Tag Archives: Deployments

HiveMQ 3.3.3 released

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/hivemq-3-3-3-released/

The HiveMQ team is pleased to announce the availability of HiveMQ 3.3.3. This is a maintenance release for the 3.3 series and brings the following improvements:

  • Adds global option to rate-limit plugin service calls
  • Improved Logging for configured TLS Cipher Suites
  • Improved Retained Message Metrics
  • Improved support for Java 9
  • Fixed an issue where the metric half-full-queue.count could show an incorrect value
  • Fixed an issue that could cause cluster nodes to wait for operational nodes on startup indefinitely
  • Improved payload reference counting for single node deployments
  • Fixed an issue with rolling upgrades in an edge case where a node with a newer version is joining during network-split
  • Improved Shutdown behaviour for OnPublishReceivedCallbacks and plugin system services
  • Fixed an issue where assignments in the ClientGroupingService got cleaned up prematurely
  • Improved example configuration file for in-memory persistence

You can download the new HiveMQ version here.

We recommend to upgrade if you are an HiveMQ 3.3.x user.

Have a great day,
The HiveMQ Team

HiveMQ 3.2.9 released

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/hivemq-3-2-9-released/

The HiveMQ team is pleased to announce the availability of HiveMQ 3.2.9. This is a maintenance release for the 3.2 series and brings the following improvements:

  • Improved Logging for configured TLS Cipher Suites
  • Improved Retained Message Metrics
  • Improved support for Java 9
  • Fixed an issue where the metric half-full-queue.count could show an incorrect value
  • Fixed an issue that could cause cluster nodes to wait for operational nodes on startup indefinitely
  • Improved payload reference counting for single node deployments
  • Fixed an issue with rolling upgrades in an edge case where a node with a newer version is joining during network-split
  • Improved Shutdown behaviour for OnPublishReceivedCallbacks and plugin system services

You can download the new HiveMQ version here.

We recommend to upgrade if you are an HiveMQ 3.2.x user.

Have a great day,
The HiveMQ Team

[$] Mixed-criticality support in seL4

Post Syndicated from corbet original https://lwn.net/Articles/745946/rss

Linux tries to be useful for a wide variety of use cases, but there are
some situations where it may not be appropriate; safety-critical
deployments with tight timing constraints would be near the top of the list
for many people. On the other hand, systems that can run safety-critical
code in a provably correct manner tend to be restricted in functionality
and often have to be dedicated to a single task. In a linux.conf.au 2018
talk, Gernot Heiser presented work that is being done with the seL4 microkernel system to safely support
complex systems in a provably safe manner.

timeShift(GrafanaBuzz, 1w) Issue 30

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2018/01/19/timeshiftgrafanabuzz-1w-issue-30/

Welcome to TimeShift

We’re only 6 weeks away from the next GrafanaCon and here at Grafana Labs we’re buzzing with excitement. We have some great talks lined up that you won’t want to miss.

This week’s TimeShift covers Grafana’s annotation functionality, monitoring with Prometheus, integrating Grafana with NetFlow and a peek inside Stream’s monitoring stack. Enjoy!

Latest Stable Release

Grafana 4.6.3 is now available. Latest bugfixes include:

  • Gzip: Fixes bug Gravatar images when gzip was enabled #5952
  • Alert list: Now shows alert state changes even after adding manual annotations on dashboard #99513
  • Alerting: Fixes bug where rules evaluated as firing when all conditions was false and using OR operator. #93183
  • Cloudwatch: CloudWatch no longer display metrics’ default alias #101514, thx @mtanda

Download Grafana 4.6.3 Now

From the Blogosphere

Walkthrough: Watch your Ansible deployments in Grafana!: Your graphs start spiking and your platform begins behaving abnormally. Did the config change in a deployment, causing the problem? This article covers Grafana’s new annotation functionality, and specifically, how to create deployment annotations via Ansible playbooks.

Application Monitoring in OpenShift with Prometheus and Grafana: There are many article describing how to monitor OpenShift with Prometheus running in the same cluster, but what if you don’t have admin permissions to the cluster you need to monitor?

Spring Boot Metrics Monitoring Using Prometheus & Grafana: As the title suggests, this post walks you through how to configure Prometheus and Grafana to monitor you Spring Boot application metrics.

How to Integrate Grafana with NetFlow: Learn how to monitor NetFlow from Scrutinizer using Grafana’s SimpleJSON data source.

Stream & Go: News Feeds for Over 300 Million End Users: Stream lets you build scalable newsfeeds and activity streams via their API, which is used by more than 300 million end users. In this article, they discuss their monitoring stack and why they chose particular components and technologies.

GrafanaCon EU Tickets are Going Fast!

We’re six weeks from kicking off GrafanaCon EU! Join us for talks from Google, Bloomberg, Tinder, eBay and more! You won’t want to miss two great days of open source monitoring talks and fun in Amsterdam. Get your tickets before they sell out!

Get Your Ticket Now

Grafana Plugins

We have a couple of plugin updates to share this week that add some new features and improvements. Updating your plugins is easy. For on-prem Grafana, use the Grafana-cli tool, or update with 1 click on your Hosted Grafana.


Druid Data Source – This new update is packed with new features. Notable enhancement include:

  • Post Aggregation feature
  • Support for thetaSketch
  • Improvements to the Query editor

Update Now


Breadcrumb Panel – The Breadcrumb Panel is a small panel you can include in your dashboard that tracks other dashboards you have visited – making it easy to navigate back to a previously visited dashboard. The latest release adds support for dashboards loaded from a file.

Update Now

Upcoming Events

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We also like to make sure we mention other Grafana-related events happening all over the world. If you’re putting on just such an event, let us know and we’ll list it here.

SnowCamp 2018: Yves Brissaud – Application metrics with Prometheus and Grafana | Grenoble, France – Jan 24, 2018:
We’ll take a look at how Prometheus, Grafana and a bit of code make it possible to obtain temporal data to visualize the state of our applications as well as to help with development and debugging.

Register Now

Women Who Go Berlin: Go Workshop – Monitoring and Troubleshooting using Prometheus and Grafana | Berlin, Germany – Jan 31, 2018: In this workshop we will learn about one of the most important topics in making apps production ready: Monitoring. We will learn how to use tools you’ve probably heard a lot about – Prometheus and Grafana, and using what we learn we will troubleshoot a particularly buggy Go app.

Register Now

FOSDEM | Brussels, Belgium – Feb 3-4, 2018: FOSDEM is a free developer conference where thousands of developers of free and open source software gather to share ideas and technology. There is no need to register; all are welcome.

