Tag Archives: astro pi

How young people can run their computer programs in space with Astro Pi

Post Syndicated from Claire Given original https://www.raspberrypi.org/blog/how-young-people-run-computer-programs-in-space-astro-pi/

Do you know young people who dream of sending something to space? You can help them make that dream a reality!

We’re calling on educators, club leaders, and parents to inspire young people to develop their digital skills by participating in this year’s European Astro Pi Challenge.

The European Astro Pi Challenge, which we run in collaboration with the European Space Agency, gives young people in 26 countries* the opportunity to write their own computer programs and run them on two special Raspberry Pi units — called Astro Pis! — on board the International Space Station (ISS).

This year’s Astro Pi ambassador is ESA astronaut Thomas Pesquet. Thomas will accompany our Astro Pis on the ISS and oversee young people’s programs while they run.

And the young people need your support to take part in the Astro Pi Challenge!

A group of young people and educators smiling while engaging with a computer

Astro Pi is back big-time!

The Astro Pi Challenge is back and better than ever, with a brand-new website, a cool new look, and the chance for more young people to get involved.

Logo of the European Astro Pi Challenge

During the last challenge, a record 6558 Astro Pi programs from over 17,000 young people ran on the ISS, and we want even more young people to take part in our new 2020/21 challenge.

British ESA astronaut Tim Peake was the ambassador of the first Astro Pi Challenge in 2015.

So whether your children or learners are complete beginners to programming or have experience of Python coding, we’d love for them to take part!

You and your young people have two Astro Pi missions to choose from: Mission Zero and Mission Space Lab.

Mission Zero — for beginners and younger programmers

In Mission Zero, young people write a simple program to take a humidity reading onboard the ISS and communicate it to the astronauts with a personalised message, which will be displayed for 30 seconds.

Logo of Mission Zero, part of the European Astro Pi Challenge

Mission Zero is designed for beginners and younger participants up to 14 years old. Young people can complete Mission Zero online in about an hour following a step-by-step guide. Taking part doesn’t require any previous coding experience or specific hardware.

All Mission Zero participants who follow the simple challenge rules are guaranteed to have their programs run aboard the ISS in 2021.

All you need to do is support the young people to submit their programs!

Mission Zero is a perfect activity for beginners to digital making and Python programming, whether they’re young people at home or in coding clubs, or groups of students or club participants.

We have made some exciting changes to this year’s Mission Zero challenge:

  1. Participants will be measuring humidity on the ISS instead of temperature
  2. For the first time, young people can enter individually, as well as in teams of up to 4 people

You have until 19 March 2021 to support your young people to submit their Mission Zero programs!

Mission Space Lab — for young people with programming experience

In Mission Space Lab, teams of young people design and program a scientific experiment to run for 3 hours onboard the ISS.

Logo of Mission Space Lab, part of the European Astro Pi Challenge

Mission Space Lab is aimed at more experienced or older participants up to 19 years old, and it takes place in 4 phases over the course of 8 months.

Your role in Mission Space Lab is to mentor a team of participants while they design and write a program for a scientific experiment that increases our understanding of either life on Earth or life in space.

The best experiments will be deployed to the ISS, and teams will have the opportunity to analyse their experimental data and report on their results.

You have until 23 October 2020 to register your team and their experiment idea.

To see the kind of experiments young people have run on the ISS, check out our blog post congratulating the Mission Space Lab 2019/20 winners!

Get started with Astro Pi today!

To find out more about taking part in the European Astro Pi Challenge 2020/21, head over to our new and improved astro-pi.org website.

screenshot of Astro Pi home page

There, you’ll find everything you need to get started on sending young people’s computer program to space!


* ESA Member States in 2020: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland, Latvia, and the United Kingdom. Other participating states: Canada, Latvia, Slovenia, Malta.

The post How young people can run their computer programs in space with Astro Pi appeared first on Raspberry Pi.

Amazing science from the winners of Astro Pi Mission Space Lab 2019–20

Post Syndicated from Claire Given original https://www.raspberrypi.org/blog/winners-astro-pi-mission-space-lab-2019-20/

The team at Raspberry Pi and our partner ESA Education are pleased to announce the winning and highly commended Mission Space Lab teams of the 2019–20 European Astro Pi Challenge!

Astro Pi Mission Space Lab logo

Mission Space Lab sees teams of young people across Europe design, create, and deploy experiments running on Astro Pi computers aboard the International Space Station. Their final task: analysing the experiments’ results and sending us scientific reports highlighting their methods, results, and conclusions.

One of the Astro Pi computers aboard the International Space Station
One of the Astro Pi computers aboard the International Space Station

The science teams performed was truly impressive, and the reports teams sent us were of outstanding quality. A special round of applause to the teams for making the effort to coordinate writing their reports socially distant!

The Astro Pi jury has now selected the ten winning teams, as well as eight highly commended teams:

And our winners are…

Vidhya’s code from the UK aimed to answer the question of how a compass works on the ISS, using the Astro Pi computer’s magnetometer and data from the World Magnetic Model (WMM).

Unknown from Externato Cooperativo da Benedita, Portugal, aptly investigated whether influenza is transmissible on a spacecraft such as the ISS, using the Astro Pi hardware alongside a deep literature review.

Space Wombats from Institut d’Altafulla, Spain, used normalized difference vegetation index (NDVI) analysis to identify burn scars from forest fires. They even managed to get results over Chernobyl!

Liberté from Catmose College, UK, set out to prove the Coriolis Effect by using Sobel filtering methods to identify the movement and direction of clouds.

Pardubice Pi from SPŠE a VOŠ Pardubice, Czech Republic, found areas of enormous vegetation loss by performing NDVI analysis on images taken from the Astro Pi and comparing this with historic images of the location.

NDVI conversion image by Pardubice Pi team – Astro Pi Mission Space Lab experiment
NDVI conversion image by Pardubice Pi team

Reforesting Entrepreneurs from Canterbury School of Gran Canaria, Spain, want to help solve the climate crisis by using NDVI analysis to identify locations where reforestation is possible.

1G5-Boys from Lycée Raynouard, France, innovatively conducted spectral analysis using Fast Fourier Transforms to study low-frequency vibrations of the ISS.

Cloud4 from Escola Secundária de Maria, Portugal, masterfully used a simplified static model and Fourier Analysis to detect atmospheric gravity waves (AGWs).

Cloud Wizzards from Primary School no. 48, Poland, scanned the sky to determine what percentage of the seas and oceans are covered by clouds.

Aguere Team 1 from IES Marina Cebrián, Spain, probed the behaviour of the magnetic field, acceleration, and temperature on the ISS by investigating disturbances, variations with latitude, and temporal changes.

Highly commended teams

Creative Coders, from the UK, decided to see how much of the Earth’s water is stored in clouds by analysing the pixels of each image of Earth their experiment collected.

Astro Jaslo from I Liceum Ogólnokształcące króla Stanisława Leszczyńskiego w Jaśle, Poland, used Reimann geometry to determine the angle between light from the sun that is perpendicular to the Astro Pi camera, and the line segment from the ISS to Earth’s centre.

Jesto from S.M.S Arduino I.C.Ivrea1, Italy, used a multitude of the Astro Pi computers’ capabilities to study NDVI, magnetic fields, and aerosol mapping.

BLOOMERS from Tudor Vianu National Highschool of Computer Science, Romania, investigated how algae blooms are affected by eutrophication in polluted areas.

AstroLorenzini from Liceo Statale C. Lorenzini, Italy used Kepler’s third law to determine the eccentricity, apogee, perigee, and mean tangential velocity of the ISS.

Photo of Italy, Calabria and Sicilia by AstroLorenzi team — Astro Pi Mission Space Lab experiment
Photo of Italy, Calabria and Sicilia (notice volcano Etna on the top right-hand corner) captured by the AstroLorenzi team

EasyPeasyCoding Verdala FutureAstronauts from Verdala International School & EasyPeasyCoding, Malta, utilised machine learning to differentiate between cloud types.

BHTeamEL from Branksome Hall, Canada, processed images using Y of YCbCr colour mode data to investigate the relationship between cloud type and luminescence.

Space Kludgers from Technology Club of Thrace, STETH, Greece, identified how atmospheric emissions correlate to population density, as well as using NDVI, ECCAD, and SEDAC to analyse the correlation of vegetation health and abundance with anthropogenic emissions.

