This post is courtesy of Alan Protasio, Software Development Engineer, Amazon Web Services
Just like compute and storage, messaging is a fundamental building block of enterprise applications. Message brokers (aka “message-oriented middleware”) enable different software systems, often written in different languages, on different platforms, running in different locations, to communicate and exchange information. Mission-critical applications, such as CRM and ERP, rely on message brokers to work.
A common performance consideration for customers deploying a message broker in a production environment is the throughput of the system, measured as messages per second. This is important to know so that application environments (hosts, threads, memory, etc.) can be configured correctly.
In this post, we demonstrate how to measure the throughput for Amazon MQ, a new managed message broker service for ActiveMQ, using JMS Benchmark. It should take between 15–20 minutes to set up the environment and an hour to run the benchmark. We also provide some tips on how to configure Amazon MQ for optimal throughput.
Benchmarking throughput for Amazon MQ
ActiveMQ can be used for a number of use cases. These use cases can range from simple fire and forget tasks (that is, asynchronous processing), low-latency request-reply patterns, to buffering requests before they are persisted to a database.
The throughput of Amazon MQ is largely dependent on the use case. For example, if you have non-critical workloads such as gathering click events for a non-business-critical portal, you can use ActiveMQ in a non-persistent mode and get extremely high throughput with Amazon MQ.
On the flip side, if you have a critical workload where durability is extremely important (meaning that you can’t lose a message), then you are bound by the I/O capacity of your underlying persistence store. We recommend using mq.m4.large for the best results. The mq.t2.micro instance type is intended for product evaluation. Performance is limited, due to the lower memory and burstable CPU performance.
Tip: To improve your throughput with Amazon MQ, make sure that you have consumers processing messaging as fast as (or faster than) your producers are pushing messages.
Because it’s impossible to talk about how the broker (ActiveMQ) behaves for each and every use case, we walk through how to set up your own benchmark for Amazon MQ using our favorite open-source benchmarking tool: JMS Benchmark. We are fans of the JMS Benchmark suite because it’s easy to set up and deploy, and comes with a built-in visualizer of the results.
Non-Persistent Scenarios – Queue latency as you scale producer throughput
Getting started
At the time of publication, you can create an mq.m4.large single-instance broker for testing for $0.30 per hour (US pricing).
Step 2 – Create an EC2 instance to run your benchmark Launch the EC2 instance using Step 1: Launch an Instance. We recommend choosing the m5.large instance type.
Step 3 – Configure the security groups Make sure that all the security groups are correctly configured to let the traffic flow between the EC2 instance and your broker.
From the broker list, choose the name of your broker (for example, MyBroker)
In the Details section, under Security and network, choose the name of your security group or choose the expand icon ( ).
From the security group list, choose your security group.
At the bottom of the page, choose Inbound, Edit.
In the Edit inbound rules dialog box, add a role to allow traffic between your instance and the broker: • Choose Add Rule. • For Type, choose Custom TCP. • For Port Range, type the ActiveMQ SSL port (61617). • For Source, leave Custom selected and then type the security group of your EC2 instance. • Choose Save.
Your broker can now accept the connection from your EC2 instance.
Step 4 – Run the benchmark Connect to your EC2 instance using SSH and run the following commands:
After the benchmark finishes, you can find the results in the ~/reports directory. As you may notice, the performance of ActiveMQ varies based on the number of consumers, producers, destinations, and message size.
Amazon MQ architecture
The last bit that’s important to know so that you can better understand the results of the benchmark is how Amazon MQ is architected.
Amazon MQ is architected to be highly available (HA) and durable. For HA, we recommend using the multi-AZ option. After a message is sent to Amazon MQ in persistent mode, the message is written to the highly durable message store that replicates the data across multiple nodes in multiple Availability Zones. Because of this replication, for some use cases you may see a reduction in throughput as you migrate to Amazon MQ. Customers have told us they appreciate the benefits of message replication as it helps protect durability even in the face of the loss of an Availability Zone.
Conclusion
We hope this gives you an idea of how Amazon MQ performs. We encourage you to run tests to simulate your own use cases.
To learn more, see the Amazon MQ website. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.
The adoption of Apache Spark has increased significantly over the past few years, and running Spark-based application pipelines is the new normal. Spark jobs that are in an ETL (extract, transform, and load) pipeline have different requirements—you must handle dependencies in the jobs, maintain order during executions, and run multiple jobs in parallel. In most of these cases, you can use workflow scheduler tools like Apache Oozie, Apache Airflow, and even Cron to fulfill these requirements.
Apache Oozie is a widely used workflow scheduler system for Hadoop-based jobs. However, its limited UI capabilities, lack of integration with other services, and heavy XML dependency might not be suitable for some users. On the other hand, Apache Airflow comes with a lot of neat features, along with powerful UI and monitoring capabilities and integration with several AWS and third-party services. However, with Airflow, you do need to provision and manage the Airflow server. The Cron utility is a powerful job scheduler. But it doesn’t give you much visibility into the job details, and creating a workflow using Cron jobs can be challenging.
What if you have a simple use case, in which you want to run a few Spark jobs in a specific order, but you don’t want to spend time orchestrating those jobs or maintaining a separate application? You can do that today in a serverless fashion using AWS Step Functions. You can create the entire workflow in AWS Step Functions and interact with Spark on Amazon EMR through Apache Livy.
In this post, I walk you through a list of steps to orchestrate a serverless Spark-based ETL pipeline using AWS Step Functions and Apache Livy.
Input data
For the source data for this post, I use the New York City Taxi and Limousine Commission (TLC) trip record data. For a description of the data, see this detailed dictionary of the taxi data. In this example, we’ll work mainly with the following three columns for the Spark jobs.
Column name
Column description
RateCodeID
Represents the rate code in effect at the end of the trip (for example, 1 for standard rate, 2 for JFK airport, 3 for Newark airport, and so on).
FareAmount
Represents the time-and-distance fare calculated by the meter.
TripDistance
Represents the elapsed trip distance in miles reported by the taxi meter.
The trip data is in comma-separated values (CSV) format with the first row as a header. To shorten the Spark execution time, I trimmed the large input data to only 20,000 rows. During the deployment phase, the input file tripdata.csv is stored in Amazon S3 in the <<your-bucket>>/emr-step-functions/input/ folder.
The following image shows a sample of the trip data:
Solution overview
The next few sections describe how Spark jobs are created for this solution, how you can interact with Spark using Apache Livy, and how you can use AWS Step Functions to create orchestrations for these Spark applications.
At a high level, the solution includes the following steps:
Trigger the AWS Step Function state machine by passing the input file path.
The first stage in the state machine triggers an AWS Lambda
The Lambda function interacts with Apache Spark running on Amazon EMR using Apache Livy, and submits a Spark job.
The state machine waits a few seconds before checking the Spark job status.
Based on the job status, the state machine moves to the success or failure state.
Subsequent Spark jobs are submitted using the same approach.
The state machine waits a few seconds for the job to finish.
The job finishes, and the state machine updates with its final status.
Let’s take a look at the Spark application that is used for this solution.
Spark jobs
For this example, I built a Spark jar named spark-taxi.jar. It has two different Spark applications:
MilesPerRateCode – The first job that runs on the Amazon EMR cluster. This job reads the trip data from an input source and computes the total trip distance for each rate code. The output of this job consists of two columns and is stored in Apache Parquet format in the output path.