Jfokus | Stockholm, Sweden – Feb 5-7, 2018:
Carl Bergquist – Quickie: Monitoring? Not OPS Problem

Why should we monitor our system? Why can’t we just rely on the operations team anymore? They use to be able to do that. What’s currently changing? Presentation content: – Why do we monitor our system – How did it use to work? – Whats changing – Why do we need to shift focus – Everyone should be on call. – Resilience is the goal (Best way of having someone care about quality is to make them responsible).

Register Now

Jfokus | Stockholm, Sweden – Feb 5-7, 2018:
Leonard Gram – Presentation: DevOps Deconstructed

What’s a Site Reliability Engineer and how’s that role different from the DevOps engineer my boss wants to hire? I really don’t want to be on call, should I? Is Docker the right place for my code or am I better of just going straight to Serverless? And why should I care about any of it? I’ll try to answer some of these questions while looking at what DevOps really is about and how commodisation of servers through “the cloud” ties into it all. This session will be an opinionated piece from a developer who’s been on-call for the past 6 years and would like to convince you to do the same, at least once.

Register Now

Stockholm Metrics and Monitoring | Stockholm, Sweden – Feb 7, 2018:
Observability 3 ways – Logging, Metrics and Distributed Tracing

Let’s talk about often confused telemetry tools: Logging, Metrics and Distributed Tracing. We’ll show how you capture latency using each of the tools and how they work differently. Through examples and discussion, we’ll note edge cases where certain tools have advantages over others. By the end of this talk, we’ll better understand how each of Logging, Metrics and Distributed Tracing aids us in different ways to understand our applications.

Register Now

OpenNMS – Introduction to “Grafana” | Webinar – Feb 21, 2018:
IT monitoring helps detect emerging hardware damage and performance bottlenecks in the enterprise network before any consequential damage or disruption to business processes occurs. The powerful open-source OpenNMS software monitors a network, including all connected devices, and provides logging of a variety of data that can be used for analysis and planning purposes. In our next OpenNMS webinar on February 21, 2018, we introduce “Grafana” – a web-based tool for creating and displaying dashboards from various data sources, which can be perfectly combined with OpenNMS.

Register Now

Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

As we say with pie charts, use emojis wisely 😉

Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions

How are we doing?

That wraps up our 30th issue of TimeShift. What do you think? Are there other types of content you’d like to see here? Submit a comment on this issue below, or post something at our community forum.

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Set Up a Continuous Delivery Pipeline for Containers Using AWS CodePipeline and Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/set-up-a-continuous-delivery-pipeline-for-containers-using-aws-codepipeline-and-amazon-ecs/

This post contributed by Abby FullerAWS Senior Technical Evangelist

Last week, AWS announced support for Amazon Elastic Container Service (ECS) targets (including AWS Fargate) in AWS CodePipeline. This support makes it easier to create a continuous delivery pipeline for container-based applications and microservices.

Building and deploying containerized services manually is slow and prone to errors. Continuous delivery with automated build and test mechanisms helps detect errors early, saves time, and reduces failures, making this a popular model for application deployments. Previously, to automate your container workflows with ECS, you had to build your own solution using AWS CloudFormation. Now, you can integrate CodePipeline and CodeBuild with ECS to automate your workflows in just a few steps.

A typical continuous delivery workflow with CodePipeline, CodeBuild, and ECS might look something like the following:

  • Choosing your source
  • Building your project
  • Deploying your code

We also have a continuous deployment reference architecture on GitHub for this workflow.

Getting Started

First, create a new project with CodePipeline and give the project a name, such as “demo”.

Next, choose a source location where the code is stored. This could be AWS CodeCommit, GitHub, or Amazon S3. For this example, enter GitHub and then give CodePipeline access to the repository.

Next, add a build step. You can import an existing build, such as a Jenkins server URL or CodeBuild project, or create a new step with CodeBuild. If you don’t have an existing build project in CodeBuild, create one from within CodePipeline:

  • Build provider: AWS CodeBuild
  • Configure your project: Create a new build project
  • Environment image: Use an image managed by AWS CodeBuild
  • Operating system: Ubuntu
  • Runtime: Docker
  • Version: aws/codebuild/docker:1.12.1
  • Build specification: Use the buildspec.yml in the source code root directory

Now that you’ve created the CodeBuild step, you can use it as an existing project in CodePipeline.

Next, add a deployment provider. This is where your built code is placed. It can be a number of different options, such as AWS CodeDeploy, AWS Elastic Beanstalk, AWS CloudFormation, or Amazon ECS. For this example, connect to Amazon ECS.

For CodeBuild to deploy to ECS, you must create an image definition JSON file. This requires adding some instructions to the pre-build, build, and post-build phases of the CodeBuild build process in your buildspec.yml file. For help with creating the image definition file, see Step 1 of the Tutorial: Continuous Deployment with AWS CodePipeline.

  • Deployment provider: Amazon ECS
  • Cluster name: enter your project name from the build step
  • Service name: web
  • Image filename: enter your image definition filename (“web.json”).

You are almost done!

You can now choose an existing IAM service role that CodePipeline can use to access resources in your account, or let CodePipeline create one. For this example, use the wizard, and go with the role that it creates (AWS-CodePipeline-Service).

Finally, review all of your changes, and choose Create pipeline.

After the pipeline is created, you’ll have a model of your entire pipeline where you can view your executions, add different tests, add manual approvals, or release a change.

You can learn more in the AWS CodePipeline User Guide.

Happy automating!

Serverless @ re:Invent 2017

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/serverless-reinvent-2017/

At re:Invent 2014, we announced AWS Lambda, what is now the center of the serverless platform at AWS, and helped ignite the trend of companies building serverless applications.

This year, at re:Invent 2017, the topic of serverless was everywhere. We were incredibly excited to see the energy from everyone attending 7 workshops, 15 chalk talks, 20 skills sessions and 27 breakout sessions. Many of these sessions were repeated due to high demand, so we are happy to summarize and provide links to the recordings and slides of these sessions.

Over the course of the week leading up to and then the week of re:Invent, we also had over 15 new features and capabilities across a number of serverless services, including AWS Lambda, Amazon API Gateway, AWS [email protected], AWS SAM, and the newly announced AWS Serverless Application Repository!

