I’ve previously written about setting up Cassandra and Priam for backup and cluster management. The example that I gave for backup restore there, however, is not applicable in every situation – it may not work on a completely separate cluster, for example. Or in case of partial restore to just one table, rather than the whole database.
In such cases you may choose to do a restore using the sstableloader utility. It has a straightforward syntax:
If you look at your Priam-generated backup, it looks like you can just copy the files (e.g. via s3 aws cp on AWS) for the particular tables and sstableloader import them. There’s a catch, however. In order to save space, Priam is using Snappy to compress all of the files. So if you try to feed them to any Cassandra utility, it will complain that they are corrupted.
So you have to decompress them before using sstableloader or anything else. But how? Well, Priam offers a service for that – you call it by passing the absolute path to a compressed file and the absolute path to where the uncompressed should be placed and it does the simple job of streaming the original through a decompressor. For decompressing an entire backup, I’ve written a python script. It assumes a certain structure, but you can parameterize it to make it more flexible. Here’s the code (excuse my non-idiomatic Python, I’m only using it for simple scripting):
#! /usr/bin/env python
# python script used to pass each backup file through the decompression facility of Priam (using Snappy)
# so that it can be used with sstableloader for restore
import os
import requests
rootdir = '/home/ec2-user/backup'
target = '/home/ec2-user/keyspace'
for subdir, dirs, files in os.walk(rootdir):
for file in files:
fullpath = os.path.join(subdir, file)
parent = os.path.join(fullpath, os.pardir)
table = os.path.basename(os.path.abspath(parent))
targetdir = target + "/" + table + "/"
if not os.path.exists(targetdir):
os.makedirs(targetdir)
url = 'http://localhost:8080/Priam/REST/v1/cassadmin/decompress?in=' + fullpath + '&out=' + target + "/" + table + "/" + file
print(url)
requests.get(url)
Now you have decompressed backup files that you can restore using sstableloader. It may take some time if you have a lot of data, and you should not run the restore at the same time a snapshot backup is performed, as it may fail (was warned by the documentation)
As a general note here, it’s very important to have backups but it’s much more important to be able to restore from them. A backup is useless if you don’t have a restore procedure. And simply having the tools available (e.g. Priam) doesn’t mean you can a restore procedure ready to execute. You should be doing test restores on active staging data as well as full restores on an empty, newly formed cluster, as there are different restore scenarios.
Join us this month to learn about some of the exciting new services and solution best practices at AWS. We also have our first re:Invent 2018 webinar series, “How to re:Invent”. Sign up now to learn more, we look forward to seeing you.
Note – All sessions are free and in Pacific Time.
Tech talks featured this month:
Analytics & Big Data
May 21, 2018 | 11:00 AM – 11:45 AM PT – Integrating Amazon Elasticsearch with your DevOps Tooling – Learn how you can easily integrate Amazon Elasticsearch Service into your DevOps tooling and gain valuable insight from your log data.
May 24, 2018 | 11:00 AM – 11:45 AM PT – Data Transformation Patterns in AWS – Discover how to perform common data transformations on the AWS Data Lake.
May 30, 2018 | 01:00 PM – 01:45 PM PT – Accelerating Life Sciences with HPC on AWS – Learn how you can accelerate your Life Sciences research workloads by harnessing the power of high performance computing on AWS.
Containers
May 24, 2018 | 01:00 PM – 01:45 PM PT –Building Microservices with the 12 Factor App Pattern on AWS – Learn best practices for building containerized microservices on AWS, and how traditional software design patterns evolve in the context of containers.
Databases
May 21, 2018 | 01:00 PM – 01:45 PM PT – How to Migrate from Cassandra to Amazon DynamoDB – Get the benefits, best practices and guides on how to migrate your Cassandra databases to Amazon DynamoDB.
May 23, 2018 | 01:00 PM – 01:45 PM PT – 5 Hacks for Optimizing MySQL in the Cloud – Learn how to optimize your MySQL databases for high availability, performance, and disaster resilience using RDS.
DevOps
May 23, 2018 | 09:00 AM – 09:45 AM PT – .NET Serverless Development on AWS – Learn how to build a modern serverless application in .NET Core 2.0.
Enterprise & Hybrid
May 22, 2018 | 11:00 AM – 11:45 AM PT – Hybrid Cloud Customer Use Cases on AWS – Learn how customers are leveraging AWS hybrid cloud capabilities to easily extend their datacenter capacity, deliver new services and applications, and ensure business continuity and disaster recovery.
IoT
May 31, 2018 | 11:00 AM – 11:45 AM PT – Using AWS IoT for Industrial Applications – Discover how you can quickly onboard your fleet of connected devices, keep them secure, and build predictive analytics with AWS IoT.
Machine Learning
May 22, 2018 | 09:00 AM – 09:45 AM PT – Using Apache Spark with Amazon SageMaker – Discover how to use Apache Spark with Amazon SageMaker for training jobs and application integration.
May 24, 2018 | 09:00 AM – 09:45 AM PT – Introducing AWS DeepLens – Learn how AWS DeepLens provides a new way for developers to learn machine learning by pairing the physical device with a broad set of tutorials, examples, source code, and integration with familiar AWS services.
May 30, 2018 | 09:00 AM – 09:45 AM PT– Introducing AWS Certificate Manager Private Certificate Authority (CA) – Learn how AWS Certificate Manager (ACM) Private Certificate Authority (CA), a managed private CA service, helps you easily and securely manage the lifecycle of your private certificates.
June 1, 2018 | 09:00 AM – 09:45 AM PT – Introducing AWS Firewall Manager – Centrally configure and manage AWS WAF rules across your accounts and applications.
May 30, 2018 | 11:00 AM – 11:45 AM PT – Accelerate Productivity by Computing at the Edge – Learn how AWS Snowball Edge support for compute instances helps accelerate data transfers, execute custom applications, and reduce overall storage costs.
This post is written by Eric Han – Vice President of Product Management Portworx and Asif Khan – Solutions Architect
Data is the soul of an application. As containers make it easier to package and deploy applications faster, testing plays an even more important role in the reliable delivery of software. Given that all applications have data, development teams want a way to reliably control, move, and test using real application data or, at times, obfuscated data.
For many teams, moving application data through a CI/CD pipeline, while honoring compliance and maintaining separation of concerns, has been a manual task that doesn’t scale. At best, it is limited to a few applications, and is not portable across environments. The goal should be to make running and testing stateful containers (think databases and message buses where operations are tracked) as easy as with stateless (such as with web front ends where they are often not).
Why is state important in testing scenarios? One reason is that many bugs manifest only when code is tested against real data. For example, we might simply want to test a database schema upgrade but a small synthetic dataset does not exercise the critical, finer corner cases in complex business logic. If we want true end-to-end testing, we need to be able to easily manage our data or state.
In this blog post, we define a CI/CD pipeline reference architecture that can automate data movement between applications. We also provide the steps to follow to configure the CI/CD pipeline.
Stateful Pipelines: Need for Portable Volumes
As part of continuous integration, testing, and deployment, a team may need to reproduce a bug found in production against a staging setup. Here, the hosting environment is comprised of a cluster with Kubernetes as the scheduler and Portworx for persistent volumes. The testing workflow is then automated by AWS CodeCommit, AWS CodePipeline, and AWS CodeBuild.
Portworx offers Kubernetes storage that can be used to make persistent volumes portable between AWS environments and pipelines. The addition of Portworx to the AWS Developer Tools continuous deployment for Kubernetes reference architecture adds persistent storage and storage orchestration to a Kubernetes cluster. The example uses MongoDB as the demonstration of a stateful application. In practice, the workflow applies to any containerized application such as Cassandra, MySQL, Kafka, and Elasticsearch.
Using the reference architecture, a developer calls CodePipeline to trigger a snapshot of the running production MongoDB database. Portworx then creates a block-based, writable snapshot of the MongoDB volume. Meanwhile, the production MongoDB database continues serving end users and is uninterrupted.
Without the Portworx integrations, a manual process would require an application-level backup of the database instance that is outside of the CI/CD process. For larger databases, this could take hours and impact production. The use of block-based snapshots follows best practices for resilient and non-disruptive backups.
As part of the workflow, CodePipeline deploys a new MongoDB instance for staging onto the Kubernetes cluster and mounts the second Portworx volume that has the data from production. CodePipeline triggers the snapshot of a Portworx volume through an AWS Lambda function, as shown here
AWS Developer Tools with Kubernetes: Integrated Workflow with Portworx
In the following workflow, a developer is testing changes to a containerized application that calls on MongoDB. The tests are performed against a staging instance of MongoDB. The same workflow applies if changes were on the server side. The original production deployment is scheduled as a Kubernetes deployment object and uses Portworx as the storage for the persistent volume.
The continuous deployment pipeline runs as follows:
Developers integrate bug fix changes into a main development branch that gets merged into a CodeCommit master branch.
Amazon CloudWatch triggers the pipeline when code is merged into a master branch of an AWS CodeCommit repository.
AWS CodePipeline sends the new revision to AWS CodeBuild, which builds a Docker container image with the build ID.
AWS CodeBuild pushes the new Docker container image tagged with the build ID to an Amazon ECR registry.
Kubernetes downloads the new container (for the database client) from Amazon ECR and deploys the application (as a pod) and staging MongoDB instance (as a deployment object).
AWS CodePipeline, through a Lambda function, calls Portworx to snapshot the production MongoDB and deploy a staging instance of MongoDB• Portworx provides a snapshot of the production instance as the persistent storage of the staging MongoDB • The MongoDB instance mounts the snapshot.
At this point, the staging setup mimics a production environment. Teams can run integration and full end-to-end tests, using partner tooling, without impacting production workloads. The full pipeline is shown here.
Summary
This reference architecture showcases how development teams can easily move data between production and staging for the purposes of testing. Instead of taking application-specific manual steps, all operations in this CodePipeline architecture are automated and tracked as part of the CI/CD process.
This integrated experience is part of making stateful containers as easy as stateless. With AWS CodePipeline for CI/CD process, developers can easily deploy stateful containers onto a Kubernetes cluster with Portworx storage and automate data movement within their process.
The reference architecture and code are available on GitHub:
This post courtesy of Massimiliano Angelino, AWS Solutions Architect
Different enterprise systems—ERP, CRM, BI, HR, etc.—need to exchange information but normally cannot do that natively because they are from different vendors. Enterprises have tried multiple ways to integrate heterogeneous systems, generally referred to as enterprise application integration (EAI).
Modern EAI systems are based on a message-oriented middleware (MoM), also known as enterprise service bus (ESB). An ESB provides data communication via a message bus, on top of which it also provides components to orchestrate, route, translate, and monitor the data exchange. Communication with the ESB is done via adapters or connectors provided by the ESB. In this way, the different applications do not have to have specific knowledge of the technology used to provide the integration.