The following are the expected output columns:
rate_code – Represents the rate code for the trip.
total_distance – Represents the total trip distance for that rate code (for example, sum(trip_distance)).
RateCodeStatus – The second job that runs on the EMR cluster, but only if the first job finishes successfully. This job depends on two different input sets:
csv – The same trip data that is used for the first Spark job.
miles-per-rate – The output of the first job.
This job first reads the tripdata.csv file and aggregates the fare_amount by the rate_code. After this point, you have two different datasets, both aggregated by rate_code. Finally, the job uses the rate_code field to join two datasets and output the entire rate code status in a single CSV file.
The output columns are as follows:
rate_code_id – Represents the rate code type.
total_distance – Derived from first Spark job and represents the total trip distance.
total_fare_amount – A new field that is generated during the second Spark application, representing the total fare amount by the rate code type.
Note that in this case, you don’t need to run two different Spark jobs to generate that output. The goal of setting up the jobs in this way is just to create a dependency between the two jobs and use them within AWS Step Functions.
Both Spark applications take one input argument called rootPath. It’s the S3 location where the Spark job is stored along with input and output data. Here is a sample of the final output:
The next section discusses how you can use Apache Livy to interact with Spark applications that are running on Amazon EMR.
Using Apache Livy to interact with Apache Spark
Apache Livy provides a REST interface to interact with Spark running on an EMR cluster. Livy is included in Amazon EMR release version 5.9.0 and later. In this post, I use Livy to submit Spark jobs and retrieve job status. When Amazon EMR is launched with Livy installed, the EMR master node becomes the endpoint for Livy, and it starts listening on port 8998 by default. Livy provides APIs to interact with Spark.
Let’s look at a couple of examples how you can interact with Spark running on Amazon EMR using Livy.
To list active running jobs, you can execute the following from the EMR master node:
curl localhost:8998/sessions
If you want to do the same from a remote instance, just change localhost to the EMR hostname, as in the following (port 8998 must be open to that remote instance through the security group):
Through Spark submit, you can pass multiple arguments for the Spark job and Spark configuration settings. You can also do that using Livy, by passing the S3 path through the args parameter, as shown following:
For a detailed list of Livy APIs, see the Apache Livy REST API page. This post uses GET /batches and POST /batches.
In the next section, you create a state machine and orchestrate Spark applications using AWS Step Functions.
Using AWS Step Functions to create a Spark job workflow
AWS Step Functions automatically triggers and tracks each step and retries when it encounters errors. So your application executes in order and as expected every time. To create a Spark job workflow using AWS Step Functions, you first create a Lambda state machine using different types of states to create the entire workflow.
First, you use the Task state—a simple state in AWS Step Functions that performs a single unit of work. You also use the Wait state to delay the state machine from continuing for a specified time. Later, you use the Choice state to add branching logic to a state machine.
The following is a quick summary of how to use different states in the state machine to create the Spark ETL pipeline:
Task state – Invokes a Lambda function. The first Task state submits the Spark job on Amazon EMR, and the next Task state is used to retrieve the previous Spark job status.
Wait state – Pauses the state machine until a job completes execution.
Choice state – Each Spark job execution can return a failure, an error, or a success state So, in the state machine, you use the Choice state to create a rule that specifies the next action or step based on the success or failure of the previous step.
Here is one of my Task states, MilesPerRateCode, which simply submits a Spark job:
"MilesPerRate Job": {
"Type": "Task",
"Resource":"arn:aws:lambda:us-east-1:xxxxxx:function:blog-miles-per-rate-job-submit-function",
"ResultPath": "$.jobId",
"Next": "Wait for MilesPerRate job to complete"
}
This Task state configuration specifies the Lambda function to execute. Inside the Lambda function, it submits a Spark job through Livy using Livy’s POST API. Using ResultPath, it tells the state machine where to place the result of the executing task. As discussed in the previous section, Spark submit returns the session ID, which is captured with $.jobId and used in a later state.
The following code section shows the Lambda function, which is used to submit the MilesPerRateCode job. It uses the Python request library to submit a POST against the Livy endpoint hosted on Amazon EMR and passes the required parameters in JSON format through payload. It then parses the response, grabs id from the response, and returns it. The Next field tells the state machine which state to go to next.
Just like in the MilesPerRate job, another state submits the RateCodeStatus job, but it executes only when all previous jobs have completed successfully.
Here is the Task state in the state machine that checks the Spark job status:
Just like other states, the preceding Task executes a Lambda function, captures the result (represented by jobStatus), and passes it to the next state. The following is the Lambda function that checks the Spark job status based on a given session ID:
In the Choice state, it checks the Spark job status value, compares it with a predefined state status, and transitions the state based on the result. For example, if the status is success, move to the next state (RateCodeJobStatus job), and if it is dead, move to the MilesPerRate job failed state.
To set up this entire solution, you need to create a few AWS resources. To make it easier, I have created an AWS CloudFormation template. This template creates all the required AWS resources and configures all the resources that are needed to create a Spark-based ETL pipeline on AWS Step Functions.
This CloudFormation template requires you to pass the following four parameters during initiation.
Parameter
Description
ClusterSubnetID
The subnet where the Amazon EMR cluster is deployed and Lambda is configured to talk to this subnet.
KeyName
The name of the existing EC2 key pair to access the Amazon EMR cluster.
VPCID
The ID of the virtual private cloud (VPC) where the EMR cluster is deployed and Lambda is configured to talk to this VPC.
S3RootPath
The Amazon S3 path where all required files (input file, Spark job, and so on) are stored and the resulting data is written.
IMPORTANT: These templates are designed only to show how you can create a Spark-based ETL pipeline on AWS Step Functions using Apache Livy. They are not intended for production use without modification. And if you try this solution outside of the us-east-1 Region, download the necessary files from s3://aws-data-analytics-blog/emr-step-functions, upload the files to the buckets in your Region, edit the script as appropriate, and then run it.
To launch the CloudFormation stack, choose Launch Stack:
Launching this stack creates the following list of AWS resources.
Logical ID
Resource Type
Description
StepFunctionsStateExecutionRole
IAM role
IAM role to execute the state machine and have a trust relationship with the states service.
SparkETLStateMachine
AWS Step Functions state machine
State machine in AWS Step Functions for the Spark ETL workflow.
LambdaSecurityGroup
Amazon EC2 security group
Security group that is used for the Lambda function to call the Livy API.
RateCodeStatusJobSubmitFunction
AWS Lambda function
Lambda function to submit the RateCodeStatus job.
MilesPerRateJobSubmitFunction
AWS Lambda function
Lambda function to submit the MilesPerRate job.
SparkJobStatusFunction
AWS Lambda function
Lambda function to check the Spark job status.
LambdaStateMachineRole
IAM role
IAM role for all Lambda functions to use the lambda trust relationship.
EMRCluster
Amazon EMR cluster
EMR cluster where Livy is running and where the job is placed.
During the AWS CloudFormation deployment phase, it sets up S3 paths for input and output. Input files are stored in the <<s3-root-path>>/emr-step-functions/input/ path, whereas spark-taxi.jar is copied under <<s3-root-path>>/emr-step-functions/.
The following screenshot shows how the S3 paths are configured after deployment. In this example, I passed a bucket that I created in the AWS account s3://tm-app-demos for the S3 root path.
