Tag Archives: iss

Meet team behind the mini Raspberry Pi–powered ISS

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/meet-team-behind-the-mini-raspberry-pi-powered-iss/

Quite possibly the coolest thing we saw Raspberry Pi powering this year was ISS Mimic, a mini version of the International Space Station (ISS). We wanted to learn more about the brains that dreamt up ISS Mimic, which uses data from the ISS to mirror exactly what the real thing is doing in orbit.

The ISS Mimic team’s a diverse, fun-looking bunch of people and they all made their way to NASA via different paths. Maybe you could see yourself there in the future too?

Dallas Kidd

Dallas in a green t shirt stood next to Estefannie in a black t shirt on a blue background. Estefannie is wearing safety googles
Dallas (in the green t shirt) having a lark with teammate Estefannie. Safety first!

Dallas Kidd currently works at the startup Skylark Wireless, helping to advance the technology to provide affordable high speed internet to rural areas.

Previously, she worked on traffic controllers and sensors, in finance on a live trading platform, on RAID controllers for enterprise storage, and at a startup tackling the problem of alarm fatigue in hospitals.

Before getting her Master’s in computer science with a thesis on automatically classifying stars, she taught English as a second language, Algebra I, geometry, special education, reading, and more.

Her hobbies are scuba diving, learning about astronomy, creative writing, art, and gaming.

Tristan Moody

Tristan Moody holding his kid Team ISS NASA
That’s Tristan on the right. NASA does not currently hire small children.

Tristan Moody currently works as a spacecraft survivability engineer at Boeing, helping to keep the ISS and other satellites safe from the threat posed by meteoroids and orbital debris.

He has a PhD in mechanical engineering and currently spends much of his free time as playground equipment for his two young kids.

Estefannie

Estefannie dressed up as Rey from Star Wars for the 2021 princesses with powertools calendar
Estefannie as Rey from Star Wars for the 2021 Princesses with Powertools calendar

Estefannie is a software engineer, designer, punk rocker and likes to overly engineer things and document her findings on her YouTube and Instagram channels as Estefannie Explains It All.

Estefannie spends her time inventing things before thinking, soldering for fun, writing, filming and producing content for her YouTube channel, and public speaking at universities, conferences, and hackathons.

She lives in Houston, Texas and likes tacos.

Douglas Kimble

A member of team ISS Mimic giving a thumbs up while working on the ISS Mimic
Where are the dogs, Douglas?!

Douglas Kimble currently works as an electrical/mechanical design engineer at Boeing. He has designed countless wire harness and installation drawings for the ISS.

He assumes the mentor role and interacts well with diverse personalities. He is also the world’s biggest Lakers fan living in Texas.

His favorite pastimes includes hanging out with his two dogs, Boomer and Teddy. 

Craig Stanton

A member of team ISS Mimic raising an eyebrow while working on the ISS Mimic hardware
Craig’s knows what’s up. Or knows a secret. We can’t tell. Maybe both?

Craig’s father worked for the Space Shuttle program, designing the ascent flight trajectories profiles for the early missions. He remembers being on site at Johnson Space Center one evening, in a freezing cold computer terminal room, punching cards for a program his dad wrote in the early 1980s.

Craig grew up with LEGO and majored in Architecture and Space Design at the University of Houston’s Sasakawa International Center for Space Architecture (SICSA).

His day job involves measuring ISS major assemblies on the ground to ensure they’ll fit together on-orbit. Traveling to many countries to measure hardware that will never see each other until on-orbit is the really coolest part of the job.

Sam Treagold

A member of team ISS Mimc sitting at a laptop
Sam: not to be trusted with hardware you don’t want shot in the desert

Sam Treadgold is an aerospace engineer who also works on the Meteoroid and Orbital Debris team, helping to protect the ISS and Space Launch System from hypervelocity impacts. Occasionally they take spaceflight hardware out to the desert and shoot it with a giant gun to see what happens.

In a non-pandemic world he enjoys rock climbing, music festivals, and making sound-reactive LED sunglasses.

Chen Deng

A member of team ISS Mimic showing off a solar panel
Chen showing off the very shiniest part of the ISS Mimic (solar panels)

Chen Deng is a Systems Engineer working at Boeing with the International Space Station (ISS) program. Her job is to ensure readiness of Payloads, or science experiments, to launch in various spacecraft and operations to conduct research aboard the ISS.