AWS Lambda

Amazon API Gateway

  • Amazon API Gateway Supports Endpoint Integrations with Private VPCs – You can now provide access to HTTP(S) resources within your VPC without exposing them directly to the public internet. This includes resources available over a VPN or Direct Connect connection!
  • Amazon API Gateway Supports Canary Release Deployments – You can now use canary release deployments to gradually roll out new APIs. This helps you more safely roll out API changes and limit the blast radius of new deployments.
  • Amazon API Gateway Supports Access Logging – The access logging feature lets you generate access logs in different formats such as CLF (Common Log Format), JSON, XML, and CSV. The access logs can be fed into your existing analytics or log processing tools so you can perform more in-depth analysis or take action in response to the log data.
  • Amazon API Gateway Customize Integration Timeouts – You can now set a custom timeout for your API calls as low as 50ms and as high as 29 seconds (the default is 30 seconds).
  • Amazon API Gateway Supports Generating SDK in Ruby – This is in addition to support for SDKs in Java, JavaScript, Android and iOS (Swift and Objective-C). The SDKs that Amazon API Gateway generates save you development time and come with a number of prebuilt capabilities, such as working with API keys, exponential back, and exception handling.

AWS Serverless Application Repository

Serverless Application Repository is a new service (currently in preview) that aids in the publication, discovery, and deployment of serverless applications. With it you’ll be able to find shared serverless applications that you can launch in your account, while also sharing ones that you’ve created for others to do the same.

AWS [email protected]

[email protected] now supports content-based dynamic origin selection, network calls from viewer events, and advanced response generation. This combination of capabilities greatly increases the use cases for [email protected], such as allowing you to send requests to different origins based on request information, showing selective content based on authentication, and dynamically watermarking images for each viewer.


Twitch Launchpad live announcements

Other service announcements

Here are some of the other highlights that you might have missed. We think these could help you make great applications:

AWS re:Invent 2017 sessions

Coming up with the right mix of talks for an event like this can be quite a challenge. The Product, Marketing, and Developer Advocacy teams for Serverless at AWS spent weeks reading through dozens of talk ideas to boil it down to the final list.

From feedback at other AWS events and webinars, we knew that customers were looking for talks that focused on concrete examples of solving problems with serverless, how to perform common tasks such as deployment, CI/CD, monitoring, and troubleshooting, and to see customer and partner examples solving real world problems. To that extent we tried to settle on a good mix based on attendee experience and provide a track full of rich content.

Below are the recordings and slides of breakout sessions from re:Invent 2017. We’ve organized them for those getting started, those who are already beginning to build serverless applications, and the experts out there already running them at scale. Some of the videos and slides haven’t been posted yet, and so we will update this list as they become available.

Find the entire Serverless Track playlist on YouTube.

Talks for people new to Serverless

Advanced topics

Expert mode

Talks for specific use cases

Talks from AWS customers & partners

Looking to get hands-on with Serverless?

At re:Invent, we delivered instructor-led skills sessions to help attendees new to serverless applications get started quickly. The content from these sessions is already online and you can do the hands-on labs yourself!
Build a Serverless web application

Still looking for more?

We also recently completely overhauled the main Serverless landing page for AWS. This includes a new Resources page containing case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. Check it out!

HiveMQ 3.3.2 released

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/hivemq-3-3-2-released/

The HiveMQ team is pleased to announce the availability of HiveMQ 3.3.2. This is a maintenance release for the 3.3 series and brings the following improvements:

  • Improved unsubscribe performance
  • Webinterface now shows a warning if different HiveMQ versions are in a cluster
  • At Startup HiveMQ shows the enabled cipher suites and protocols for TLS listeners in the log
  • The Web UI Dashboard now shows MQTT Publishes instead of all MQTT messages in the graphs
  • Updated integrated native SSL/TLS library to latest version
  • Improved message ordering while the cluster topology changes
  • Fixed a cosmetic NullPointerException with background cleanup jobs
  • Fixed an issue where Web UI Popups could not be closed on IE/Edge and Safari
  • Fixed an issue which could lead to an IllegalArgumentException with a QoS 0 message in a rare edge-case
  • Improved persistence migrations for updating single HiveMQ deployments
  • Fixed a reference counting issue
  • Fixed an issue with rolling upgrades if the AsyncMetricService is used while the update is in progress

You can download the new HiveMQ version here.

We recommend to upgrade if you are an HiveMQ 3.3.x user.

Have a great day,
The HiveMQ Team

MQTT 5: Introduction to MQTT 5

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/mqtt-5-introduction-to-mqtt-5/

MQTT 5 Introduction

Introduction to MQTT 5

Welcome to our brand new blog post series MQTT 5 – Features and Hidden Gems. Without doubt, the MQTT protocol is the most popular and best received Internet of Things protocol as of today (see the Google Trends Chart below), supporting large scale use cases ranging from Connected Cars, Manufacturing Systems, Logistics, Military Use Cases to Enterprise Chat Applications, Mobile Apps and connecting constrained IoT devices. Of course, with huge amounts of production deployments, the wish list for future versions of the MQTT protocol grew bigger and bigger.

MQTT 5 is by far the most extensive and most feature-rich update to the MQTT protocol specification ever. We are going to explore all hidden gems and protocol features with use case discussion and useful background information – one blog post at a time.

Be sure to read the MQTT Essentials Blog Post series first before diving into our new MQTT 5 series. To get the most out of the new blog posts, it’s important to have a basic understanding of the MQTT 3.1.1 protocol as we are going to highlight key changes as well as all improvements.

Running Windows Containers on Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/running-windows-containers-on-amazon-ecs/

This post was developed and written by Jeremy Cowan, Thomas Fuller, Samuel Karp, and Akram Chetibi.

Containers have revolutionized the way that developers build, package, deploy, and run applications. Initially, containers only supported code and tooling for Linux applications. With the release of Docker Engine for Windows Server 2016, Windows developers have started to realize the gains that their Linux counterparts have experienced for the last several years.

This week, we’re adding support for running production workloads in Windows containers using Amazon Elastic Container Service (Amazon ECS). Now, Amazon ECS provides an ECS-Optimized Windows Server Amazon Machine Image (AMI). This AMI is based on the EC2 Windows Server 2016 AMI, and includes Docker 17.06 Enterprise Edition and the ECS Agent 1.16. This AMI provides improved instance and container launch time performance. It’s based on Windows Server 2016 Datacenter and includes Docker 17.06.2-ee-5, along with a new version of the ECS agent that now runs as a native Windows service.

In this post, I discuss the benefits of this new support, and walk you through getting started running Windows containers with Amazon ECS.