If the CloudFormation template completed successfully, you will see Spark-ETL-State-Machine in the AWS Step Functions dashboard, as follows:
Choose the Spark-ETL-State-Machine state machine to take a look at this implementation. The AWS CloudFormation template built the entire state machine along with its dependent Lambda functions, which are now ready to be executed.
On the dashboard, choose the newly created state machine, and then choose New execution to initiate the state machine. It asks you to pass input in JSON format. This input goes to the first state MilesPerRate Job, which eventually executes the Lambda function blog-miles-per-rate-job-submit-function.
Pass the S3 root path as input:
{
“rootPath”: “s3://tm-app-demos”
}
Then choose Start Execution:
The rootPath value is the same value that was passed when creating the CloudFormation stack. It can be an S3 bucket location or a bucket with prefixes, but it should be the same value that is used for AWS CloudFormation. This value tells the state machine where it can find the Spark jar and input file, and where it will write output files. After the state machine starts, each state/task is executed based on its definition in the state machine.
At a high level, the following represents the flow of events:
Execute the first Spark job, MilesPerRate.
The Spark job reads the input file from the location <<rootPath>>/emr-step-functions/input/tripdata.csv. If the job finishes successfully, it writes the output data to <<rootPath>>/emr-step-functions/miles-per-rate.
If the Spark job fails, it transitions to the error state MilesPerRate job failed, and the state machine stops. If the Spark job finishes successfully, it transitions to the RateCodeStatus Job state, and the second Spark job is executed.
If the second Spark job fails, it transitions to the error state RateCodeStatus job failed, and the state machine stops with the Failed status.
If this Spark job completes successfully, it writes the final output data to the <<rootPath>>/emr-step-functions/rate-code-status/ It also transitions the RateCodeStatus job finished state, and the state machine ends its execution with the Success status.
This following screenshot shows a successfully completed Spark ETL state machine:
The right side of the state machine diagram shows the details of individual states with their input and output.
When you execute the state machine for the second time, it fails because the S3 path already exists. The state machine turns red and stops at MilePerRate job failed. The following image represents that failed execution of the state machine:
You can also check your Spark application status and logs by going to the Amazon EMR console and viewing the Application history tab:
I hope this walkthrough paints a picture of how you can create a serverless solution for orchestrating Spark jobs on Amazon EMR using AWS Step Functions and Apache Livy. In the next section, I share some ideas for making this solution even more elegant.
Next steps
The goal of this post is to show a simple example that uses AWS Step Functions to create an orchestration for Spark-based jobs in a serverless fashion. To make this solution robust and production ready, you can explore the following options:
In this example, I manually initiated the state machine by passing the rootPath as input. You can instead trigger the state machine automatically. To run the ETL pipeline as soon as the files arrive in your S3 bucket, you can pass the new file path to the state machine. Because CloudWatch Events supports AWS Step Functions as a target, you can create a CloudWatch rule for an S3 event. You can then set AWS Step Functions as a target and pass the new file path to your state machine. You’re all set!
You can also improve this solution by adding an alerting mechanism in case of failures. To do this, create a Lambda function that sends an alert email and assigns that Lambda function to a Fail That way, when any part of your state fails, it triggers an email and notifies the user.
If you want to submit multiple Spark jobs in parallel, you can use the Parallel state type in AWS Step Functions. The Parallel state is used to create parallel branches of execution in your state machine.
With Lambda and AWS Step Functions, you can create a very robust serverless orchestration for your big data workload.
Cleaning up
When you’ve finished testing this solution, remember to clean up all those AWS resources that you created using AWS CloudFormation. Use the AWS CloudFormation console or AWS CLI to delete the stack named Blog-Spark-ETL-Step-Functions.
Summary
In this post, I showed you how to use AWS Step Functions to orchestrate your Spark jobs that are running on Amazon EMR. You used Apache Livy to submit jobs to Spark from a Lambda function and created a workflow for your Spark jobs, maintaining a specific order for job execution and triggering different AWS events based on your job’s outcome. Go ahead—give this solution a try, and share your experience with us!
Tanzir Musabbir is an EMR Specialist Solutions Architect with AWS. He is an early adopter of open source Big Data technologies. At AWS, he works with our customers to provide them architectural guidance for running analytics solutions on Amazon EMR, Amazon Athena & AWS Glue. Tanzir is a big Real Madrid fan and he loves to travel in his free time.
Thanks to Greg Eppel, Sr. Solutions Architect, Microsoft Platform for this great blog that describes how to create a custom CodeBuild build environment for the .NET Framework. — AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. CodeBuild provides curated build environments for programming languages and runtimes such as Android, Go, Java, Node.js, PHP, Python, Ruby, and Docker. CodeBuild now supports builds for the Microsoft Windows Server platform, including a prepackaged build environment for .NET Core on Windows. If your application uses the .NET Framework, you will need to use a custom Docker image to create a custom build environment that includes the Microsoft proprietary Framework Class Libraries. For information about why this step is required, see our FAQs. In this post, I’ll show you how to create a custom build environment for .NET Framework applications and walk you through the steps to configure CodeBuild to use this environment.
Build environments are Docker images that include a complete file system with everything required to build and test your project. To use a custom build environment in a CodeBuild project, you build a container image for your platform that contains your build tools, push it to a Docker container registry such as Amazon Elastic Container Registry (Amazon ECR), and reference it in the project configuration. When it builds your application, CodeBuild retrieves the Docker image from the container registry specified in the project configuration and uses the environment to compile your source code, run your tests, and package your application.
Step 1: Launch EC2 Windows Server 2016 with Containers
In the Amazon EC2 console, in your region, launch an Amazon EC2 instance from a Microsoft Windows Server 2016 Base with Containers AMI.
Increase disk space on the boot volume to at least 50 GB to account for the larger size of containers required to install and run Visual Studio Build Tools.
Run the following command in that directory. This process can take a while. It depends on the size of EC2 instance you launched. In my tests, a t2.2xlarge takes less than 30 minutes to build the image and produces an approximately 15 GB image.
docker build -t buildtools2017:latest -m 2GB .
Run the following command to test the container and start a command shell with all the developer environment variables:
docker run -it buildtools2017
Create a repository in the Amazon ECS console. For the repository name, type buildtools2017. Choose Next step and then complete the remaining steps.
Execute the following command to generate authentication details for our registry to the local Docker engine. Make sure you have permissions to the Amazon ECR registry before you execute the command.
aws ecr get-login
In the same command prompt window, copy and paste the following commands:
In the CodeCommit console, create a repository named DotNetFrameworkSampleApp. On the Configure email notifications page, choose Skip.
Clone a .NET Framework Docker sample application from GitHub. The repository includes a sample ASP.NET Framework that we’ll use to demonstrate our custom build environment.On the EC2 instance, open a command prompt and execute the following commands:
Navigate to the CodeCommit repository and confirm that the files you just pushed are there.
Step 4: Configure build spec
To build your .NET Framework application with CodeBuild you use a build spec, which is a collection of build commands and related settings, in YAML format, that AWS CodeBuild can use to run a build. You can include a build spec as part of the source code or you can define a build spec when you create a build project. In this example, I include a build spec as part of the source code.
In the root directory of your source directory, create a YAML file named buildspec.yml.
At this point, we have a Docker image with Visual Studio Build Tools installed and stored in the Amazon ECR registry. We also have a sample ASP.NET Framework application in a CodeCommit repository. Now we are going to set up CodeBuild to build the ASP.NET Framework application.