The ISS provides a very unique science laboratory environment, something we can’t get much of on earth: microgravity!  The term microgravity means a state of little or very weak gravity.  The virtual absence of gravity allows scientists to conduct experiments that are impossible to perform on earth, where gravity affects everything that we do.

In her free time, Chen enjoys hiking, board games, and creative projects alike.

Bryan Murphy

bryan murphy from team iss mimic at nasa
Bryan, adorned with an LED necklace, posing next to ISS Mimic’s rotating solar panel ‘wings’

Bryan Murphy is a dynamics and motion control engineer at Boeing, where he gets to create digital physics models of robotic space mechanisms to predict their performance.

His favorite projects include the ISS treadmill vibration isolation system and the shiny new docking system. He grew up on a small farm where his hands-on time with mechanical devices fueled his interest in engineering.

When not at work, he loves to brainstorm and create with his artist/engineer wife and their nerdy kids, or go on long family roadtrips—- especially to hike and kayak or eat ice cream. He’s also vice president of a local makerspace, where he leads STEM outreach and includes excess LEDs in all his builds.

Susan

A member of team ISS Mimic
Here’s Susan rocking some of those LED glasses and getting a good grip on ISS Mimic

Susan is a mechanical engineer and a 30+-year veteran of manned spaceflight operations.  She has worked the Space Shuttle Program for Payloads (middeck experiments and payloads deployed with the shuttle arm) starting with STS-30 and was on the team that deployed the Hubble Space Telescope.

She then transitioned into life sciences experiments, which led to the NASA Mir Program where she was on continuous rotation for three years to Russian Mission Control, supporting the NASA astronaut and science experiments onboard the space station as a predecessor to the ISS.

She currently works on the ISS Program (for over 20 years now), where she used to write procedures for on-orbit assembly of the Space Xtation and now writes installation procedures for on-orbit modifications like the docking adapter. She is also an artist and makes crosses out of found objects, and even used to play professional women’s football.

Keep in touch

Team ISS posing in NASA t shirts in front of the ISS mimic

You can keep up with Team ISS Mimic on FacebookInstagram, and Twitter. For more info or to join the team, check out their GitHub page and Discord.

Kids, run your code on the ISS!

Logo of the European Astro Pi Challenge

Did you know that there are Raspberry Pi computers aboard the real ISS that young people can run their own Python programs on? How cool is that?!

Find out how to participate at astro-pi.org.

The post Meet team behind the mini Raspberry Pi–powered ISS appeared first on Raspberry Pi.

ISS Mimic: A Raspberry Pi-powered International Space Station model that syncs with the real thing

Post Syndicated from NASA Engineers original https://www.raspberrypi.org/blog/iss-mimic-a-raspberry-pi-powered-international-space-station-model-that-syncs-with-the-real-thing/

A group of us NASA engineers work on the International Space Station (ISS) for our day-jobs but craved something more tangible than computer models and data curves to share with the world. So, in our free time, we built ISS Mimic. It’s still in the works, but we are publishing now to celebrate 20 years of continuous human presence in space on the ISS. 

Here’s the latest version of ISS Mimic, filmed by YouTube’s finest Estefannie Explains it All

This video was filmed and produced by our friend, new teammate, and Raspberry Pi regular Estefannie of Estefannie Explains it All. Most of the images in this blog are screen grabbed from her wonderful video too.

What does Mimic do?

One of the first versions of ISS Mimic at a public event at the Space Center in Houston, before 3D printed parts saved the day

ISS Mimic is a 1% scale model of the International Space Station, bringing the American football field-sized beauty down to a tabletop-sized build. Most elements in the final version of the build which you see in the video are 3D printed — even the solar arrays. It has 12 motors: 10 to control the solar panels and two to turn the thermal radiators. All of these are fed by live data streaming from the ISS, so what you see on ISS Mimic is what’s happening that very moment on the real deal up in space.  

Physical connection

Lunch onboard the real ISS

Despite the global ISS effort, most people seem to feel disconnected from space exploration and all the STEAM goodness within. Beyond headlines and rocket launches, even space enthusiasts may feel out of touch. Most of what is available is via apps and videos, which are great, but miss the physical aspect.

Some of the team showing off the earliest version of their homage to the ISS

ISS Mimic is intended to provide an earthbound, tangible connection to that so-close-but-so-far-away orbiting science platform. We want space excitement to fuel STEAM interest.