When AWS released the Windows Server 2016 Base with Containers AMI, the ECS agent ran as a process that made it difficult to monitor and manage. As a service, the agent can be health-checked, managed, and restarted no differently than other Windows services. The AMI also includes pre-cached images for Windows Server Core 2016 and Windows Server Nano Server 2016. By caching the images in the AMI, launching new Windows containers is significantly faster. When Docker images include a layer that’s already cached on the instance, Docker re-uses that layer instead of pulling it from the Docker registry.

The ECS agent and an accompanying ECS PowerShell module used to install, configure, and run the agent come pre-installed on the AMI. This guarantees there is a specific platform version available on the container instance at launch. Because the software is included, you don’t have to download it from the internet. This saves startup time.

The Windows-compatible ECS-optimized AMI also reports CPU and memory utilization and reservation metrics to Amazon CloudWatch. Using the CloudWatch integration with ECS, you can create alarms that trigger dynamic scaling events to automatically add or remove capacity to your EC2 instances and ECS tasks.

Getting started

To help you get started running Windows containers on ECS, I’ve forked the ECS reference architecture, to build an ECS cluster comprised of Windows instances instead of Linux instances. You can pull the latest version of the reference architecture for Windows.

The reference architecture is a layered CloudFormation stack, in that it calls other stacks to create the environment. Within the stack, the ecs-windows-cluster.yaml file contains the instructions for bootstrapping the Windows instances and configuring the ECS cluster. To configure the instances outside of AWS CloudFormation (for example, through the CLI or the console), you can add the following commands to your instance’s user data:

Import-Module ECSTools


Import-Module ECSTools
Initialize-ECSAgent –Cluster MyCluster -EnableIAMTaskRole

If you don’t specify a cluster name when you initialize the agent, the instance is joined to the default cluster.

Adding -EnableIAMTaskRole when initializing the agent adds support for IAM roles for tasks. Previously, enabling this setting meant running a complex script and setting an environment variable before you could assign roles to your ECS tasks.

When you enable IAM roles for tasks on Windows, it consumes port 80 on the host. If you have tasks that listen on port 80 on the host, I recommend configuring a service for them that uses load balancing. You can use port 80 on the load balancer, and the traffic can be routed to another host port on your container instances. For more information, see Service Load Balancing.

Create a cluster

To create a new ECS cluster, choose Launch stack, or pull the GitHub project to your local machine and run the following command:

aws cloudformation create-stack –template-body file://<path to master-windows.yaml> --stack-name <name>

Upload your container image

Now that you have a cluster running, step through how to build and push an image into a container repository. You use a repository hosted in Amazon Elastic Container Registry (Amazon ECR) for this, but you could also use Docker Hub. To build and push an image to a repository, install Docker on your Windows* workstation. You also create a repository and assign the necessary permissions to the account that pushes your image to Amazon ECR. For detailed instructions, see Pushing an Image.

* If you are building an image that is based on Windows layers, then you must use a Windows environment to build and push your image to the registry.

Write your task definition

Now that your image is built and ready, the next step is to run your Windows containers using a task.

Start by creating a new task definition based on the windows-simple-iis image from Docker Hub.

  1. Open the ECS console.
  2. Choose Task Definitions, Create new task definition.
  3. Scroll to the bottom of the page and choose Configure via JSON.
  4. Copy and paste the following JSON into that field.
  5. Choose Save, Create.
   "family": "windows-simple-iis",
   "containerDefinitions": [
     "name": "windows_sample_app",
     "image": "microsoft/iis",
     "cpu": 100,
     "entryPoint":["powershell", "-Command"],
     "command":["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file -Value '<html><head><title>Amazon ECS Sample App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-align:center><h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon ECS.</p></body></html>'; C:\\ServiceMonitor.exe w3svc"],
     "portMappings": [
       "protocol": "tcp",
       "containerPort": 80,
       "hostPort": 8080
     "memory": 500,
     "essential": true

You can now go back into the Task Definition page and see windows-simple-iis as an available task definition.

There are a few important aspects of the task definition file to note when working with Windows containers. First, the hostPort is configured as 8080, which is necessary because the ECS agent currently uses port 80 to enable IAM roles for tasks required for least-privilege security configurations.

There are also some fairly standard task parameters that are intentionally not included. For example, network mode is not available with Windows at the time of this release, so keep that setting blank to allow Docker to configure WinNAT, the only option available today.

Also, some parameters work differently with Windows than they do with Linux. The CPU limits that you define in the task definition are absolute, whereas on Linux they are weights. For information about other task parameters that are supported or possibly different with Windows, see the documentation.

Run your containers

At this point, you are ready to run containers. There are two options to run containers with ECS:

  1. Task
  2. Service

A task is typically a short-lived process that ECS creates. It can’t be configured to actively monitor or scale. A service is meant for longer-running containers and can be configured to use a load balancer, minimum/maximum capacity settings, and a number of other knobs and switches to help ensure that your code keeps running. In both cases, you are able to pick a placement strategy and a specific IAM role for your container.

  1. Select the task definition that you created above and choose Action, Run Task.
  2. Leave the settings on the next page to the default values.
  3. Select the ECS cluster created when you ran the CloudFormation template.
  4. Choose Run Task to start the process of scheduling a Docker container on your ECS cluster.

You can now go to the cluster and watch the status of your task. It may take 5–10 minutes for the task to go from PENDING to RUNNING, mostly because it takes time to download all of the layers necessary to run the microsoft/iis image. After the status is RUNNING, you should see the following results:

You may have noticed that the example task definition is named windows-simple-iis:2. This is because I created a second version of the task definition, which is one of the powerful capabilities of using ECS. You can make the task definitions part of your source code and then version them. You can also roll out new versions and practice blue/green deployment, switching to reduce downtime and improve the velocity of your deployments!

After the task has moved to RUNNING, you can see your website hosted in ECS. Find the public IP or DNS for your ECS host. Remember that you are hosting on port 8080. Make sure that the security group allows ingress from your client IP address to that port and that your VPC has an internet gateway associated with it. You should see a page that looks like the following:

This is a nice start to deploying a simple single instance task, but what if you had a Web API to be scaled out and in based on usage? This is where you could look at defining a service and collecting CloudWatch data to add and remove both instances of the task. You could also use CloudWatch alarms to add more ECS container instances and keep up with the demand. The former is built into the configuration of your service.

  1. Select the task definition and choose Create Service.
  2. Associate a load balancer.
  3. Set up Auto Scaling.

The following screenshot shows an example where you would add an additional task instance when the CPU Utilization CloudWatch metric is over 60% on average over three consecutive measurements. This may not be aggressive enough for your requirements; it’s meant to show you the option to scale tasks the same way you scale ECS instances with an Auto Scaling group. The difference is that these tasks start much faster because all of the base layers are already on the ECS host.

