-west-2.compute.internal    Ready,node     14m       v1.6.2

Again, the internal IP address of each node, their current status (master or node), and uptime are shown. The key information here is the Kubernetes version for each node in the cluster, 1.6.2 in this case.

The kubectl value included in the PATH earlier is configured to manage this cluster. Resources such as pods, replica sets, and services can now be created in the usual way.

Some of the common options that can be used to override the default cluster creation are:

  • --kubernetes-version
    The version of Kubernetes cluster. The exact versions supported are defined at github.com/kubernetes/kops/blob/master/channels/stable.
  • --master-size and --node-size
    Define the instance of master and worker nodes.
  • --master-count and --node-count
    Define the number of master and worker nodes. By default, a master is created in each zone specified by --master-zones. Multiple master nodes can be created by a higher number using --master-count or specifying multiple Availability Zones in --master-zones.

A three-master and five-worker node cluster, with master nodes spread across different Availability Zones, can be created using the following command:

kops create cluster \
--name cluster2.kubernetes-aws.io \
--zones us-west-2a,us-west-2b,us-west-2c \
--node-count 5 \
--state s3://kubernetes-aws-io \
--yes

Both the clusters are sharing the same state store but have different names. This also requires you to create an additional Amazon Route 53 hosted zone for the name.

By default, the resources required for the cluster are directly created in the cloud. The --target option can be used to generate the AWS CloudFormation scripts instead. These scripts can then be used by the AWS CLI to create resources at your convenience.

Get a complete list of options for cluster creation with kops create cluster --help.

More details about the cluster can be seen using the command kubectl cluster-info:

Kubernetes master is running at https://api.cluster.kubernetes-aws.io
KubeDNS is running at https://api.cluster.kubernetes-aws.io/api/v1/proxy/namespaces/kube-system/services/kube-dns

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

Check the client and server version using the command kubectl version:

Client Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.4", GitCommit:"d6f433224538d4f9ca2f7ae19b252e6fcb66a3ae", GitTreeState:"clean", BuildDate:"2017-05-19T18:44:27Z", GoVersion:"go1.7.5", Compiler:"gc", Platform:"darwin/amd64"}
Server Version: version.Info{Major:"1", Minor:"6", GitVersion:"v1.6.2", GitCommit:"477efc3cbe6a7effca06bd1452fa356e2201e1ee", GitTreeState:"clean", BuildDate:"2017-04-19T20:22:08Z", GoVersion:"go1.7.5", Compiler:"gc", Platform:"linux/amd64"}

Both client and server version are 1.6 as shown by the Major and Minor attribute values.

Upgrade the Kubernetes cluster

Kops can be used to create a Kubernetes 1.4.x, 1.5.x, or an older version of the 1.6.x cluster using the --kubernetes-version option. The exact versions supported are defined at github.com/kubernetes/kops/blob/master/channels/stable.

Or, you may have used kops to create a cluster a while ago, and now want to upgrade to the latest recommended version of Kubernetes. Kops supports rolling cluster upgrades where the master and worker nodes are upgraded one by one.

As of kops 1.6.1, upgrading a cluster is a three-step process.

First, check and apply the latest recommended Kubernetes update.

kops upgrade cluster \
--name cluster2.kubernetes-aws.io \
--state s3://kubernetes-aws-io \
--yes

The --yes option immediately applies the changes. Not specifying the --yes option shows only the changes that are applied.

Second, update the state store to match the cluster state. This can be done using the following command:

kops update cluster \
--name cluster2.kubernetes-aws.io \
--state s3://kubernetes-aws-io \
--yes

Lastly, perform a rolling update for all cluster nodes using the kops rolling-update command:

kops rolling-update cluster \
--name cluster2.kubernetes-aws.io \
--state s3://kubernetes-aws-io \
--yes

Previewing the changes before updating the cluster can be done using the same command but without specifying the --yes option. This shows the following output:

NAME                 STATUS        NEEDUPDATE    READY    MIN    MAX    NODES
master-us-west-2a    NeedsUpdate   1             0        1      1      1
nodes                NeedsUpdate   2             0        2      2      2

Using --yes updates all nodes in the cluster, first master and then worker. There is a 5-minute delay between restarting master nodes, and a 2-minute delay between restarting nodes. These values can be altered using --master-interval and --node-interval options, respectively.

Only the worker nodes may be updated by using the --instance-group node option.

Delete the Kubernetes cluster

Typically, the Kubernetes cluster is a long-running cluster to serve your applications. After its purpose is served, you may delete it. It is important to delete the cluster using the kops command. This ensures that all resources created by the cluster are appropriately cleaned up.

The command to delete the Kubernetes cluster is:

kops delete cluster --state=s3://kubernetes-aws-io --yes

If multiple clusters have been created, then specify the cluster name as in the following command:

kops delete cluster cluster2.kubernetes-aws.io --state=s3://kubernetes-aws-io --yes

Conclusion

This post explained how to manage a Kubernetes cluster on AWS using kops. Kubernetes on AWS users provides a self-published list of companies using Kubernetes on AWS.

