Tag Archives: multi-factor authentication

Some quick thoughts on the public discussion regarding facial recognition and Amazon Rekognition this past week

Post Syndicated from Dr. Matt Wood original https://aws.amazon.com/blogs/aws/some-quick-thoughts-on-the-public-discussion-regarding-facial-recognition-and-amazon-rekognition-this-past-week/

We have seen a lot of discussion this past week about the role of Amazon Rekognition in facial recognition, surveillance, and civil liberties, and we wanted to share some thoughts.

Amazon Rekognition is a service we announced in 2016. It makes use of new technologies – such as deep learning – and puts them in the hands of developers in an easy-to-use, low-cost way. Since then, we have seen customers use the image and video analysis capabilities of Amazon Rekognition in ways that materially benefit both society (e.g. preventing human trafficking, inhibiting child exploitation, reuniting missing children with their families, and building educational apps for children), and organizations (enhancing security through multi-factor authentication, finding images more easily, or preventing package theft). Amazon Web Services (AWS) is not the only provider of services like these, and we remain excited about how image and video analysis can be a driver for good in the world, including in the public sector and law enforcement.

There have always been and will always be risks with new technology capabilities. Each organization choosing to employ technology must act responsibly or risk legal penalties and public condemnation. AWS takes its responsibilities seriously. But we believe it is the wrong approach to impose a ban on promising new technologies because they might be used by bad actors for nefarious purposes in the future. The world would be a very different place if we had restricted people from buying computers because it was possible to use that computer to do harm. The same can be said of thousands of technologies upon which we all rely each day. Through responsible use, the benefits have far outweighed the risks.

Customers are off to a great start with Amazon Rekognition; the evidence of the positive impact this new technology can provide is strong (and growing by the week), and we’re excited to continue to support our customers in its responsible use.

-Dr. Matt Wood, general manager of artificial intelligence at AWS

The 10 Most Viewed Security-Related AWS Knowledge Center Articles and Videos for November 2017

Post Syndicated from Maggie Burke original https://aws.amazon.com/blogs/security/the-10-most-viewed-security-related-aws-knowledge-center-articles-and-videos-for-november-2017/

AWS Knowledge Center image

The AWS Knowledge Center helps answer the questions most frequently asked by AWS Support customers. The following 10 Knowledge Center security articles and videos have been the most viewed this month. It’s likely you’ve wondered about a few of these topics yourself, so here’s a chance to learn the answers!

  1. How do I create an AWS Identity and Access Management (IAM) policy to restrict access for an IAM user, group, or role to a particular Amazon Virtual Private Cloud (VPC)?
    Learn how to apply a custom IAM policy to restrict IAM user, group, or role permissions for creating and managing Amazon EC2 instances in a specified VPC.
  2. How do I use an MFA token to authenticate access to my AWS resources through the AWS CLI?
    One IAM best practice is to protect your account and its resources by using a multi-factor authentication (MFA) device. If you plan use the AWS Command Line Interface (CLI) while using an MFA device, you must create a temporary session token.
  3. Can I restrict an IAM user’s EC2 access to specific resources?
    This article demonstrates how to link multiple AWS accounts through AWS Organizations and isolate IAM user groups in their own accounts.
  4. I didn’t receive a validation email for the SSL certificate I requested through AWS Certificate Manager (ACM)—where is it?
    Can’t find your ACM validation emails? Be sure to check the email address to which you requested that ACM send validation emails.
  5. How do I create an IAM policy that has a source IP restriction but still allows users to switch roles in the AWS Management Console?
    Learn how to write an IAM policy that not only includes a source IP restriction but also lets your users switch roles in the console.
  6. How do I allow users from another account to access resources in my account through IAM?
    If you have the 12-digit account number and permissions to create and edit IAM roles and users for both accounts, you can permit specific IAM users to access resources in your account.
  7. What are the differences between a service control policy (SCP) and an IAM policy?
    Learn how to distinguish an SCP from an IAM policy.
  8. How do I share my customer master keys (CMKs) across multiple AWS accounts?
    To grant another account access to your CMKs, create an IAM policy on the secondary account that grants access to use your CMKs.
  9. How do I set up AWS Trusted Advisor notifications?
    Learn how to receive free weekly email notifications from Trusted Advisor.
  10. How do I use AWS Key Management Service (AWS KMS) encryption context to protect the integrity of encrypted data?
    Encryption context name-value pairs used with AWS KMS encryption and decryption operations provide a method for checking ciphertext authenticity. Learn how to use encryption context to help protect your encrypted data.