Do not confuse task dynamic scaling with ECS instance dynamic scaling. To add additional hosts, see Tutorial: Scaling Container Instances with CloudWatch Alarms.


This is just scratching the surface of the flexibility that you get from using containers and Amazon ECS. For more information, see the Amazon ECS Developer Guide and ECS Resources.

– Jeremy, Thomas, Samuel, Akram

Glenn’s Take on re:Invent Part 2

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-part-2/

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We’ve got a lot of exciting announcements this week. I’m going to check in to the Architecture blog with my take on what’s interesting about some of the announcements from an cloud architectural perspective. My first post can be found here.

The Media and Entertainment industry has been a rapid adopter of AWS due to the scale, reliability, and low costs of our services. This has enabled customers to create new, online, digital experiences for their viewers ranging from broadcast to streaming to Over-the-Top (OTT) services that can be a combination of live, scheduled, or ad-hoc viewing, while supporting devices ranging from high-def TVs to mobile devices. Creating an end-to-end video service requires many different components often sourced from different vendors with different licensing models, which creates a complex architecture and a complex environment to support operationally.

AWS Media Services
Based on customer feedback, we have developed AWS Media Services to help simplify distribution of video content. AWS Media Services is comprised of five individual services that can either be used together to provide an end-to-end service or individually to work within existing deployments: AWS Elemental MediaConvert, AWS Elemental MediaLive, AWS Elemental MediaPackage, AWS Elemental MediaStore and AWS Elemental MediaTailor. These services can help you with everything from storing content safely and durably to setting up a live-streaming event in minutes without having to be concerned about the underlying infrastructure and scalability of the stream itself.

In my role, I participate in many AWS and industry events and often work with the production and event teams that put these shows together. With all the logistical tasks they have to deal with, the biggest question is often: “Will the live stream work?” Compounding this fear is the reality that, as users, we are also quick to jump on social media and make noise when a live stream drops while we are following along remotely. Worse is when I see event organizers actively selecting not to live stream content because of the risk of failure and and exposure — leading them to decide to take the safe option and not stream at all.

With AWS Media Services addressing many of the issues around putting together a high-quality media service, live streaming, and providing access to a library of content through a variety of mechanisms, I can’t wait to see more event teams use live streaming without the concern and worry I’ve seen in the past. I am excited for what this also means for non-media companies, as video becomes an increasingly common way of sharing information and adding a more personalized touch to internally- and externally-facing content.

AWS Media Services will allow you to focus more on the content and not worry about the platform. Awesome!

Amazon Neptune
As a civilization, we have been developing new ways to record and store information and model the relationships between sets of information for more than a thousand years. Government census data, tax records, births, deaths, and marriages were all recorded on medium ranging from knotted cords in the Inca civilization, clay tablets in ancient Babylon, to written texts in Western Europe during the late Middle Ages.

One of the first challenges of computing was figuring out how to store and work with vast amounts of information in a programmatic way, especially as the volume of information was increasing at a faster rate than ever before. We have seen different generations of how to organize this information in some form of database, ranging from flat files to the Information Management System (IMS) used in the 1960s for the Apollo space program, to the rise of the relational database management system (RDBMS) in the 1970s. These innovations drove a lot of subsequent innovations in information management and application development as we were able to move from thousands of records to millions and billions.

Today, as architects and developers, we have a vast variety of database technologies to select from, which have different characteristics that are optimized for different use cases:

  • Relational databases are well understood after decades of use in the majority of companies who required a database to store information. Amazon Relational Database (Amazon RDS) supports many popular relational database engines such as MySQL, Microsoft SQL Server, PostgreSQL, MariaDB, and Oracle. We have even brought the traditional RDBMS into the cloud world through Amazon Aurora, which provides MySQL and PostgreSQL support with the performance and reliability of commercial-grade databases at 1/10th the cost.
  • Non-relational databases (NoSQL) provided a simpler method of storing and retrieving information that was often faster and more scalable than traditional RDBMS technology. The concept of non-relational databases has existed since the 1960s but really took off in the early 2000s with the rise of web-based applications that required performance and scalability that relational databases struggled with at the time. AWS published this Dynamo whitepaper in 2007, with DynamoDB launching as a service in 2012. DynamoDB has quickly become one of the critical design elements for many of our customers who are building highly-scalable applications on AWS. We continue to innovate with DynamoDB, and this week launched global tables and on-demand backup at re:Invent 2017. DynamoDB excels in a variety of use cases, such as tracking of session information for popular websites, shopping cart information on e-commerce sites, and keeping track of gamers’ high scores in mobile gaming applications, for example.
  • Graph databases focus on the relationship between data items in the store. With a graph database, we work with nodes, edges, and properties to represent data, relationships, and information. Graph databases are designed to make it easy and fast to traverse and retrieve complex hierarchical data models. Graph databases share some concepts from the NoSQL family of databases such as key-value pairs (properties) and the use of a non-SQL query language such as Gremlin. Graph databases are commonly used for social networking, recommendation engines, fraud detection, and knowledge graphs. We released Amazon Neptune to help simplify the provisioning and management of graph databases as we believe that graph databases are going to enable the next generation of smart applications.

A common use case I am hearing every week as I talk to customers is how to incorporate chatbots within their organizations. Amazon Lex and Amazon Polly have made it easy for customers to experiment and build chatbots for a wide range of scenarios, but one of the missing pieces of the puzzle was how to model decision trees and and knowledge graphs so the chatbot could guide the conversation in an intelligent manner.

Graph databases are ideal for this particular use case, and having Amazon Neptune simplifies the deployment of a graph database while providing high performance, scalability, availability, and durability as a managed service. Security of your graph database is critical. To help ensure this, you can store your encrypted data by running AWS in Amazon Neptune within your Amazon Virtual Private Cloud (Amazon VPC) and using encryption at rest integrated with AWS Key Management Service (AWS KMS). Neptune also supports Amazon VPC and AWS Identity and Access Management (AWS IAM) to help further protect and restrict access.

Our customers now have the choice of many different database technologies to ensure that they can optimize each application and service for their specific needs. Just as DynamoDB has unlocked and enabled many new workloads that weren’t possible in relational databases, I can’t wait to see what new innovations and capabilities are enabled from graph databases as they become easier to use through Amazon Neptune.

Look for more on DynamoDB and Amazon S3 from me on Monday.