The teams get a Q&A with astronaut Luca Parmitano

The prize for the winners and highly commended teams is the chance to pose their questions to ESA astronaut Luca Parmitano! The teams have been asked to record a question on video, which Luca will answer during a live stream on 3 September.

ESA astronaut Luca Parmitano aboard the International Space Station
ESA astronaut Luca Parmitano aboard the International Space Station

This Q&A event for the finalists will conclude this year’s European Astro Pi Challenge. Everyone on the Raspberry Pi and ESA Education teams congratulates this year’s participants on all their efforts.

It’s been a phenomenal year for the Astro Pi challenge: team performed some great science, and across Mission Space Lab and Mission Zero, an astronomical 16998 young people took part, from all ESA member states as well as Slovenia, Canada, and Malta.

Congratulations to everyone who took part!

Get excited for your next challenge!

This year’s European Astro Pi Challenge is almost over, and the next edition is just around the corner!

Compilation of photographs of Earth, taken by Astro Pi Izzy aboard the ISS
Compilation of photographs of Earth taken by an Astro Pi computer

So we invite school teachers, educators, students, and all young people who love coding and space science to join us from September onwards.

Follow our updates on astro-pi.org and social media to make sure you don’t miss any announcements. We will see you for next year’s European Astro Pi Challenge!

The post Amazing science from the winners of Astro Pi Mission Space Lab 2019–20 appeared first on Raspberry Pi.

Learning with Raspberry Pi — robotics, a Master’s degree, and beyond

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/learning-with-raspberry-pi-robotics-a-masters-degree-and-beyond/

Meet Callum Fawcett, who shares his journey from tinkering with the first Raspberry Pi while he was at school, to a Master’s degree in computer science and a real-life job in programming. We also get to see some of the awesome projects he’s made along the way.

I first decided to get a Raspberry Pi at the age of 14. I had already started programming a little bit before and found that I really enjoyed the language Python. At the time the first Raspberry Pi came out, my History teacher told us about them and how they would be a great device to use to learn programming. I decided to ask for one to help me learn more. I didn’t really know what I would use it for or how it would even work, but after a little bit of help at the start, I quickly began making small programs in Python. I remember some of my first programs being very simple dictionary-type programs in which I would match English words to German to help with my German homework.

Learning Linux, C++, and Python

Most of my learning was done through two sources. I learnt Linux and how the terminal worked using online resources such as Stack Overflow. I would have a problem that I needed to solve, look up solutions online, and try out commands that I found. This was perhaps the hardest part of learning how to use a Raspberry Pi, as it was something I had never done before, but it really helped me in later years when I would use Linux more than Windows. For learning programming, I preferred to use books. I had a book for C++ and a book for Python that I would work through. These were game-based books, so many of the fun projects that I did were simple text-based games where you typed in responses to questions.

A family robotics project

The first robot Callum made using a Raspberry Pi

By far the coolest project I did with the Raspberry Pi was to build a small robot (shown above). This was a joint project between myself and my dad. He sorted out the electronics and I programmed the robot. It was a great opportunity to learn about robotics and refine my programming skills. By the end, the robot was capable of moving around by itself, driving into objects, and then reversing and trying a new direction. It was almost like an unintelligent Roomba that couldn’t hoover, but I spent many hours improving small bits and pieces to make it as easy to use as possible. My one wish that I never managed to achieve with my robot was allowing it to map out its surroundings. This was a very ambitious project at the time, since I was still quite inexperienced in programming. The biggest problem with this was calibrating the robot’s turning circle, which was never consistent so it was very hard to have the robot know where in the room it was.

Sense HAT maze game

Another fun project that I worked on used the Sense HAT developed for the Astro Pi computers for use on the International Space Station. Using this, I was able to make a memory maze game (shown below), in which a player is shown a maze for several seconds and then has to navigate that maze from memory by shaking the device. This was my first introduction to using more interactive types of input, and this eventually led to my final-year project, which used these interesting interactions to develop another way of teaching.

Learning programming without formal lessons

I have now just finished my Master’s degree in computer science at the University of Bristol. Before going to university, I had no experience of being taught programming in a formal environment. It was not a taught subject at my secondary school or sixth form. I wanted to get more people at my school interested in this area of study though, which I did by running a coding club for people. I would help others debug their code and discuss interesting problems with them. The reason that I chose to study computer science is largely because of my experiences with Raspberry Pi and other programming I did in my own time during my teenage years. I likely would have studied history if it weren’t for the programming I had done by myself making robots and other games.

Raspberry Pi has continued to play a part in my degree and extra-curricular activities; I used them in two large projects during my time at university and used a similar device in my final project. My robot experience also helped me to enter my university’s ‘Robot Wars’ competition which, though we never won, was a lot of fun.

A tool for learning and a device for industry

Having a Raspberry Pi is always useful during a hackathon, because it’s such a versatile component. Tech like Raspberry Pi will always be useful for beginners to learn the basics of programming and electronics, but these computers are also becoming more and more useful for people with more experience to make fun and useful projects. I could see tech like Raspberry Pi being used in the future to help quickly prototype many types of electronic devices and, as they become more powerful, even being used as an affordable way of controlling many types of robots, which will become more common in the future.

Our guest blogger Callum

Now I am going on to work on programming robot control systems at Ocado Technology. My experiences of robot building during my years before university played a large part in this decision. Already, robots are becoming a huge part of society, and I think they are only going to become more prominent in the future. Automation through robots and artificial intelligence will become one of the most important tools for humanity during the 21st century, and I look forward to being a part of that process. If it weren’t for learning through Raspberry Pi, I certainly wouldn’t be in this position.

Cheers for your story, Callum! Has tinkering with our tiny computer inspired your educational or professional choices? Let us know in the comments below. 

The post Learning with Raspberry Pi — robotics, a Master’s degree, and beyond appeared first on Raspberry Pi.

Kaleidoscopic space art made with Raspberry Pi onboard the ISS

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/kaleidoscopic-space-art-made-with-raspberry-pi-onboard-the-iss/

What could be the world’s first interactive art experiment in space is powered by Raspberry Pi!

The experiment, named Pulse/Hydra 3, features a kaleidoscope (as seen in the video) that lights up and starts to rotate after it receives heartbeat data from its ground terminal. This artistic experiment is designed to inspire people back on Earth.

Look closely at the video and you should be able to see small beads floating around in microgravity.

During scheduled events at museum and galleries, participants use a specially designed terminal fitted with a pulse oximeter to measure their pulse rate and blood oxygenation level. These measurements are transmitted in real time to the Pulse/Hydra 3 payload on the ISS, which is activated by the transmission.

Inside the payload, there’s a specially designed ‘microgravity kaleidoscope’. The transmitted data activates the kaleidoscope, and the resulting live images are securely streamed back to the ground terminal. The images are then projected onto large video screens so the whole audience can watch what is happening in orbit. The artistic idea is that both pulse rate and blood oxygenation levels are highly transient physiological characteristics that respond rapidly to conscious and sub-conscious emotional states. Therefore, there is a complex interaction between the participant and the payload, as both react to each other during the experience.

We wouldn’t have been able to achieve things like that on dial-up internet.

Where does it live?

Pulse/Hydra 3 is currently installed aboard the International Space Station (ISS) in the ESA Columbus module. The Columbus laboratory is ESA’s biggest single contribution to the ISS. The 4.5 m diameter cylindrical module of 6.9 m in length is equipped with flexible research facilities and provides accommodation for experiments in the field of multidisciplinary research into material science, fluid physics, and life science.

Artist's cut-away view of the Columbus module elements (image credit: ESA)

Artist’s cut-away view of the Columbus module elements (image credit: ESA)

This payload was launched on 29 June 2018 and it will be completing its two years in orbit soon.

More Raspberry Pi experiments in space

Pulse/Hydra 3 is, you guessed it, the third in a series of experiments run on board the Columbus module. The other two are:

  • Hydra-1, a plant growth experiment.
  • Hydra-2, a methanogenesis experiment exploring gravity’s effect on bacteria.

And Hydra-3 is the interactive art payload you’ve just read about. It lives in the same rack that used to house Hydra-1 and -2. All three run on Raspberry Pi!

Hydra-1, Hydra-2, and Hydra-3, all running on Raspberry Pi

These three payloads are of course great companions to our Astro Pi computers, which allow thousands of young people every year to run their code in space!