The AWS Security Blog will publish an updated version of this list regularly going forward. You also can subscribe to the AWS Knowledge Center Videos playlist on YouTube.

– Maggie

Introducing AWS Directory Service for Microsoft Active Directory (Standard Edition)

Post Syndicated from Peter Pereira original https://aws.amazon.com/blogs/security/introducing-aws-directory-service-for-microsoft-active-directory-standard-edition/

Today, AWS introduced AWS Directory Service for Microsoft Active Directory (Standard Edition), also known as AWS Microsoft AD (Standard Edition), which is managed Microsoft Active Directory (AD) that is performance optimized for small and midsize businesses. AWS Microsoft AD (Standard Edition) offers you a highly available and cost-effective primary directory in the AWS Cloud that you can use to manage users, groups, and computers. It enables you to join Amazon EC2 instances to your domain easily and supports many AWS and third-party applications and services. It also can support most of the common use cases of small and midsize businesses. When you use AWS Microsoft AD (Standard Edition) as your primary directory, you can manage access and provide single sign-on (SSO) to cloud applications such as Microsoft Office 365. If you have an existing Microsoft AD directory, you can also use AWS Microsoft AD (Standard Edition) as a resource forest that contains primarily computers and groups, allowing you to migrate your AD-aware applications to the AWS Cloud while using existing on-premises AD credentials.

In this blog post, I help you get started by answering three main questions about AWS Microsoft AD (Standard Edition):

  1. What do I get?
  2. How can I use it?
  3. What are the key features?

After answering these questions, I show how you can get started with creating and using your own AWS Microsoft AD (Standard Edition) directory.

1. What do I get?

When you create an AWS Microsoft AD (Standard Edition) directory, AWS deploys two Microsoft AD domain controllers powered by Microsoft Windows Server 2012 R2 in your Amazon Virtual Private Cloud (VPC). To help deliver high availability, the domain controllers run in different Availability Zones in the AWS Region of your choice.

As a managed service, AWS Microsoft AD (Standard Edition) configures directory replication, automates daily snapshots, and handles all patching and software updates. In addition, AWS Microsoft AD (Standard Edition) monitors and automatically recovers domain controllers in the event of a failure.

AWS Microsoft AD (Standard Edition) has been optimized as a primary directory for small and midsize businesses with the capacity to support approximately 5,000 employees. With 1 GB of directory object storage, AWS Microsoft AD (Standard Edition) has the capacity to store 30,000 or more total directory objects (users, groups, and computers). AWS Microsoft AD (Standard Edition) also gives you the option to add domain controllers to meet the specific performance demands of your applications. You also can use AWS Microsoft AD (Standard Edition) as a resource forest with a trust relationship to your on-premises directory.

2. How can I use it?

With AWS Microsoft AD (Standard Edition), you can share a single directory for multiple use cases. For example, you can share a directory to authenticate and authorize access for .NET applications, Amazon RDS for SQL Server with Windows Authentication enabled, and Amazon Chime for messaging and video conferencing.

The following diagram shows some of the use cases for your AWS Microsoft AD (Standard Edition) directory, including the ability to grant your users access to external cloud applications and allow your on-premises AD users to manage and have access to resources in the AWS Cloud. Click the diagram to see a larger version.

Diagram showing some ways you can use AWS Microsoft AD (Standard Edition)--click the diagram to see a larger version

Use case 1: Sign in to AWS applications and services with AD credentials

You can enable multiple AWS applications and services such as the AWS Management Console, Amazon WorkSpaces, and Amazon RDS for SQL Server to use your AWS Microsoft AD (Standard Edition) directory. When you enable an AWS application or service in your directory, your users can access the application or service with their AD credentials.

For example, you can enable your users to sign in to the AWS Management Console with their AD credentials. To do this, you enable the AWS Management Console as an application in your directory, and then assign your AD users and groups to IAM roles. When your users sign in to the AWS Management Console, they assume an IAM role to manage AWS resources. This makes it easy for you to grant your users access to the AWS Management Console without needing to configure and manage a separate SAML infrastructure.