Glenn at Tour de Mont Blanc



Implementing Canary Deployments of AWS Lambda Functions with Alias Traffic Shifting

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-canary-deployments-of-aws-lambda-functions-with-alias-traffic-shifting/

This post courtesy of Ryan Green, Software Development Engineer, AWS Serverless

The concepts of blue/green and canary deployments have been around for a while now and have been well-established as best-practices for reducing the risk of software deployments.

In a traditional, horizontally scaled application, copies of the application code are deployed to multiple nodes (instances, containers, on-premises servers, etc.), typically behind a load balancer. In these applications, deploying new versions of software to too many nodes at the same time can impact application availability as there may not be enough healthy nodes to service requests during the deployment. This aggressive approach to deployments also drastically increases the blast radius of software bugs introduced in the new version and does not typically give adequate time to safely assess the quality of the new version against production traffic.

In such applications, one commonly accepted solution to these problems is to slowly and incrementally roll out application software across the nodes in the fleet while simultaneously verifying application health (canary deployments). Another solution is to stand up an entirely different fleet and weight (or flip) traffic over to the new fleet after verification, ideally with some production traffic (blue/green). Some teams deploy to a single host (“one box environment”), where the new release can bake for some time before promotion to the rest of the fleet. Techniques like this enable the maintainers of complex systems to safely test in production while minimizing customer impact.

Enter Serverless

There is somewhat of an impedance mismatch when mapping these concepts to a serverless world. You can’t incrementally deploy your software across a fleet of servers when there are no servers!* In fact, even the term “deployment” takes on a different meaning with functions as a service (FaaS). In AWS Lambda, a “deployment” can be roughly modeled as a call to CreateFunction, UpdateFunctionCode, or UpdateAlias (I won’t get into the semantics of whether updating configuration counts as a deployment), all of which may affect the version of code that is invoked by clients.

The abstractions provided by Lambda remove the need for developers to be concerned about servers and Availability Zones, and this provides a powerful opportunity to greatly simplify the process of deploying software.
*Of course there are servers, but they are abstracted away from the developer.

Traffic shifting with Lambda aliases

Before the release of traffic shifting for Lambda aliases, deployments of a Lambda function could only be performed in a single “flip” by updating function code for version $LATEST, or by updating an alias to target a different function version. After the update propagates, typically within a few seconds, 100% of function invocations execute the new version. Implementing canary deployments with this model required the development of an additional routing layer, further adding development time, complexity, and invocation latency.
While rolling back a bad deployment of a Lambda function is a trivial operation and takes effect near instantaneously, deployments of new versions for critical functions can still be a potentially nerve-racking experience.

With the introduction of alias traffic shifting, it is now possible to trivially implement canary deployments of Lambda functions. By updating additional version weights on an alias, invocation traffic is routed to the new function versions based on the weight specified. Detailed CloudWatch metrics for the alias and version can be analyzed during the deployment, or other health checks performed, to ensure that the new version is healthy before proceeding.

Note: Sometimes the term “canary deployments” refers to the release of software to a subset of users. In the case of alias traffic shifting, the new version is released to some percentage of all users. It’s not possible to shard based on identity without adding an additional routing layer.


The simplest possible use of a canary deployment looks like the following:

# Update $LATEST version of function
aws lambda update-function-code --function-name myfunction ….

# Publish new version of function
aws lambda publish-version --function-name myfunction

# Point alias to new version, weighted at 5% (original version at 95% of traffic)
aws lambda update-alias --function-name myfunction --name myalias --routing-config '{"AdditionalVersionWeights" : {"2" : 0.05} }'

# Verify that the new version is healthy
# Set the primary version on the alias to the new version and reset the additional versions (100% weighted)
aws lambda update-alias --function-name myfunction --name myalias --function-version 2 --routing-config '{}'

This is begging to be automated! Here are a few options.

Simple deployment automation

This simple Python script runs as a Lambda function and deploys another function (how meta!) by incrementally increasing the weight of the new function version over a prescribed number of steps, while checking the health of the new version. If the health check fails, the alias is rolled back to its initial version. The health check is implemented as a simple check against the existence of Errors metrics in CloudWatch for the alias and new version.

GitHub aws-lambda-deploy repo


git clone https://github.com/awslabs/aws-lambda-deploy
cd aws-lambda-deploy


# Rollout version 2 incrementally over 10 steps, with 120s between each step
aws lambda invoke --function-name SimpleDeployFunction --log-type Tail --payload \
  '{"function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval" : 120,
  "type": "linear"
  }' output

Description of input parameters

  • function-name: The name of the Lambda function to deploy
  • alias-name: The name of the alias used to invoke the Lambda function
  • new-version: The version identifier for the new version to deploy
  • steps: The number of times the new version weight is increased
  • interval: The amount of time (in seconds) to wait between weight updates
  • type: The function to use to generate the weights. Supported values: “linear”

Because this runs as a Lambda function, it is subject to the maximum timeout of 5 minutes. This may be acceptable for many use cases, but to achieve a slower rollout of the new version, a different solution is required.

Step Functions workflow

This state machine performs essentially the same task as the simple deployment function, but it runs as an asynchronous workflow in AWS Step Functions. A nice property of Step Functions is that the maximum deployment timeout has now increased from 5 minutes to 1 year!

The step function incrementally updates the new version weight based on the steps parameter, waiting for some time based on the interval parameter, and performing health checks between updates. If the health check fails, the alias is rolled back to the original version and the workflow fails.

For example, to execute the workflow:

export STATE_MACHINE_ARN=`aws cloudformation describe-stack-resources --stack-name aws-lambda-deploy-stack --logical-resource-id DeployStateMachine --output text | cut  -d$'\t' -f3`

aws stepfunctions start-execution --state-machine-arn $STATE_MACHINE_ARN --input '{
  "function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval": 120,
  "type": "linear"}'

Getting feedback on the deployment

Because the state machine runs asynchronously, retrieving feedback on the deployment requires polling for the execution status using DescribeExecution or implementing an asynchronous notification (using SNS or email, for example) from the Rollback or Finalize functions. A CloudWatch alarm could also be created to alarm based on the “ExecutionsFailed” metric for the state machine.

A note on health checks and observability

Weighted rollouts like this are considerably more successful if the code is being exercised and monitored continuously. In this example, it would help to have some automation continuously invoking the alias and reporting metrics on these invocations, such as client-side success rates and latencies.

The absence of Lambda Errors metrics used in these examples can be misleading if the function is not getting invoked. It’s also recommended to instrument your Lambda functions with custom metrics, in addition to Lambda’s built-in metrics, that can be used to monitor health during deployments.