Try starting a cluster, create a few Kubernetes resources, and then tear it down. Kops on AWS provides a more comprehensive tutorial for setting up Kubernetes clusters. Kops docs are also helpful for understanding the details.

In addition, the Kops team hosts office hours to help you get started, from guiding you with your first pull request. You can always join the #kops channel on Kubernetes slack to ask questions. If nothing works, then file an issue at github.com/kubernetes/kops/issues.

Future posts in this series will explain other ways of creating and running a Kubernetes cluster on AWS.

— Arun

Blue/Green Deployments with Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/bluegreen-deployments-with-amazon-ecs/

This post and accompanying code was generously contributed by:

Jeremy Cowan
Solutions Architect
Anuj Sharma
DevOps Cloud Architect
Peter Dalbhanjan
Solutions Architect

Deploying software updates in traditional non-containerized environments is hard and fraught with risk. When you write your deployment package or script, you have to assume that the target machine is in a particular state. If your staging environment is not an exact mirror image of your production environment, your deployment could fail. These failures frequently cause outages that persist until you re-deploy the last known good version of your application. If you are an Operations Manager, this is what keeps you up at night.

Increasingly, customers want to do testing in production environments without exposing customers to the new version until the release has been vetted. Others want to expose a small percentage of their customers to the new release to gather feedback about a feature before it’s released to the broader population. This is often referred to as canary analysis or canary testing. In this post, I introduce patterns to implement blue/green and canary deployments using Application Load Balancers and target groups.

If you’d like to try this approach to blue/green deployments, we have open sourced the code and AWS CloudFormation templates in the ecs-blue-green-deployment GitHub repo. The workflow builds an automated CI/CD pipeline that deploys your service onto an ECS cluster and offers a controlled process to swap target groups when you’re ready to promote the latest version of your code to production. You can quickly set up the environment in three steps and see the blue/green swap in action. We’d love for you to try it and send us your feedback!

Benefits of blue/green

Blue/green deployments are a type of immutable deployment that help you deploy software updates with less risk. The risk is reduced by creating separate environments for the current running or “blue” version of your application, and the new or “green” version of your application.

This type of deployment gives you an opportunity to test features in the green environment without impacting the current running version of your application. When you’re satisfied that the green version is working properly, you can gradually reroute the traffic from the old blue environment to the new green environment by modifying DNS. By following this method, you can update and roll back features with near zero downtime.

A typical blue/green deployment involves shifting traffic between 2 distinct environments.

This ability to quickly roll traffic back to the still-operating blue environment is one of the key benefits of blue/green deployments. With blue/green, you should be able to roll back to the blue environment at any time during the deployment process. This limits downtime to the time it takes to realize there’s an issue in the green environment and shift the traffic back to the blue environment. Furthermore, the impact of the outage is limited to the portion of traffic going to the green environment, not all traffic. If the blast radius of deployment errors is reduced, so is the overall deployment risk.

Containers make it simpler

Historically, blue/green deployments were not often used to deploy software on-premises because of the cost and complexity associated with provisioning and managing multiple environments. Instead, applications were upgraded in place.

Although this approach worked, it had several flaws, including the ability to roll back quickly from failures. Rollbacks typically involved re-deploying a previous version of the application, which could affect the length of an outage caused by a bad release. Fixing the issue took precedence over the need to debug, so there were fewer opportunities to learn from your mistakes.

Containers can ease the adoption of blue/green deployments because they’re easily packaged and behave consistently as they’re moved between environments. This consistency comes partly from their immutability. To change the configuration of a container, update its Dockerfile and rebuild and re-deploy the container rather than updating the software in place.

Containers also provide process and namespace isolation for your applications, which allows you to run multiple versions of them side by side on the same Docker host without conflicts. Given their small sizes relative to virtual machines, you can binpack more containers per host than VMs. This lets you make more efficient use of your computing resources, reducing the cost of blue/green deployments.

Fully Managed Updates with Amazon ECS

Amazon EC2 Container Service (ECS) performs rolling updates when you update an existing Amazon ECS service. A rolling update involves replacing the current running version of the container with the latest version. The number of containers Amazon ECS adds or removes from service during a rolling update is controlled by adjusting the minimum and maximum number of healthy tasks allowed during service deployments.

When you update your service’s task definition with the latest version of your container image, Amazon ECS automatically starts replacing the old version of your container with the latest version. During a deployment, Amazon ECS drains connections from the current running version and registers your new containers with the Application Load Balancer as they come online.

Target groups

A target group is a logical construct that allows you to run multiple services behind the same Application Load Balancer. This is possible because each target group has its own listener.

When you create an Amazon ECS service that’s fronted by an Application Load Balancer, you have to designate a target group for your service. Ordinarily, you would create a target group for each of your Amazon ECS services. However, the approach we’re going to explore here involves creating two target groups: one for the blue version of your service, and one for the green version of your service. We’re also using a different listener port for each target group so that you can test the green version of your service using the same path as the blue service.

With this configuration, you can run both environments in parallel until you’re ready to cut over to the green version of your service. You can also do things such as restricting access to the green version to testers on your internal network, using security group rules and placement constraints. For example, you can target the green version of your service to only run on instances that are accessible from your corporate network.