Use case 2: Manage Amazon EC2 instances

Using familiar AD administration tools, you can apply AD Group Policy objects (GPOs) to centrally manage your Amazon EC2 for Windows or Linux instances by joining your instances to your AWS Microsoft AD (Standard Edition) domain.

In addition, your users can sign in to your instances with their AD credentials. This eliminates the need to use individual instance credentials or distribute private key (PEM) files. This makes it easier for you to instantly grant or revoke access to users by using AD user administration tools you already use.

Use case 3: Provide directory services to your AD-aware workloads

AWS Microsoft AD (Standard Edition) is an actual Microsoft AD that enables you to run traditional AD-aware workloads such as Remote Desktop Licensing Manager, Microsoft SharePoint, and Microsoft SQL Server Always On in the AWS Cloud. AWS Microsoft AD (Standard Edition) also helps you to simplify and improve the security of AD-integrated .NET applications by using group Managed Service Accounts (gMSAs) and Kerberos constrained delegation (KCD).

Use case 4: SSO to Office 365 and other cloud applications

You can use AWS Microsoft AD (Standard Edition) to provide SSO for cloud applications. You can use Azure AD Connect to synchronize your users into Azure AD, and then use Active Directory Federation Services (AD FS) so that your users can access Microsoft Office 365 and other SAML 2.0 cloud applications by using their AD credentials.

Use case 5: Extend your on-premises AD to the AWS Cloud

If you already have an AD infrastructure and want to use it when migrating AD-aware workloads to the AWS Cloud, AWS Microsoft AD (Standard Edition) can help. You can use AD trusts to connect AWS Microsoft AD (Standard Edition) to your existing AD. This means your users can access AD-aware and AWS applications with their on-premises AD credentials, without needing you to synchronize users, groups, or passwords.

For example, your users can sign in to the AWS Management Console and Amazon WorkSpaces by using their existing AD user names and passwords. Also, when you use AD-aware applications such as SharePoint with AWS Microsoft AD (Standard Edition), your logged-in Windows users can access these applications without needing to enter credentials again.

3. What are the key features?

AWS Microsoft AD (Standard Edition) includes the features detailed in this section.

Extend your AD schema

With AWS Microsoft AD, you can run customized AD-integrated applications that require changes to your directory schema, which defines the structures of your directory. The schema is composed of object classes such as user objects, which contain attributes such as user names. AWS Microsoft AD lets you extend the schema by adding new AD attributes or object classes that are not present in the core AD attributes and classes.

For example, if you have a human resources application that uses employee badge color to assign specific benefits, you can extend the schema to include a badge color attribute in the user object class of your directory. To learn more, see How to Move More Custom Applications to the AWS Cloud with AWS Directory Service.

Create user-specific password policies

With user-specific password policies, you can apply specific restrictions and account lockout policies to different types of users in your AWS Microsoft AD (Standard Edition) domain. For example, you can enforce strong passwords and frequent password change policies for administrators, and use less-restrictive policies with moderate account lockout policies for general users.

Add domain controllers

You can increase the performance and redundancy of your directory by adding domain controllers. This can help improve application performance by enabling directory clients to load-balance their requests across a larger number of domain controllers.

Encrypt directory traffic

You can use AWS Microsoft AD (Standard Edition) to encrypt Lightweight Directory Access Protocol (LDAP) communication between your applications and your directory. By enabling LDAP over Secure Sockets Layer (SSL)/Transport Layer Security (TLS), also called LDAPS, you encrypt your LDAP communications end to end. This helps you to protect sensitive information you keep in your directory when it is accessed over untrusted networks.

Improve the security of signing in to AWS services by using multi-factor authentication (MFA)

You can improve the security of signing in to AWS services, such as Amazon WorkSpaces and Amazon QuickSight, by enabling MFA in your AWS Microsoft AD (Standard Edition) directory. With MFA, your users must enter a one-time passcode (OTP) in addition to their AD user names and passwords to access AWS applications and services you enable in AWS Microsoft AD (Standard Edition).