Place your bets on the year the first Raspberry Pi shop opens on the Moon…

The post Kaleidoscopic space art made with Raspberry Pi onboard the ISS appeared first on Raspberry Pi.

6558 programs from young people have run on the ISS for Astro Pi 2019/20!

Post Syndicated from Claire Given original https://www.raspberrypi.org/blog/astro-pi-2019-2020-6558-programs-on-iss/

The team at the Raspberry Pi Foundation, in collaboration with ESA Education, is excited to announce that all of this year’s successful Astro Pi programs have now run aboard the International Space Station (ISS)!

Record numbers of young people took part in Astro Pi Mission Zero

This year, a record 6350 teams of students and young people from all 25 eligible countries successfully entered Mission Zero, and they had their programs run on the Astro Pi computers on board the ISS for 30 seconds each!

ESA astronaut Chris Cassidy with an Astro Pi computer aboard the ISS

Astronaut Chris Cassidy overseeing the Mission Zero experiments

The Mission Zero teams measured the temperature inside the ISS Columbus module, and used the Astro Pi LED matrix to display the measurement together with a greeting to the astronauts, including Chris Cassidy, who oversaw this year’s experiments.

Mission Space Lab: Investigating life in space and on Earth

In addition, 208 teams of students and young people are currently in the final phase of Astro Pi Mission Space Lab. Over the last few weeks, each of these teams has had their scientific experiment run on either Astro Pi Ed or Astro Pi Izzy for 3 hours each.

Photograph of Earth, taken by Astro Pi computer Izzy

Astro Pi Izzy’s view of Earth

Teams interested in  life on Earth used Astro Pi Izzy’s near-infrared camera to capture images to investigate, for example, vegetation health and the impact of human life on our planet. Using Astro Pi Ed’s sensors, participants investigated life in space, measuring the conditions on the ISS and even mapping the magnetic field of Earth.

Program deployment, but not as we know it

This year, we encountered a problem during the deployment of some experiments investigating life on Earth. When we downloaded the first batch of data from the ISS, we realised that Astro Pi Izzy had an incorrect setting, which resulted in some pictures turning pink. And not only that: the CANADARM was the middle of Izzy’s window view!

The CANADARM from Astro Pi Izzy’s view of Earth

The CANADARM from Astro Pi Izzy’s view of Earth

Needless to say, this would have had a negative impact on many experiments, so we put in a special request to NASA to remove the CANADARM arm and we reset Izzy. This meant that program deployment took longer than normal, but we managed to re-run all experiments and capture some fantastic images!

All Mission Space Lab teams have now received their data back from the ISS to analyse and summarise in their final scientific reports. So that they can write their reports while social distancing measures are in place, we are sharing special guidance and advice on how best to collaborate remotely, and have extended the submission deadline to 3 July 2020.

Who will win Mission Space Lab 2019/20?

The programs teams sent us this year were outstanding in their quality, creativity, and technical skill. A jury of experts appointed by ESA and the Raspberry Pi Foundation will judge all of the Mission Space Lab reports and select the 10 teams with the best reports as the winners of the European Astro Pi Challenge 2019/20. Each of the 10 winning teams will receive a special prize.

Astro Pi Mission Space Lab logo

Congratulations to all the teams that have taken part in Astro Pi Mission Space Lab this year. We hope that you found it as interesting and as fun as we did, we can’t wait to read your reports!

Celebrating your achievements

Every team that participated in Mission Zero or Mission Space Lab this year will receive a special certificate in celebration of their achievements during the European Astro Pi Challenge. The Mission Zero certificates will feature the coordinates of the ISS when your programs were run!

We’d love to see pictures of your certificates hanging in your homes, schools, or clubs, so tag us in your tweets with @astro_pi!

The post 6558 programs from young people have run on the ISS for Astro Pi 2019/20! appeared first on Raspberry Pi.

Tim Peake and Astro Pi winners meet at Rooke Award ceremony

Post Syndicated from Olympia Brown original https://www.raspberrypi.org/blog/tim-peake-astro-pi-rooke-award-ceremony/

Engineering has always been important, but never more so than now, as we face global challenges and need more brilliant young minds to solve them. Tim Peake, ESA astronaut and one of our Members, knows this well, and is a big advocate of engineering, and of STEM more broadly.

Tim Peake giving a talk at the Science Museum

That’s why during his time aboard the International Space Station for the Principia mission, Tim was involved in the deployment of two Astro Pis, special Raspberry Pi computers that have been living on the ISS ever since, making it possible for us to run our annual European Astro Pi Challenge.

Tim Peake talking about the Astro Pi Challenge at an event at the Science Museum

Tim spoke about the European Astro Pi Challenge at today’s award ceremony

Thank you, Major Tim

Tim played a huge part in the first Astro Pi Challenge, and he has helped us spread the word about Astro Pi and the work of the Raspberry Pi Foundation ever since.

Tim Peake and a moderator in a Q&A at the Science Museum

Earlier this year, Tim was awarded the 2019 Royal Academy of Engineering Rooke Award for his work promoting engineering to the public, following a nomination by Raspberry Pi co-founder and Fellow of the Academy Pete Lomas. Pete says:

“As part of Tim Peake’s Principia mission, he personally spearheaded the largest education and outreach initiative ever undertaken by an ESA astronaut. Tim actively connects space exploration with the requirement for space engineering.

As a founder of Raspberry Pi, I was thrilled that Tim acted as a personal ambassador for the Astro Pi programme. This gives young people across Europe the opportunity to develop their computing skills by writing computer programs that run on the specially adapted Raspberry Pi computers onboard the ISS.” – Pete Lomas

Today, Tim received the Rooke Award in person, at a celebratory event held at the Science Museum in London.

Royal Academy of Engineering CEO Dr Hayaatun Sillem presents Tim with the 2019 Rooke Award for public engagement with engineering, in recognition of his nationwide promotion of engineering and space.

Royal Academy of Engineering CEO Dr Hayaatun Sillem presents Tim with the 2019 Rooke Award for public engagement with engineering, in recognition of his nationwide promotion of engineering and space

Four hundred young people got to attend the event with him, including two winning Astro Pi teams. Congratulations to Tim, and congratulations to those Astro Pi winners who got to meet a real-life astronaut!

Tim Peake observes a girl writing code that will run in space

Astro Pi is going from strength to strength

Since Tim’s mission on the ISS, the Astro Pi Challenge has evolved, and in collaboration with ESA Education, we now offer it in the form of two missions for young people every year:

  • Mission Zero, which allows young people to write a short Python programme to display a message to the astronauts aboard the ISS. This mission can be completed in an afternoon, all eligible entries are guaranteed to run in space, and you can submit entries until 20 March 2020. More about Astro Pi: Mission Zero
  • Mission Space Lab, which challenges teams of young people to design and create code to run a scientific experiment aboard the ISS using the Astro Pis’ sensors. This mission is competitive and runs over eight months, and you need to send in your team’s experiment idea by 25 October 2019. More about Astro Pi: Mission Space Lab

If you’re thinking “I wish this sort of thing had been around when I was young…”

…then help the young people in your life participate! Mission Zero is really simple and requires no prior coding knowledge, neither from you, nor from the young people in your team. Or your team could take part in Mission Space Lab — you’ve still got 10 days to send us your team’s experiment idea! And then, who knows, maybe your team will get to meet Tim Peake one day… or even become astronauts themselves!

Tim Peake observes two boys writing code that will run in space as part of the European Astro Pi Challenge

The post Tim Peake and Astro Pi winners meet at Rooke Award ceremony appeared first on Raspberry Pi.

How you, an adult, can take part in the European Astro Pi Challenge

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/how-you-an-adult-take-part-in-european-astro-pi-challenge/

So, yesterday we announced the launch of the 2019/2020 European Astro Pi Challenge, and adults across the globe groaned with jealousy as a result. It’s OK, we did too.

The Astro Pi Challenge is the coolest thing ever

The European Astro Pi Challenge is ridiculously cool. It’s definitely one of the most interesting, awesome, spectacular uses of a Raspberry Pi in the known universe. Two Raspberry Pis in stellar, space-grade aluminium cases are currently sat aboard the International Space Station, waiting for students in ESA Member States to write code to run on them to take part in the Astro Pi Challenge.

But what if, like us, you’re too old to take part in the challenge? How can you get that great sense of space wonderment when you’re no longer at school?