In the Amazon ECR console, choose the repository that was pushed earlier with the docker push command. On the Permissions tab, choose Add.
For Source Provider, choose AWS CodeCommit and then choose the called DotNetFrameworkSampleApp repository.
For Environment Image, choose Specify a Docker image.
For Environment type, choose Windows.
For Custom image type, choose Amazon ECR.
For Amazon ECR repository, choose the Docker image with the Visual Studio Build Tools installed, buildtools2017. Your configuration should look like the image below:
Choose Continue and then Save and Build to create your CodeBuild project and start your first build. You can monitor the status of the build in the console. You can also configure notifications that will notify subscribers whenever builds succeed, fail, go from one phase to another, or any combination of these events.
Summary
CodeBuild supports a number of platforms and languages out of the box. By using custom build environments, it can be extended to other runtimes. In this post, I showed you how to build a .NET Framework environment on a Windows container and demonstrated how to use it to build .NET Framework applications in CodeBuild.
We’re excited to see how customers extend and use CodeBuild to enable continuous integration and continuous delivery for their Windows applications. Feel free to share what you’ve learned extending CodeBuild for your own projects. Just leave questions or suggestions in the comments.
As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!
Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.
New C5d Instances with Local Storage In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:
Instance Name
vCPUs
RAM
Local Storage
EBS Bandwidth
Network Bandwidth
c5d.large
2
4 GiB
1 x 50 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.xlarge
4
8 GiB
1 x 100 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.2xlarge
8
16 GiB
1 x 225 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.4xlarge
16
32 GiB
1 x 450 GB NVMe SSD
2.25 Gbps
Up to 10 Gbps
c5d.9xlarge
36
72 GiB
1 x 900 GB NVMe SSD
4.5 Gbps
10 Gbps
c5d.18xlarge
72
144 GiB
2 x 900 GB NVMe SSD
9 Gbps
25 Gbps
Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.
You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.
Here are a couple of things to keep in mind about the local NVMe storage:
Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.
Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.
Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.
Available Now C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.
Security updates have been issued by Arch Linux (runc), Debian (curl), Fedora (xdg-utils), Mageia (firefox), openSUSE (libreoffice, librsvg, and php5), Slackware (curl and php), SUSE (curl, firefox, kernel, kvm, libapr1, libvorbis, and memcached), and Ubuntu (curl, dpdk, php5, and qemu).
This post courtesy of Jeff Levine Solutions Architect for Amazon Web Services
Amazon Linux 2 is the next generation of Amazon Linux, a Linux server operating system from Amazon Web Services (AWS). Amazon Linux 2 offers a high-performance Linux environment suitable for organizations of all sizes. It supports applications ranging from small websites to enterprise-class, mission-critical platforms.
Amazon Linux 2 includes support for the LAMP (Linux/Apache/MariaDB/PHP) stack, one of the most popular platforms for deploying websites. To secure the transmission of data-in-transit to such websites and prevent eavesdropping, organizations commonly leverage Secure Sockets Layer/Transport Layer Security (SSL/TLS) services which leverage certificates to provide encryption. The LAMP stack provided by Amazon Linux 2 includes a self-signed SSL/TLS certificate. Such certificates may be fine for internal usage but are not acceptable when attestation by a certificate authority is required.
In this post, I discuss how to extend the capabilities of Amazon Linux 2 by installing Let’s Encrypt, a certificate authority provided by the Internet Security Research Group. Let’s Encrypt offers basic SSL/TLS certificates for DNS hosts at no charge that you can use to add encryption-in-transit to a single web server. For commercial or multi-server configurations, you should consider AWS Certificate Manager and Elastic Load Balancing.
Let’s Encrypt also requires the certbot package, which you install from EPEL, the Extra Packaged for Enterprise Linux collection. Although EPEL is not included with Amazon Linux 2, I show how you can install it from the Fedora Project.
Walkthrough
At a high level, you perform the following tasks for this walkthrough:
Provision a VPC, Amazon Linux 2 instance, and LAMP stack.
Install and enable the EPEL repository.
Install and configure Let’s Encrypt.
Validate the installation.
Clean up.
Prerequisites and costs
To follow along with this walkthrough, you need the following:
Accept all other default values including with regard to storage.
Create a new security group and accept the default rule that allows TCP port 22 (SSH) from everywhere (0.0.0.0/0 in IPv4). For the purposes of this walkthrough, permitting access from all IP addresses is reasonable. In a production environment, you may restrict access to different addresses.
Allocate and associate an Elastic IP address to the server when it enters the running state.
Respond “Y” to all requests for approval to install the software.
Step 3: Install and configure Let’s Encrypt
If you are no longer connected to the Amazon Linux 2 instance, connect to it at the Elastic IP address that you just created.
Install certbot, the Let’s Encrypt client to be used to obtain an SSL/TLS certificate and install it into Apache.
sudo yum install python2-certbot-apache.noarch
Respond “Y” to all requests for approval to install the software. If you see a message appear about SELinux, you can safely ignore it. This is a known issue with the latest version of certbot.
Create a DNS “A record” that maps a host name to the Elastic IP address. For this post, assume that the name of the host is lamp.example.com. If you are hosting your DNS in Amazon Route 53, do this by creating the appropriate record set.
After the “A record” has propagated, browse to lamp.example.com. The Apache test page should appear. If the page does not appear, use a tool such as nslookup on your workstation to confirm that the DNS record has been properly configured.
You are now ready to install Let’s Encrypt. Let’s Encrypt does the following:
Confirms that you have control over the DNS domain being used, by having you create a DNS TXT record using the value that it provides.
Obtains an SSL/TLS certificate.
Modifies the Apache-related scripts to use the SSL/TLS certificate and redirects users browsing the site in HTTP mode to HTTPS mode.
Use the following command to install certbot:
sudo certbot -i apache -a manual \
--preferred-challenges dns -d lamp.example.com
The options have the following meanings:
-i apache Use the Apache installer.
-a manual Authenticate domain ownership manually.
--preferred-challenges dns Use DNS TXT records for authentication challenge.
-d lamp.example.com Specify the domain for the SSL/TLS certificate.
You are prompted for the following information: E-mail address for renewals? Enter an email address for certificate renewals. Accept the terms of services? Respond as appropriate. Send your e-mail address to the EFF? Respond as appropriate. Log your current IP address? Respond as appropriate.
You are prompted to deploy a DNS TXT record with the name “_acme-challenge.lamp.example.com” with the supplied value, as shown below.
After you enter the record, wait until the TXT record propagates. To look up the TXT record to confirm the deployment, use the nslookup command in a separate command window, as shown below. Remember to use the set ty=txt command before entering the TXT record. You are prompted to select a virtual host. There is only one, so choose 1. The final prompt asks whether to redirect HTTP traffic to HTTPS. To perform the redirection, choose 2. That completes the configuration of Let’s Encrypt.
Browse to the http:// lamp.example.com site. You are redirected to the SSL/TLS page https://lamp.example.com.
To look at the encryption information, use the appropriate actions within your browser. For example, in Firefox, you can open the padlock and traverse the menus. In the encryption technical details, you can see from the “Connection Encrypted” line that traffic to the website is now encrypted using TLS 1.2.