Get started

To get started, use the Directory Service console to create your first directory with just a few clicks. If you have not used Directory Service before, you may be eligible for a 30-day limited free trial.

Summary

In this blog post, I explained what AWS Microsoft AD (Standard Edition) is and how you can use it. With a single directory, you can address many use cases for your business, making it easier to migrate and run your AD-aware workloads in the AWS Cloud, provide access to AWS applications and services, and connect to other cloud applications. To learn more about AWS Microsoft AD, see the Directory Service home page.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about this blog post, start a new thread on the Directory Service forum.

– Peter

AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-cloudhsm-update-cost-effective-hardware-key-management/

Our customers run an incredible variety of mission-critical workloads on AWS, many of which process and store sensitive data. As detailed in our Overview of Security Processes document, AWS customers have access to an ever-growing set of options for encrypting and protecting this data. For example, Amazon Relational Database Service (RDS) supports encryption of data at rest and in transit, with options tailored for each supported database engine (MySQL, SQL Server, Oracle, MariaDB, PostgreSQL, and Aurora).

Many customers use AWS Key Management Service (KMS) to centralize their key management, with others taking advantage of the hardware-based key management, encryption, and decryption provided by AWS CloudHSM to meet stringent security and compliance requirements for their most sensitive data and regulated workloads (you can read my post, AWS CloudHSM – Secure Key Storage and Cryptographic Operations, to learn more about Hardware Security Modules, also known as HSMs).

Major CloudHSM Update
Today, building on what we have learned from our first-generation product, we are making a major update to CloudHSM, with a set of improvements designed to make the benefits of hardware-based key management available to a much wider audience while reducing the need for specialized operating expertise. Here’s a summary of the improvements:

Pay As You Go – CloudHSM is now offered under a pay-as-you-go model that is simpler and more cost-effective, with no up-front fees.

Fully Managed – CloudHSM is now a scalable managed service; provisioning, patching, high availability, and backups are all built-in and taken care of for you. Scheduled backups extract an encrypted image of your HSM from the hardware (using keys that only the HSM hardware itself knows) that can be restored only to identical HSM hardware owned by AWS. For durability, those backups are stored in Amazon Simple Storage Service (S3), and for an additional layer of security, encrypted again with server-side S3 encryption using an AWS KMS master key.

Open & Compatible  – CloudHSM is open and standards-compliant, with support for multiple APIs, programming languages, and cryptography extensions such as PKCS #11, Java Cryptography Extension (JCE), and Microsoft CryptoNG (CNG). The open nature of CloudHSM gives you more control and simplifies the process of moving keys (in encrypted form) from one CloudHSM to another, and also allows migration to and from other commercially available HSMs.

More Secure – CloudHSM Classic (the original model) supports the generation and use of keys that comply with FIPS 140-2 Level 2. We’re stepping that up a notch today with support for FIPS 140-2 Level 3, with security mechanisms that are designed to detect and respond to physical attempts to access or modify the HSM. Your keys are protected with exclusive, single-tenant access to tamper-resistant HSMs that appear within your Virtual Private Clouds (VPCs). CloudHSM supports quorum authentication for critical administrative and key management functions. This feature allows you to define a list of N possible identities that can access the functions, and then require at least M of them to authorize the action. It also supports multi-factor authentication using tokens that you provide.

AWS-Native – The updated CloudHSM is an integral part of AWS and plays well with other tools and services. You can create and manage a cluster of HSMs using the AWS Management Console, AWS Command Line Interface (CLI), or API calls.

Diving In
You can create CloudHSM clusters that contain 1 to 32 HSMs, each in a separate Availability Zone in a particular AWS Region. Spreading HSMs across AZs gives you high availability (including built-in load balancing); adding more HSMs gives you additional throughput. The HSMs within a cluster are kept in sync: performing a task or operation on one HSM in a cluster automatically updates the others. Each HSM in a cluster has its own Elastic Network Interface (ENI).

All interaction with an HSM takes place via the AWS CloudHSM client. It runs on an EC2 instance and uses certificate-based mutual authentication to create secure (TLS) connections to the HSMs.

At the hardware level, each HSM includes hardware-enforced isolation of crypto operations and key storage. Each customer HSM runs on dedicated processor cores.