These examples could be easily extended in various ways to support different use cases. For example:

  • Health check implementations: CloudWatch alarms, automatic invocations with payload assertions, querying external systems, etc.
  • Weight increase functions: Exponential, geometric progression, single canary step, etc.
  • Custom success/failure notifications: SNS, email, CI/CD systems, service discovery systems, etc.

Traffic shifting with SAM and CodeDeploy

Using the Lambda UpdateAlias operation with additional version weights provides a powerful primitive for you to implement custom traffic shifting solutions for Lambda functions.

For those not interested in building custom deployment solutions, AWS CodeDeploy provides an intuitive turn-key implementation of this functionality integrated directly into the Serverless Application Model. Traffic-shifted deployments can be declared in a SAM template, and CodeDeploy manages the function rollout as part of the CloudFormation stack update. CloudWatch alarms can also be configured to trigger a stack rollback if something goes wrong.


  Type: AWS::Serverless::Function
    FunctionName: MyFunction
    AutoPublishAlias: MyFunctionInvokeAlias
      Type: Linear10PercentEvery1Minute
        Fn::GetAtt: [ DeploymentRole, Arn ]
       - { Ref: MyFunctionErrorsAlarm }

For more information about using CodeDeploy with SAM, see Automating Updates to Serverless Apps.


It is often the simple features that provide the most value. As I demonstrated in this post, serverless architectures allow the complex deployment orchestration used in traditional applications to be replaced with a simple Lambda function or Step Functions workflow. By allowing invocation traffic to be easily weighted to multiple function versions, Lambda alias traffic shifting provides a simple but powerful feature that I hope empowers you to easily implement safe deployment workflows for your Lambda functions.

Announcing Amazon FreeRTOS – Enabling Billions of Devices to Securely Benefit from the Cloud

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-amazon-freertos/

I was recently reading an article on ReadWrite.com titled “IoT devices go forth and multiply, to increase 200% by 2021“, and while the article noted the benefit for consumers and the industry of this growth, two things in the article stuck with me. The first was the specific statement that read “researchers warned that the proliferation of IoT technology will create a new bevvy of challenges. Particularly troublesome will be IoT deployments at scale for both end-users and providers.” Not only was that sentence a mouthful, but it really addressed some of the challenges that can come building solutions and deployment of this exciting new technology area. The second sentiment in the article that stayed with me was that Security issues could grow.

So the article got me thinking, how can we create these cool IoT solutions using low-cost efficient microcontrollers with a secure operating system that can easily connect to the cloud. Luckily the answer came to me by way of an exciting new open-source based offering coming from AWS that I am happy to announce to you all today. Let’s all welcome, Amazon FreeRTOS to the technology stage.

Amazon FreeRTOS is an IoT microcontroller operating system that simplifies development, security, deployment, and maintenance of microcontroller-based edge devices. Amazon FreeRTOS extends the FreeRTOS kernel, a popular real-time operating system, with libraries that enable local and cloud connectivity, security, and (coming soon) over-the-air updates.

So what are some of the great benefits of this new exciting offering, you ask. They are as follows:

  • Easily to create solutions for Low Power Connected Devices: provides a common operating system (OS) and libraries that make the development of common IoT capabilities easy for devices. For example; over-the-air (OTA) updates (coming soon) and device configuration.
  • Secure Data and Device Connections: devices only run trusted software using the Code Signing service, Amazon FreeRTOS provides a secure connection to the AWS using TLS, as well as, the ability to securely store keys and sensitive data on the device.
  • Extensive Ecosystem: contains an extensive hardware and technology ecosystem that allows you to choose a variety of qualified chipsets, including Texas Instruments, Microchip, NXP Semiconductors, and STMicroelectronics.
  • Cloud or Local Connections:  Devices can connect directly to the AWS Cloud or via AWS Greengrass.


What’s cool is that it is easy to get started. 

The Amazon FreeRTOS console allows you to select and download the software that you need for your solution.

There is a Qualification Program that helps to assure you that the microcontroller you choose will run consistently across several hardware options.

Finally, Amazon FreeRTOS kernel is an open-source FreeRTOS operating system that is freely available on GitHub for download.

But I couldn’t leave you without at least showing you a few snapshots of the Amazon FreeRTOS Console.

Within the Amazon FreeRTOS Console, I can select a predefined software configuration that I would like to use.

If I want to have a more customized software configuration, Amazon FreeRTOS allows you to customize a solution that is targeted for your use by adding or removing libraries.


Thanks for checking out the new Amazon FreeRTOS offering. To learn more go to the Amazon FreeRTOS product page or review the information provided about this exciting IoT device targeted operating system in the AWS documentation.

Can’t wait to see what great new IoT systems are will be enabled and created with it! Happy Coding.



AWS Fargate: A Product Overview

Post Syndicated from Deepak Dayama original https://aws.amazon.com/blogs/compute/aws-fargate-a-product-overview/

It was just about three years ago that AWS announced Amazon Elastic Container Service (Amazon ECS), to run and manage containers at scale on AWS. With Amazon ECS, you’ve been able to run your workloads at high scale and availability without having to worry about running your own cluster management and container orchestration software.

Today, AWS announced the availability of AWS Fargate – a technology that enables you to use containers as a fundamental compute primitive without having to manage the underlying instances. With Fargate, you don’t need to provision, configure, or scale virtual machines in your clusters to run containers. Fargate can be used with Amazon ECS today, with plans to support Amazon Elastic Container Service for Kubernetes (Amazon EKS) in the future.

Fargate has flexible configuration options so you can closely match your application needs and granular, per-second billing.

Amazon ECS with Fargate

Amazon ECS enables you to run containers at scale. This service also provides native integration into the AWS platform with VPC networking, load balancing, IAM, Amazon CloudWatch Logs, and CloudWatch metrics. These deep integrations make the Amazon ECS task a first-class object within the AWS platform.

To run tasks, you first need to stand up a cluster of instances, which involves picking the right types of instances and sizes, setting up Auto Scaling, and right-sizing the cluster for performance. With Fargate, you can leave all that behind and focus on defining your application and policies around permissions and scaling.

The same container management capabilities remain available so you can continue to scale your container deployments. With Fargate, the only entity to manage is the task. You don’t need to manage the instances or supporting software like Docker daemon or the Amazon ECS agent.

Fargate capabilities are available natively within Amazon ECS. This means that you don’t need to learn new API actions or primitives to run containers on Fargate.

Using Amazon ECS, Fargate is a launch type option. You continue to define the applications the same way by using task definitions. In contrast, the EC2 launch type gives you more control of your server clusters and provides a broader range of customization options.