Security note: As of the time of publication, this website also supports TLS 1.0. I recommend that you disable this protocol because of some known vulnerabilities associated with it. To do this:
Edit the file /etc/letsencrypt/options-ssl-apache.conf.
Look for the line beginning with SSLProtocol and change it to the following:
SSLProtocol all -SSLv2 -SSLv3 -TLSv1
Save the file. After you make changes to this file, Let’s Encrypt no longer automatically updates it. Periodically check your log files for recommended updates to this file.
Restart the httpd server with the following command:
sudo service httpd restart
Step 5: Cleanup
Use the following steps to avoid incurring any further costs.
Terminate the Amazon Linux 2 instance that you created.
Release the Elastic IP address that you allocated.
Revert any DNS changes that you made, including the A and TXT records.
Conclusion
Amazon Linux 2 is an excellent option for hosting websites through the LAMP stack provided by the Amazon-Linux-Extras feature. You can then enhance the security of the Apache web server by installing EPEL and Let’s Encrypt. Let’s Encrypt provisions an SSL/TLS certificate, optionally installs it for you on the Apache server, and enables data-in-transit encryption. You can get started with Amazon Linux 2 in just a few clicks.
Security updates have been issued by Arch Linux (firefox, llpp, and webkit2gtk), Debian (kwallet-pam), Fedora (kernel and pam-kwallet), Gentoo (mpv), Oracle (389-ds-base, firefox, libvirt, and qemu-kvm), and Ubuntu (php5 and php5, php7.0, php7.1, php7.2).
Contributed by Shea Lutton, AWS Cloud Infrastructure Architect
Amazon Simple Queue Service (Amazon SQS) is a fully managed queuing service that helps decouple applications, distributed systems, and microservices to increase fault tolerance. SQS queues come in two distinct types:
Standard SQS queues are able to scale to enormous throughput with at-least-once delivery.
FIFO queues are designed to guarantee that messages are processed exactly once in the exact order that they are received and have a default rate of 300 transactions per second.
As customers explore SQS FIFO queues, they often have questions about how the behavior works when messages arrive and are consumed. This post walks through some common situations to identify the exact behavior that you can expect. It also covers the behavior of message groups in depth and explains why message groups are key to understanding how FIFO queues work.
The simple case
Suppose that you run a major auction platform where people buy and sell a wide range of products. Your platform requires that transactions from buyers and sellers get processed in exactly the order received. Here’s how a FIFO queue helps you keep all your transactions in one straight flow.
A seller currently is holding an auction for a laptop, and three different bids are received for the same price. Ties are awarded to the first bidder at that price so it is important to track which arrived first. Your auction platform receives the three bids and sends them to a FIFO queue before they are processed.
Now observe how messages leave the queue. When your consumer asks for a batch of up to 10 messages, SQS starts filling the batch with the oldest message (bid A1). It keeps filling until either the batch is full or the queue is empty. In this case, the batch contains the three messages and the queue is now empty. After a batch has left the queue, SQS considers that batch of messages to be “in-flight” until the consumer either deletes them or the batch’s visibility timer expires.
When you have a single consumer, this is easy to envision. The consumer gets a batch of messages (now in-flight), does its processing, and deletes the messages. That consumer is then ready to ask for the next batch of messages.
The critical thing to keep in mind is that SQS won’t release the next batch of messages until the first batch has been deleted. By adding more messages to the queue, you can see more interesting behaviors. Imagine that a burst of 11 bids is sent to your FIFO queue, with two bids for Auction A arriving last.
The FIFO queue now has at least two batches of messages in it. When your single consumer requests the first batch of 10 messages, it receives a batch starting with B1 and ending with A1. Later, after the first batch has been deleted, the consumer can get the second batch of messages containing the final A2 message from the queue.
Adding complexity with multiple message groups
A new challenge arises. Your auction platform is getting busier and your dev team added a number of new features. The combination of increased messages and extra processing time for the new features means that a single consumer is too slow. The solution is to scale to have more consumers and process messages in parallel.
To work in parallel, your team realized that only the messages related to a single auction must be kept in order. All transactions for Auction A need to be kept in order and so do all transactions for Auction B. But the two auctions are independent and it does not matter which auctions transactions are processed first.
FIFO can handle that case with a feature called message groups. Each transaction related to Auction A is placed by your producer into message group A, and so on. In the diagram below, Auction A and Auction B each received three bid transactions, with bid B1 arriving first. The FIFO queue always keeps transactions within a message group in the order in which they arrived.
How is this any different than earlier examples? The consumer now gets the messages ordered by message groups, all the B group messages followed by all the A group messages. Multiple message groups create the possibility of using multiple consumers, which I explain in a moment. If FIFO can’t fill up a batch of messages with a single message group, FIFO can place more than one message group in a batch of messages. But whenever possible, the queue gives you a full batch of messages from the same group.
The order of messages leaving a FIFO queue is governed by three rules:
Return the oldest message where no other message in the same message group is currently in-flight.
Return as many messages from the same message group as possible.
If a message batch is still not full, go back to rule 1.
To see this behavior, add a second consumer and insert many more messages into the queue. For simplicity, the delete message action has been omitted in these diagrams but it is assumed that all messages in a batch are processed successfully by the consumer and the batch is properly deleted immediately after.
In this example, there are 11 Group A and 11 Group B transactions arriving in interleaved order and a second consumer has been added. Consumer 1 asks for a group of 10 messages and receives 10 Group A messages. Consumer 2 then asks for 10 messages but SQS knows that Group A is in flight, so it releases 10 Group B messages. The two consumers are now processing two batches of messages in parallel, speeding up throughput and then deleting their batches. When Consumer 1 requests the next batch of messages, it receives the remaining two messages, one from Group A and one from Group B.
Consider this nuanced detail from the example above. What would happen if Consumer 1 was on a faster server and processed its first batch of messages before Consumer 2 could mark its messages for deletion? See if you can predict the behavior before looking at the answer.
If Consumer 2 has not deleted its Group B messages yet when Consumer 1 asks for the next batch, then the FIFO queue considers Group B to still be in flight. It does not release any more Group B messages. Consumer 1 gets only the remaining Group A message. Later, after Consumer 2 has deleted its first batch, the remaining Group B message is released.
Conclusion
I hope this post answered your questions about how Amazon SQS FIFO queues work and why message groups are helpful. If you’re interested in exploring SQS FIFO queues further, here are a few ideas to get you started:
Create an Amazon SQS FIFO queue with three simple commands in the SQS console
Earlier this spring, an excited group of STEM educators came together to participate in the first ever Raspberry Pi and Arduino workshop in Puerto Rico.
Their three-day digital making adventure was led by MakerTechPR’s José Rullán and Raspberry Pi Certified Educator Alex Martínez. They ran the event as part of the Robot Makers challenge organized by Yees! and sponsored by Puerto Rico’s Department of Economic Development and Trade to promote entrepreneurial skills within Puerto Rico’s education system.
Over 30 educators attended the workshop, which covered the use of the Raspberry Pi 3 as a computer and digital making resource. The educators received a kit consisting of a Raspberry Pi 3 with an Explorer HAT Pro and an Arduino Uno. At the end of the workshop, the educators were able to keep the kit as a demonstration unit for their classrooms. They were enthusiastic to learn new concepts and immerse themselves in the world of physical computing.