Raspberry Pi brains and Braun

As you may have guessed, a Raspberry Pi is the brain of the business.  Raspberry Pi taps into NASA’s public ISS live data stream to parse the telemetry into the bits we want. There’s JavaScript and tons of Python, including Kivy for the graphics.

A screen grab of the home screen for the mimic program
The main screen for the Mimic program

Users toggle through various touchscreen data displays of things like battery charge states, electrical power generated, joint angles, communication dish status, gyroscope torques, and even airlock air pressure — fun to watch prior to a spacewalk!

The user can also touchscreen-activate the physical model, in which case Raspberry Pi sends the telemetry along to Arduinos, which in turn command motors in the model to do their thing, rotating the solar panels and thermal radiators to the proper angle. The solar panel joints use compact geared DC motors with Hall-effect sensors for feedback. The sensor signals are sent back down to the Arduino, which keeps track of the position of each joint compared to ISS telemetry, and updates motor command accordingly to stay in sync. 

A diagram of the International Space Station tracking its speed
Some of the data Raspberry Pi can receive

The thermal radiator motors are simpler. Since they only rotate about 180° total, a simple RC micro servo is utilised with the desired position sent from an Arduino directly from the Raspberry Pi data stream.

When MIMIC is in ‘live mode’, the motor commands are the exact data stream coming from ISS. This is a fun mode to leave it in for long durations when it’s in the corner of the room. But it changes slowly, so we also include advanced playback, where prior orbit data stored on Raspberry Pi is played back at 60× speed. A regular 90-minute orbit profile can be played back in 90 seconds.

A diagram of the International Space Station orbit tracker
Tracking the ISS orbit

We also have ‘disco mode’, which may have been birthed during lack of sleep, but now we plan to utilise it whenever we want to grab attention — such as to alert users that the ISS is flying overhead.

LED addiction

We may have a mild LED addiction, and we have LEDs embedded where the ISS batteries would live at the base of the solar arrays. They change colour with the charge voltage, so we can tell by watching them when the ISS is going into Earth’s shadow, or when the batteries are fully charged, etc.

That doesn’t look like TOO many LEDs to us…

A few times when we were working on the model and the LEDs suddenly changed, we thought we had bumped something. But it turned out the first array was edging behind Earth. These are fun to watch during spacewalks, and the model gives us advanced notice that the crew is about to be in darkness.

We plan to cram more LEDs in to react to other data. The project is open source, so anyone can build one and improve the design — help wanted!  After all, the ISS itself is a worldwide collaboration with 19 countries participating by providing components and crew. 

Chaotic wire management

The solar panels on the ISS are mounted on what’s known as the ‘outboard truss’ — one each on the Port and Starboard ends of ISS. Everything on the outboard truss rotates together as part of the sun-tracking (in addition to each solar array rotating individually). So, you can’t just run the power/signal wires through the interface or they would twist and break. ISS Mimic has the same issue.

A closer look at the newest ISS Mimic’s mini solar panels

Even though our solar panels don’t generate power, their motors still require power and signals. The ISS has a specialised, unique build; but fortunately we were able to solve our problem with a simple slip ring design sourced from Amazon. 

So twisty. So shiny. So tricky to manage cables for.

Wire management turned out to be a big issue for us. We had bird nests in several places early on (still present on the Port side solar), so we created some custom PCBs just for wire management, to keep the chaos down. We incorporated HDMI connectors and cables in some places to provide nice shielding and convenient sized coupling — actually a bit more compact than the Ethernet we’d used before.  

The real ISS flexing its power-generating solar panels in space

Also, those solar panels are huge, and the mechanism that supports the outboard truss (everything on the sides that rotate together) on the ISS includes a massive 10 foot diameter bull gear called the Solar Alpha Rotary Joint. A pinion gear from a motor interfaces with this gear to turn it as needed.

Some of the 3D printed parts for the latest iteration of the build

We were pleasantly surprised that our 3D-printed bull gear held up quite well with a similar pinion-driven design. Overall, our 3D prints have survived better than expected. We are revamping most models to include more detail, and we could certainly use help here.

Education focus

Our sights are set firmly on educators as our primary area of focus, and we’ve been excited to partner with Space Center Houston to speak at public events and a space exploration educator conference with international attendance earlier this year.