Amazon MQ used with Apache Camel is an open-source alternative to commercial ESBs. With the launch of Amazon MQ, integration between on-premises applications and cloud services becomes much simpler. Amazon MQ provides a managed message broker service currently supporting ApacheMQ 5.15.0.
In this post, I show how a simple integration between Amazon MQ and other AWS services can be achieved by using Apache Camel.
Apache Camel provides built-in connectors for integration with a wide variety of AWS services such as Amazon MQ, Amazon SQS, Amazon SNS, Amazon SWF, Amazon S3, AWS Lambda, Amazon DynamoDB, AWS Elastic Beanstalk, and Amazon Kinesis Streams. It also provides a broad range of other connectors including Cassandra, JDBC, Spark, and even Facebook and Slack.
EAI system architecture
Different applications use different data formats, hence the need for a translation/transformation service. Such services can be provided to or from a common “normalized” format, or specifically between two applications.
The use of normalized formats simplifies the integration process when multiple applications need to share the same data, as the number of conversions to be realized is N (number of applications). This is at the cost of a more complex adaptation to a common format, which is required to cover all needs from the different applications, current and future.
Another characteristic of an EAI system is the support of distributed transactions to ensure data consistency across multiple applications.
EAI system architecture is normally composed of the following components:
A centralized broker that handles security, access control, and data communications. Amazon MQ provides these features through the support of multiple transport protocols (AMQP, Openwire, MQTT, WebSocket), security (all communications are encrypted via SSL), and per destination granular access control.
An independent data model, also known as the canonical data model. XML is the de facto standard for the data representation.
Connectors/agents that allow the applications to communicate with the broker.
A system model to allow a standardized way for all components to interface with the EAI. Java Message Service (JMS) and Windows Communication Foundation (WCF) are standard APIs to interact with constructs such as queues and topics to implement the different messaging patterns.
Walkthrough
This solution walks you through the following steps:
Creating the broker
Writing a simple application
Adding the dependencies
Triaging files into S3
Writing the Camel route
Sending files to the AMQP queue
Setting up AMQP
Testing the code
Creating the broker
To create a new broker, log in to your AWS account and choose Amazon MQ. Amazon MQ is currently available in six AWS Regions:
US East (N. Virginia)
US East (Ohio)
US West (Oregon)
EU (Ireland)
EU (Frankfurt)
Asia Pacific (Sydney) regions.
Make sure that you have selected one of these Regions.
The master user name and password are used to access the monitoring console of the broker and can be also used to authenticate when connecting the clients to the broker. I recommend creating separate users, without console access, to authenticate the clients to the broker, after the broker has been created.
For this example, create a single broker without failover. If your application requires a higher availability level, check the Create standby in a different zone check box. In case the principal broker instance would fail, the standby takes over in seconds. To make the client aware of the standby, use the failover:// protocol in the connection configuration pointing to both broker endpoints.
Leave the other settings as is. The broker takes few minutes to be created. After it’s done, you can see the list of endpoints available for the different protocols.
After the broker has been created, modify the security group to add the allowed ports and sources for access.
For this example, you need access to the ActiveMQ admin page and to AMQP. Open up ports 8162 and 5671 to the public address of your laptop.
You can also create a new user for programmatic access to the broker. In the Users section, choose Create User and add a new user named sdk.
Writing a simple application
The complete code for this walkthrough is available from the aws-amazonmq-apachecamel-sample GitHub repo. Clone the repository on your local machine to have the fully functional example. The rest of this post offers step-by-step instructions to build this solution.
To write the application, use Apache Maven and the Camel archetypes provided by Maven. If you do not have Apache Maven installed on your machine, you can follow the instructions at Installing Apache Maven.
From a terminal, run the following command:
mvn archetype:generate
You get a list of archetypes. Type camel to get only the one related to camel. In this case, use the java8 example and type the following:
Maven now generates the skeleton code in a folder named as the artifactId. In this case:
camel-aws-simple
Next, test that the environment is configured correctly to run Camel. At the prompt, run the following commands:
cd camel-aws-simple
mvn install
mvn exec:java
You should see a log appearing in the console, printing the following:
[INFO] --- exec-maven-plugin:1.6.0:java (default-cli) @ camel-aws-test ---
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Apache Camel 2.20.1 (CamelContext: camel-1) is starting
[ com.angmas.MainApp.main()] ManagedManagementStrategy INFO JMX is enabled
[ com.angmas.MainApp.main()] DefaultTypeConverter INFO Type converters loaded (core: 192, classpath: 0)
[ com.angmas.MainApp.main()] DefaultCamelContext INFO StreamCaching is not in use. If using streams then its recommended to enable stream caching. See more details at http://camel.apache.org/stream-caching.html
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Route: route1 started and consuming from: timer://simple?period=1000
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Total 1 routes, of which 1 are started
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Apache Camel 2.20.1 (CamelContext: camel-1) started in 0.419 seconds
[-1) thread #2 - timer://simple] route1 INFO Got a String body
[-1) thread #2 - timer://simple] route1 INFO Got an Integer body
[-1) thread #2 - timer://simple] route1 INFO Got a Double body
[-1) thread #2 - timer://simple] route1 INFO Got a String body
[-1) thread #2 - timer://simple] route1 INFO Got an Integer body
[-1) thread #2 - timer://simple] route1 INFO Got a Double body
[-1) thread #2 - timer://simple] route1 INFO Got a String body
[-1) thread #2 - timer://simple] route1 INFO Got an Integer body
[-1) thread #2 - timer://simple] route1 INFO Got a Double body
Adding the dependencies
Now that you have verified that the sample works, modify it to add the dependencies to interface to Amazon MQ/ActiveMQ and AWS.
For the following steps, you can use a normal text editor, such as vi, Sublime Text, or Visual Studio Code. Or, open the maven project in an IDE such as Eclipse or IntelliJ IDEA.
Open pom.xml and add the following lines inside the <dependencies> tag:
The camel-aws component is taking care of the interface with the supported AWS services without requiring any in-depth knowledge of the AWS Java SDK. For more information, see Camel Components for Amazon Web Services.
Triaging files into S3
Write a Camel component that receives files as a payload to messages in a queue and write them to an S3 bucket with different prefixes depending on the extension.
Because the broker that you created is exposed via a public IP address, you can execute the code from anywhere that there is an internet connection that allows communication on the specific ports. In this example, run the code from your own laptop. A broker can also be created without public IP address, in which case it is only accessible from inside the VPC in which it has been created, or by any peered VPC or network connected via a virtual gateway (VPN or AWS Direct Connect).
First, look at the code created by Maven. The archetype chosen created a standalone Camel context run via the helper org.apache.camel.main.Main class. This provides an easy way to run Camel routes from an IDE or the command line without needing to deploy it inside a container. Apache Camel can be also run as an OSGi module, or Spring and SpringBoot bean.
package com.angmas;
import org.apache.camel.main.Main;
/**
* A Camel Application
*/
public class MainApp {
/**
* A main() so you can easily run these routing rules in your IDE
*/
public static void main(String... args) throws Exception {
Main main = new Main();
main.addRouteBuilder(new MyRouteBuilder());
main.run(args);
}
}
The main method instantiates the Camel Main helper class and the routes, and runs the Camel application. The MyRouteBuilder class creates a route using Java DSL. It is also possible to define routes in Spring XML and load them dynamically in the code.
public void configure() {
// this sample sets a random body then performs content-based
// routing on the message using method references
from("timer:simple?period=1000")
.process()
.message(m -> m.setHeader("index", index++ % 3))
.transform()
.message(this::randomBody)
.choice()
.when()
.body(String.class::isInstance)
.log("Got a String body")
.when()
.body(Integer.class::isInstance)
.log("Got an Integer body")
.when()
.body(Double.class::isInstance)
.log("Got a Double body")
.otherwise()
.log("Other type message");
}
Writing the Camel route
Replace the existing route with one that fetches messages from Amazon MQ over AMQP, and routes the content to different S3 buckets depending on the file name extension.
Reads messages from the AMQP queue named filequeue.
Processes the message and sets a new ext header using the setExtensionHeader method (see below).
Checks the value of the ext header and write the body of the message as an object in an S3 bucket using different key prefixes, retaining the original name of the file.
The Amazon S3 component is configured with the bucket name, and a reference to an S3 client (amazonS3client=#s3Client) that you added to the Camel registry in the Main method of the app. Adding the object to the Camel registry allows Camel to find the object at runtime. Even though you could pass the region, accessKey, and secretKey parameters directly in the component URI, this way is more secure. It can make use of EC2 instance roles, so that you never need to pass the secrets.
Sending files to the AMQP queue
To send the files to the AMQP queue for testing, add another Camel route. In a real scenario, the messages to the AMQP queue are generated by another client. You are going to create a new route builder, but you could also add this route inside the existing MyRouteBuilder.
package com.angmas;
import org.apache.camel.builder.RouteBuilder;
/**
* A Camel Java8 DSL Router
*/
public class MessageProducerBuilder extends RouteBuilder {
/**
* Configure the Camel routing rules using Java code...
*/
public void configure() {
from("file://input?delete=false&noop=true")
.log("Content ${body} ${headers.CamelFileName}")
.to("amqp:filequeue");
}
}
The code reads files from the input folder in the work directory and publishes it to the queue. The route builder is added in the main class:
By default, Camel tries to connect to a local AMQP broker. Configure it to connect to your Amazon MQ broker.
Create an AMQPConnectionDetails object that is configured to connect to Amazon MQ broker with SSL and pass the user name and password that you set on the broker. Adding the object to the Camel registry allows Camel to find the object at runtime and use it as the default connection to AMQP.
public class MainApp {
public static String BROKER_URL = System.getenv("BROKER_URL");
public static String AMQP_URL = "amqps://"+BROKER_URL+":5671";
public static String BROKER_USERNAME = System.getenv("BROKER_USERNAME");
public static String BROKER_PASSWORD = System.getenv("BROKER_PASSWORD");
/**
* A main() so you can easily run these routing rules in your IDE
*/
public static void main(String... args) throws Exception {
Main main = new Main();
main.bind("amqp", getAMQPconnection());
main.bind("s3Client", AmazonS3ClientBuilder.standard().withRegion(Regions.US_EAST_1).build());
main.addRouteBuilder(new MyRouteBuilder());
main.addRouteBuilder(new MessageProducerBuilder());
main.run(args);
}
public static AMQPConnectionDetails getAMQPconnection() {
return new AMQPConnectionDetails(AMQP_URL, BROKER_USERNAME, BROKER_PASSWORD);
}
}
The AMQP_URL uses the amqps schema that indicates that you are using SSL. You then add the component to the registry. Camel finds it by matching the class type. main.bind("amqp-ssl", getAMQPConnection());
Testing the code
Create an input folder in the project root, and create few files with different extensions, such as txt, html, and csv.
Set the different environment variables required by the code, either in the shell or in your IDE as execution configuration.