Swapping Over

When you’re ready to replace the old blue service with the new green service, call the ModifyListener API operation to swap the listener’s rules for the target group rules. The change happens instantaneously. Afterward, the green service is running in the target group with the port 80 listener and the blue service is running in the target group with the port 8080 listener. The diagram below is an illustration of the approach described.

Scenario

Two services are defined, each with their own target group registered to the same Application Load Balancer but listening on different ports. Deployment is completed by swapping the listener rules between the two target groups.

The second service is deployed with a new target group listening on a different port but registered to the same Application Load Balancer.

By using 2 listeners, requests to blue services are directed to the target group with the port 80 listener, while requests to the green services are directed to target group with the port 8080 listener.

After automated or manual testing, the deployment can be completed by swapping the listener rules on the Application Load Balancer and sending traffic to the green service.

Caveats

There are a few caveats to be mindful of when using this approach. This method:

  • Assumes that your application code is completely stateless. Store state outside of the container.
  • Doesn’t gracefully drain connections. The swapping of target groups is sudden and abrupt. Therefore, be cautious about using this approach if your service has long-running transactions.
  • Doesn’t allow you to perform canary deployments. While the method gives you the ability to quickly switch between different versions of your service, it does not allow you to divert a portion of the production traffic to a canary or control the rate at which your service is deployed across the cluster.

Canary testing

While this type of deployment automates much of the heavy lifting associated with rolling deployments, it doesn’t allow you to interrupt the deployment if you discover an issue midstream. Rollbacks using the standard Amazon ECS deployment require updating the service’s task definition with the last known good version of the container. Then, you wait for Amazon ECS to schedule and deploy it across the cluster. If the latest version introduces a breaking change that went undiscovered during testing, this might be too slow.

With canary testing, if you discover the green environment is not operating as expected, there is no impact on the blue environment. You can route traffic back to it, minimizing impaired operation or downtime, and limiting the blast radius of impact.

This type of deployment is particularly useful for A/B testing where you want to expose a new feature to a subset of users to get their feedback before making it broadly available.

For canary style deployments, you can use a variation of the blue/green swap that involves deploying the blue and the green service to the same target group. Although this method is not as fast as the swap, it allows you to control the rate at which your containers are replaced by adjusting the task count for each service. Furthermore, it gives you the ability to roll back by adjusting the number of tasks for the blue and green services respectively. Unlike the swap approach described above, connections to your containers are drained gracefully. We plan to address canary style deployments for Amazon ECS in a future post.

Conclusion

With AWS, you can operationalize your blue/green deployments using Amazon ECS, an Application Load Balancer, and target groups. I encourage you to adapt the code published to the ecs-blue-green-deployment GitHub repo for your use cases and look forward to reading your feedback.

If you’re interested in learning more, I encourage you to read the Blue/Green Deployments on AWS and Practicing Continuous Integration and Continuous Delivery on AWS whitepapers.

If you have questions or suggestions, please comment below.

AWS Hot Startups – June 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-june-2017/

Thanks for stopping by for another round of AWS Hot Startups! This month we are featuring:

  • CloudRanger – helping companies understand the cloud with visual representation.
  • quintly – providing social media analytics for brands on a single dashboard.
  • Tango Card – reinventing rewards programs for businesses and their customers worldwide.

Don’t forget to check out May’s Hot Startups in case you missed them.

CloudRanger (Letterkenny, Ireland)   

The idea for CloudRanger started where most great ideas do – at a bar in Las Vegas. During a late-night conversation with his friends at re:Invent 2014, Dave Gildea (Founder and CEO) used cocktail napkins and drink coasters to visually illustrate servers and backups, and the light on his phone to represent scheduling. By the end of the night, the idea for automated visual server management was born. With CloudRanger, companies can easily create backup and retention policies, visual scheduling, and simple restoration of snapshots and AMIs. The team behind CloudRanger believes that when servers and cloud resources are represented visually, they are easier to manage and understand. Users are able to see their servers, which turns them into a tangible and important piece of business inventory.

CloudRanger is an excellent platform for MSPs who manage many different AWS accounts, and need a quick method to display many servers and audit certain attributes. The company’s goal is to give anyone the ability to create backup policies in multiple regions, apply them using a tag-based methodology, and manage backups. Servers can be scheduled from one simple dashboard, and restoration is easy and step-by-step. With CloudRanger’s visual representation of resources, customers are encouraged to fully understand their backup policies, schedules, and servers.

As an AWS Partner, CloudRanger has built a globally redundant system after going all-in with AWS. They are using over 25 AWS services for everything including enterprise-level security, automation and 24/7 runtimes, and an emphasis on Machine Learning for efficiency in the sales process. CloudRanger continues to rely more on AWS as new services and features are released, and are replacing current services with AWS CodePipeline and AWS CodeBuild. CloudRanger was also named Startup Company of the Year at a recent Irish tech event!