In their first session, the educators were introduced to the Raspberry Pi as an affordable technology for robotic clubs. In their second session, they explored physical computing and the coding languages needed to control the Explorer HAT Pro. They started off coding with Scratch, with which some educators had experience, and ended with controlling the GPIO pins with Python. In the final session, they learned how to develop applications using the powerful combination of Arduino and Raspberry Pi for robotics projects. This gave them a better understanding of how they could engage their students in physical computing.
“The Raspberry Pi ecosystem is the perfect solution in the classroom because to us it is very resourceful and accessible.” – Alex Martínez
Computer science and robotics courses are important for many schools and teachers in Puerto Rico. The simple idea of programming a microcontroller from a $35 computer increases the chances of more students having access to more technology to create things.
Puerto Rico’s education system has faced enormous challenges after Hurricane Maria, including economic collapse and the government’s closure of many schools due to the exodus of families from the island. By attending training like this workshop, educators in Puerto Rico are becoming more experienced in fields like robotics in particular, which are key for 21st-century skills and learning. This, in turn, can lead to more educational opportunities, and hopefully the reopening of more schools on the island.
“We find it imperative that our children be taught STEM disciplines and skills. Our goal is to continue this work of spreading digital making and computer science using the Raspberry Pi around Puerto Rico. We want our children to have the best education possible.” – Alex Martínez
After attending Picademy in 2016, Alex has integrated the Raspberry Pi Foundation’s online resources into his classroom. He has also taught small workshops around the island and in the local Puerto Rican makerspace community. José is an electrical engineer, entrepreneur, educator and hobbyist who enjoys learning to use technology and sharing his knowledge through projects and challenges.
Security updates have been issued by Arch Linux (libmupdf, mupdf, mupdf-gl, and mupdf-tools), Debian (firebird2.5, firefox-esr, and wget), Fedora (ckeditor, drupal7, firefox, kubernetes, papi, perl-Dancer2, and quassel), openSUSE (cairo, firefox, ImageMagick, libapr1, nodejs6, php7, and tiff), Red Hat (qemu-kvm-rhev), Slackware (mariadb), SUSE (xen), and Ubuntu (openjdk-8).
Security updates have been issued by Arch Linux (freetype2, libraw, and powerdns), CentOS (389-ds-base and kernel), Debian (php5, prosody, and wavpack), Fedora (ckeditor, fftw, flac, knot-resolver, patch, perl, and perl-Dancer2), Mageia (cups, flac, graphicsmagick, libcdio, libid3tag, and nextcloud), openSUSE (apache2), Oracle (389-ds-base and kernel), Red Hat (389-ds-base and flash-plugin), Scientific Linux (389-ds-base), Slackware (firefox and wget), SUSE (xen), and Ubuntu (wget).
We’ve all been there! You need to make a quick, seemingly simple fix to an important production database. You compose the query, give it a once-over, and let it run. Seconds later you realize that you forgot the WHERE clause, dropped the wrong table, or made another serious mistake, and interrupt the query, but the damage has been done. You take a deep breath, whistle through your teeth, wish that reality came with an Undo option. Now what?
New Amazon Aurora Backtrack Today I would like to tell you about the new backtrack feature for Amazon Aurora. This is as close as we can come, given present-day technology, to an Undo option for reality.
This feature can be enabled at launch time for all newly-launched Aurora database clusters. To enable it, you simply specify how far back in time you might want to rewind, and use the database as usual (this is on the Configure advanced settings page):
Aurora uses a distributed, log-structured storage system (read Design Considerations for High Throughput Cloud-Native Relational Databases to learn a lot more); each change to your database generates a new log record, identified by a Log Sequence Number (LSN). Enabling the backtrack feature provisions a FIFO buffer in the cluster for storage of LSNs. This allows for quick access and recovery times measured in seconds.
After that regrettable moment when all seems lost, you simply pause your application, open up the Aurora Console, select the cluster, and click Backtrack DB cluster:
Then you select Backtrack and choose the point in time just before your epic fail, and click Backtrack DB cluster:
Then you wait for the rewind to take place, unpause your application and proceed as if nothing had happened. When you initiate a backtrack, Aurora will pause the database, close any open connections, drop uncommitted writes, and wait for the backtrack to complete. Then it will resume normal operation and being to accept requests. The instance state will be backtracking while the rewind is underway:
The console will let you know when the backtrack is complete:
If it turns out that you went back a bit too far, you can backtrack to a later time. Other Aurora features such as cloning, backups, and restores continue to work on an instance that has been configured for backtrack.
I’m sure you can think of some creative and non-obvious use cases for this cool new feature. For example, you could use it to restore a test database after running a test that makes changes to the database. You can initiate the restoration from the API or the CLI, making it easy to integrate into your existing test framework.
Things to Know This option applies to newly created MySQL-compatible Aurora database clusters and to MySQL-compatible clusters that have been restored from a backup. You must opt-in when you create or restore a cluster; you cannot enable it for a running cluster.
This feature is available now in all AWS Regions where Amazon Aurora runs, and you can start using it today.
Join us this month to learn about some of the exciting new services and solution best practices at AWS. We also have our first re:Invent 2018 webinar series, “How to re:Invent”. Sign up now to learn more, we look forward to seeing you.
Note – All sessions are free and in Pacific Time.
Tech talks featured this month:
Analytics & Big Data
May 21, 2018 | 11:00 AM – 11:45 AM PT – Integrating Amazon Elasticsearch with your DevOps Tooling – Learn how you can easily integrate Amazon Elasticsearch Service into your DevOps tooling and gain valuable insight from your log data.
May 24, 2018 | 11:00 AM – 11:45 AM PT – Data Transformation Patterns in AWS – Discover how to perform common data transformations on the AWS Data Lake.
May 30, 2018 | 01:00 PM – 01:45 PM PT – Accelerating Life Sciences with HPC on AWS – Learn how you can accelerate your Life Sciences research workloads by harnessing the power of high performance computing on AWS.
Containers
May 24, 2018 | 01:00 PM – 01:45 PM PT –Building Microservices with the 12 Factor App Pattern on AWS – Learn best practices for building containerized microservices on AWS, and how traditional software design patterns evolve in the context of containers.
Databases
May 21, 2018 | 01:00 PM – 01:45 PM PT – How to Migrate from Cassandra to Amazon DynamoDB – Get the benefits, best practices and guides on how to migrate your Cassandra databases to Amazon DynamoDB.
May 23, 2018 | 01:00 PM – 01:45 PM PT – 5 Hacks for Optimizing MySQL in the Cloud – Learn how to optimize your MySQL databases for high availability, performance, and disaster resilience using RDS.
DevOps
May 23, 2018 | 09:00 AM – 09:45 AM PT – .NET Serverless Development on AWS – Learn how to build a modern serverless application in .NET Core 2.0.
Enterprise & Hybrid
May 22, 2018 | 11:00 AM – 11:45 AM PT – Hybrid Cloud Customer Use Cases on AWS – Learn how customers are leveraging AWS hybrid cloud capabilities to easily extend their datacenter capacity, deliver new services and applications, and ensure business continuity and disaster recovery.
IoT
May 31, 2018 | 11:00 AM – 11:45 AM PT – Using AWS IoT for Industrial Applications – Discover how you can quickly onboard your fleet of connected devices, keep them secure, and build predictive analytics with AWS IoT.
Machine Learning
May 22, 2018 | 09:00 AM – 09:45 AM PT – Using Apache Spark with Amazon SageMaker – Discover how to use Apache Spark with Amazon SageMaker for training jobs and application integration.