If you are running the example from an EC2 instance, ensure that the EC2 instance role has read permission on the S3 bucket.
If you are running this on your laptop, ensure that you have configured the AWS credentials in the environment, for example, by using the aws configure command.
From the command line, execute the code:
mvn exec:java
If you are using an IDE, execute the main class. Camel outputs logging information and you should see messages listing the content and names of the files in the input folder.
Keep adding some more files to the input folder. You see that they are triaged in S3 a few seconds later. You can open the S3 console to check that they have been created.
To stop Camel, press CTRL+C in the shell.
Conclusion
In this post, I showed you how to create a publicly accessible Amazon MQ broker, and how to use Apache Camel to easily integrate AWS services with the broker. In the example, you created a Camel route that reads messages containing files from the AMQP queue and triages them by file extension into an S3 bucket.
Camel supports several components and provides blueprints for several enterprise integration patterns. Used in combination with the Amazon MQ, it provides a powerful and flexible solution to extend traditional enterprise solutions to the AWS Cloud, and integrate them seamlessly with cloud-native services, such as Amazon S3, Amazon SNS, Amazon SQS, Amazon CloudWatch, and AWS Lambda.
To learn more, see the Amazon MQ website. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.
I’ve previously explained how to setup Cassandra in AWS. The described setup works, but in some cases it may not be sufficient. E.g. it doesn’t give you an easy way to make and restore backups, and adding new nodes relies on a custom python script that randomly selects a seed.
My main reason for setting it up is the backup/restore functionality that it offers. All other ways to do backups are very tedious, and Priam happens to have implemented the important bits – the snapshotting and the incremental backups.
Priam is a bit tricky to get running, though. The setup guide is not too detailed and not easy to find (it’s the last, not immediately visible item in the wiki). First, it has one branch per Cassandra version, so you have to checkout the proper branch and build it. I immediately hit an issue there, as their naming doesn’t allow eclipse to import the gradle project. Within 24 hours I reported 3 issues, which isn’t ideal. Priam doesn’t support dynamic SimpleDB names, and doesn’t let you override bundled properties via the command line. I hope there aren’t bigger issues. The ones that I encountered, I fixed and made a pull request.
What does the setup look like?
Append a javaagent to the JVM options
Run the Priam web
It automatically replaces most of cassandra.yaml, including the seed provider (i.e. how does the node find other nodes in the cluster)
Run Cassandra
It fetches seed information (which is stored in AWS SimpleDB) and connects to a cluster
I decided to run the war file with a standalone jetty runner, rather than installing tomcat. In terms of shell scripts, the core bits look like that (in addition to the shell script in the original post that is run on initialization of the node):
# Get the Priam war file and jar file
aws s3 cp s3://$BUCKET_NAME/priam-web-3.12.0-SNAPSHOT.war ~/
aws s3 cp s3://$BUCKET_NAME/priam-cass-extensions-3.12.0-SNAPSHOT.jar /usr/share/cassandra/lib/priam-cass-extensions.jar
# Set the Priam agent
echo "-javaagent:/usr/share/cassandra/lib/priam-cass-extensions.jar" >> /etc/cassandra/conf/jvm.options
# Download jetty-runner to be able to run the Priam war file from the command line
wget http://central.maven.org/maven2/org/eclipse/jetty/jetty-runner/9.4.8.v20171121/jetty-runner-9.4.8.v20171121.jar
nohup java -Dpriam.clustername=LogSentinelCluster -Dpriam.sdb.instanceIdentity.region=$EC2_REGION -Dpriam.s3.bucket=$BACKUP_BUCKET \
-Dpriam.sdb.instanceidentity.domain=$INSTANCE_IDENTITY_DOMAIN -Dpriam.sdb.properties.domain=$PROPERTIES_DOMAIN \
-Dpriam.client.sslEnabled=true -Dpriam.internodeEncryption=all -Dpriam.rpc.server.type=sync \
-Dpriam.partitioner=org.apache.cassandra.dht.Murmur3Partitioner -Dpriam.backup.retention.days=7 \
-Dpriam.backup.hour=$BACKUP_HOUR -Dpriam.vnodes.numTokens=256 -Dpriam.thrift.enabled=false \
-jar jetty-runner-9.4.8.v20171121.jar --path /Priam ~/priam-web-3.12.0-SNAPSHOT.war &
while ! echo exit | nc $BIND_IP 8080; do sleep 10; done
echo "Started Priam web package"
service cassandra start
chkconfig cassandra on
while ! echo exit | nc $BIND_IP 9042; do sleep 10; done
BACKUP_BUCKET, PROPERTIES_DOMAIN and INSTANCE_DOMAIN are supplied via a CloudFormation script (as we can’t know the exact names in advance – especially for SimpleDB). Note that these properties won’t work in the main repo – I added them in my pull request.
In order for that to work, you need to have the two SimpleDB domains created (e.g. by CloudFormation). It is possible that you could replace SimpleDB with some other data storage (and not rely on AWS), but that’s out of scope for now.
The result of running Priam would be that you have your Cassandra nodes in SimpleDB (you can browse it using this chrome extension as AWS doesn’t offer any UI) and, of course, backups will be automatically created in the backup S3 Bucket.
You can then restore a backup by logging to each node and executing:
You specify the time range for the restore. Still not ideal, as one would hope to have a one-click restore, but much better than rolling out your own backup & restore infrastructure.
One very important note here – vnodes are not supported. My original cluster had a default of 256 vnodes per machine and now it has just 1, because Priam doesn’t support anything other than 1. That’s a pity, since vnodes are the recommended way to setup Cassandra. Apparently Netflix don’t use those, however. There’s a work-in-progress branch for that that was abandoned 5 years ago. Fortunately, there’s a fresh pull request with Vnode support that can be used in conjunction with my pull request from this branch.
Priam replaces some Cassandra defaults with other values so you might want to compare your current setup and the newly generated cassandra.yaml. Overall it doesn’t feel super-production ready, but apparently it is, as Netflix is using it in production.
Want to work at a company that helps customers in 156 countries around the world protect the memories they hold dear? A company that stores over 500 petabytes of customers’ photos, music, documents and work files in a purpose-built cloud storage system?
Well here’s your chance. Backblaze is looking for a Vault Storage Engineer!
Company Description:
Founded in 2007, Backblaze started with a mission to make backup software elegant and provide complete peace of mind. Over the course of almost a decade, we have become a pioneer in robust, scalable low cost cloud backup. Recently, we launched B2 — robust and reliable object storage at just $0.005/gb/mo. Part of our differentiation is being able to offer the lowest price of any of the big players while still being profitable.
We’ve managed to nurture a team oriented culture with amazingly low turnover. We value our people and their families. Don’t forget to check out our “About Us” page to learn more about the people and some of our perks.
We have built a profitable, high growth business. While we love our investors, we have maintained control over the business. That means our corporate goals are simple – grow sustainably and profitably.
Some Backblaze Perks:
Competitive healthcare plans
Competitive compensation and 401k
All employees receive Option grants
Unlimited vacation days
Strong coffee
Fully stocked Micro kitchen
Catered breakfast and lunches
Awesome people who work on awesome projects
New Parent Childcare bonus
Normal work hours
Get to bring your pets into the office
San Mateo Office – located near Caltrain and Highways 101 & 280.
Want to know what you’ll be doing?
You will work on the core of the Backblaze: the vault cloud storage system (https://www.backblaze.com/blog/vault-cloud-storage-architecture/). The system accepts files uploaded from customers, stores them durably by distributing them across the data center, automatically handles drive failures, rebuilds data when drives are replaced, and maintains high availability for customers to download their files. There are significant enhancements in the works, and you’ll be a part of making them happen.
Must have a strong background in:
Computer Science
Multi-threaded programming
Distributed Systems
Java
Math (such as matrix algebra and statistics)
Building reliable, testable systems
Bonus points for:
Java
JavaScript
Python
Cassandra
SQL
Looking for an attitude of:
Passionate about building reliable clean interfaces and systems.
Likes to work closely with other engineers, support, and sales to help customers.
Customer Focused (!!) — always focus on the customer’s point of view and how to solve their problem!
Required for all Backblaze Employees:
Good attitude and willingness to do whatever it takes to get the job done
Strong desire to work for a small fast-paced company
Desire to learn and adapt to rapidly changing technologies and work environment
Rigorous adherence to best practices
Relentless attention to detail
Excellent interpersonal skills and good oral/written communication
Excellent troubleshooting and problem solving skills
This position is located in San Mateo, California but will also consider remote work as long as you’re no more than three time zones away and can come to San Mateo now and then.
Backblaze is an Equal Opportunity Employer.
Contact Us: If this sounds like you, follow these steps:
Want to work at a company that helps customers in 156 countries around the world protect the memories they hold dear? A company that stores over 500 petabytes of customers’ photos, music, documents and work files in a purpose-built cloud storage system?
Well, here’s your chance. Backblaze is looking for a Sr. Software Engineer!
Company Description:
Founded in 2007, Backblaze started with a mission to make backup software elegant and provide complete peace of mind. Over the course of almost a decade, we have become a pioneer in robust, scalable low cost cloud backup. Recently, we launched B2 – robust and reliable object storage at just $0.005/gb/mo. Part of our differentiation is being able to offer the lowest price of any of the big players while still being profitable.
We’ve managed to nurture a team oriented culture with amazingly low turnover. We value our people and their families. Don’t forget to check out our “About Us” page to learn more about the people and some of our perks.
We have built a profitable, high growth business. While we love our investors, we have maintained control over the business. That means our corporate goals are simple – grow sustainably and profitably.
Some Backblaze Perks:
Competitive healthcare plans
Competitive compensation and 401k
All employees receive Option grants
Unlimited vacation days
Strong coffee
Fully stocked Micro kitchen
Catered breakfast and lunches
Awesome people who work on awesome projects
New Parent Childcare bonus
Normal work hours
Get to bring your pets into the office
San Mateo Office – located near Caltrain and Highways 101 & 280
Want to know what you’ll be doing?
You will work on the server side APIs that authenticate users when they log in, accept the backups, manage the data, and prepare restored data for customers. And you will help build new features as well as support tools to help chase down and diagnose customer issues.
Must be proficient in:
Java
Apache Tomcat
Large scale systems supporting thousands of servers and millions of customers
Cross platform (Linux/Macintosh/Windows) — don’t need to be an expert on all three, but cannot be afraid of any
Bonus points for:
Cassandra experience
JavaScript
ReactJS
Python
Struts
JSP’s
Looking for an attitude of:
Passionate about building friendly, easy to use Interfaces and APIs.
Likes to work closely with other engineers, support, and sales to help customers.
Believes the whole world needs backup, not just English speakers in the USA.
Customer Focused (!!) — always focus on the customer’s point of view and how to solve their problem!