To learn more about CloudRanger, visit their website.

quintly (Cologne, Germany)

In 2010, brothers Alexander Peiniger and Frederik Peiniger started a journey to help companies track their social media profiles and improve their strategies against competitors. The startup began under the name “Social.Media.Tracking” and then “AllFacebook Stats” before officially becoming quintly in 2013. With quintly, brands and agencies can analyze, benchmark, and optimize their social media activities on a global scale. The innovative dashboarding system gives clients an overview across all social media profiles on the most important networks (Facebook, Twitter, YouTube, Google+, LinkedIn, Instagram, etc.) and then derives an optimal social media strategy from those profiles. Today, quintly has users in over 180 countries and paying clients in over 65 countries including major agency networks and Fortune 500 companies.

Getting an overview of a brand’s social media activities can be time-consuming, and turning insights into actions is a challenge that not all brands master. Quintly offers a variety of features designed to help clients improve their social media reach. With their web-based SaaS product, brands and agencies can compare their social media performance against competitors and their best practices. Not only can clients learn from their own historic performance, but they can leverage data from any other brand around the world.

Since the company’s founding, quintly built and operates its SaaS offering on top of AWS services, leveraging Amazon EC2, Amazon ECS, Elastic Load Balancing, and Amazon Route53 to host their Docker-based environment. Large amounts of data are stored in Amazon DynamoDB and Amazon RDS, and they use Amazon CloudWatch to monitor and seamlessly scale to the current needs. In addition, quintly is using Amazon Machine Learning to add additional attributes to the data and to drive better decisions for their clients. With the help of AWS, quintly has been able to focus on their core business while having a scalable and well-performing solution to solve their technical needs.

For more on quintly, check out their Social Media Analytics blog.

Tango Card (Seattle, Washington)

Based in the heart of West Seattle, Tango Card is revolutionizing rewards programs for companies around the world. Too often customers redeem points in a loyalty or rebate program only to wait weeks for their prize to arrive. Companies generously give their employees appreciation gifts, but the gifts can be generic and impersonal. With Tango Card, companies can choose from a variety of rewards that fit the needs of their specific program, event, or business incentive. The extensive Rewards Catalog includes options for e-gift cards that are sure to excite any recipient. There are plenty of options for everyone from traditional e-gift cards to nonprofit donations to cash equivalent rewards.

Tango Card uses a combination of desired rewards, modern technology, and expert service to change the rewards and incentive experience. The Reward Delivery Platform offers solutions including Blast Rewards, Reward Link, and Rewards as a Service API (RaaS). Blast Rewards enables companies to purchase and send e-gift cards in bulk in just one business day. Reward Link lets recipients choose from an assortment of e-gift cards, prepaid cards, digital checks, and donations and is delivered instantly. Finally, Rewards as a Service is a robust digital gift card API that is built to support apps and platforms. With RaaS, Tango Card can send out e-gift cards on company-branded email templates or deliver them directly within a user interface.

The entire Tango Card Reward Delivery Platform leverages many AWS services. They use Amazon EC2 Container Service (ECS) for rapid deployment of containerized micro services, and Amazon Relational Database Service (RDS) for low overhead managed databases. Tango Card is also leveraging Amazon Virtual Private Cloud (VPC), AWS Key Management Service (KMS), and AWS Identity and Access Management (IMS).

To learn more about Tango Card, check out their blog!

I would also like to thank Alexander Moss-Bolanos for helping with the Hot Startups posts this year.

Thanks for reading and we’ll see you next month!

-Tina Barr

Opus 1.2 released

Post Syndicated from ris original https://lwn.net/Articles/726134/rss

Version 1.2 of the Opus audio codec has been released. “For music encoding Opus has already been shown to out-perform other audio codecs at both 64 kb/s and 96 kb/s. We originally thought that 64 kb/s was near the lowest bitrate at which Opus could be useful for streaming stereo music. However, with variable bitrate (VBR) improvements in Opus 1.1, suddenly 48 kb/s became a realistic target. Opus 1.2 continues on the path to lowering the bitrate limit. Music at 48 kb/s is now quite usable and while the artefacts are generally audible, they are rarely annoying. Even more, we’ve actually been pushing all the way to fullband stereo at just 32 kb/s!

Most of the music encoding quality improvements in 1.2 don’t come from big new features (like tonality analysis that got added to version 1.1), but from many small changes that all add up.”

More Pirated Ultra HD Blu-Ray Discs Leak Online, But Mystery Remains

Post Syndicated from Ernesto original https://torrentfreak.com/more-pirated-ultra-hd-blu-ray-disks-leak-online-but-mystery-remains-170612/

Up until a few weeks ago, full copies of UHD Blu-Ray Discs were impossible to find on pirate sites.

Protected with strong AACS 2.0 encryption, it has long been one of the last bastions movie pirates had to breach.

While the encryption may still be as strong as before, it’s clear that some pirates have found a way through. After the first pirated Ultra HD Blu-Ray Disc leaked early last month, two new ones have appeared in recent days.

Following the historic “Smurfs 2” release, a full UHD copy of “Patriots Day” surfaced online little over a week ago, followed by a similar copy of “Inferno” this past weekend. The latter two were both released by the scene group TERMiNAL and leaked to various torrent sites.

While the leaks all appear to be legitimate, it’s still a mystery how the Blu-Ray discs were ripped.