Team ISS Mimic at STEM outreach during the first Robotics National Championship

The feedback has been encouraging and enlightening. We want to keep getting feedback from educators, so please provide more insights by either commenting on this blog or via the contact info listed at the bottom. 

NASA Mission Control — failure is actually an option… sometimes

A highlight for the team was when the ISS Mimic prototype was requested to live for a month in NASA’s Mission Control Center and was synced to live data during an historic spacewalk. Mimic experienced an ‘anomaly’ when a loose wire caused one of the solar panel motors to spin at 100× the normal rate. 

Our tiny computer with the ISS Mimic’s control panel

You’ll be happy to know that none of the engineering professionals were fooled into thinking the real ISS was doing time-trials. Did I mention it’s still a work in progress? You can’t be scared of failure (for non-critical applications!), particularly when developing something brand-new. It’s part of shaking out problems and learning.

Space exploration has an exciting Future

Showing off ISS Mimic during a STEM outreach event at the Space Center in Houston

It’s an exciting time in human and robotic spaceflight, with lots of budding projects and new organisations joining the effort. This feels like a great time to deepen our connection to this great progress, and we hope ISS Mimic can help us to do that, as well as encourage more students to play in coding, mechatronics, and STEAM.

Shoutouts and social

Hi to [most of] Team ISS Mimic!

You can keep up with Team ISS Mimic on Facebook, Instagram and Twitter. For more info or to join the team, check out our GitHub page and Discord.

One of the best parts of this project has been teaming up with organisations to share the love. We partner with a non-profit makerspace near NASA called Creatorspace, for tools, materials, and outreach.  And an awesome local 3D printer manufacturer, re:3D, has joined us to print some of our larger components for free and is helping to refine our models.  Space Center Houston (NASA’s visitor centre) invited us to present to the public and at an educator conference, and generously allowed us to spend a full day filming in their beautiful facility.   Our earliest supporter was Boeing, who we’ve worked with to facilitate outreach to educators and students from the start.  And of course we are thankful to NASA for providing the public data stream that makes the project possible.

Astro Pi

Did you know that there are Raspberry Pi computers aboard the real ISS that young people can run their own Python programs on? Find out more at astro-pi.org.

The post ISS Mimic: A Raspberry Pi-powered International Space Station model that syncs with the real thing appeared first on Raspberry Pi.

International Space Station Tracker | The MagPi 96

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/international-space-station-tracker-the-magpi-96/

Fancy tracking the ISS’s trajectory? All you need is a Raspberry Pi, an e-paper display, an enclosure, and a little Python code. Nicola King looks to the skies

The e-paper display mid-refresh. It takes about three seconds to refresh, but it’s fast enough for this kind of project

Standing on his balcony one sunny evening, the perfect conditions enabled California-based astronomy enthusiast Sridhar Rajagopal to spot the International Space Station speeding by, and the seeds of an idea were duly sown. Having worked on several projects using tri-colour e-paper (aka e-ink) displays, which he likes for their “aesthetics and low-to-no-power consumption”, he thought that developing a way of tracking the ISS using such a display would be a perfect project to undertake.

“After a bit of searching, I was able to find an open API to get the ISS location at any given point in time,” explains Sridhar. I also knew I wouldn’t have to worry about the data changing several times per second or even per minute. Even though the ISS is wicked fast (16 orbits in a day!), this would still be well within the refresh capabilities of the e-paper display.”

The ISS location data is obtained using the Open Notify API – visit magpi.cc/isslocation to see its current position

Station location

His ISS Tracker works by obtaining the ISS location from the Open Notify API every 30 seconds. It appends this data point to a list, so older data is available. “I don’t currently log the data to file, but it would be very easy to add this functionality,” says Sridhar. “Once I have appended the data to the list, I call the drawISS method of my Display class with the positions array, to render the world map and ISS trajectory and current location. The world map gets rendered to one PIL image, and the ISS location and trajectory get rendered to another PIL image.”

The project code is written in Python and can be found on Sridhar’s GitHub
page: magpi.cc/isstrackercode

Each latitude/longitude position is mapped to the corresponding XY co-ordinate. The last position in the array (the latest position) gets rendered as the ISS icon to show its current position. “Every 30th data point gets rendered as a rectangle, and every other data point gets rendered as a tiny circle,” adds Sridhar.

From there, the images are then simply passed into the e-paper library’s display method; one image is rendered in black, and the other image in red.