You’re never too old…even when you’re too old

If you’re too old to take part in the challenge, it means you’re old enough to be a team mentor. Team mentors are responsible for helping students navigate the Astro Pi Challenge, ensuring that everyone is where they’re meant to be, doing what they’re meant to be doing. You’ll also also the contact between the team and us, Raspberry Pi and ESA. You’re basically a team member.

You’re basically taking part.

Mission Zero requires no coding knowledge

Mission Zero requires very little of its participants:

  • They don’t need to have any prior knowledge of coding
  • They don’t need a Raspberry Pi

And while they need an adult to supervise them, said adult doesn’t need any coding experience either.

(Spoiler alert: you’re said adult.)

Instead, you just need an hour to sit down with your team at a computer and work through some directions. And the result? Your team’s completed code will run aboard the International Space Station, and they’ll get a certificate to prove it.

You really have no excuse

If you live in an ESA Member State and know anyone aged 14 years or younger, there is absolutely no reason for them not to take part in Astro Pi Mission Zero. And, since they’re probably not reading this blog post right now, it’s your responsibility to tell them about Astro Pi. This is how you take part in the European Astro Pi Challenge: you become the bearer of amazing news when you sit your favourite kids down and tell them they’re going to be writing code that will run on the International Space Station…IN SPACE!

To find out more about Mission Zero, click here. We want to see you pledging your support to your favourite non-adults, so make sure to tell us you’re going to be taking part by leaving a comment below.

There really is no excuse.

 

 

*ESA Member States: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Residents of Slovenia, Canada, or Malta can also take part.

The post How you, an adult, can take part in the European Astro Pi Challenge appeared first on Raspberry Pi.

Run your code aboard the International Space Station with Astro Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/run-your-code-aboard-the-international-space-station-with-astro-pi/

Each year, the European Astro Pi Challenge allows students and young people in ESA Member States (or Slovenia, Canada, or Malta) to write code for their own experiments, which could run on two Raspberry Pi units aboard the International Space Station.

The Astro Pi Challenge is a lot of fun, it’s about space, and so that we in the Raspberry Pi team don’t have to miss out despite being adults, many of us mentor their own Astro Pi teams — and you should too!

So, gather your team, stock up on freeze-dried ice cream, and let’s do it again: the European Astro Pi Challenge 2019/2020 launches today!

Luca Parmitano launches the 2019-20 European Astro Pi Challenge

ESA astronaut Luca Parmitano is this year’s ambassador of the European Astro Pi Challenge. In this video, he welcomes students to the challenge and gives an overview of the project. Learn more about Astro Pi: http://bit.ly/AstroPiESA ★ Subscribe: http://bit.ly/ESAsubscribe and click twice on the bell button to receive our notifications.

The European Astro Pi Challenge 2019/2020 is made up of two missions: Mission Zero and Mission Space Lab.

Astro Pi Mission Zero

Mission Zero has been designed for beginners/younger participants up to 14 years old and can be completed in a single session. It’s great for coding clubs or any groups of students don’t have coding experience but still want to do something cool — because having confirmation that code you wrote has run aboard the International Space Station is really, really cool! Teams write a simple Python program to display a message and temperature reading on an Astro Pi computer, for the astronauts to see as they go about their daily tasks on the ISS. No special hardware or prior coding skills are needed, and all teams that follow the challenge rules are guaranteed to have their programs run in space!

Astro Pi Mission Zero logo

Mission Zero eligibility

  • Participants must be no older than 14 years
  • 2 to 4 people per team
  • Participants must be supervised by a teacher, mentor, or educator, who will be the point of contact with the Astro Pi team
  • Teams must be made up of at least 50% team members who are citizens of an ESA Member* State, or Slovenia, Canada, or Malta

Astro Pi Mission Space Lab

Mission Space Lab is aimed at more experienced/older participants up to 19 years old, and it takes place in 4 phases over the course of 8 months. The challenge is to design and write a program for a scientific experiment to be run on an Astro Pi computer. The best experiments will be deployed to the ISS, and teams will have the opportunity to analyse and report on their results.

Astro Pi Mission Space Lab logo

Mission Space Lab eligibility

  • Participants must be no older than 19 years
  • 2 to 6 people per team
  • Participants must be supervised by a teacher, mentor, or educator, who will be the point of contact with the Astro Pi team
  • Teams must be made up of at least 50% team members who are citizens of an ESA Member State*, or Slovenia, Canada, or Malta

How to plan your Astro Pi Mission Space Lab experiment

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

For both missions, each member of the team has to be at least one of the following:

  • Enrolled full-time in a primary or secondary school in an ESA Member State, or Slovenia, Canada, or Malta
  • Homeschooled (certified by the National Ministry of Education or delegated authority in an ESA Member State or Slovenia, Canada, or Malta)
  • A member of a club or after-school group (such as Code Club, CoderDojo, or Scouts) located in an ESA Member State*, or Slovenia, Canada, or Malta

Take part

To take part in the European Astro Pi Challenge, head over to the Astro Pi website, where you’ll find more information on how to get started getting your team’s code into SPACE!

Obligatory photo of Raspberry Pis floating in space!

*ESA Member States: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom

The post Run your code aboard the International Space Station with Astro Pi appeared first on Raspberry Pi.

European Astro Pi Challenge: Mission Space Lab winners 2018–2019!

Post Syndicated from Olympia Brown original https://www.raspberrypi.org/blog/european-astro-pi-challenge-mission-space-lab-winners-2018-2019/

This is your periodic reminder that there are two Raspberry Pi computers in space! That’s right — our Astro Pi units Ed and Izzy have called the International Space Station home since 2016, and we are proud to work with ESA Education to run the European Astro Pi Challenge, which allows students to conduct scientific investigations in space, by writing computer programs.

Astro PI IR on ISS

An Astro Pi takes photos of the earth from the window of the International Space Station

The Challenge has two missions: Mission Zero and Mission Space Lab. The more advanced one, Mission Space Lab, invites teams of students and young people under 19 years of age to enter by submitting an idea for a scientific experiment to be run on the Astro Pi units.

ESA and the Raspberry Pi Foundation would like to congratulate all the teams that participated in the European Astro Pi Challenge this year. A record-breaking number of more than 15000 people, from all 22 ESA Member States as well as Canada, Slovenia, and Malta, took part in this year’s challenge across both Mission Space Lab and Mission Zero!

Eleven teams have won Mission Space Lab 2018–2019

After designing their own scientific investigations and having their programs run aboard the International Space Station, the Mission Space Lab teams spent their time analysed the data they received back from the ISS. To complete the challenge, they had to submit a short scientific report discuss their results and highlight the conclusions of their experiments. We were very impressed by the quality of the reports, which showed a high level of scientific merit.

We are delighted to announce that, while it was a difficult task, the Astro Pi jury has now selected eleven winning teams, as well as highly commending four additional teams. The eleven winning teams won the chance to join an exclusive video call with ESA astronaut Frank De Winne. He is the head of the European Astronaut Centre in Germany, where astronauts train for their missions. Each team had the once-in-a-lifetime chance to ask Frank about his life as an astronaut.

And the winners are…

Firewatchers from Post CERN HSSIP Group, Portugal, used a machine learning method on their images to identify areas that had recently suffered from wildfires.

Go, 3.141592…, Go! from IES Tomás Navarro Tomás, Spain, took pictures of the Yosemite and Lost River forests and analysed them to study the effects of global drought stress. They did this by using indexes of vegetation and moisture to assess whether forests are healthy and well-preserved.

Les Robotiseurs from Ecole Primaire Publique de Saint-André d’Embrun, France, investigated variations in Earth’s magnetic field between the North and South hemispheres, and between day and night.

TheHappy.Pi from I Liceum Ogólnokształcące im. Bolesława Krzywoustego w Słupsku, Poland, successfully processed their images to measure the relative chlorophyll concentrations of vegetation on Earth.

AstroRussell from Liceo Bertrand Russell, Italy, developed a clever image processing algorithm to classify images into sea, cloud, ice, and land categories.

Les Puissants 2.0 from Lycee International de Londres Winston Churchill, United Kingdom, used the Astro Pi’s accelerometer to study the motion of the ISS itself under conditions of normal flight and course correction/reboost maneuvers.

Torricelli from ITIS “E.Torricelli”, Italy, recorded images and took sensor measurements to calculate the orbital period and flight speed of the ISS followed by the mass of the Earth using Newton’s universal law of gravitation.