Required for all Backblaze Employees:
Good attitude and willingness to do whatever it takes to get the job done
Strong desire to work for a small, fast-paced company
Desire to learn and adapt to rapidly changing technologies and work environment
Rigorous adherence to best practices
Relentless attention to detail
Excellent interpersonal skills and good oral/written communication
Excellent troubleshooting and problem solving skills
This position is located in San Mateo, California but will also consider remote work as long as you’re no more than three time zones away and can come to San Mateo now and then.
Backblaze is an Equal Opportunity Employer.
If this sounds like you —follow these steps:
Send an email to [email protected] with the position in the subject line.
Amazon EMR empowers many customers to build big data processing applications quickly and cost-effectively, using popular distributed frameworks such as Apache Spark, Apache HBase, Presto, and Apache Flink. For organizations that are crafting their analytical applications on Amazon EMR, there is a growing need to keep their data assets organized in an automated fashion. Because datasets tend to grow exponentially, using cataloging tools is essential to automating data discovery and organizing data assets.
AWS Glue Data Catalog provides this essential capability, allowing you to automatically discover and catalog metadata about your data stores in a central repository. Since Amazon EMR 5.8.0, customers have been using the AWS Glue Data Catalog as a metadata store for Apache Hive and Spark SQL applications that are running on Amazon EMR. Starting with Amazon EMR 5.10.0, you can catalog datasets using AWS Glue and run queries using Presto on Amazon EMR from the Hue (Hadoop User Experience) and Apache Zeppelin UIs.
You might wonder what scenarios warrant using Presto running on Amazon EMR and when to choose Amazon Athena (which uses Presto as the query engine under the hood). It is important to note that both are excellent tools for querying massive amounts of data and addressing different needs and use cases.
Amazon Athena provides the easiest way to run interactive queries for data in Amazon S3 without needing to set up or manage any servers. Presto running on Amazon EMR gives you much more flexibility in how you configure and run your queries, providing the ability to federate to other data sources if needed. For example, you might have a use case that requires LDAP authentication for clients such as the Presto CLI or JDBC/ODBC drivers. Or you might have a workflow where you need to join data between different systems like MySQL/Amazon Redshift/Apache Cassandra and Hive. In these examples, Presto running on Amazon EMR is the right tool to use because it can be configured to enable LDAP authentication in addition to the desired database connectors at cluster launch.
Now, let’s look at how metadata management for Presto works with AWS Glue.
Using an AWS Glue crawler to discover datasets
The AWS Glue Data Catalog is a reference to the location, schema, and runtime metrics of your datasets. To create this reference metadata, AWS Glue needs to crawl your datasets. In this exercise, we use an AWS Glue crawler to populate tables in the Data Catalog for the NYC taxi rides dataset.
The following are the steps for adding a crawler:
Sign in to the AWS Management Console, and open the AWS Glue console. In the navigation pane, choose Crawlers. Then choose Add crawler.
On the Add a data store page, specify the location of the NYC taxi rides dataset.
In the next step, choose an existing IAM role if one is available, or create a new role. Then choose Next.
On the scheduling page, for Frequency, choose Run on demand.
On the Configure the crawler’s output page, choose Add database. Specify blog-db as the database name. (You can specify a name of your choice, but be sure to choose the correct database name when running queries.)
Follow the remaining steps using the default values to create a crawler.
When the crawler displays the Ready state, navigate to the Databases (Choose blog-db from the list of databases, or search for it by specifying it as a filter, as shown in the following screenshot.) Then choose Tables. You should see the three tables created by the crawler, as follows.
(Optional) The discovered data is classified as CSV files. You can optionally convert this data into Parquet format for better response times on your queries.
Launching an Amazon EMR cluster
With the dataset discovered and organized, we can now walk through different options for launching Presto on an Amazon EMR cluster to use the AWS Glue Data Catalog.
After you’ve set up the Amazon EMR cluster with Presto, the AWS Glue Data Catalog is available through a default “hive” catalog. To change between the Hive and Glue metastores, you have to manually update hive.properties and restart the Presto server. Connect to the master node on your EMR cluster using SSH, and run the Presto CLI to start running queries interactively.
$ presto-cli --catalog hive
Begin with a simple query to sample a few rows:
presto> SELECT * FROM “blog-db”.taxi limit 10;
The query shows a few sample rows as follows:
Query the average fare for trips at each hour of the day and for each day of the month on the Parquet version of the taxi dataset.
presto> SELECT EXTRACT (HOUR FROM pickup_datetime) AS hour, avg(fare_amount) AS average_fare FROM “blog-db”.taxi_parquet GROUP BY 1 ORDER BY 1;
The following image shows the results:
More interestingly, you can compute the number of trips that gave tips in the 10 percent, 15 percent, or higher percentage range:
presto> -- Tip Percent Category
SELECT TipPrctCtgry
, COUNT (DISTINCT TripID) TripCt
FROM
(SELECT TripID
, (CASE
WHEN fare_prct < 0.7 THEN 'FL70'
WHEN fare_prct < 0.8 THEN 'FL80'
WHEN fare_prct < 0.9 THEN 'FL90'
ELSE 'FL100'
END) FarePrctCtgry
, (CASE
WHEN tip_prct < 0.1 THEN 'TL10'
WHEN tip_prct < 0.15 THEN 'TL15'
WHEN tip_prct < 0.2 THEN 'TL20'
ELSE 'TG20'
END) TipPrctCtgry
FROM
(SELECT TripID
, (fare_amount / total_amount) as fare_prct
, (extra / total_amount) as extra_prct
, (mta_tax / total_amount) as tip_prct
, (tolls_amount / total_amount) as mta_taxprct
, (tip_amount / total_amount) as tolls_prct
, (improvement_surcharge / total_amount) as imprv_suchrgprct
, total_amount
FROM
(SELECT *
, (cast(pickup_longitude AS VARCHAR(100)) || '_' || cast(pickup_latitude AS VARCHAR(100))) as TripID
from "blog-db”.taxi_parquet
WHERE total_amount > 0
) as t
) as t
) ct
GROUP BY TipPrctCtgry;
The results are as follows:
While the preceding query is running, navigate to the web interface for Presto on Amazon EMR at <http://master-public-dns-name:8889/. Here you can look into the query metrics, such as active worker nodes, number of rows read per second, reserved memory, and parallelism.
Running queries in the Presto Editor on Hue
If you installed Hue with your Amazon EMR launch, you can also run queries on Hue’s Presto Editor. On the Amazon EMR Cluster console, choose Enable Web Connection, and follow the instructions to access the web interfaces for Hue and Zeppelin.
After the web connection is enabled, choose the Hue link to open the web interface. At the login screen, if you are the administrator logging in for the first time, type a user name and password to create your Hue superuser account. Then choose Create account. Otherwise, type your user name and password and choose Create account, or type the credentials provided by your administrator.
Choose the Presto Editor from the menu. You can run Presto queries against your tables in the AWS Glue Data Catalog.
Conclusion
Having a shared data catalog for applications on Amazon EMR alleviates a myriad of data-related challenges that organizations face today—including discovery, governance, auditability, and collaboration. In this post, we explored how the AWS Glue Data Catalog addresses discoverability and manageability for table metadata for Presto on Amazon EMR. Go ahead, give this a try, and share your experience with us!
Radhika Ravirala is a Solutions Architect at Amazon Web Services where she helps customers craft distributed big data applications on the AWS platform. Prior to her cloud journey, she worked as a software engineer and designer for technology companies in Silicon Valley. She holds a M.S in computer science from San Jose State University.
Apache Cassandra is a commonly used, high performance NoSQL database. AWS customers that currently maintain Cassandra on-premises may want to take advantage of the scalability, reliability, security, and economic benefits of running Cassandra on Amazon EC2.
Amazon EC2 and Amazon Elastic Block Store (Amazon EBS) provide secure, resizable compute capacity and storage in the AWS Cloud. When combined, you can deploy Cassandra, allowing you to scale capacity according to your requirements. Given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.
In this post, we outline three Cassandra deployment options, as well as provide guidance about determining the best practices for your use case in the following areas:
Cassandra resource overview
Deployment considerations
Storage options
Networking
High availability and resiliency
Maintenance
Security
Before we jump into best practices for running Cassandra on AWS, we should mention that we have many customers who decided to use DynamoDB instead of managing their own Cassandra cluster. DynamoDB is fully managed, serverless, and provides multi-master cross-region replication, encryption at rest, and managed backup and restore. Integration with AWS Identity and Access Management (IAM) enables DynamoDB customers to implement fine-grained access control for their data security needs.
Several customers who have been using large Cassandra clusters for many years have moved to DynamoDB to eliminate the complications of administering Cassandra clusters and maintaining high availability and durability themselves. Gumgum.com is one customer who migrated to DynamoDB and observed significant savings. For more information, see Moving to Amazon DynamoDB from Hosted Cassandra: A Leap Towards 60% Cost Saving per Year.
AWS provides options, so you’re covered whether you want to run your own NoSQL Cassandra database, or move to a fully managed, serverless DynamoDB database.
Cassandra resource overview
Here’s a short introduction to standard Cassandra resources and how they are implemented with AWS infrastructure. If you’re already familiar with Cassandra or AWS deployments, this can serve as a refresher.
Resource
Cassandra
AWS
Cluster
A single Cassandra deployment.
This typically consists of multiple physical locations, keyspaces, and physical servers.
A logical deployment construct in AWS that maps to an AWS CloudFormation StackSet, which consists of one or many CloudFormation stacks to deploy Cassandra.
Datacenter
A group of nodes configured as a single replication group.
A logical deployment construct in AWS.
A datacenter is deployed with a single CloudFormation stack consisting of Amazon EC2 instances, networking, storage, and security resources.
Rack
A collection of servers.
A datacenter consists of at least one rack. Cassandra tries to place the replicas on different racks.
A single Availability Zone.
Server/node
A physical virtual machine running Cassandra software.
An EC2 instance.
Token
Conceptually, the data managed by a cluster is represented as a ring. The ring is then divided into ranges equal to the number of nodes. Each node being responsible for one or more ranges of the data. Each node gets assigned with a token, which is essentially a random number from the range. The token value determines the node’s position in the ring and its range of data.
Managed within Cassandra.
Virtual node (vnode)
Responsible for storing a range of data. Each vnode receives one token in the ring. A cluster (by default) consists of 256 tokens, which are uniformly distributed across all servers in the Cassandra datacenter.
Managed within Cassandra.
Replication factor
The total number of replicas across the cluster.
Managed within Cassandra.
Deployment considerations
One of the many benefits of deploying Cassandra on Amazon EC2 is that you can automate many deployment tasks. In addition, AWS includes services, such as CloudFormation, that allow you to describe and provision all your infrastructure resources in your cloud environment.