For example, a RunTask command example is pasted below with the Fargate launch type:

ecs run-task --launch-type FARGATE --cluster fargate-test --task-definition nginx --network-configuration

Key features of Fargate

Resource-based pricing and per second billing
You pay by the task size and only for the time for which resources are consumed by the task. The price for CPU and memory is charged on a per-second basis. There is a one-minute minimum charge.

Flexible configurations options
Fargate is available with 50 different combinations of CPU and memory to closely match your application needs. You can use 2 GB per vCPU anywhere up to 8 GB per vCPU for various configurations. Match your workload requirements closely, whether they are general purpose, compute, or memory optimized.

All Fargate tasks run within your own VPC. Fargate supports the recently launched awsvpc networking mode and the elastic network interface for a task is visible in the subnet where the task is running. This provides the separation of responsibility so you retain full control of networking policies for your applications via VPC features like security groups, routing rules, and NACLs. Fargate also supports public IP addresses.

Load Balancing
ECS Service Load Balancing  for the Application Load Balancer and Network Load Balancer is supported. For the Fargate launch type, you specify the IP addresses of the Fargate tasks to register with the load balancers.

Permission tiers
Even though there are no instances to manage with Fargate, you continue to group tasks into logical clusters. This allows you to manage who can run or view services within the cluster. The task IAM role is still applicable. Additionally, there is a new Task Execution Role that grants Amazon ECS permissions to perform operations such as pushing logs to CloudWatch Logs or pulling image from Amazon Elastic Container Registry (Amazon ECR).

Container Registry Support
Fargate provides seamless authentication to help pull images from Amazon ECR via the Task Execution Role. Similarly, if you are using a public repository like DockerHub, you can continue to do so.

Amazon ECS CLI
The Amazon ECS CLI provides high-level commands to help simplify to create and run Amazon ECS clusters, tasks, and services. The latest version of the CLI now supports running tasks and services with Fargate.

EC2 and Fargate Launch Type Compatibility
All Amazon ECS clusters are heterogeneous – you can run both Fargate and Amazon ECS tasks in the same cluster. This enables teams working on different applications to choose their own cadence of moving to Fargate, or to select a launch type that meets their requirements without breaking the existing model. You can make an existing ECS task definition compatible with the Fargate launch type and run it as a Fargate service, and vice versa. Choosing a launch type is not a one-way door!

Logging and Visibility
With Fargate, you can send the application logs to CloudWatch logs. Service metrics (CPU and Memory utilization) are available as part of CloudWatch metrics. AWS partners for visibility, monitoring and application performance management including Datadog, Aquasec, Splunk, Twistlock, and New Relic also support Fargate tasks.


Fargate enables you to run containers without having to manage the underlying infrastructure. Today, Fargate is availabe for Amazon ECS, and in 2018, Amazon EKS. Visit the Fargate product page to learn more, or get started in the AWS Console.

–Deepak Dayama

Amazon GuardDuty – Continuous Security Monitoring & Threat Detection

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-guardduty-continuous-security-monitoring-threat-detection/

Threats to your IT infrastructure (AWS accounts & credentials, AWS resources, guest operating systems, and applications) come in all shapes and sizes! The online world can be a treacherous place and we want to make sure that you have the tools, knowledge, and perspective to keep your IT infrastructure safe & sound.

Amazon GuardDuty is designed to give you just that. Informed by a multitude of public and AWS-generated data feeds and powered by machine learning, GuardDuty analyzes billions of events in pursuit of trends, patterns, and anomalies that are recognizable signs that something is amiss. You can enable it with a click and see the first findings within minutes.

How it Works
GuardDuty voraciously consumes multiple data streams, including several threat intelligence feeds, staying aware of malicious IP addresses, devious domains, and more importantly, learning to accurately identify malicious or unauthorized behavior in your AWS accounts. In combination with information gleaned from your VPC Flow Logs, AWS CloudTrail Event Logs, and DNS logs, this allows GuardDuty to detect many different types of dangerous and mischievous behavior including probes for known vulnerabilities, port scans and probes, and access from unusual locations. On the AWS side, it looks for suspicious AWS account activity such as unauthorized deployments, unusual CloudTrail activity, patterns of access to AWS API functions, and attempts to exceed multiple service limits. GuardDuty will also look for compromised EC2 instances talking to malicious entities or services, data exfiltration attempts, and instances that are mining cryptocurrency.

GuardDuty operates completely on AWS infrastructure and does not affect the performance or reliability of your workloads. You do not need to install or manage any agents, sensors, or network appliances. This clean, zero-footprint model should appeal to your security team and allow them to green-light the use of GuardDuty across all of your AWS accounts.

Findings are presented to you at one of three levels (low, medium, or high), accompanied by detailed evidence and recommendations for remediation. The findings are also available as Amazon CloudWatch Events; this allows you to use your own AWS Lambda functions to automatically remediate specific types of issues. This mechanism also allows you to easily push GuardDuty findings into event management systems such as Splunk, Sumo Logic, and PagerDuty and to workflow systems like JIRA, ServiceNow, and Slack.

A Quick Tour
Let’s take a quick tour. I open up the GuardDuty Console and click on Get started:

Then I confirm that I want to enable GuardDuty. This gives it permission to set up the appropriate service-linked roles and to analyze my logs by clicking on Enable GuardDuty:

My own AWS environment isn’t all that exciting, so I visit the General Settings and click on Generate sample findings to move ahead. Now I’ve got some intriguing findings:

I can click on a finding to learn more:

The magnifying glass icons allow me to create inclusion or exclusion filters for the associated resource, action, or other value. I can filter for all of the findings related to this instance:

I can customize GuardDuty by adding lists of trusted IP addresses and lists of malicious IP addresses that are peculiar to my environment:

After I enable GuardDuty in my administrator account, I can invite my other accounts to participate:

Once the accounts decide to participate, GuardDuty will arrange for their findings to be shared with the administrator account.

I’ve barely scratched the surface of GuardDuty in the limited space and time that I have. You can try it out at no charge for 30 days; after that you pay based on the number of entries it processes from your VPC Flow, CloudTrail, and DNS logs.

Available Now
Amazon GuardDuty is available in production form in the US East (Northern Virginia), US East (Ohio), US West (Oregon), US West (Northern California), EU (Ireland), EU (Frankfurt), EU (London), South America (São Paulo), Canada (Central), Asia Pacific (Tokyo), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), and Asia Pacific (Mumbai) Regions and you can start using it today!