While some have suggested that AACS 2.0 must have been cracked, there is no evidence supporting this yet. The TERMiNAL releases don’t mention anything that hints at a crack so the mystery remains intact.

4k capture (full)

4k

An alternative explanation would be that there is some kind of exploit allowing the pirates to bypass the encryption. Some have pointed to a private exploit of Intel’s SGX, which would make it possible to sniff out what PowerDVD has in memory.

“If SGX has a loop, that will enable people to read PowerDVD’s memory. That will then allow them to copy the decrypted data from the UHD Blu-Ray drive 1:1,” a source informs TorrentFreak.

Another option could be that there’s a private media player exploit, allowing the pirates to get full access to the data and read the encrypted disc. Our source has tried this extensively in the past and got close, but without success. Others may have had more luck.

UHD leak specs

If there’s indeed such an exploit or vulnerability, the pirates in question might want to keep that private to prevent it from being fixed, presuming it can be patched, that is.

Theoretically, AACS 2.0 could be cracked of course, but this seems to be less likely, according to our source. The latest UHD Blu-Rays also have bus encryption. This means that there are two separate keys to break, which would be very hard.

Cracked or not, pirates are excited about the UHD Blu-Ray copies that have started to populate through private and public torrent sites.

Tracker advertising the third UHD leak

While the download numbers are nowhere near those of regular HD releases, the UHD leaks are widely seen as a breakthrough. And with three releases in short succession, there are likely more to follow.

Those who dare to pirate them have to make sure that they have enough bandwidth, time, and free space on their hard drives though. Ultra HD releases easily take up several dozens of gigabytes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Seven Tips for Using S3DistCp on Amazon EMR to Move Data Efficiently Between HDFS and Amazon S3

Post Syndicated from Illya Yalovyy original https://aws.amazon.com/blogs/big-data/seven-tips-for-using-s3distcp-on-amazon-emr-to-move-data-efficiently-between-hdfs-and-amazon-s3/

Have you ever needed to move a large amount of data between Amazon S3 and Hadoop Distributed File System (HDFS) but found that the data set was too large for a simple copy operation? EMR can help you with this. In addition to processing and analyzing petabytes of data, EMR can move large amounts of data.

In the Hadoop ecosystem, DistCp is often used to move data. DistCp provides a distributed copy capability built on top of a MapReduce framework. S3DistCp is an extension to DistCp that is optimized to work with S3 and that adds several useful features. In addition to moving data between HDFS and S3, S3DistCp is also a Swiss Army knife of file manipulations. In this post we’ll cover the following tips for using S3DistCp, starting with basic use cases and then moving to more advanced scenarios:

1. Copy or move files without transformation
2. Copy and change file compression on the fly
3. Copy files incrementally
4. Copy multiple folders in one job
5. Aggregate files based on a pattern
6. Upload files larger than 1 TB in size
7. Submit a S3DistCp step to an EMR cluster

1. Copy or move files without transformation

We’ve observed that customers often use S3DistCp to copy data from one storage location to another, whether S3 or HDFS. Syntax for this operation is simple and straightforward:

$ s3-dist-cp --src /data/incoming/hourly_table --dest s3://my-tables/incoming/hourly_table

The source location may contain extra files that we don’t necessarily want to copy. Here, we can use filters based on regular expressions to do things such as copying files with the .log extension only.

Each subfolder has the following files:

$ hadoop fs -ls /data/incoming/hourly_table/2017-02-01/03
Found 8 items
-rw-r--r--   1 hadoop hadoop     197850 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/2017-02-01.03.25845.log
-rw-r--r--   1 hadoop hadoop     484006 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/2017-02-01.03.32953.log
-rw-r--r--   1 hadoop hadoop     868522 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/2017-02-01.03.62649.log
-rw-r--r--   1 hadoop hadoop     408072 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/2017-02-01.03.64637.log
-rw-r--r--   1 hadoop hadoop    1031949 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/2017-02-01.03.70767.log
-rw-r--r--   1 hadoop hadoop     368240 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/2017-02-01.03.89910.log
-rw-r--r--   1 hadoop hadoop     437348 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/2017-02-01.03.96053.log
-rw-r--r--   1 hadoop hadoop        800 2017-02-19 03:41 /data/incoming/hourly_table/2017-02-01/03/processing.meta

To copy only the required files, let’s use the --srcPattern option:

$ s3-dist-cp --src /data/incoming/hourly_table --dest s3://my-tables/incoming/hourly_table_filtered --srcPattern .*\.log

After the upload has finished successfully, let’s check the folder contents in the destination location to confirm only the files ending in .log were copied:

$ hadoop fs -ls s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03
-rw-rw-rw-   1     197850 2017-02-19 22:56 s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03/2017-02-01.03.25845.log
-rw-rw-rw-   1     484006 2017-02-19 22:56 s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03/2017-02-01.03.32953.log
-rw-rw-rw-   1     868522 2017-02-19 22:56 s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03/2017-02-01.03.62649.log
-rw-rw-rw-   1     408072 2017-02-19 22:56 s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03/2017-02-01.03.64637.log
-rw-rw-rw-   1    1031949 2017-02-19 22:56 s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03/2017-02-01.03.70767.log
-rw-rw-rw-   1     368240 2017-02-19 22:56 s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03/2017-02-01.03.89910.log
-rw-rw-rw-   1     437348 2017-02-19 22:56 s3://my-tables/incoming/hourly_table_filtered/2017-02-01/03/2017-02-01.03.96053.log

Sometimes, data needs to be moved instead of copied. In this case, we can use the --deleteOnSuccess option. This option is similar to aws s3 mv, which you might have used previously with the AWS CLI. The files are first copied and then deleted from the source:

$ s3-dist-cp --src s3://my-tables/incoming/hourly_table --dest s3://my-tables/incoming/hourly_table_archive --deleteOnSuccess

After the preceding operation, the source location has only empty folders, and the target location contains all files.