May 24, 2018 | 09:00 AM – 09:45 AM PT – Introducing AWS DeepLens – Learn how AWS DeepLens provides a new way for developers to learn machine learning by pairing the physical device with a broad set of tutorials, examples, source code, and integration with familiar AWS services.
May 30, 2018 | 09:00 AM – 09:45 AM PT– Introducing AWS Certificate Manager Private Certificate Authority (CA) – Learn how AWS Certificate Manager (ACM) Private Certificate Authority (CA), a managed private CA service, helps you easily and securely manage the lifecycle of your private certificates.
June 1, 2018 | 09:00 AM – 09:45 AM PT – Introducing AWS Firewall Manager – Centrally configure and manage AWS WAF rules across your accounts and applications.
May 30, 2018 | 11:00 AM – 11:45 AM PT – Accelerate Productivity by Computing at the Edge – Learn how AWS Snowball Edge support for compute instances helps accelerate data transfers, execute custom applications, and reduce overall storage costs.
Security updates have been issued by Debian (kernel), Gentoo (rsync), openSUSE (Chromium), Oracle (kernel), Red Hat (kernel and kernel-rt), Scientific Linux (kernel), SUSE (kernel and php7), and Ubuntu (dpdk, libraw, linux, linux-lts-trusty, linux-snapdragon, and webkit2gtk).
Security updates have been issued by Debian (libdatetime-timezone-perl, libmad, lucene-solr, tzdata, and wordpress), Fedora (drupal7, scummvm, scummvm-tools, and zsh), Mageia (boost, ghostscript, gsoap, java-1.8.0-openjdk, links, and php), openSUSE (pam_kwallet), and Slackware (python).
EC2’s H1 instances offer 2 to 16 terabytes of fast, dense storage for big data applications, optimized to deliver high throughput for sequential I/O. Enhanced Networking, 32 to 256 gigabytes of RAM, and Intel Xeon E5-2686 v4 processors running at a base frequency of 2.3 GHz round out the feature set.
I am happy to announce that we are reducing the On-Demand and Reserved Instance prices for H1 instances in the US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland) Regions by 15%, effective immediately.
Security updates have been issued by Debian (jackson-databind, quassel, and redmine), Fedora (community-mysql and php), Red Hat (chromium-browser), Scientific Linux (java-1.7.0-openjdk), and Slackware (seamonkey).
Security updates have been issued by CentOS (firefox, java-1.7.0-openjdk, java-1.8.0-openjdk, librelp, patch, and python-paramiko), Debian (kernel and quassel), Gentoo (chromium, hesiod, and python), openSUSE (corosync, dovecot22, libraw, patch, and squid), Oracle (java-1.7.0-openjdk), Red Hat (go-toolset-7 and go-toolset-7-golang, java-1.7.0-openjdk, and rh-php70-php), and SUSE (corosync and patch).
Today, I’m pleased to announce that, as of April 24th 2018, the AWS IoT Analytics service is generally available. Customers can use IoT Analytics to clean, process, encrich, store, and analyze their connected device data at scale. AWS IoT Analytics is now available in US East (N. Virginia), US West (Oregon), US East (Ohio), and EU (Ireland). In November of last year, my colleague Tara Walker wrote an excellent post that walks through some of the features of the AWS IoT Analytics service and Ben Kehoe (an AWS Community Hero and Research Scientist at iRobot) spoke at AWS Re:Invent about replacing iRobot’s existing “rube goldberg machine” for forwarding data into an elasticsearch cluster with AWS IoT Analytics.
Iterating on customer feedback received during the service preview the AWS IoT Analytics team has added a number of new features including the ability to ingest data from external souces using the BatchPutMessage API, the ability to set a data retention policy on stored data, the ability to reprocess existing data, preview pipeline results, and preview messages from channels with the SampleChannelData API.
Let’s cover the core concepts of IoT Analytics and then walk through an example.
AWS IoT Analytics Concepts
AWS IoT Analytics can be broken down into a few simple concepts. For data preparation customers have: Channels, Pipelines, and Data Stores. For analyzing data customers have: Datasets and Notebooks.
Data Preparation
Channels are the entry point into IoT Analytics and they collect data from an existing IoT Core MQTT topic or from external sources that send messages to the channel using the Ingestion API. Channels are elastically scalable and consume messages in Binary or JSON format. Channels also immutably store raw device data for easily reprocessing using different logic if your needs change.
Pipelines consume messages from channels and allow you to process messages with steps, called activities, such as filtering on attributes, transforming the content of the message by adding or remvoing fields, invoking lambda functions for complex transformations and adding data from external data sources, or even enriching the messages with data from IoT Core. Pipelines output their data to a Data Store.
Data Stores are a queryable IoT-optimized data storage solution for the output of your pipelines. Data stores support custom retention periods to optimize costs. When a customer queries a Data Store the result is put into a Dataset.
Data Analytics
Datasets are similar to a view in a SQL database. Customers create a dataset by running a query against a data store. Data sets can be generated manually or on a recurring schedule.
Notebooks are Amazon SageMaker hosted Jupyter notebooks that let customers analyze their data with custom code and even build or train ML models on the data. IoT Analytics offers several notebook templates with pre-authored models for common IoT use cases such as Predictive Maintenance, Anomaly Detection, Fleet Segmentation, and Forecasting.
Additionally, you can use IoT analytics as a data source for Amazon QuickSight for easy visualizations of your data. You can find pricing information for each of these services on the AWS IoT Analytics Pricing Page.
IoT Analytics Walkthrough
While this walkthrough uses the console everything shown here is equally easy to do with the CLI. When we first navigate to the console we have a helpful guide telling us to build a channel, pipeline, and a data store: Our first step is to create a channel. I already have some data into an MQTT channel with IoT core so I’ll select that channel. First we’ll name the channel and select a retention period.
Now, I’ll select my IoT Core topic and grab the data. I can also post messages directly into the channel with the PutMessages APIs.
Now that I have a channel my next step is to create a pipeline. To do this I’ll select “Create a pipeline from this channel” from the “Actions” drop down.
Now, I’ll walk through the pipeline wizard giving my pipeline a name and a source.
I’ll select which of the message attributes the pipeline should expect. This can draw from the channel with the sampling API and guess at which attributes are needed or I could upload a specification in JSON.
Next I define the pipeline activities. If I’m dealing with binary data I need a lambda function to first deserialize the message into JSON so the other filter functions can operate on it. I can create filters, calculate attributes based on other attributes, and I can also enrich the message with metadata from IoT core registry.
For now I just want to filter out some messages and make a small transform with a Lambda function.
Finally, I choose or create a data store to output the results of my pipeline.
Now that I have a data store, I can create a view of that data by creating a data set.
I’ll just select all the data from the data store for this dataset but I could also select individual attributes as needed.
I have a data set! I can adjust the cron expression in the schedule to re-run this as frequently or infrequently as I wish.
If I want to create a model from my data I can create a SageMaker powered Jupyter notebook. There are a few templates that are great starting points like anomaly detection or output forecasting.
Here you can see an example of the anomaly detection notebook.
Finally, if I want to create simple visualizations of my data I can use QuickSight to bring in an IoT Analytics data set.