ApplePi from I Liceum Ogólnokształcące im. Króla Stanisława Leszczyńskiego w Jaśle, Poland, compared their images from Astro Pi Izzy to historical images from 35 years ago and could show that coastlines have changed slightly due to erosion or human impact.

Spacethon from Saint Joseph La Salle Pruillé Le Chétif, France, tested their image-processing algorithm to identify solid, liquid, and gaseous features of exoplanets.

Stithians Rocket Code Club from Stithians CP School, United Kingdom, performed an experiment comparing the temperature aboard the ISS to the average temperature of the nearest country the space station was flying over.

Vytina Aerospace from Primary School of Vytina, Greece, recorded images of reservoirs and lakes on Earth to compare them with historical images from the last 30 years in order to investigate climate change.

Highly commended teams

We also selected four teams to be highly commended, and they will receive a selection of goodies from ESA Education and the Raspberry Pi Foundation:

Aguere Team from IES Marina Cebrián, Spain, investigated variations in the Earth’s magnetic field due to solar activity and a particular disturbance due to a solar coronal hole.

Astroraga from CoderDojo Trento, Italy, measured the magnetic field to investigate whether astronauts can still use a compass, just like on Earth, to orient themselves on the ISS.

Betlemites from Escoles Betlem, Spain, recorded the temperature on the ISS to find out if the pattern of a convection cell is different in microgravity.

Rovel In The Space from Scuola secondaria I grado A.Rosmini ROVELLO PORRO(Como), Italy, executed a program that monitored the pressure and would warn astronauts in case space debris or micrometeoroids collided with the ISS.

The next edition is not far off!

ESA and the Raspberry Pi Foundation would like to invite all school teachers, students, and young people to join the next edition of the challenge. Make sure to follow updates on the Astro Pi website and Astro Pi Twitter account to look out for the announcement of next year’s Astro Pi Challenge!

The post European Astro Pi Challenge: Mission Space Lab winners 2018–2019! appeared first on Raspberry Pi.

Raspberry Pi captures a Soyuz in space!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-captures-soyuz-in-space/

So this happened. And we are buzzing!

You’re most likely aware of the Astro Pi Challenge. In case you’re not, it’s a wonderfully exciting programme organised by the European Space Agency (ESA) and us at Raspberry Pi. Astro Pi challenges European young people to write scientific experiments in code, and the best experiments run aboard the International Space Station (ISS) on two Astro Pi units: Raspberry Pi 1 B+ and Sense HATs encased in flight-grade aluminium spacesuits.

It’s very cool. So, so cool. As adults, we’re all extremely jealous that we’re unable to take part. We all love space and, to be honest, we all want to be astronauts. Astronauts are the coolest.

So imagine our excitement at Pi Towers when ESA shared this photo on Friday:

This is a Soyuz vehicle on its way to dock with the International Space Station. And while Soyuz vehicles ferry between earth and the ISS all the time, what’s so special about this occasion is that this very photo was captured using a Raspberry Pi 1 B+ and a Raspberry Pi Camera Module, together known as Izzy, one of the Astro Pi units!

So if anyone ever asks you whether the Raspberry Pi Camera Module is any good, just show them this photo. We don’t think you’ll need to provide any further evidence after that.

The post Raspberry Pi captures a Soyuz in space! appeared first on Raspberry Pi.

135 teams will run their experiments on the ISS for Astro Pi Mission Space Lab 2018-19

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/astro-pi-phase-3-18-19/

In this year’s round of Astro Pi Mission Space Lab, 135 teams will run their experiments on the ISS!

CSA Astronaut David Saint-Jacques congratulates all the participants on behalf of ESA and the Raspberry Pi Foundation.

CSA astronaut David Saint-Jacques aboard the International Space Station – ENGLISH

CSA astronaut David Saint-Jacques introduces Phase Three of the Raspberry Pi ESA Astro Pi Challenge aboard the International Space Station. Pretty cool, right?

(Find the French version of the video at the bottom of this blog post.)

Astro Pi Challenge 2018/2019

In September of last year, the European Space Agency and Raspberry Pi Foundation launched the European Astro Pi Challenge for 2018/2019.

It offers students and young people the amazing opportunity to conduct scientific investigations in space, by writing computer programs that run on Raspberry Pi computers aboard the International Space Station.

The Challenge offers two missions: Mission Zero and Mission Space Lab.

Astro Pi Mission Space Lab

Mission Space Lab, our more advanced mission, invited teams of students and young people under 19 years of age to take part in Mission Space Lab by submitting an idea for a scientific experiment to be run on the Astro Pi units.

Astro PI IR on ISS

Teams were able to choose between two themes for their experiments: Life in space and Life on Earth. Teams that chose the ‘Life on Earth’ theme were tasked with using the Astro Pi computer Izzy, fitted with a near-infrared camera facing out of an ISS window, to study the Earth. For ‘Life in space’, teams used the Astro Pi computer Ed, which is equipped with a camera for light sensing, and investigate life inside the Columbus module of the ISS.

There are four phases to Mission Space Lab:

    • Phase 1 – Design (September- October 2018)
      • Come up with an idea for your experiment
    • Phase 2 – Create (November 2018 to March 2019)
      • Code your program and test your experiment on Earth
    • Phase 3 – Deploy (April 2019)
      • Your program is deployed on the ISS
    • Phase 4 – Analyse (May 2019)
      • Use the data from your experiment to write your report

Phases 1 and 2

During Phase 1, the Astro Pi team received a record-breaking 471 entries from 24 countries! 381 teams were selected to progress to Phase 2 and had the chance to write computer programs for the scientific experiments they wanted to send to the Astro Pi computers aboard the International Space Station

Phases 3 and 4

After a long process of testing and judging experiments, the European Space Agency and Raspberry Pi Foundation are happy to announce that a record number of 135 teams have been granted ‘flight status’ for Phase 3 of the challenge!

Astro Pi Mission Space Lab logo

53 teams with ‘Life in space’ entries and 82 teams with ‘Life on Earth’ entries have qualified for ‘Phase 3 — Deploy’ and ‘Phase 4 — Analyse’ of the European Astro Pi Challenge. The teams’ experiments were selected based on their experiment quality, their code quality, and the feasibility of their experiment idea. The selected programs have been tested on ground to ensure they will run without error on board the ISS.

The teams will receive their data back after their programs have been deployed on the International Space Station. They will then be tasked with writing a short report about their findings for the Astro Pi team. We will select the 10 best reports as the winners, and those lucky teams will be awarded a special prize!

The selected programs will run in the coming days on the ISS, overseen by CSA Astronaut David Saint-Jacques himself!

L’astronaute David Saint-Jacques de l’ASC à bord de la Station spatiale internationale – FRENCH

L’astronaute David Saint-Jacques de l’ASC présente la troisième phase du défi “Raspberry Pi ESA Astro Pi” à bord de la Station spatiale internationale Watch in English: Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one

The post 135 teams will run their experiments on the ISS for Astro Pi Mission Space Lab 2018-19 appeared first on Raspberry Pi.

Jenni Sidey inspires young women in science with Astro Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/jenni-sidey-inspires-young-women-science-astro-pi/

Today, ESA Education and the Raspberry Pi Foundation are proud to celebrate the International Day of Women and Girls in Science! In support of this occasion and to encourage young women to enter a career in STEM (science, technology, engineering, mathematics), CSA astronaut Jenni Sidey discusses why she believes computing and digital making skills are so important, and tells us about the role models that inspired her.

Jenni Sidey inspires young women in science with Astro Pi

Today, ESA Education and the Raspberry Pi Foundation are proud to celebrate the International Day of Women and Girls in Science! In support of this occasion and to encourage young women to enter a career in STEM (science, technology, engineering, mathematics), CSA astronaut Jenni Sidey discusses why she believes computing and digital making skills are so important, and tells us about the role models that inspired her.

Happy International Day of Women and Girls in Science!

The International Day of Women and Girls in Science is part of the United Nations’ plan to achieve their 2030 Agenda for Sustainable Development. According to current UNESCO data, less than 30% of researchers in STEM are female and only 30% of young women are selecting STEM-related subjects in higher education
Jenni Sidey

That’s why part of the UN’s 2030 Agenda is to promote full and equal access to and participation in science for women and girls. And to help young women and girls develop their computing and digital making skills, we want to encourage their participation in the European Astro Pi Challenge!