Setting Up a Cluster
Let’s set up a cluster using the CloudHSM Console:

I click on Create cluster to get started, select my desired VPC and the subnets within it (I can also create a new VPC and/or subnets if needed):

Then I review my settings and click on Create:

After a few minutes, my cluster exists, but is uninitialized:

Initialization simply means retrieving a certificate signing request (the Cluster CSR):

And then creating a private key and using it to sign the request (these commands were copied from the Initialize Cluster docs and I have omitted the output. Note that ID identifies the cluster):

$ openssl genrsa -out CustomerRoot.key 2048
$ openssl req -new -x509 -days 365 -key CustomerRoot.key -out CustomerRoot.crt
$ openssl x509 -req -days 365 -in ID_ClusterCsr.csr   \
                              -CA CustomerRoot.crt    \
                              -CAkey CustomerRoot.key \
                              -CAcreateserial         \
                              -out ID_CustomerHsmCertificate.crt

The next step is to apply the signed certificate to the cluster using the console or the CLI. After this has been done, the cluster can be activated by changing the password for the HSM’s administrative user, otherwise known as the Crypto Officer (CO).

Once the cluster has been created, initialized and activated, it can be used to protect data. Applications can use the APIs in AWS CloudHSM SDKs to manage keys, encrypt & decrypt objects, and more. The SDKs provide access to the CloudHSM client (running on the same instance as the application). The client, in turn, connects to the cluster across an encrypted connection.

Available Today
The new HSM is available today in the US East (Northern Virginia), US West (Oregon), US East (Ohio), and EU (Ireland) Regions, with more in the works. Pricing starts at $1.45 per HSM per hour.

Jeff;

Top Ten Ways to Protect Yourself Against Phishing Attacks

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/top-ten-ways-protect-phishing-attacks/

It’s hard to miss the increasing frequency of phishing attacks in the news. Earlier this year, a major phishing attack targeted Google Docs users, and attempted to compromise at least one million Google Docs accounts. Experts say the “phish” was convincing and sophisticated, and even people who thought they would never be fooled by a phishing attack were caught in its net.

What is phishing?

Phishing attacks use seemingly trustworthy but malicious emails and websites to obtain your personal account or banking information. The attacks are cunning and highly effective because they often appear to come from an organization or business you actually use. The scam comes into play by tricking you into visiting a website you believe belongs to the trustworthy organization, but in fact is under the control of the phisher attempting to extract your private information.

Phishing attacks are once again in the news due to a handful of high profile ransomware incidents. Ransomware invades a user’s computer, encrypts their data files, and demands payment to decrypt the files. Ransomware most often makes its way onto a user’s computer through a phishing exploit, which gives the ransomware access to the user’s computer.

The best strategy against phishing is to scrutinize every email and message you receive and never to get caught. Easier said than done—even smart people sometimes fall victim to a phishing attack. To minimize the damage in an event of a phishing attack, backing up your data is the best ultimate defense and should be part of your anti-phishing and overall anti-malware strategy.

How do you recognize a phishing attack?

A phishing attacker may send an email seemingly from a reputable credit card company or financial institution that requests account information, often suggesting that there is a problem with your account. When users respond with the requested information, attackers can use it to gain access to the accounts.

The image below is a mockup of how a phishing attempt might appear. In this example, courtesy of Wikipedia, the bank is fictional, but in a real attempt the sender would use an actual bank, perhaps even the bank where the targeted victim does business. The sender is attempting to trick the recipient into revealing confidential information by getting the victim to visit the phisher’s website. Note the misspelling of the words “received” and “discrepancy” as recieved and discrepency. Misspellings sometimes are indications of a phishing attack. Also note that although the URL of the bank’s webpage appears to be legitimate, the hyperlink would actually take you to the phisher’s webpage, which would be altogether different from the URL displayed in the message.