We recommend orchestrating each Cassandra ring with one CloudFormation template. If you are deploying in multiple AWS Regions, you can use a CloudFormation StackSet to manage those stacks. All the maintenance actions (scaling, upgrading, and backing up) should be scripted with an AWS SDK. These may live as standalone AWS Lambda functions that can be invoked on demand during maintenance.
You can get started by following the Cassandra Quick Start deployment guide. Keep in mind that this guide does not address the requirements to operate a production deployment and should be used only for learning more about Cassandra.
Deployment patterns
In this section, we discuss various deployment options available for Cassandra in Amazon EC2. A successful deployment starts with thoughtful consideration of these options. Consider the amount of data, network environment, throughput, and availability.
Single AWS Region, 3 Availability Zones
Active-active, multi-Region
Active-standby, multi-Region
Single region, 3 Availability Zones
In this pattern, you deploy the Cassandra cluster in one AWS Region and three Availability Zones. There is only one ring in the cluster. By using EC2 instances in three zones, you ensure that the replicas are distributed uniformly in all zones.
To ensure the even distribution of data across all Availability Zones, we recommend that you distribute the EC2 instances evenly in all three Availability Zones. The number of EC2 instances in the cluster is a multiple of three (the replication factor).
This pattern is suitable in situations where the application is deployed in one Region or where deployments in different Regions should be constrained to the same Region because of data privacy or other legal requirements.
Pros
Cons
● Highly available, can sustain failure of one Availability Zone.
● Simple deployment
● Does not protect in a situation when many of the resources in a Region are experiencing intermittent failure.
Active-active, multi-Region
In this pattern, you deploy two rings in two different Regions and link them. The VPCs in the two Regions are peered so that data can be replicated between two rings.
We recommend that the two rings in the two Regions be identical in nature, having the same number of nodes, instance types, and storage configuration.
This pattern is most suitable when the applications using the Cassandra cluster are deployed in more than one Region.
Pros
Cons
● No data loss during failover.
● Highly available, can sustain when many of the resources in a Region are experiencing intermittent failures.
● Read/write traffic can be localized to the closest Region for the user for lower latency and higher performance.
● High operational overhead
● The second Region effectively doubles the cost
Active-standby, multi-region
In this pattern, you deploy two rings in two different Regions and link them. The VPCs in the two Regions are peered so that data can be replicated between two rings.
However, the second Region does not receive traffic from the applications. It only functions as a secondary location for disaster recovery reasons. If the primary Region is not available, the second Region receives traffic.
We recommend that the two rings in the two Regions be identical in nature, having the same number of nodes, instance types, and storage configuration.
This pattern is most suitable when the applications using the Cassandra cluster require low recovery point objective (RPO) and recovery time objective (RTO).
Pros
Cons
● No data loss during failover.
● Highly available, can sustain failure or partitioning of one whole Region.
● High operational overhead.
● High latency for writes for eventual consistency.
● The second Region effectively doubles the cost.
Storage options
In on-premises deployments, Cassandra deployments use local disks to store data. There are two storage options for EC2 instances:
Your choice of storage is closely related to the type of workload supported by the Cassandra cluster. Instance store works best for most general purpose Cassandra deployments. However, in certain read-heavy clusters, Amazon EBS is a better choice.
The choice of instance type is generally driven by the type of storage:
If ephemeral storage is required for your application, a storage-optimized (I3) instance is the best option.
If your workload requires Amazon EBS, it is best to go with compute-optimized (C5) instances.
Burstable instance types (T2) don’t offer good performance for Cassandra deployments.
Instance store
Ephemeral storage is local to the EC2 instance. It may provide high input/output operations per second (IOPs) based on the instance type. An SSD-based instance store can support up to 3.3M IOPS in I3 instances. This high performance makes it an ideal choice for transactional or write-intensive applications such as Cassandra.
In general, instance storage is recommended for transactional, large, and medium-size Cassandra clusters. For a large cluster, read/write traffic is distributed across a higher number of nodes, so the loss of one node has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important.
As an example, for a cluster with 100 nodes, the loss of 1 node is 3.33% loss (with a replication factor of 3). Similarly, for a cluster with 10 nodes, the loss of 1 node is 33% less capacity (with a replication factor of 3).
Ephemeral storage
Amazon EBS
Comments
IOPS
(translates to higher query performance)
Up to 3.3M on I3
80K/instance
10K/gp2/volume
32K/io1/volume
This results in a higher query performance on each host. However, Cassandra implicitly scales well in terms of horizontal scale. In general, we recommend scaling horizontally first. Then, scale vertically to mitigate specific issues.
Note: 3.3M IOPS is observed with 100% random read with a 4-KB block size on Amazon Linux.
AWS instance types
I3
Compute optimized, C5
Being able to choose between different instance types is an advantage in terms of CPU, memory, etc., for horizontal and vertical scaling.
Backup/ recovery
Custom
Basic building blocks are available from AWS.
Amazon EBS offers distinct advantage here. It is small engineering effort to establish a backup/restore strategy.
a) In case of an instance failure, the EBS volumes from the failing instance are attached to a new instance.
b) In case of an EBS volume failure, the data is restored by creating a new EBS volume from last snapshot.
Amazon EBS
EBS volumes offer higher resiliency, and IOPs can be configured based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. EBS volumes can support up to 32K IOPS per volume and up to 80K IOPS per instance in RAID configuration. They have an annualized failure rate (AFR) of 0.1–0.2%, which makes EBS volumes 20 times more reliable than typical commodity disk drives.
The primary advantage of using Amazon EBS in a Cassandra deployment is that it reduces data-transfer traffic significantly when a node fails or must be replaced. The replacement node joins the cluster much faster. However, Amazon EBS could be more expensive, depending on your data storage needs.
Cassandra has built-in fault tolerance by replicating data to partitions across a configurable number of nodes. It can not only withstand node failures but if a node fails, it can also recover by copying data from other replicas into a new node. Depending on your application, this could mean copying tens of gigabytes of data. This adds additional delay to the recovery process, increases network traffic, and could possibly impact the performance of the Cassandra cluster during recovery.
Data stored on Amazon EBS is persisted in case of an instance failure or termination. The node’s data stored on an EBS volume remains intact and the EBS volume can be mounted to a new EC2 instance. Most of the replicated data for the replacement node is already available in the EBS volume and won’t need to be copied over the network from another node. Only the changes made after the original node failed need to be transferred across the network. That makes this process much faster.
EBS volumes are snapshotted periodically. So, if a volume fails, a new volume can be created from the last known good snapshot and be attached to a new instance. This is faster than creating a new volume and coping all the data to it.
Most Cassandra deployments use a replication factor of three. However, Amazon EBS does its own replication under the covers for fault tolerance. In practice, EBS volumes are about 20 times more reliable than typical disk drives. So, it is possible to go with a replication factor of two. This not only saves cost, but also enables deployments in a region that has two Availability Zones.
EBS volumes are recommended in case of read-heavy, small clusters (fewer nodes) that require storage of a large amount of data. Keep in mind that the Amazon EBS provisioned IOPS could get expensive. General purpose EBS volumes work best when sized for required performance.
Networking
If your cluster is expected to receive high read/write traffic, select an instance type that offers 10–Gb/s performance. As an example, i3.8xlarge and c5.9xlarge both offer 10–Gb/s networking performance. A smaller instance type in the same family leads to a relatively lower networking throughput.
Cassandra generates a universal unique identifier (UUID) for each node based on IP address for the instance. This UUID is used for distributing vnodes on the ring.
In the case of an AWS deployment, IP addresses are assigned automatically to the instance when an EC2 instance is created. With the new IP address, the data distribution changes and the whole ring has to be rebalanced. This is not desirable.
To preserve the assigned IP address, use a secondary elastic network interface with a fixed IP address. Before swapping an EC2 instance with a new one, detach the secondary network interface from the old instance and attach it to the new one. This way, the UUID remains same and there is no change in the way that data is distributed in the cluster.
If you are deploying in more than one region, you can connect the two VPCs in two regions using cross-region VPC peering.
High availability and resiliency
Cassandra is designed to be fault-tolerant and highly available during multiple node failures. In the patterns described earlier in this post, you deploy Cassandra to three Availability Zones with a replication factor of three. Even though it limits the AWS Region choices to the Regions with three or more Availability Zones, it offers protection for the cases of one-zone failure and network partitioning within a single Region. The multi-Region deployments described earlier in this post protect when many of the resources in a Region are experiencing intermittent failure.
Resiliency is ensured through infrastructure automation. The deployment patterns all require a quick replacement of the failing nodes. In the case of a regionwide failure, when you deploy with the multi-Region option, traffic can be directed to the other active Region while the infrastructure is recovering in the failing Region. In the case of unforeseen data corruption, the standby cluster can be restored with point-in-time backups stored in Amazon S3.
Maintenance
In this section, we look at ways to ensure that your Cassandra cluster is healthy:
Scaling
Upgrades
Backup and restore
Scaling
Cassandra is horizontally scaled by adding more instances to the ring. We recommend doubling the number of nodes in a cluster to scale up in one scale operation. This leaves the data homogeneously distributed across Availability Zones. Similarly, when scaling down, it’s best to halve the number of instances to keep the data homogeneously distributed.
Cassandra is vertically scaled by increasing the compute power of each node. Larger instance types have proportionally bigger memory. Use deployment automation to swap instances for bigger instances without downtime or data loss.
Upgrades
All three types of upgrades (Cassandra, operating system patching, and instance type changes) follow the same rolling upgrade pattern.
In this process, you start with a new EC2 instance and install software and patches on it. Thereafter, remove one node from the ring. For more information, see Cassandra cluster Rolling upgrade. Then, you detach the secondary network interface from one of the EC2 instances in the ring and attach it to the new EC2 instance. Restart the Cassandra service and wait for it to sync. Repeat this process for all nodes in the cluster.
Backup and restore
Your backup and restore strategy is dependent on the type of storage used in the deployment. Cassandra supports snapshots and incremental backups. When using instance store, a file-based backup tool works best. Customers use rsync or other third-party products to copy data backups from the instance to long-term storage. For more information, see Backing up and restoring data in the DataStax documentation. This process has to be repeated for all instances in the cluster for a complete backup. These backup files are copied back to new instances to restore. We recommend using S3 to durably store backup files for long-term storage.
For Amazon EBS based deployments, you can enable automated snapshots of EBS volumes to back up volumes. New EBS volumes can be easily created from these snapshots for restoration.
Security
We recommend that you think about security in all aspects of deployment. The first step is to ensure that the data is encrypted at rest and in transit. The second step is to restrict access to unauthorized users. For more information about security, see the Cassandra documentation.
Encryption at rest
Encryption at rest can be achieved by using EBS volumes with encryption enabled. Amazon EBS uses AWS KMS for encryption. For more information, see Amazon EBS Encryption.
Instance store–based deployments require using an encrypted file system or an AWS partner solution. If you are using DataStax Enterprise, it supports transparent data encryption.