The European Astro Pi Challenge

The European Astro Pi Challenge is an ESA Education programme run in collaboration with the Raspberry Pi Foundation that offers students and young people the amazing opportunity to conduct scientific investigations in space! The challenge is to write computer programs for one of two Astro Pi units — Raspberry Pi computers on board the International Space Station.

Astro Pi Mission Zero logo

Astro Pi’s Mission Zero is open until 20 March 2019, and this mission gives young people up to 14 years of age the chance to write a simple program to display a message to the astronauts on the ISS. No special equipment or prior coding skills are needed, and all participants that follow the mission rules are guaranteed to have their program run in space!

Take part in Mission Zero — in your language!

To help many more people take part in their native language, we’ve translated the Mission Zero resource, guidelines, and web page into 19 different languages! Head to our languages section to find your version of Mission Zero and take part.

If you have any questions regarding the European Astro Pi Challenge, email us at [email protected].

The post Jenni Sidey inspires young women in science with Astro Pi appeared first on Raspberry Pi.

Take part in Hour of Code 2018

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/hour-of-code-2018/

Every year for the last five years, Hour of Code has encouraged school students to spend just one hour writing some code, in the hope that they get bitten by the bug rather than generating too many bugs! This year, you can find activities from the Raspberry Pi Foundation, Code Club, and CoderDojo on the official Hour of Code website.

Boat race

Boat race, a Code Club resource, is a one-hour project aimed at beginners. It guides students to use Scratch to create a game in which the player uses their mouse to navigate a boat to a desert island without bumping into obstacles.

Scratch can run in any browser, or directly from a Raspberry Pi, making it on of the easiest ways for students to get into coding for the Hour of Code.

The Boat race resource is available in many languages, including Arabic, Simplified Chinese, Czech, Greek, Hebrew, and Ukrainian.

Beginner Scratch Sushi Cards

Again using Scratch, this CoderDojo project walks students through how to create a fish-catching game where the player controls a shark sprite.

Astro Pi Mission Zero

In in the Mission Zero project, students write a short Python program that checks the ambient temperature onboard the International Space Station, and leaves a message for the astronauts there!

Students complete this Hour of Code challenge using the Trinket online Astro Pi simulator, and those based in an ESA Member or Associate States can submit their code to run onboard the ISS. They’ll even receive an official certificate showing where the ISS was when their code ran.

A full list of ESA Member and Associate States can be found here.

Us too!

We don’t just create activities for other people to experience digital making and learning — we also get involved ourselves! Every month we host a maker day for our staff, where everyone can try out our digital making projects or even work on their own project. Our December maker day is during Hour of Code week, and we are going to make an extra-special effort and try to get as many staff members as possible coding!

The educators at Raspberry Pi are fans of Seymour Papert’s constructionist learning philosophy — you can read his Mindstorms book in this free PDF — and the joy of learning through making isn’t just a thing for kids; adults get just as much positivity out of creating digital fart noises or animating crazed chickens to chase the Scratch cat. With the right support from our wide range of projects, anyone can make their own ideas a reality through coding — Senior Learning Manager Lauren, for example, got very excited about her Morrissey haiku project!

Being able to code is creative; it lets you bring your idea to life, whether that’s something that could help millions of people or simply something you think would be cool.

So, whether you’re an absolute beginner to coding or you’ve fixed so many bugs that your nickname is ‘The Exterminator’, what will YOU code this week?

The post Take part in Hour of Code 2018 appeared first on Raspberry Pi.

Astro Pi Mission Zero: guarantee your code’s place in space

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/mission-zero-2018-19/

Today is the official launch day of Astro Pi Mission Zero, part of the 2018–2019 European Astro Pi Challenge, an ESA Education programme run in collaboration with us at Raspberry Pi. In this challenge, students and young people get the chance to have their computer programs run in space on the International Space Station!

Astro Pi Mission Zero 2018/19

Text an astronaut!

Students and young people will have until 20 March 2019 to from teams and write a simple program to display their personal message to the astronauts onboard. The Mission Zero activity can be completed in a couple of hours with just a computer and an internet connection. You don’t need any special equipment or prior coding skills, and all participants that follow the guidelines are guaranteed to have their programs run in space.

Translations

This year, to help many more people take part in their native language, we have translated the Mission Zero resource, guidelines, and web page into 19 different languages! Head to our languages section to find your version of Mission Zero.

Take part in Astro Pi Mission Zero

To participate, the teams’ teacher or mentor needs to register for a classroom code that will let students submit their programs. Teams then follow our online resource to write their programs using the browser-based Trinket emulator: with just a few lines of Python, your team will create a program for one of the two Astro Pi computers aboard the ISS!

Astro Pi Mission Zero 2018/19

Each team’s program will run for 30 seconds aboard the Space Station, visible for all the astronauts including this year’s challenge ambassadors: ESA astronaut and ISS Commander Alexander Gerst and CSA astronaut David Saint-Jacques.

Astro Pi returns for a new 2018/19 challenge!

Ever wanted to run your own experiment in space? Then you’re in luck! ESA Education, in collaboration with the Raspberry Pi Foundation, is pleased to announce the launch of the 2018/2019 European Astro Pi Challenge!

Every team that submits a valid Mission Zero entry will also receive a certificate showing the flight path of the ISS above Earth at the exact time their code ran!

Astro Pi Mission Zero 2018/19

The challenge is open to teams of students and young people who are aged 14 years or younger (at the time of submission) and from ESA Member or Associate Member States*. The teams must have at least two and no more than four members, and they must be supervised by an adult teacher or mentor.

Have fun, and say hi to the astronauts from us!

About the European Astro Pi Challenge

The European Astro Pi Challenge is an ESA Education project run in collaboration with the Raspberry Pi Foundation. It offers students and young people the amazing opportunity to conduct scientific investigations in space by writing computer programs that run on Raspberry Pi computers on board the International Space Station (ISS). The Astro Pi Challenge is divided into two separate missions with different levels of complexity: Mission Zero (the basic mission), and Mission Space Lab (one step further). This year’s Mission Space Lab is closing for applications at the end of October. Click here for more information about it.

*ESA Member States in 2018:
Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, The Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland, United Kingdom.

ESA Associate States in 2018: Canada, Slovenia
In the framework of the current collaboration agreement between ESA and the Republic of Malta, teams from Malta can also participate in the European Astro Pi Challenge. ESA will also accept entries from primary or secondary schools located outside an ESA Member or Associate State only if such schools are officially authorised and/or certified by the official Education authorities of an ESA Member or Associate State (for instance, French school outside Europe officially recognised by the French Ministry of Education or delegated authority).

The post Astro Pi Mission Zero: guarantee your code’s place in space appeared first on Raspberry Pi.

The European Astro Pi Challenge is back for 2018/2019

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/european-astro-pi-challenge-launch-2018-2019/

Ever wanted to run your own experiment in space? Then you’re in luck! ESA Education, in collaboration with the Raspberry Pi Foundation, is pleased to announce the launch of the 2018/2019 European Astro Pi Challenge!

Astro Pi returns for a new 2018/19 challenge!

Ever wanted to run your own experiment in space? Then you’re in luck! ESA Education, in collaboration with the Raspberry Pi Foundation, is pleased to announce the launch of the 2018/2019 European Astro Pi Challenge!

In this challenge, we offer students and young people the amazing opportunity to conduct scientific investigations in space by writing computer programs that run on Astro Pis — special Raspberry Pi computers aboard the International Space Station (ISS).

ESA astronaut Alexander Gerst and CSA astronaut David Saint-Jacques are the Challenge’s ambassadors. They will accompany our Astro Pi’s on the ISS and oversee your programs while these run and collect scientific data.

Two missions are part of the Astro Pi Challenge: Mission Zero and Mission Space Lab.

Mission Space Lab opens today!

If you are 19 or younger and live in an ESA Member or Associate Member State*, we invite you to form a team with at least one friend of yours and apply to the Astro Pi Challenge’s Mission Space Lab by sending us your experiment idea by the end of October. We can’t wait to see your ideas!

Astro Pi Mission Space Lab logo

Mission Space Lab gives you the chance to have your scientific experiment run on the ISS. Your challenge is to design and code an experiment using the environmental sensors and cameras of the Astro Pi computers, called Ed and Izzy, aboard the ISS.