By Andrew Levine – en:Image:PhishingTrustedBank.png, Public Domain, https://commons.wikimedia.org/w/index.php?curid=549747

Top ten ways to protect yourself against phishing attacks

  1. Always think twice when presented with a link in any kind of email or message before you click on it. Ask yourself whether the sender would ask you to do what it is requesting. Most banks and reputable service providers won’t ask you to reveal your account information or password via email. If in doubt, don’t use the link in the message and instead open a new webpage and go directly to the known website of the organization. Sign in to the site in the normal manner to verify that the request is legitimate.
  2. A good precaution is to always hover over a link before clicking on it and observe the status line in your browser to verify that the link in the text and the destination link are in fact the same.
  3. Phishers are clever, and they’re getting better all the time, and you might be fooled by a simple ruse to make you think the link is one you recognize. Links can have hard-to-detect misspellings that would result in visiting a site very different than what you expected.
  4. Be wary even of emails and message from people you know. It’s very easy to spoof an email so it appears to come from someone you know, or to create a URL that appears to be legitimate, but isn’t.

For example, let’s say that you work for roughmedia.com and you get an email from Chuck in accounting ([email protected]) that has an attachment for you, perhaps a company form you need to fill out. You likely wouldn’t notice in the sender address that the phisher has replaced the “m” in media with an “r” and an “n” that look very much like an “m.” You think it’s good old Chuck in finance and it’s actually someone “phishing” for you to open the attachment and infect your computer. This type of attack is known as “spear phishing” because it’s targeted at a specific individual and is using social engineering—specifically familiarity with the sender—as part of the scheme to fool you into trusting the attachment. This technique is by far the most successful on the internet today. (This example is based on Gimlet Media’s Reply All Podcast Episode, “What Kind of Idiot Gets Phished?“)

  1. Use anti-malware software, but don’t rely on it to catch all attacks. Phishers change their approach often to keep ahead of the software attack detectors.
  2. If you are asked to enter any valuable information, only do so if you’re on a secure connection. Look for the “https” prefix before the site URL, indicating the site is employing SSL (Secure Socket Layer). If there is no “s” after “http,” it’s best not to enter any confidential information.
By Fabio Lanari – Internet1.jpg by Rock1997 modified., GFDL, https://commons.wikimedia.org/w/index.php?curid=20995390
  1. Avoid logging in to online banks and similar services via public Wi-Fi networks. Criminals can compromise open networks with man-in-the-middle attacks that capture your information or spoof website addresses over the connection and redirect you to a fake page they control.
  2. Email, instant messaging, and gaming social channels are all possible vehicles to deliver phishing attacks, so be vigilant!
  3. Lay the foundation for a good defense by choosing reputable tech vendors and service providers that respect your privacy and take steps to protect your data. At Backblaze, we have full-time security teams constantly looking for ways to improve our security.
  4. When it is available, always take advantage of multi-factor verification to protect your accounts. The standard categories used for authentication are 1) something you know (e.g. your username and password), 2) something you are (e.g. your fingerprint or retina pattern), and 3) something you have (e.g. an authenticator app on your smartphone). An account that allows only a single factor for authentication is more susceptible to hacking than one that supports multiple factors. Backblaze supports multi-factor authentication to protect customer accounts.

Be a good internet citizen, and help reduce phishing and other malware attacks by notifying the organization being impersonated in the phishing attempt, or by forwarding suspicious messages to the Federal Trade Commission at [email protected]. Some email clients and services, such as Microsoft Outlook and Google Gmail, give you the ability to easily report suspicious emails. Phishing emails misrepresenting Apple can be reported to [email protected].

Backing up your data is an important part of a strong defense against phishing and other malware

The best way to avoid becoming a victim is to be vigilant against suspicious messages and emails, but also to assume that no matter what you do, it is very possible that your system will be compromised. Even the most sophisticated and tech-savvy of us can be ensnared if we are tired, in a rush, or just unfamiliar with the latest methods hackers are using. Remember that hackers are working full-time on ways to fool us, so it’s very difficult to keep ahead of them.

The best defense is to make sure that any data that could compromised by hackers—basically all of the data that is reachable via your computer—is not your only copy. You do that by maintaining an active and reliable backup strategy.

Files that are backed up to cloud storage, such as with Backblaze, are not vulnerable to attacks on your local computer in the way that local files, attached drives, network drives, or sync services like Dropbox that have local directories on your computer are.

In the event that your computer is compromised and your files are lost or encrypted, you can recover your files if you have a cloud backup that is beyond the reach of attacks on your computer.