Let Us Know
I’m excited to see what customers build with AWS IoT Analytics. My colleagues on the IoT teams are eager to hear your feedback about the service so please let us know in the comments or on Twitter what features you want to see.
Last week, we shared the first half of our Q&A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. Today we follow up with all your other questions, including your expectations for a Raspberry Pi 4, Eben’s dream add-ons, and whether we really could go smaller than the Zero.
Get your questions to us now using #AskRaspberryPi on Twitter
With internet security becoming more necessary, will there be automated versions of VPN on an SD card?
There are already third-party tools which turn your Raspberry Pi into a VPN endpoint. Would we do it ourselves? Like the power button, it’s one of those cases where there are a million things we could do and so it’s more efficient to let the community get on with it.
Just to give a counterexample, while we don’t generally invest in optimising for particular use cases, we did invest a bunch of money into optimising Kodi to run well on Raspberry Pi, because we found that very large numbers of people were using it. So, if we find that we get half a million people a year using a Raspberry Pi as a VPN endpoint, then we’ll probably invest money into optimising it and feature it on the website as we’ve done with Kodi. But I don’t think we’re there today.
Have you ever seen any Pis running and doing important jobs in the wild, and if so, how does it feel?
It’s amazing how often you see them driving displays, for example in radio and TV studios. Of course, it feels great. There’s something wonderful about the geographic spread as well. The Raspberry Pi desktop is quite distinctive, both in its previous incarnation with the grey background and logo, and the current one where we have Greg Annandale’s road picture.
And so it’s funny when you see it in places. Somebody sent me a video of them teaching in a classroom in rural Pakistan and in the background was Greg’s picture.
Raspberry Pi 4!?!
There will be a Raspberry Pi 4, obviously. We get asked about it a lot. I’m sticking to the guidance that I gave people that they shouldn’t expect to see a Raspberry Pi 4 this year. To some extent, the opportunity to do the 3B+ was a surprise: we were surprised that we’ve been able to get 200MHz more clock speed, triple the wireless and wired throughput, and better thermals, and still stick to the $35 price point.
We’re up against the wall from a silicon perspective; we’re at the end of what you can do with the 40nm process. It’s not that you couldn’t clock the processor faster, or put a larger processor which can execute more instructions per clock in there, it’s simply about the energy consumption and the fact that you can’t dissipate the heat. So we’ve got to go to a smaller process node and that’s an order of magnitude more challenging from an engineering perspective. There’s more effort, more risk, more cost, and all of those things are challenging.
With 3B+ out of the way, we’re going to start looking at this now. For the first six months or so we’re going to be figuring out exactly what people want from a Raspberry Pi 4. We’re listening to people’s comments about what they’d like to see in a new Raspberry Pi, and I’m hoping by early autumn we should have an idea of what we want to put in it and a strategy for how we might achieve that.
Could you go smaller than the Zero?
The challenge with Zero as that we’re periphery-limited. If you run your hand around the unit, there is no edge of that board that doesn’t have something there. So the question is: “If you want to go smaller than Zero, what feature are you willing to throw out?”
It’s a single-sided board, so you could certainly halve the PCB area if you fold the circuitry and use both sides, though you’d have to lose something. You could give up some GPIO and go back to 26 pins like the first Raspberry Pi. You could give up the camera connector, you could go to micro HDMI from mini HDMI. You could remove the SD card and just do USB boot. I’m inventing a product live on air! But really, you could get down to two thirds and lose a bunch of GPIO – it’s hard to imagine you could get to half the size.
What’s the one feature that you wish you could outfit on the Raspberry Pi that isn’t cost effective at this time? Your dream feature.
Well, more memory. There are obviously technical reasons why we don’t have more memory on there, but there are also market reasons. People ask “why doesn’t the Raspberry Pi have more memory?”, and my response is typically “go and Google ‘DRAM price’”. We’re used to the price of memory going down. And currently, we’re going through a phase where this has turned around and memory is getting more expensive again.
Machine learning would be interesting. There are machine learning accelerators which would be interesting to put on a piece of hardware. But again, they are not going to be used by everyone, so according to our method of pricing what we might add to a board, machine learning gets treated like a $50 chip. But that would be lovely to do.
Which citizen science projects using the Pi have most caught your attention?
I like the wildlife camera projects. We live out in the countryside in a little village, and we’re conscious of being surrounded by nature but we don’t see a lot of it on a day-to-day basis. So I like the nature cam projects, though, to my everlasting shame, I haven’t set one up yet. There’s a range of them, from very professional products to people taking a Raspberry Pi and a camera and putting them in a plastic box. So those are good fun.
How does it feel to go to bed every day knowing you’ve changed the world for the better in such a massive way?
What feels really good is that when we started this in 2006 nobody else was talking about it, but now we’re part of a very broad movement.
We were in a really bad way: we’d seen a collapse in the number of applicants applying to study Computer Science at Cambridge and elsewhere. In our view, this reflected a move away from seeing technology as ‘a thing you do’ to seeing it as a ‘thing that you have done to you’. It is problematic from the point of view of the economy, industry, and academia, but most importantly it damages the life prospects of individual children, particularly those from disadvantaged backgrounds. The great thing about STEM subjects is that you can’t fake being good at them. There are a lot of industries where your Dad can get you a job based on who he knows and then you can kind of muddle along. But if your dad gets you a job building bridges and you suck at it, after the first or second bridge falls down, then you probably aren’t going to be building bridges anymore. So access to STEM education can be a great driver of social mobility.
By the time we were launching the Raspberry Pi in 2012, there was this wonderful movement going on. Code Club, for example, and CoderDojo came along. Lots of different ways of trying to solve the same problem. What feels really, really good is that we’ve been able to do this as part of an enormous community. And some parts of that community became part of the Raspberry Pi Foundation – we merged with Code Club, we merged with CoderDojo, and we continue to work alongside a lot of these other organisations. So in the two seconds it takes me to fall asleep after my face hits the pillow, that’s what I think about.
We’re currently advertising a Programme Manager role in New Delhi, India. Did you ever think that Raspberry Pi would be advertising a role like this when you were bringing together the Foundation?
No, I didn’t.
But if you told me we were going to be hiring somewhere, India probably would have been top of my list because there’s a massive IT industry in India. When we think about our interaction with emerging markets, India, in a lot of ways, is the poster child for how we would like it to work. There have already been some wonderful deployments of Raspberry Pi, for example in Kerala, without our direct involvement. And we think we’ve got something that’s useful for the Indian market. We have a product, we have clubs, we have teacher training. And we have a body of experience in how to teach people, so we have a physical commercial product as well as a charitable offering that we think are a good fit.
It’s going to be massive.
What is your favourite BBC type-in listing?
There was a game called Codename: Druid. There is a famous game called Codename: Droid which was the sequel to Stryker’s Run, which was an awesome, awesome game. And there was a type-in game called Codename: Druid, which was at the bottom end of what you would consider a commercial game.
And I remember typing that in. And what was really cool about it was that the next month, the guy who wrote it did another article that talks about the memory map and which operating system functions used which bits of memory. So if you weren’t going to do disc access, which bits of memory could you trample on and know the operating system would survive.
I still like type-in listings. The Raspberry Pi 2018 Annual has a type-in listing that I wrote for a Babbage versus Bugs game. I will say that’s not the last type-in listing you will see from me in the next twelve months. And if you download the PDF, you could probably copy and paste it into your favourite text editor to save yourself some time.
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.