$ hadoop fs -ls -R s3://my-tables/incoming/hourly_table/2017-02-01/
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/incoming/hourly_table/2017-02-01/00
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/incoming/hourly_table/2017-02-01/01
...
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/incoming/hourly_table/2017-02-01/21
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/incoming/hourly_table/2017-02-01/22


$ hadoop fs -ls s3://my-tables/incoming/hourly_table_archive/2017-02-01/01
-rw-rw-rw-   1     676756 2017-02-19 23:27 s3://my-tables/incoming/hourly_table_archive/2017-02-01/01/2017-02-01.01.27047.log
-rw-rw-rw-   1     780197 2017-02-19 23:27 s3://my-tables/incoming/hourly_table_archive/2017-02-01/01/2017-02-01.01.59789.log
-rw-rw-rw-   1    1041789 2017-02-19 23:27 s3://my-tables/incoming/hourly_table_archive/2017-02-01/01/2017-02-01.01.82293.log
-rw-rw-rw-   1        400 2017-02-19 23:27 s3://my-tables/incoming/hourly_table_archive/2017-02-01/01/processing.meta

The important things to remember here are that S3DistCp deletes only files with the --deleteOnSuccess flag and that it doesn’t delete parent folders, even when they are empty.

2. Copy and change file compression on the fly

Raw files often land in S3 or HDFS in an uncompressed text format. This format is suboptimal both for the cost of storage and for running analytics on that data. S3DistCp can help you efficiently store data and compress files on the fly with the --outputCodec option:

$ s3-dist-cp --src s3://my-tables/incoming/hourly_table_filtered --dest s3://my-tables/incoming/hourly_table_gz --outputCodec=gz

The current version of S3DistCp supports the codecs gzip, gz, lzo, lzop, and snappy, and the keywords none and keep (the default). These keywords have the following meaning:

  • none” – Save files uncompressed. If the files are compressed, then S3DistCp decompresses them.
  • keep” – Don’t change the compression of the files but copy them as-is.

Let’s check the files in the target folder, which have now been compressed with the gz codec:

$ hadoop fs -ls s3://my-tables/incoming/hourly_table_gz/2017-02-01/01/
Found 3 items
-rw-rw-rw-   1     78756 2017-02-20 00:07 s3://my-tables/incoming/hourly_table_gz/2017-02-01/01/2017-02-01.01.27047.log.gz
-rw-rw-rw-   1     80197 2017-02-20 00:07 s3://my-tables/incoming/hourly_table_gz/2017-02-01/01/2017-02-01.01.59789.log.gz
-rw-rw-rw-   1    121178 2017-02-20 00:07 s3://my-tables/incoming/hourly_table_gz/2017-02-01/01/2017-02-01.01.82293.log.gz

3. Copy files incrementally

In real life, the upstream process drops files in some cadence. For instance, new files might get created every hour, or every minute. The downstream process can be configured to pick it up at a different schedule.

Let’s say data lands on S3 and we want to process it on HDFS daily. Copying all files every time doesn’t scale very well. Fortunately, S3DistCp has a built-in solution for that.

For this solution, we use a manifest file. That file allows S3DistCp to keep track of copied files. Following is an example of the command:

$ s3-dist-cp --src s3://my-tables/incoming/hourly_table --dest s3://my-tables/processing/hourly_table --srcPattern .*\.log --outputManifest=manifest-2017-02-25.gz --previousManifest=s3://my-tables/processing/hourly_table/manifest-2017-02-24.gz

The command takes two manifest files as parameters, outputManifest and previousManifest. The first one contains a list of all copied files (old and new), and the second contains a list of files copied previously. This way, we can recreate the full history of operations and see what files were copied during each run:

$ hadoop fs -text s3://my-tables/processing/hourly_table/manifest-2017-02-24.gz > previous.lst
$ hadoop fs -text s3://my-tables/processing/hourly_table/manifest-2017-02-25.gz > current.lst
$ diff previous.lst current.lst
2548a2549,2550
> {"path":"s3://my-tables/processing/hourly_table/2017-02-25/00/2017-02-15.00.50958.log","baseName":"2017-02-25/00/2017-02-15.00.50958.log","srcDir":"s3://my-tables/processing/hourly_table","size":610308}
> {"path":"s3://my-tables/processing/hourly_table/2017-02-25/00/2017-02-25.00.93423.log","baseName":"2017-02-25/00/2017-02-25.00.93423.log","srcDir":"s3://my-tables/processing/hourly_table","size":178928}

S3DistCp creates the file in the local file system using the provided path, /tmp/mymanifest.gz. When the copy operation finishes, it moves that manifest to <DESTINATION LOCATION>.