You can choose between two themes for your experiment: Life in space and Life on Earth. If you pick the ‘Life on Earth’ theme, you’ll use the Astro Pi computer Izzy, fitted with a near-infrared camera facing out of an ISS window, to study the Earth. For ‘Life in space’, you’ll use the Astro Pi computer Ed, which is equipped with a camera for light sensing, and investigate life inside the Columbus module of the ISS. The best experiments will be deployed on the ISS, and you’ll have the opportunity to analyse your experimental data to write a report with your results. The ten teams who send us the best reports will become the Astro Pi Mission Space Lab 2018/2019 winners!

There are four phases to Mission Space Lab:

  • Phase 1 – Design (until end of October 2018)
    • Come up with an idea for your experiment
  • Phase 2 – Create (November 2018 to March 2019)
    • Code your program and test your experiment on Earth
  • Phase 3 – Deploy (April 2019)
    • Your program is deployed on the ISS
  • Phase 4 – Analyse (May 2019)
    • Use the data from your experiment to write your report

In the first phase, Design, you just need an idea for an experiment. You won’t need to do any coding yet, but you should think about how you might write the program for your experiment to make sure your goal is achievable. Have a look at our Astro Pi Mission Space Lab guidelines for everything you need to know to take part the challenge. Your deadline to register and submit your idea via the Astro Pi website is 29 October 2018.

We will select teams and notify them of their acceptance to Phase 2 of Mission Space Lab by mid-November 2018.

Mission Zero — open soon

Mission Zero, the simpler level of the Astro Pi Challenge, also offers you the chance to have something you’ve coded run on the ISS, in the form of a simple program that displays a message to the astronauts on-board. For this mission, you don’t need special equipment and you can be a complete beginner at coding; if your entry follows a few simple rules, it’s guaranteed to run in space!

Astro Pi Mission Zero logo

If you are 14 or younger and live in an ESA Member or Associate Member State*, we would like you to take part in Mission Zero. You can submit your program from 29 October 2018 onward. For more details, head to the Mission Zero page.

Find out more about the Astro Pi Challenge

What is Astro Pi?!

Announcing the 2018-19 European Astro Pi challenge in partnership with the European Space Agency (ESA). It’s open to students from all 22 ESA member countries, including associate members Canada and Slovenia. In Mission Zero, students aged up to 14 write a simple Python program that will display a message on the International Space Station for 30 seconds.

*ESA Member States in 2018:

Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland, United Kingdom.

ESA Associate States in 2018: Canada, Slovenia

In the framework of the current collaboration agreement between ESA and the Republic of Malta, teams from Malta can also participate in the European Astro Pi Challenge. ESA will also accept entries from primary or secondary schools located outside an ESA Member or Associate State only if such schools are officially authorised and/or certified by the official Education authorities of an ESA Member or Associate State (for instance, French school outside Europe officially recognised by the French Ministry of Education or delegated authority).

The post The European Astro Pi Challenge is back for 2018/2019 appeared first on Raspberry Pi.

Build your own NASA Curiosity rover

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-nasa-curiosity-rover/

Put together your own remote-controlled Curiosity rover with the help of the NASA Jet Propulsion Laboratory and a Raspberry Pi.

NASA JPL rover Raspberry Pi

Why wouldn’t you want one of these?!

NASA Jet Propulsion Laboratory

To educate the curious about the use of rovers in space, the Pasadena-based NASA Jet Propulsion Laboratory (JPL) built a mini-rover, ROV-E, to tour classrooms, museums, and public engagement events.

NASA JPL rover ROV-E Raspberry Pi

The original ROV-E comes with a much higher price tag, so the JPL engineers decided to scale it down for home makers

And so engaged was the public by the rover and its ability to manoeuvre harsh terrain, rocks, and small children, that the JLP engineers have published a building plan that allows rover-enthused makers to build their own for around $2500 using off-the-shelf parts.

Curiosity for the curious

The JPL open-source rover is a scaled-down model of Curiosity, the car-sized rover currently on day 2187 of its mission to explore the surface of Mars.

NASA JPL rover Raspberry Pi

The Mars rover sings Happy birthday to itself on 5 August every year, and this fact breaks out hearts!

And while the home-brew version of Curiosity may not be able to explore the Red Planet, project sponsor Tom Soderstrom believes it can offer plenty of opportunities to future STEM pioneers:

“We wanted to give back to the community and lower the barrier of entry by giving hands-on experience to the next generation of scientists, engineers, and programmers.”

A Pi at the heart of the rover

The rover uses a variety of tech makers may already have in their arsenal, including USB cameras and a Raspberry Pi. JPL’s design also gives you the option to swap out components with alternatives.

NASA JPL rover Raspberry Pi

Control the rover however you please: via a games controller, a smartphone, or a program of your own design

To control the rover, JPL decided to use a Raspberry Pi:

We chose a Raspberry Pi to be the ‘brain’ of this rover for its versatility, accessibility, simplicity, and ability to add and upgrade your own modifications. Any method with which you can communicate with a Raspberry Pi (Bluetooth, WiFi, USB devices, etc.) can be interfaced into the control system of the robot.

Full plans for the six-wheel rover are available on JPL’s GitHub, where they also list all parts required, final specs, and supporting info such as links to the project forum and parts suppliers. You can also visit the official project website to control your own rover on the surface of Mars…a simulated rover, of course, but one can dream!

The post Build your own NASA Curiosity rover appeared first on Raspberry Pi.

Tim Peake congratulates winning Mission Space Lab teams!

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/mission-space-lab-winners-2018/

This week, the ten winning Astro Pi Mission Space Lab teams got to take part in a video conference with ESA Astronaut Tim Peake!

ESA Astro Pi students meet Tim Peake

Uploaded by Raspberry Pi on 2018-06-26.

A brief history of Astro Pi

In 2014, Raspberry Pi Foundation partnered with the UK Space Agency and the European Space Agency to fly two Raspberry Pi computers to the International Space Station. These Pis, known as Astro Pis Ed and Izzy, are each equipped with a Sense HAT and Camera Module (IR or Vis) and housed within special space-hardened cases.

In our annual Astro Pi Challenge, young people from all 22 ESA member states have the opportunity to design and code experiments for the Astro Pis to become the next generation of space scientists.

Mission Zero vs Mission Space Lab

Back in September, we announced the 2017/2018 European Astro Pi Challenge, in partnership with the European Space Agency. This year, for the first time, the Astro Pi Challenge comprised two missions: Mission Zero and Mission Space Lab.

Mission Zero is a new entry-level challenge that allows young coders to have their message displayed to the astronauts on-board the ISS. It finished up in February, with more than 5400 young people in over 2500 teams taking part!

Astro Pi Mission Space Lab logo

For Mission Space Lab, young people work like real scientists by designing their own experiment to investigate one of two topics:

Life in space

For this topic, young coders write code to run on Astro Pi Vis (Ed) in the Columbus module to investigate life aboard the ISS.

Life on Earth

For this topic, young people design a code experiment to run on Astro Pi IR (Izzy), aimed towards the Earth through a window, to investigate life down on our planet.

Our participants

We had more than 1400 students across 330 teams take part in this year’s Mission Space Lab. Teams who submitted an eligible idea for an experiment received an Astro Pi kit from ESA to develop their Python code. These kits contain the same hardware that’s aboard the ISS, enabling students to test their experiments in conditions similar to those on the space station. The best experiments were granted flight status earlier this year, and the code of these teams ran on the ISS in April.

And the winners are…

The teams received the results of their experiments and were asked to submit scientific reports based on their findings. Just a few weeks ago, 98 teams sent us brilliant reports, and we had the difficult task of whittling the pool of teams down to find the final ten winners!

As you can see in the video above, the winning teams were lucky enough to take part in a very special video conference with ESA Astronaut Tim Peake.


2017/18 Mission Space Lab winning teams

The Dark Side of Light from Branksome Hall, Canada, investigated whether the light pollution in an area could be used to determine the source of energy for the electricity consumption.

Spaceballs from Attert Lycée Redange, Luxembourg, successfully calculated the speed of the ISS by analysing ground photographs.

Enrico Fermi from Liceo XXV Aprile, Italy, investigated the link between the Astro Pi’s magnetometer and X-ray measurements from the GOES-15 satellite.

Team Aurora from Hyvinkään yhteiskoulun lukio, Finland, showed how the Astro Pi’s magnetometer could be used to map the Earth’s magnetic field and determine the latitude of the ISS.

@stroMega from Institut de Genech, France, used Astro Pi Izzy’s near-infrared Camera Module to measure the health and density of vegetation on Earth.