Encryption in transit
Cassandra uses Transport Layer Security (TLS) for client and internode communications.
Authentication
The security mechanism is pluggable, which means that you can easily swap out one authentication method for another. You can also provide your own method of authenticating to Cassandra, such as a Kerberos ticket, or if you want to store passwords in a different location, such as an LDAP directory.
Authorization
The authorizer that’s plugged in by default is org.apache.cassandra.auth.Allow AllAuthorizer. Cassandra also provides a role-based access control (RBAC) capability, which allows you to create roles and assign permissions to these roles.
Conclusion
In this post, we discussed several patterns for running Cassandra in the AWS Cloud. This post describes how you can manage Cassandra databases running on Amazon EC2. AWS also provides managed offerings for a number of databases. To learn more, see Purpose-built databases for all your application needs.
If you have questions or suggestions, please comment below.
Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.
Provanshu Dey is a Senior IoT Consultant with AWS Professional Services. He works on highly scalable and reliable IoT, data and machine learning solutions with our customers. In his spare time, he enjoys spending time with his family and tinkering with electronics & gadgets.
In the past I’ve gone manually through dependencies to check them against vulnerability databases, or in many cases I was just blissfully ignorant about any vulnerabilities that my dependencies had.
When you add the plugin it generates a report. Initially you can go and manually upgrade the problematic dependencies (I upgraded two of those in my current project), or suppress the false positives (e.g. the cassandra library is marked as vulnerable, whereas the actual vulnerability is that Cassandra binds an unauthenticated RMI endpoint, which I’ve addressed via my stack setup, so the library isn’t an issue).
Then you can configure a threshold for vulnerabilities and fail the build if new ones appear – either by you adding a vulnerable dependency, or in case a vulnerability is discovered in an existing dependency.
All of that is shown in the examples page and is pretty straightforward. I’d suggest adding the plugin immediately, it’s a must-have:
Now, checking dependencies for vulnerabilities is just one small aspect of having your software secure and it shouldn’t give you a false sense of security (a sort-of “I have my dependencies checked, therefore my system is secure” fallacy). But it’s an important aspect. And having that check automated is a huge gain.
We can’t believe that there are just few days left before re:Invent 2017. If you are attending this year, you’ll want to check out our Big Data sessions! The Big Data and Machine Learning categories are bigger than ever. As in previous years, you can find these sessions in various tracks, including Analytics & Big Data, Deep Learning Summit, Artificial Intelligence & Machine Learning, Architecture, and Databases.
We have great sessions from organizations and companies like Vanguard, Cox Automotive, Pinterest, Netflix, FINRA, Amtrak, AmazonFresh, Sysco Foods, Twilio, American Heart Association, Expedia, Esri, Nextdoor, and many more. All sessions are recorded and made available on YouTube. In addition, all slide decks from the sessions will be available on SlideShare.net after the conference.
This post highlights the sessions that will be presented as part of the Analytics & Big Data track, as well as relevant sessions from other tracks like Architecture, Artificial Intelligence & Machine Learning, and IoT. If you’re interested in Machine Learning sessions, don’t forget to check out our Guide to Machine Learning at re:Invent 2017.
This year’s session catalog contains the following breakout sessions.
Raju Gulabani, VP, Database, Analytics and AI at AWS will discuss the evolution of database and analytics services in AWS, the new database and analytics services and features we launched this year, and our vision for continued innovation in this space. We are witnessing an unprecedented growth in the amount of data collected, in many different forms. Storage, management, and analysis of this data require database services that scale and perform in ways not possible before. AWS offers a collection of database and other data services—including Amazon Aurora, Amazon DynamoDB, Amazon RDS, Amazon Redshift, Amazon ElastiCache, Amazon Kinesis, and Amazon EMR—to process, store, manage, and analyze data. In this session, we provide an overview of AWS database and analytics services and discuss how customers are using these services today.
Deep dive customer use cases
ABD401 – How Netflix Monitors Applications in Near Real-Time with Amazon Kinesis Thousands of services work in concert to deliver millions of hours of video streams to Netflix customers every day. These applications vary in size, function, and technology, but they all make use of the Netflix network to communicate. Understanding the interactions between these services is a daunting challenge both because of the sheer volume of traffic and the dynamic nature of deployments. In this session, we first discuss why Netflix chose Kinesis Streams to address these challenges at scale. We then dive deep into how Netflix uses Kinesis Streams to enrich network traffic logs and identify usage patterns in real time. Lastly, we cover how Netflix uses this system to build comprehensive dependency maps, increase network efficiency, and improve failure resiliency. From this session, you will learn how to build a real-time application monitoring system using network traffic logs and get real-time, actionable insights.
In this session, learn how Nextdoor replaced their home-grown data pipeline based on a topology of Flume nodes with a completely serverless architecture based on Kinesis and Lambda. By making these changes, they improved both the reliability of their data and the delivery times of billions of records of data to their Amazon S3–based data lake and Amazon Redshift cluster. Nextdoor is a private social networking service for neighborhoods.
ABD205 – Taking a Page Out of Ivy Tech’s Book: Using Data for Student Success Data speaks. Discover how Ivy Tech, the nation’s largest singly accredited community college, uses AWS to gather, analyze, and take action on student behavioral data for the betterment of over 3,100 students. This session outlines the process from inception to implementation across the state of Indiana and highlights how Ivy Tech’s model can be applied to your own complex business problems.
ABD207 – Leveraging AWS to Fight Financial Crime and Protect National Security Banks aren’t known to share data and collaborate with one another. But that is exactly what the Mid-Sized Bank Coalition of America (MBCA) is doing to fight digital financial crime—and protect national security. Using the AWS Cloud, the MBCA developed a shared data analytics utility that processes terabytes of non-competitive customer account, transaction, and government risk data. The intelligence produced from the data helps banks increase the efficiency of their operations, cut labor and operating costs, and reduce false positive volumes. The collective intelligence also allows greater enforcement of Anti-Money Laundering (AML) regulations by helping members detect internal risks—and identify the challenges to detecting these risks in the first place. This session demonstrates how the AWS Cloud supports the MBCA to deliver advanced data analytics, provide consistent operating models across financial institutions, reduce costs, and strengthen national security.
ABD208 – Cox Automotive Empowered to Scale with Splunk Cloud & AWS and Explores New Innovation with Amazon Kinesis Firehose In this session, learn how Cox Automotive is using Splunk Cloud for real time visibility into its AWS and hybrid environments to achieve near instantaneous MTTI, reduce auction incidents by 90%, and proactively predict outages. We also introduce a highly anticipated capability that allows you to ingest, transform, and analyze data in real time using Splunk and Amazon Kinesis Firehose to gain valuable insights from your cloud resources. It’s now quicker and easier than ever to gain access to analytics-driven infrastructure monitoring using Splunk Enterprise & Splunk Cloud.
ABD209 – Accelerating the Speed of Innovation with a Data Sciences Data & Analytics Hub at Takeda Historically, silos of data, analytics, and processes across functions, stages of development, and geography created a barrier to R&D efficiency. Gathering the right data necessary for decision-making was challenging due to issues of accessibility, trust, and timeliness. In this session, learn how Takeda is undergoing a transformation in R&D to increase the speed-to-market of high-impact therapies to improve patient lives. The Data and Analytics Hub was built, with Deloitte, to address these issues and support the efficient generation of data insights for functions such as clinical operations, clinical development, medical affairs, portfolio management, and R&D finance. In the AWS hosted data lake, this data is processed, integrated, and made available to business end users through data visualization interfaces, and to data scientists through direct connectivity. Learn how Takeda has achieved significant time reductions—from weeks to minutes—to gather and provision data that has the potential to reduce cycle times in drug development. The hub also enables more efficient operations and alignment to achieve product goals through cross functional team accountability and collaboration due to the ability to access the same cross domain data.
ABD210 – Modernizing Amtrak: Serverless Solution for Real-Time Data Capabilities As the nation’s only high-speed intercity passenger rail provider, Amtrak needs to know critical information to run their business such as: Who’s onboard any train at any time? How are booking and revenue trending? Amtrak was faced with unpredictable and often slow response times from existing databases, ranging from seconds to hours; existing booking and revenue dashboards were spreadsheet-based and manual; multiple copies of data were stored in different repositories, lacking integration and consistency; and operations and maintenance (O&M) costs were relatively high. Join us as we demonstrate how Deloitte and Amtrak successfully went live with a cloud-native operational database and analytical datamart for near-real-time reporting in under six months. We highlight the specific challenges and the modernization of architecture on an AWS native Platform as a Service (PaaS) solution. The solution includes cloud-native components such as AWS Lambda for microservices, Amazon Kinesis and AWS Data Pipeline for moving data, Amazon S3 for storage, Amazon DynamoDB for a managed NoSQL database service, and Amazon Redshift for near-real time reports and dashboards. Deloitte’s solution enabled “at scale” processing of 1 million transactions/day and up to 2K transactions/minute. It provided flexibility and scalability, largely eliminate the need for system management, and dramatically reduce operating costs. Moreover, it laid the groundwork for decommissioning legacy systems, anticipated to save at least $1M over 3 years.
ABD211 – Sysco Foods: A Journey from Too Much Data to Curated Insights In this session, we detail Sysco’s journey from a company focused on hindsight-based reporting to one focused on insights and foresight. For this shift, Sysco moved from multiple data warehouses to an AWS ecosystem, including Amazon Redshift, Amazon EMR, AWS Data Pipeline, and more. As the team at Sysco worked with Tableau, they gained agile insight across their business. Learn how Sysco decided to use AWS, how they scaled, and how they became more strategic with the AWS ecosystem and Tableau.
ABD217 – From Batch to Streaming: How Amazon Flex Uses Real-time Analytics to Deliver Packages on Time Reducing the time to get actionable insights from data is important to all businesses, and customers who employ batch data analytics tools are exploring the benefits of streaming analytics. Learn best practices to extend your architecture from data warehouses and databases to real-time solutions. Learn how to use Amazon Kinesis to get real-time data insights and integrate them with Amazon Aurora, Amazon RDS, Amazon Redshift, and Amazon S3. The Amazon Flex team describes how they used streaming analytics in their Amazon Flex mobile app, used by Amazon delivery drivers to deliver millions of packages each month on time. They discuss the architecture that enabled the move from a batch processing system to a real-time system, overcoming the challenges of migrating existing batch data to streaming data, and how to benefit from real-time analytics.
ABD218 – How EuroLeague Basketball Uses IoT Analytics to Engage Fans IoT and big data have made their way out of industrial applications, general automation, and consumer goods, and are now a valuable tool for improving consumer engagement across a number of industries, including media, entertainment, and sports. The low cost and ease of implementation of AWS analytics services and AWS IoT have allowed AGT, a leader in IoT, to develop their IoTA analytics platform. Using IoTA, AGT brought a tailored solution to EuroLeague Basketball for real-time content production and fan engagement during the 2017-18 season. In this session, we take a deep dive into how this solution is architected for secure, scalable, and highly performant data collection from athletes, coaches, and fans. We also talk about how the data is transformed into insights and integrated into a content generation pipeline. Lastly, we demonstrate how this solution can be easily adapted for other industries and applications.