The post Top Ten Ways to Protect Yourself Against Phishing Attacks appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

New Information in the AWS IAM Console Helps You Follow IAM Best Practices

Post Syndicated from Rob Moncur original https://aws.amazon.com/blogs/security/newly-updated-features-in-the-aws-iam-console-help-you-adhere-to-iam-best-practices/

Today, we added new information to the Users section of the AWS Identity and Access Management (IAM) console to make it easier for you to follow IAM best practices. With this new information, you can more easily monitor users’ activity in your AWS account and identify access keys and passwords that you should rotate regularly. You can also better audit users’ MFA device usage and keep track of their group memberships. In this post, I show how you can use this new information to help you follow IAM best practices.

Monitor activity in your AWS account

The IAM best practice, monitor activity in your AWS account, encourages you to monitor user activity in your AWS account by using services such as AWS CloudTrail and AWS Config. In addition to monitoring usage in your AWS account, you should be aware of inactive users so that you can remove them from your account. By only retaining necessary users, you can help maintain the security of your AWS account.

To help you find users that are inactive, we added three new columns to the IAM user table: Last activity, Console last sign-in, and Access key last used.
Screenshot showing three new columns in the IAM user table

  1. Last activity – This column tells you how long it has been since the user has either signed in to the AWS Management Console or accessed AWS programmatically with their access keys. Use this column to find users who might be inactive, and consider removing them from your AWS account.
  2. Console last sign-in – This column displays the time since the user’s most recent console sign-in. Consider removing passwords from users who are not signing in to the console.
  3. Access key last used – This column displays the time since a user last used access keys. Use this column to find any access keys that are not being used, and deactivate or remove them.

Rotate credentials regularly

The IAM best practice, rotate credentials regularly, recommends that all users in your AWS account change passwords and access keys regularly. With this practice, if a password or access key is compromised without your knowledge, you can limit how long the credentials can be used to access your resources. To help your management efforts, we added three new columns to the IAM user table: Access key age, Password age, and Access key ID.

Screenshot showing three new columns in the IAM user table

  1. Access key age – This column shows how many days it has been since the oldest active access key was created for a user. With this information, you can audit access keys easily across all your users and identify the access keys that may need to be rotated.

Based on the number of days since the access key has been rotated, a green, yellow, or red icon is displayed. To see the corresponding time frame for each icon, pause your mouse pointer on the Access key age column heading to see the tooltip, as shown in the following screenshot.

Icons showing days since the oldest active access key was created

  1. Password age – This column shows the number of days since a user last changed their password. With this information, you can audit password rotation and identify users who have not changed their password recently. The easiest way to make sure that your users are rotating their password often is to establish an account password policy that requires users to change their password after a specified time period.
  2. Access key ID – This column displays the access key IDs for users and the current status (Active/Inactive) of those access key IDs. This column makes it easier for you to locate and see the state of access keys for each user, which is useful for auditing. To find a specific access key ID, use the search box above the table.

Enable MFA for privileged users

Another IAM best practice is to enable multi-factor authentication (MFA) for privileged IAM users. With MFA, users have a device that generates a unique authentication code (a one-time password [OTP]). Users must provide both their normal credentials (such as their user name and password) and the OTP when signing in.

To help you see if MFA has been enabled for your users, we’ve improved the MFA column to show you if MFA is enabled and which type of MFA (hardware, virtual, or SMS) is enabled for each user, where applicable.

Screenshot showing the improved "MFA" column

Use groups to assign permissions to IAM users

Instead of defining permissions for individual IAM users, it’s usually more convenient to create groups that relate to job functions (such as administrators, developers, and accountants), define the relevant permissions for each group, and then assign IAM users to those groups. All the users in an IAM group inherit the permissions assigned to the group. This way, if you need to modify permissions, you can make the change once for everyone in a group instead of making the change one time for each user. As people move around in your company, you can change the group membership of the IAM user.

To better understand which groups your users belong to, we’ve made updates:

  1. Groups – This column now lists the groups of which a user is a member. This information makes it easier to understand and compare multiple users’ permissions at once.
  2. Group count – This column shows the number of groups to which each user belongs.Screenshot showing the updated "Groups" and "Group count" columns

Customize your view

Choosing which columns you see in the User table is easy to do. When you click the button with the gear icon in the upper right corner of the table, you can choose the columns you want to see, as shown in the following screenshots.