Track… star

Little wonder that the response received from friends, family, and the wider maker community has been extremely positive, as Sridhar shares: “The first feedback was from my non-techie wife who love-love-loved the idea of displaying the ISS location and trajectory on the e-paper display. She gave valuable input on the aesthetics of the data visualisation.”

Software engineer turned hardwarehacking enthusiast and entrepreneur, Sridhar Rajagopal is the founder of Upbeat Labs and creator of ProtoStax – a maker-friendly stackable, modular,
and extensible enclosure system.

In addition, he tells us that other makers have contributed suggestions for improvements. “JP, a Hackster community user […] added information to make the Python code a service and have it launch on bootup. I had him contribute his changes to my GitHub repository – I was thrilled about the community involvement!”

Housed in a versatile, transparent ProtoStax enclosure designed by Sridhar, the end result is an elegant way of showing the current position and trajectory of the ISS as it hurtles around the Earth at 7.6 km/s. Why not have a go at making your own display so you know when to look out for the space station whizzing across the night sky? It really is an awesome sight.

Get The MagPi magazine issue 96 — out today

The MagPi magazine is out now, available in print from the Raspberry Pi Press online store, your local newsagents, and the Raspberry Pi Store, Cambridge.

You can also download the directly from PDF from the MagPi magazine website.

Subscribers to the MagPi for 12 months to get a free Adafruit Circuit Playground, or choose from one of our other subscription offers, including this amazing limited-time offer of three issues and a book for only £10!

The post International Space Station Tracker | The MagPi 96 appeared first on Raspberry Pi.

Kaleidoscopic space art made with Raspberry Pi onboard the ISS

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/kaleidoscopic-space-art-made-with-raspberry-pi-onboard-the-iss/

What could be the world’s first interactive art experiment in space is powered by Raspberry Pi!

The experiment, named Pulse/Hydra 3, features a kaleidoscope (as seen in the video) that lights up and starts to rotate after it receives heartbeat data from its ground terminal. This artistic experiment is designed to inspire people back on Earth.

Look closely at the video and you should be able to see small beads floating around in microgravity.

During scheduled events at museum and galleries, participants use a specially designed terminal fitted with a pulse oximeter to measure their pulse rate and blood oxygenation level. These measurements are transmitted in real time to the Pulse/Hydra 3 payload on the ISS, which is activated by the transmission.

Inside the payload, there’s a specially designed ‘microgravity kaleidoscope’. The transmitted data activates the kaleidoscope, and the resulting live images are securely streamed back to the ground terminal. The images are then projected onto large video screens so the whole audience can watch what is happening in orbit. The artistic idea is that both pulse rate and blood oxygenation levels are highly transient physiological characteristics that respond rapidly to conscious and sub-conscious emotional states. Therefore, there is a complex interaction between the participant and the payload, as both react to each other during the experience.

We wouldn’t have been able to achieve things like that on dial-up internet.

Where does it live?

Pulse/Hydra 3 is currently installed aboard the International Space Station (ISS) in the ESA Columbus module. The Columbus laboratory is ESA’s biggest single contribution to the ISS. The 4.5 m diameter cylindrical module of 6.9 m in length is equipped with flexible research facilities and provides accommodation for experiments in the field of multidisciplinary research into material science, fluid physics, and life science.

Artist's cut-away view of the Columbus module elements (image credit: ESA)

Artist’s cut-away view of the Columbus module elements (image credit: ESA)

This payload was launched on 29 June 2018 and it will be completing its two years in orbit soon.

More Raspberry Pi experiments in space

Pulse/Hydra 3 is, you guessed it, the third in a series of experiments run on board the Columbus module. The other two are:

  • Hydra-1, a plant growth experiment.
  • Hydra-2, a methanogenesis experiment exploring gravity’s effect on bacteria.

And Hydra-3 is the interactive art payload you’ve just read about. It lives in the same rack that used to house Hydra-1 and -2. All three run on Raspberry Pi!

Hydra-1, Hydra-2, and Hydra-3, all running on Raspberry Pi

These three payloads are of course great companions to our Astro Pi computers, which allow thousands of young people every year to run their code in space!

Place your bets on the year the first Raspberry Pi shop opens on the Moon…

The post Kaleidoscopic space art made with Raspberry Pi onboard the ISS appeared first on Raspberry Pi.