ABD222 – How to Confidently Unleash Data to Meet the Needs of Your Entire Organization Where are you on the spectrum of IT leaders? Are you confident that you’re providing the technology and solutions that consistently meet or exceed the needs of your internal customers? Do your peers at the executive table see you as an innovative technology leader? Innovative IT leaders understand the value of getting data and analytics directly into the hands of decision makers, and into their own. In this session, Daren Thayne, Domo’s Chief Technology Officer, shares how innovative IT leaders are helping drive a culture change at their organizations. See how transformative it can be to have real-time access to all of the data that’ is relevant to YOUR job (including a complete view of your entire AWS environment), as well as understand how it can help you lead the way in applying that same pattern throughout your entire company
ABD303 – Developing an Insights Platform – Sysco’s Journey from Disparate Systems to Data Lake and Beyond Sysco has nearly 200 operating companies across its multiple lines of business throughout the United States, Canada, Central/South America, and Europe. As the global leader in food services, Sysco identified the need to streamline the collection, transformation, and presentation of data produced by the distributed units and systems, into a central data ecosystem. Sysco’s Business Intelligence and Analytics team addressed these requirements by creating a data lake with scalable analytics and query engines leveraging AWS services. In this session, Sysco will outline their journey from a hindsight reporting focused company to an insights driven organization. They will cover solution architecture, challenges, and lessons learned from deploying a self-service insights platform. They will also walk through the design patterns they used and how they designed the solution to provide predictive analytics using Amazon Redshift Spectrum, Amazon S3, Amazon EMR, AWS Glue, Amazon Elasticsearch Service and other AWS services.
ABD309 – How Twilio Scaled Its Data-Driven Culture As a leading cloud communications platform, Twilio has always been strongly data-driven. But as headcount and data volumes grew—and grew quickly—they faced many new challenges. One-off, static reports work when you’re a small startup, but how do you support a growth stage company to a successful IPO and beyond? Today, Twilio’s data team relies on AWS and Looker to provide data access to 700 colleagues. Departments have the data they need to make decisions, and cloud-based scale means they get answers fast. Data delivers real-business value at Twilio, providing a 360-degree view of their customer, product, and business. In this session, you hear firsthand stories directly from the Twilio data team and learn real-world tips for fostering a truly data-driven culture at scale.
ABD310 – How FINRA Secures Its Big Data and Data Science Platform on AWS FINRA uses big data and data science technologies to detect fraud, market manipulation, and insider trading across US capital markets. As a financial regulator, FINRA analyzes highly sensitive data, so information security is critical. Learn how FINRA secures its Amazon S3 Data Lake and its data science platform on Amazon EMR and Amazon Redshift, while empowering data scientists with tools they need to be effective. In addition, FINRA shares AWS security best practices, covering topics such as AMI updates, micro segmentation, encryption, key management, logging, identity and access management, and compliance.
ABD331 – Log Analytics at Expedia Using Amazon Elasticsearch Service Expedia uses Amazon Elasticsearch Service (Amazon ES) for a variety of mission-critical use cases, ranging from log aggregation to application monitoring and pricing optimization. In this session, the Expedia team reviews how they use Amazon ES and Kibana to analyze and visualize Docker startup logs, AWS CloudTrail data, and application metrics. They share best practices for architecting a scalable, secure log analytics solution using Amazon ES, so you can add new data sources almost effortlessly and get insights quickly
ABD316 – American Heart Association: Finding Cures to Heart Disease Through the Power of Technology Combining disparate datasets and making them accessible to data scientists and researchers is a prevalent challenge for many organizations, not just in healthcare research. American Heart Association (AHA) has built a data science platform using Amazon EMR, Amazon Elasticsearch Service, and other AWS services, that corrals multiple datasets and enables advanced research on phenotype and genotype datasets, aimed at curing heart diseases. In this session, we present how AHA built this platform and the key challenges they addressed with the solution. We also provide a demo of the platform, and leave you with suggestions and next steps so you can build similar solutions for your use cases
ABD319 – Tooling Up for Efficiency: DIY Solutions @ Netflix At Netflix, we have traditionally approached cloud efficiency from a human standpoint, whether it be in-person meetings with the largest service teams or manually flipping reservations. Over time, we realized that these manual processes are not scalable as the business continues to grow. Therefore, in the past year, we have focused on building out tools that allow us to make more insightful, data-driven decisions around capacity and efficiency. In this session, we discuss the DIY applications, dashboards, and processes we built to help with capacity and efficiency. We start at the ten thousand foot view to understand the unique business and cloud problems that drove us to create these products, and discuss implementation details, including the challenges encountered along the way. Tools discussed include Picsou, the successor to our AWS billing file cost analyzer; Libra, an easy-to-use reservation conversion application; and cost and efficiency dashboards that relay useful financial context to 50+ engineering teams and managers.
ABD312 – Deep Dive: Migrating Big Data Workloads to AWS Customers are migrating their analytics, data processing (ETL), and data science workloads running on Apache Hadoop, Spark, and data warehouse appliances from on-premise deployments to AWS in order to save costs, increase availability, and improve performance. AWS offers a broad set of analytics services, including solutions for batch processing, stream processing, machine learning, data workflow orchestration, and data warehousing. This session will focus on identifying the components and workflows in your current environment; and providing the best practices to migrate these workloads to the right AWS data analytics product. We will cover services such as Amazon EMR, Amazon Athena, Amazon Redshift, Amazon Kinesis, and more. We will also feature Vanguard, an American investment management company based in Malvern, Pennsylvania with over $4.4 trillion in assets under management. Ritesh Shah, Sr. Program Manager for Cloud Analytics Program at Vanguard, will describe how they orchestrated their migration to AWS analytics services, including Hadoop and Spark workloads to Amazon EMR. Ritesh will highlight the technical challenges they faced and overcame along the way, as well as share common recommendations and tuning tips to accelerate the time to production.
ABD402 – How Esri Optimizes Massive Image Archives for Analytics in the Cloud Petabyte scale archives of satellites, planes, and drones imagery continue to grow exponentially. They mostly exist as semi-structured data, but they are only valuable when accessed and processed by a wide range of products for both visualization and analysis. This session provides an overview of how ArcGIS indexes and structures data so that any part of it can be quickly accessed, processed, and analyzed by reading only the minimum amount of data needed for the task. In this session, we share best practices for structuring and compressing massive datasets in Amazon S3, so it can be analyzed efficiently. We also review a number of different image formats, including GeoTIFF (used for the Public Datasets on AWS program, Landsat on AWS), cloud optimized GeoTIFF, MRF, and CRF as well as different compression approaches to show the effect on processing performance. Finally, we provide examples of how this technology has been used to help image processing and analysis for the response to Hurricane Harvey.
ABD329 – A Look Under the Hood – How Amazon.com Uses AWS Services for Analytics at Massive Scale Amazon’s consumer business continues to grow, and so does the volume of data and the number and complexity of the analytics done in support of the business. In this session, we talk about how Amazon.com uses AWS technologies to build a scalable environment for data and analytics. We look at how Amazon is evolving the world of data warehousing with a combination of a data lake and parallel, scalable compute engines such as Amazon EMR and Amazon Redshift.
ABD327 – Migrating Your Traditional Data Warehouse to a Modern Data Lake In this session, we discuss the latest features of Amazon Redshift and Redshift Spectrum, and take a deep dive into its architecture and inner workings. We share many of the recent availability, performance, and management enhancements and how they improve your end user experience. You also hear from 21st Century Fox, who presents a case study of their fast migration from an on-premises data warehouse to Amazon Redshift. Learn how they are expanding their data warehouse to a data lake that encompasses multiple data sources and data formats. This architecture helps them tie together siloed business units and get actionable 360-degree insights across their consumer base. MCL202 – Ally Bank & Cognizant: Transforming Customer Experience Using Amazon Alexa Given the increasing popularity of natural language interfaces such as Voice as User technology or conversational artificial intelligence (AI), Ally® Bank was looking to interact with customers by enabling direct transactions through conversation or voice. They also needed to develop a capability that allows third parties to connect to the bank securely for information sharing and exchange, using oAuth, an authentication protocol seen as the future of secure banking technology. Cognizant’s Architecture team partnered with Ally Bank’s Enterprise Architecture group and identified the right product for oAuth integration with Amazon Alexa and third-party technologies. In this session, we discuss how building products with conversational AI helps Ally Bank offer an innovative customer experience; increase retention through improved data-driven personalization; increase the efficiency and convenience of customer service; and gain deep insights into customer needs through data analysis and predictive analytics to offer new products and services.
MCL317 – Orchestrating Machine Learning Training for Netflix Recommendations At Netflix, we use machine learning (ML) algorithms extensively to recommend relevant titles to our 100+ million members based on their tastes. Everything on the member home page is an evidence-driven, A/B-tested experience that we roll out backed by ML models. These models are trained using Meson, our workflow orchestration system. Meson distinguishes itself from other workflow engines by handling more sophisticated execution graphs, such as loops and parameterized fan-outs. Meson can schedule Spark jobs, Docker containers, bash scripts, gists of Scala code, and more. Meson also provides a rich visual interface for monitoring active workflows and inspecting execution logs. It has a powerful Scala DSL for authoring workflows as well as the REST API. In this session, we focus on how Meson trains recommendation ML models in production, and how we have re-architected it to scale up for a growing need of broad ETL applications within Netflix. As a driver for this change, we have had to evolve the persistence layer for Meson. We talk about how we migrated from Cassandra to Amazon RDS backed by Amazon Aurora
MCL350 – Humans vs. the Machines: How Pinterest Uses Amazon Mechanical Turk’s Worker Community to Improve Machine Learning Ever since the term “crowdsourcing” was coined in 2006, it’s been a buzzword for technology companies and social institutions. In the technology sector, crowdsourcing is instrumental for verifying machine learning algorithms, which, in turn, improves the user’s experience. In this session, we explore how Pinterest adapted to an increased reliability on human evaluation to improve their product, with a focus on how they’ve integrated with Mechanical Turk’s platform. This presentation is aimed at engineers, analysts, program managers, and product managers who are interested in how companies rely on Mechanical Turk’s human evaluation platform to better understand content and improve machine learning algorithms. The discussion focuses on the analysis and product decisions related to building a high quality crowdsourcing system that takes advantage of Mechanical Turk’s powerful worker community.