4. Copy multiple folders in one job

Imagine that we need to copy several folders. Usually, we run as many copy jobs as there are folders that need to be copied. With S3DistCp, the copy can be done in one go. All we need is to prepare a file with list of prefixes and use it as a parameter for the tool:

$ s3-dist-cp --src s3://my-tables/incoming/hourly_table_filtered --dest s3://my-tables/processing/sample_table --srcPrefixesFile file://${PWD}/folders.lst

In this case, the folders.lst file contains the following prefixes:

$ cat folders.lst
s3://my-tables/incoming/hourly_table_filtered/2017-02-10/11
s3://my-tables/incoming/hourly_table_filtered/2017-02-19/02
s3://my-tables/incoming/hourly_table_filtered/2017-02-23

As a result, the target location has only the requested subfolders:

$ hadoop fs -ls -R s3://my-tables/processing/sample_table
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/processing/sample_table/2017-02-10
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/processing/sample_table/2017-02-10/11
-rw-rw-rw-   1     139200 2017-02-24 05:59 s3://my-tables/processing/sample_table/2017-02-10/11/2017-02-10.11.12980.log
...
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/processing/sample_table/2017-02-19
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/processing/sample_table/2017-02-19/02
-rw-rw-rw-   1     702058 2017-02-24 05:59 s3://my-tables/processing/sample_table/2017-02-19/02/2017-02-19.02.19497.log
-rw-rw-rw-   1     265404 2017-02-24 05:59 s3://my-tables/processing/sample_table/2017-02-19/02/2017-02-19.02.26671.log
...
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/processing/sample_table/2017-02-23
drwxrwxrwx   -          0 1970-01-01 00:00 s3://my-tables/processing/sample_table/2017-02-23/00
-rw-rw-rw-   1     310425 2017-02-24 05:59 s3://my-tables/processing/sample_table/2017-02-23/00/2017-02-23.00.10061.log
-rw-rw-rw-   1    1030397 2017-02-24 05:59 s3://my-tables/processing/sample_table/2017-02-23/00/2017-02-23.00.22664.log
...

5. Aggregate files based on a pattern

Hadoop is optimized for reading a fewer number of large files rather than many small files, whether from S3 or HDFS. You can use S3DistCp to aggregate small files into fewer large files of a size that you choose, which can optimize your analysis for both performance and cost.

In the following example, we combine small files into bigger files. We do so by using a regular expression with the –groupBy option.

$ s3-dist-cp --src /data/incoming/hourly_table --dest s3://my-tables/processing/daily_table --targetSize=10 --groupBy=’.*/hourly_table/.*/(\d\d)/.*\.log’

Let’s take a look into the target folders and compare them to the corresponding source folders:

$ hadoop fs -ls /data/incoming/hourly_table/2017-02-22/05/
Found 8 items
-rw-r--r--   1 hadoop hadoop     289949 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/2017-02-22.05.11125.log
-rw-r--r--   1 hadoop hadoop     407290 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/2017-02-22.05.19596.log
-rw-r--r--   1 hadoop hadoop     253434 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/2017-02-22.05.30135.log
-rw-r--r--   1 hadoop hadoop     590655 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/2017-02-22.05.36531.log
-rw-r--r--   1 hadoop hadoop     762076 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/2017-02-22.05.47822.log
-rw-r--r--   1 hadoop hadoop     489783 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/2017-02-22.05.80518.log
-rw-r--r--   1 hadoop hadoop     205976 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/2017-02-22.05.99127.log
-rw-r--r--   1 hadoop hadoop        800 2017-02-19 06:07 /data/incoming/hourly_table/2017-02-22/05/processing.meta

 

$ hadoop fs -ls s3://my-tables/processing/daily_table/2017-02-22/05/
Found 2 items
-rw-rw-rw-   1   10541944 2017-02-28 05:16 s3://my-tables/processing/daily_table/2017-02-22/05/054
-rw-rw-rw-   1   10511516 2017-02-28 05:16 s3://my-tables/processing/daily_table/2017-02-22/05/055

As you can see, seven data files were combined into two with a size close to the requested 10 MB. The *.meta file was filtered out because --groupBy pattern works in a similar way to –srcPattern. We recommend keeping files larger than the default block size, which is 128 MB on EMR.

The name of the final file is composed of groups in the regular expression used in --groupBy plus some number to make the name unique. The pattern must have at least one group defined.

Let’s consider one more example. This time, we want the file name to be formed from three parts: year, month, and file extension (.log in this case). Here is an updated command:

$ s3-dist-cp --src /data/incoming/hourly_table --dest s3://my-tables/processing/daily_table_2017 --targetSize=10 --groupBy=’.*/hourly_table/.*(2017-).*/(\d\d)/.*\.(log)’

Now we have final files named in a different way:

$ hadoop fs -ls s3://my-tables/processing/daily_table_2017/2017-02-22/05/
Found 2 items
-rw-rw-rw-   1   10541944 2017-02-28 05:16 s3://my-tables/processing/daily_table/2017-02-22/05/2017-05log4
-rw-rw-rw-   1   10511516 2017-02-28 05:16 s3://my-tables/processing/daily_table/2017-02-22/05/2017-05log5

As you can see, names of final files consist of concatenation of 3 groups from the regular expression (2017-), (\d\d), (log).