Screenshot showing gear icon  Screenshot of "Manage columns" dialog box

Conclusion

We made these improvements to the Users section of the IAM console to make it easier for you to follow IAM best practices in your AWS account. Following these best practices can help you improve the security of your AWS resources and make your account easier to manage.

If you have comments about this post, submit them in the “Comments” section below. If you have questions or suggestions, please start a new thread on the IAM forum.

– Rob

Amazon Chime Update – Use Your Existing Active Directory, Claim Your Domain

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-chime-update-use-your-existing-active-directory-claim-your-domain/

I first told you about Amazon Chime this past February (Amazon Chime – Unified Communications Service) and told you how I connect and collaborate with people all over the world.

Since the launch, Amazon Chime has quickly become the communication tool of choice within the AWS team. I participate in multiple person-to-person and group chats throughout the day, and frequently “Chime In” to Amazon Chime-powered conferences to discuss upcoming launches and speaking opportunities.

Today we are adding two new features to Amazon Chime: the ability to claim a domain as your own and support for your existing Active Directory.

Claiming a Domain
Claiming a domain gives you the authority to manage Amazon Chime usage for all of the users in the domain. You can make sure that new employees sign up for Amazon Chime in an official fashion and you can suspend accounts for employees that leave the organization.

To claim a domain, you assert that you own a particular domain name and then back up the assertion by entering a TXT record to your domain’s DNS entry. You must do this for each domain and subdomain that your organization uses for email addresses.

Here’s how I would claim one of my own domains:

After I click on Verify this domain, Amazon Chime provides me with the record for my DNS:

After I do this, the domain’s status will change to Pending Verification. Once Amazon Chime has confirmed that the new record exists as expected, the status will change to Verified and the team account will become an enterprise account.

Active Directory Support
This feature allows your users to sign in to Amazon Chime using their existing Active Directory identity and credentials. After you have set it up, you can enable and take advantage of advanced AD security features such as password rotation, password complexity rules, and multi-factor authentication. You can also control the allocation of Amazon Chime’s Plus and Pro licenses on a group-by-group basis (check out Plans and Pricing to learn more about each type of license).

In order to use this feature, you must be using an Amazon Chime enterprise account. If you are using a team account, follow the directions at Create an Enterprise Account before proceeding.

Then you will need to set up a directory with the AWS Directory Service. You have two options at this point:

  1. Use the AWS Directory Service AD Connector to connect to your existing on-premises Active Directory instance.
  2. Use Microsoft Active Directory, configured for standalone use. Read How to Create a Microsoft AD Directory for more information on this option.

After you have set up your directory, you can connect to it from within the Amazon Chime console by clicking on Settings and Active directory and choosing your directory from the drop-down:

After you have done this you can select individual groups within the directory and assign the appropriate subscriptions (Plus or Pro) on a group-by-group basis.

With everything set up as desired, your users can log in to Amazon Chime using their existing directory credentials.

These new features are available now and you can start using them today!

If you would like to learn more about Amazon Chime, you can watch the recent AWS Tech Talk: Modernize Meetings with Amazon Chime:

Here is the presentation from the talk:

Jeff;

 

Announcing the Availability of Hardware Multi-Factor Authentication in the AWS GovCloud (US) Region

Post Syndicated from Craig Liebendorfer original https://aws.amazon.com/blogs/security/announcing-the-availability-of-hardware-multi-factor-authentication-in-the-aws-govcloud-us-region/

AWS GovCloud (US) Region image

Hardware multi-factor authentication (MFA) is now available in the AWS GovCloud (US) Region to help strengthen data security while giving you control over token keys that have access to your data. MFA is a best practice that adds an extra layer of protection on top of users’ user names and passwords.

These token keys that are specific to the AWS GovCloud (US) Region are distributed by SurePassID, a third-party digital security company, and implement the Initiative for Open Authentication Time-Based One-Time Password (OATH TOTP) standard. SurePassID tokens are available for purchase on Amazon.com.

For more information about hardware MFA in the AWS GovCloud (US) Region, see the AWS Public Sector Blog post.

– Craig