ABD201 – Big Data Architectural Patterns and Best Practices on AWS In this session, we simplify big data processing as a data bus comprising various stages: collect, store, process, analyze, and visualize. Next, we discuss how to choose the right technology in each stage based on criteria such as data structure, query latency, cost, request rate, item size, data volume, durability, and so on. Finally, we provide reference architectures, design patterns, and best practices for assembling these technologies to solve your big data problems at the right cost
ABD202 – Best Practices for Building Serverless Big Data Applications Serverless technologies let you build and scale applications and services rapidly without the need to provision or manage servers. In this session, we show you how to incorporate serverless concepts into your big data architectures. We explore the concepts behind and benefits of serverless architectures for big data, looking at design patterns to ingest, store, process, and visualize your data. Along the way, we explain when and how you can use serverless technologies to streamline data processing, minimize infrastructure management, and improve agility and robustness and share a reference architecture using a combination of cloud and open source technologies to solve your big data problems. Topics include: use cases and best practices for serverless big data applications; leveraging AWS technologies such as Amazon DynamoDB, Amazon S3, Amazon Kinesis, AWS Lambda, Amazon Athena, and Amazon EMR; and serverless ETL, event processing, ad hoc analysis, and real-time analytics.
ABD206 – Building Visualizations and Dashboards with Amazon QuickSight Just as a picture is worth a thousand words, a visual is worth a thousand data points. A key aspect of our ability to gain insights from our data is to look for patterns, and these patterns are often not evident when we simply look at data in tables. The right visualization will help you gain a deeper understanding in a much quicker timeframe. In this session, we will show you how to quickly and easily visualize your data using Amazon QuickSight. We will show you how you can connect to data sources, generate custom metrics and calculations, create comprehensive business dashboards with various chart types, and setup filters and drill downs to slice and dice the data.
ABD203 – Real-Time Streaming Applications on AWS: Use Cases and Patterns To win in the marketplace and provide differentiated customer experiences, businesses need to be able to use live data in real time to facilitate fast decision making. In this session, you learn common streaming data processing use cases and architectures. First, we give an overview of streaming data and AWS streaming data capabilities. Next, we look at a few customer examples and their real-time streaming applications. Finally, we walk through common architectures and design patterns of top streaming data use cases.
ABD213 – How to Build a Data Lake with AWS Glue Data Catalog As data volumes grow and customers store more data on AWS, they often have valuable data that is not easily discoverable and available for analytics. The AWS Glue Data Catalog provides a central view of your data lake, making data readily available for analytics. We introduce key features of the AWS Glue Data Catalog and its use cases. Learn how crawlers can automatically discover your data, extract relevant metadata, and add it as table definitions to the AWS Glue Data Catalog. We will also explore the integration between AWS Glue Data Catalog and Amazon Athena, Amazon EMR, and Amazon Redshift Spectrum.
ABD214 – Real-time User Insights for Mobile and Web Applications with Amazon Pinpoint With customers demanding relevant and real-time experiences across a range of devices, digital businesses are looking to gather user data at scale, understand this data, and respond to customer needs instantly. This requires tools that can record large volumes of user data in a structured fashion, and then instantly make this data available to generate insights. In this session, we demonstrate how you can use Amazon Pinpoint to capture user data in a structured yet flexible manner. Further, we demonstrate how this data can be set up for instant consumption using services like Amazon Kinesis Firehose and Amazon Redshift. We walk through example data based on real world scenarios, to illustrate how Amazon Pinpoint lets you easily organize millions of events, record them in real-time, and store them for further analysis.
ABD223 – IT Innovators: New Technology for Leveraging Data to Enable Agility, Innovation, and Business Optimization Companies of all sizes are looking for technology to efficiently leverage data and their existing IT investments to stay competitive and understand where to find new growth. Regardless of where companies are in their data-driven journey, they face greater demands for information by customers, prospects, partners, vendors and employees. All stakeholders inside and outside the organization want information on-demand or in “real time”, available anywhere on any device. They want to use it to optimize business outcomes without having to rely on complex software tools or human gatekeepers to relevant information. Learn how IT innovators at companies such as MasterCard, Jefferson Health, and TELUS are using Domo’s Business Cloud to help their organizations more effectively leverage data at scale.
ABD301 – Analyzing Streaming Data in Real Time with Amazon Kinesis Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you can get timely insights and react quickly to new information. In this session, we present an end-to-end streaming data solution using Kinesis Streams for data ingestion, Kinesis Analytics for real-time processing, and Kinesis Firehose for persistence. We review in detail how to write SQL queries using streaming data and discuss best practices to optimize and monitor your Kinesis Analytics applications. Lastly, we discuss how to estimate the cost of the entire system
ABD302 – Real-Time Data Exploration and Analytics with Amazon Elasticsearch Service and Kibana In this session, we use Apache web logs as example and show you how to build an end-to-end analytics solution. First, we cover how to configure an Amazon ES cluster and ingest data using Amazon Kinesis Firehose. We look at best practices for choosing instance types, storage options, shard counts, and index rotations based on the throughput of incoming data. Then we demonstrate how to set up a Kibana dashboard and build custom dashboard widgets. Finally, we review approaches for generating custom, ad-hoc reports.
ABD304 – Best Practices for Data Warehousing with Amazon Redshift & Redshift Spectrum Most companies are over-run with data, yet they lack critical insights to make timely and accurate business decisions. They are missing the opportunity to combine large amounts of new, unstructured big data that resides outside their data warehouse with trusted, structured data inside their data warehouse. In this session, we take an in-depth look at how modern data warehousing blends and analyzes all your data, inside and outside your data warehouse without moving the data, to give you deeper insights to run your business. We will cover best practices on how to design optimal schemas, load data efficiently, and optimize your queries to deliver high throughput and performance.
ABD305 – Design Patterns and Best Practices for Data Analytics with Amazon EMR Amazon EMR is one of the largest Hadoop operators in the world, enabling customers to run ETL, machine learning, real-time processing, data science, and low-latency SQL at petabyte scale. In this session, we introduce you to Amazon EMR design patterns such as using Amazon S3 instead of HDFS, taking advantage of both long and short-lived clusters, and other Amazon EMR architectural best practices. We talk about lowering cost with Auto Scaling and Spot Instances, and security best practices for encryption and fine-grained access control. Finally, we dive into some of our recent launches to keep you current on our latest features.
ABD307 – Deep Analytics for Global AWS Marketing Organization To meet the needs of the global marketing organization, the AWS marketing analytics team built a scalable platform that allows the data science team to deliver custom econometric and machine learning models for end user self-service. To meet data security standards, we use end-to-end data encryption and different AWS services such as Amazon Redshift, Amazon RDS, Amazon S3, Amazon EMR with Apache Spark and Auto Scaling. In this session, you see real examples of how we have scaled and automated critical analysis, such as calculating the impact of marketing programs like re:Invent and prioritizing leads for our sales teams.
ABD311 – Deploying Business Analytics at Enterprise Scale with Amazon QuickSight One of the biggest tradeoffs customers usually make when deploying BI solutions at scale is agility versus governance. Large-scale BI implementations with the right governance structure can take months to design and deploy. In this session, learn how you can avoid making this tradeoff using Amazon QuickSight. Learn how to easily deploy Amazon QuickSight to thousands of users using Active Directory and Federated SSO, while securely accessing your data sources in Amazon VPCs or on-premises. We also cover how to control access to your datasets, implement row-level security, create scheduled email reports, and audit access to your data.
ABD315 – Building Serverless ETL Pipelines with AWS Glue Organizations need to gain insight and knowledge from a growing number of Internet of Things (IoT), APIs, clickstreams, unstructured and log data sources. However, organizations are also often limited by legacy data warehouses and ETL processes that were designed for transactional data. In this session, we introduce key ETL features of AWS Glue, cover common use cases ranging from scheduled nightly data warehouse loads to near real-time, event-driven ETL flows for your data lake. We discuss how to build scalable, efficient, and serverless ETL pipelines using AWS Glue. Additionally, Merck will share how they built an end-to-end ETL pipeline for their application release management system, and launched it in production in less than a week using AWS Glue.
ABD318 – Architecting a data lake with Amazon S3, Amazon Kinesis, and Amazon Athena Learn how to architect a data lake where different teams within your organization can publish and consume data in a self-service manner. As organizations aim to become more data-driven, data engineering teams have to build architectures that can cater to the needs of diverse users – from developers, to business analysts, to data scientists. Each of these user groups employs different tools, have different data needs and access data in different ways. In this talk, we will dive deep into assembling a data lake using Amazon S3, Amazon Kinesis, Amazon Athena, Amazon EMR, and AWS Glue. The session will feature Mohit Rao, Architect and Integration lead at Atlassian, the maker of products such as JIRA, Confluence, and Stride. First, we will look at a couple of common architectures for building a data lake. Then we will show how Atlassian built a self-service data lake, where any team within the company can publish a dataset to be consumed by a broad set of users.
Companies have valuable data that they may not be analyzing due to the complexity, scalability, and performance issues of loading the data into their data warehouse. However, with the right tools, you can extend your analytics to query data in your data lake—with no loading required. Amazon Redshift Spectrum extends the analytic power of Amazon Redshift beyond data stored in your data warehouse to run SQL queries directly against vast amounts of unstructured data in your Amazon S3 data lake. This gives you the freedom to store your data where you want, in the format you want, and have it available for analytics when you need it. Join a discussion with AWS solution architects to ask question.
ABD330 – Combining Batch and Stream Processing to Get the Best of Both Worlds Today, many architects and developers are looking to build solutions that integrate batch and real-time data processing, and deliver the best of both approaches. Lambda architecture (not to be confused with the AWS Lambda service) is a design pattern that leverages both batch and real-time processing within a single solution to meet the latency, accuracy, and throughput requirements of big data use cases. Come join us for a discussion on how to implement Lambda architecture (batch, speed, and serving layers) and best practices for data processing, loading, and performance tuning
ABD335 – Real-Time Anomaly Detection Using Amazon Kinesis Amazon Kinesis Analytics offers a built-in machine learning algorithm that you can use to easily detect anomalies in your VPC network traffic and improve security monitoring. Join us for an interactive discussion on how to stream your VPC flow Logs to Amazon Kinesis Streams and identify anomalies using Kinesis Analytics.
ABD339 – Deep Dive and Best Practices for Amazon Athena Amazon Athena is an interactive query service that enables you to process data directly from Amazon S3 without the need for infrastructure. Since its launch at re:invent 2016, several organizations have adopted Athena as the central tool to process all their data. In this talk, we dive deep into the most common use cases, including working with other AWS services. We review the best practices for creating tables and partitions and performance optimizations. We also dive into how Athena handles security, authorization, and authentication. Lastly, we hear from a customer who has reduced costs and improved time to market by deploying Athena across their organization.
We look forward to meeting you at re:Invent 2017!
About the Author
Roy Ben-Alta is a solution architect and principal business development manager at Amazon Web Services in New York. He focuses on Data Analytics and ML Technologies, working with AWS customers to build innovative data-driven products.
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.