You might find that occasionally you get an error that looks like the following:

$ s3-dist-cp --src /data/incoming/hourly_table --dest s3://my-tables/processing/daily_table_2017 --targetSize=10 --groupBy=’.*/hourly_table/.*(2018-).*/(\d\d)/.*\.(log)’
...
17/04/27 15:37:45 INFO S3DistCp.S3DistCp: Created 0 files to copy 0 files
... 
Exception in thread “main” java.lang.RuntimeException: Error running job
	at com.amazon.elasticmapreduce.S3DistCp.S3DistCp.run(S3DistCp.java:927)
	at com.amazon.elasticmapreduce.S3DistCp.S3DistCp.run(S3DistCp.java:705)
	at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
	at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:84)
	at com.amazon.elasticmapreduce.S3DistCp.Main.main(Main.java:22)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
…

In this case, the key information is contained in Created 0 files to copy 0 files. S3DistCp didn’t find any files to copy because the regular expression in the --groupBy option doesn’t match any files in the source location.

The reason for this issue varies. For example, it can be a mistake in the specified pattern. In the preceding example, we don’t have any files for the year 2018. Another common reason is incorrect escaping of the pattern when we submit S3DistCp command as a step, which is addressed later later in this post.

6. Upload files larger than 1 TB in size

The default upload chunk size when doing an S3 multipart upload is 128 MB. When files are larger than 1 TB, the total number of parts can reach over 10,000. Such a large number of parts can make the job run for a very long time or even fail.

In this case, you can improve job performance by increasing the size of each part. In S3DistCp, you can do this by using the --multipartUploadChunkSize option.

Let’s test how it works on several files about 200 GB in size. With the default part size, it takes about 84 minutes to copy them to S3 from HDFS.

We can increase the default part size to 1000 MB:

$ time s3-dist-cp --src /data/gb200 --dest s3://my-tables/data/S3DistCp/gb200_2 --multipartUploadChunkSize=1000
...
real    41m1.616s

The maximum part size is 5 GB. Keep in mind that larger parts have a higher chance to fail during upload and don’t necessarily speed up the process. Let’s run the same job with the maximum part size:

time s3-dist-cp --src /data/gb200 --dest s3://my-tables/data/S3DistCp/gb200_2 --multipartUploadChunkSize=5000
...
real    40m17.331s

7. Submit a S3DistCp step to an EMR cluster

You can run the S3DistCp tool in several ways. First, you can SSH to the master node and execute the command in a terminal window as we did in the preceding examples. This approach might be convenient for many use cases, but sometimes you might want to create a cluster that has some data on HDFS. You can do this by submitting a step directly in the AWS Management Console when creating a cluster.

In the console add step dialog box, we can fill the fields in the following way:

  • Step type: Custom JAR
  • Name*: S3DistCp Stepli>
  • JAR location: command-runner.jar
  • Arguments: s3-dist-cp --src s3://my-tables/incoming/hourly_table --dest /data/input/hourly_table --targetSize 10 --groupBy .*/hourly_table/.*(2017-).*/(\d\d)/.*\.(log)
  • Action of failure: Continue

Notice that we didn’t add quotation marks around our pattern. We needed quotation marks when we were using bash in the terminal window, but not here. The console takes care of escaping and transferring our arguments to the command on the cluster.

Another common use case is to run S3DistCp recurrently or on some event. We can always submit a new step to the existing cluster. The syntax here is slightly different than in previous examples. We separate arguments by commas. In the case of a complex pattern, we shield the whole step option with single quotation marks:

aws emr add-steps --cluster-id j-ABC123456789Z --steps 'Name=LoadData,Jar=command-runner.jar,ActionOnFailure=CONTINUE,Type=CUSTOM_JAR,Args=s3-dist-cp,--src,s3://my-tables/incoming/hourly_table,--dest,/data/input/hourly_table,--targetSize,10,--groupBy,.*/hourly_table/.*(2017-).*/(\d\d)/.*\.(log)'

Summary

This post showed you the basics of how S3DistCp works and highlighted some of its most useful features. It covered how you can use S3DistCp to optimize for raw files of different sizes and also selectively copy different files between locations. We also looked at several options for using the tool from SSH, the AWS Management Console, and the AWS CLI.

If you have questions or suggestions, leave a message in the comments.


Next Steps

Take your new knowledge to the next level! Click on the post below and learn the top 10 tips to improve query performance in Amazon Athena.

Top 10 Performance Tuning Tips for Amazon Athena


About the Author

Illya Yalovyy is a Senior Software Development Engineer with Amazon Web Services. He works on cutting-edge features of EMR and is heavily involved in open source projects such as Apache Hive, Apache Zookeeper, Apache Sqoop. His spare time is completely dedicated to his children and family.