Ursa Major from a CoderDojo in Belgium created a program to autonomously measure the percentage of vegetation, water, and clouds in photographs from Astro Pi Izzy.

Canarias 1 from IES El Calero, Spain, built on existing data and successfully determined whether the ISS was eclipsed from on-board sensor data.

The Earth Watchers from S.T.E.M Robotics Academy, Greece, used Astro Pi Izzy to compare the health of vegetation in Quebec, Canada, and Guam.

Trentini DOP from CoderDojo Trento, Italy, investigated the stability of the on-board conditions of the ISS and whether or not they were effected by eclipsing.

Team Lampone from CoderDojo Trento, Italy, accurately measured the speed of the ISS by analysing ground photographs taken by Astro Pi Izzy.

Well done to everyone who took part, and massive congratulations to all the winners!

The post Tim Peake congratulates winning Mission Space Lab teams! appeared first on Raspberry Pi.

Astro Pi upgrades launch today!

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-upgrades-launch/

Before our beloved SpaceDave left the Raspberry Pi Foundation to join the ranks of the European Space Agency (ESA) — and no, we’re still not jealous *ahem* — he kindly drafted us one final blog post about the Astro Pi upgrades heading to the International Space Station today! So here it is. Enjoy!

We are very excited to announce that Astro Pi upgrades are on their way to the International Space Station! Back in September, we blogged about a small payload being launched to the International Space Station to upgrade the capabilities of our Astro Pi units.

Astro Pi Raspberry Pi International Space Station

Sneak peek

For the longest time, the payload was scheduled to be launched on SpaceX CRS 14 in February. However, the launch was delayed to April and so impacted the flight operations we have planned for running Mission Space Lab student experiments.

To avoid this, ESA had the payload transferred to Russian Soyuz MS-08 (54S), which is launching today to carry crew members Oleg Artemyev, Andrew Feustel, and Ricky Arnold to the ISS.

Ricky Arnold on Twitter

L-47 hours.

You can watch coverage of the launch on NASA TV from 4.30pm GMT this afternoon, with the launch scheduled for 5.44pm GMT. Check the NASA TV schedule for updates.

The upgrades

The pictures below show the flight hardware in its final configuration before loading onto the launch vehicle.

Wireless dongle in bag — Astro Pi upgrades

All access

With the wireless dongle, the Astro Pi units can be deployed in ISS locations other than the Columbus module, where they don’t have access to an Ethernet switch.

We are also sending some flexible optical filters. These are made from the same material as the blue square which is shipped with the Raspberry Pi NoIR Camera Module.

Optical filters in bag — Astro Pi upgrades

#bluefilter

So that future Astro Pi code will need to command fewer windows to download earth observation imagery to the ground, we’re also including some 32GB micro SD cards to replace the current 8GB cards.

Micro SD cards in bag — Astro Pi upgrades

More space in space

Tthe items above are enclosed in a large 8″ ziplock bag that has been designated the “AstroPi Kit”.

bag of Astro Pi upgrades

It’s ziplock bags all the way down up

Once the Soyuz docks with the ISS, this payload is one of the first which will be unpacked, so that the Astro Pi units can be upgraded and deployed ready to run your experiments!

More Astro Pi

Stay tuned for our next update in April, when student code is set to be run on the Astro Pi units as part of our Mission Space Lab programme. And to find out more about Astro Pi, head to the programme website.

The post Astro Pi upgrades launch today! appeared first on Raspberry Pi.

Our 2017 Annual Review

Post Syndicated from Oliver Quinlan original https://www.raspberrypi.org/blog/annual-review-2017/

Each year we take stock at the Raspberry Pi Foundation, looking back at what we’ve achieved over the previous twelve months. We’ve just published our Annual Review for 2017, reflecting on the progress we’ve made as a foundation and a community towards putting the power of digital making in the hands of people all over the world.

In the review, you can find out about all the different education programmes we run. Moreover, you can hear from people who have taken part, learned through making, and discovered they can do things with technology that they never thought they could.

Growing our reach

Our reach grew hugely in 2017, and the numbers tell this story.

By the end of 2017, we’d sold over 17 million Raspberry Pi computers, bringing tools for learning programming and physical computing to people all over the world.

Vibrant learning and making communities

Code Club grew by 2964 clubs in 2017, to over 10000 clubs across the world reaching over 150000 9- to 13-year-olds.

“The best moment is seeing a child discover something for the first time. It is amazing.”
– Code Club volunteer

In 2017 CoderDojo became part of the Raspberry Pi family. Over the year, it grew by 41% to 1556 active Dojos, involving nearly 40000 7- to 17-year-olds in creating with code and collaborating to learn about technology.

Raspberry Jams continued to grow, with 18700 people attending events organised by our amazing community members.



Supporting teaching and learning

We reached 208 projects in our online resources in 2017, and 8.5 million people visited these to get making.

“I like coding because it’s like a whole other language that you have to learn, and it creates something very interesting in the end.”
– Betty, Year 10 student

2017 was also the year we began offering online training courses. 19000 people joined us to learn about programming, physical computing, and running a Code Club.



Over 6800 young people entered Mission Zero and Mission Space Lab, 2017’s two Astro Pi challenges. They created code that ran on board the International Space Station or will run soon.

More than 600 educators joined our face-to-face Picademy training last year. Our community of Raspberry Pi Certified Educators grew to 1500, all leading digital making across schools, libraries, and other settings where young people learn.

Being social

Well over a million people follow us on social media, and in 2017 we’ve seen big increases in our YouTube and Instagram followings. We have been creating much more video content to share what we do with audiences on these and other social networks.

The future

It’s been a big year, as we continue to reach even more people. This wouldn’t be possible without the amazing work of volunteers and community members who do so much to create opportunities for others to get involved. Behind each of these numbers is a person discovering digital making for the first time, learning new skills, or succeeding with a project that makes a difference to something they care about.

You can read our 2017 Annual Review in full over on our About Us page.

The post Our 2017 Annual Review appeared first on Raspberry Pi.

Simulate sand with Adafruit’s newest project

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/simulate-sand-with-adafruits-newest-project/

The Ruiz brothers at Adafruit have used Phillip Burgess’s PixieDust code to turn a 64×64 LED Matrix and a Raspberry Pi Zero into an awesome sand toy that refuses to defy the laws of gravity. Here’s how to make your own.

BIG LED Sand Toy – Raspberry Pi RGB LED Matrix

Simulated LED Sand Physics! These LEDs interact with motion and looks like they’re affect by gravity. An Adafruit LED matrix displays the LEDs as little grains of sand which are driven by sampling an accelerometer with Raspberry Pi Zero!

Obey gravity

As the latest addition to their online learning system, Adafruit have produced the BIG LED Sand Toy, or as I like to call it, Have you seen this awesome thing Adafuit have made?

Adafruit Sand Toy Raspberry Pi

The build uses a Raspberry Pi Zero, a 64×64 LED matrix, the Adafruit RGB Matrix Bonnet, 3D-printed parts, and a few smaller peripherals. Find the entire tutorial, including downloadable STL files, on their website.

How does it work?

Alongside the aforementioned ingredients, the project utilises the Adafruit LIS3DH Triple-Axis Accelerometer. This sensor is packed with features, and it allows the Raspberry Pi to control the virtual sand depending on how the toy is moved.

Adafruit Sand Toy Raspberry Pi

The Ruiz brothers inserted an SD card loaded with Raspbian Lite into the Raspberry Pi Zero, installed the LED Matrix driver, cloned the Adafruit_PixieDust library, and then just executed the code. They created some preset modes, but once you’re comfortable with the project code, you’ll be able to add your own take on the project.

Accelerometers and Raspberry Pi

This isn’t the first time a Raspberry Pi has met an accelerometer: the two Raspberry Pis aboard the International Space Station for the Astro Pi mission both have accelerometers thanks to their Sense HATs.

Comprised of a bundle of sensors, an LED matrix, and a five-point joystick, the Sense HAT is a great tool for exploring your surroundings with the Raspberry Pi, as well as for using your surroundings to control the Pi. You can find a whole variety of Sense HAT–based projects and tutorials on our website.

Raspberry Pi Sense HAT Slug free resource

And if you’d like to try out the Sense HAT, including its onboard accelerometer, without purchasing one, head over to our online emulator, or use the emulator preinstalled on Raspbian.

The post Simulate sand with Adafruit’s newest project appeared first on Raspberry Pi.