Tag Archives: students

Raspberry Jam Cameroon #PiParty

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/raspberry-jam-cameroon-piparty/

Earlier this year on 3 and 4 March, communities around the world held Raspberry Jam events to celebrate Raspberry Pi’s sixth birthday. We sent out special birthday kits to participating Jams — it was amazing to know the kits would end up in the hands of people in parts of the world very far from Raspberry Pi HQ in Cambridge, UK.

The Raspberry Jam Camer team: Damien Doumer, Eyong Etta, Loïc Dessap and Lionel Sichom, aka Lionel Tellem

Preparing for the #PiParty

One birthday kit went to Yaoundé, the capital of Cameroon. There, a team of four students in their twenties — Lionel Sichom (aka Lionel Tellem), Eyong Etta, Loïc Dessap, and Damien Doumer — were organising Yaoundé’s first Jam, called Raspberry Jam Camer, as part of the Raspberry Jam Big Birthday Weekend. The team knew one another through their shared interests and skills in electronics, robotics, and programming. Damien explains in his blog post about the Jam that they planned ahead for several activities for the Jam based on their own projects, so they could be confident of having a few things that would definitely be successful for attendees to do and see.

Show-and-tell at Raspberry Jam Cameroon

Loïc presented a Raspberry Pi–based, Android app–controlled robot arm that he had built, and Lionel coded a small video game using Scratch on Raspberry Pi while the audience watched. Damien demonstrated the possibilities of Windows 10 IoT Core on Raspberry Pi, showing how to install it, how to use it remotely, and what you can do with it, including building a simple application.

Loïc Dessap, wearing a Raspberry Jam Big Birthday Weekend T-shirt, sits at a table with a robot arm, a laptop with a Pi sticker and other components. He is making an adjustment to his set-up.

Loïc showcases the prototype robot arm he built

There was lots more too, with others discussing their own Pi projects and talking about the possibilities Raspberry Pi offers, including a Pi-controlled drone and car. Cake was a prevailing theme of the Raspberry Jam Big Birthday Weekend around the world, and Raspberry Jam Camer made sure they didn’t miss out.

A round pink-iced cake decorated with the words "Happy Birthday RBP" and six candles, on a table beside Raspberry Pi stickers, Raspberry Jam stickers and Raspberry Jam fliers

Yay, birthday cake!!

A big success

Most visitors to the Jam were secondary school students, while others were university students and graduates. The majority were unfamiliar with Raspberry Pi, but all wanted to learn about Raspberry Pi and what they could do with it. Damien comments that the fact most people were new to Raspberry Pi made the event more interactive rather than creating any challenges, because the visitors were all interested in finding out about the little computer. The Jam was an all-round success, and the team was pleased with how it went:

What I liked the most was that we sensitized several people about the Raspberry Pi and what one can be capable of with such a small but powerful device. — Damien Doumer

The Jam team rounded off the event by announcing that this was the start of a Raspberry Pi community in Yaoundé. They hope that they and others will be able to organise more Jams and similar events in the area to spread the word about what people can do with Raspberry Pi, and to help them realise their ideas.

The Raspberry Jam Camer team, wearing Raspberry Jam Big Birthday Weekend T-shirts, pose with young Jam attendees outside their venue

Raspberry Jam Camer gets the thumbs-up

The Raspberry Pi community in Cameroon

In a French-language interview about their Jam, the team behind Raspberry Jam Camer said they’d like programming to become the third official language of Cameroon, after French and English; their aim is to to popularise programming and digital making across Cameroonian society. Neither of these fields is very familiar to most people in Cameroon, but both are very well aligned with the country’s ambitions for development. The team is conscious of the difficulties around the emergence of information and communication technologies in the Cameroonian context; in response, they are seizing the opportunities Raspberry Pi offers to give children and young people access to modern and constantly evolving technology at low cost.

Thanks to Lionel, Eyong, Damien, and Loïc, and to everyone who helped put on a Jam for the Big Birthday Weekend! Remember, anyone can start a Jam at any time — and we provide plenty of resources to get you started. Check out the Guidebook, the Jam branding pack, our specially-made Jam activities online (in multiple languages), printable worksheets, and more.

The post Raspberry Jam Cameroon #PiParty appeared first on Raspberry Pi.

Sending Inaudible Commands to Voice Assistants

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/sending_inaudib.html

Researchers have demonstrated the ability to send inaudible commands to voice assistants like Alexa, Siri, and Google Assistant.

Over the last two years, researchers in China and the United States have begun demonstrating that they can send hidden commands that are undetectable to the human ear to Apple’s Siri, Amazon’s Alexa and Google’s Assistant. Inside university labs, the researchers have been able to secretly activate the artificial intelligence systems on smartphones and smart speakers, making them dial phone numbers or open websites. In the wrong hands, the technology could be used to unlock doors, wire money or buy stuff online ­– simply with music playing over the radio.

A group of students from University of California, Berkeley, and Georgetown University showed in 2016 that they could hide commands in white noise played over loudspeakers and through YouTube videos to get smart devices to turn on airplane mode or open a website.

This month, some of those Berkeley researchers published a research paper that went further, saying they could embed commands directly into recordings of music or spoken text. So while a human listener hears someone talking or an orchestra playing, Amazon’s Echo speaker might hear an instruction to add something to your shopping list.

Puerto Rico’s First Raspberry Pi Educator Workshop

Post Syndicated from Dana Augustin original https://www.raspberrypi.org/blog/puerto-rico-raspberry-pi-workshop/

Earlier this spring, an excited group of STEM educators came together to participate in the first ever Raspberry Pi and Arduino workshop in Puerto Rico.

Their three-day digital making adventure was led by MakerTechPR’s José Rullán and Raspberry Pi Certified Educator Alex Martínez. They ran the event as part of the Robot Makers challenge organized by Yees! and sponsored by Puerto Rico’s Department of Economic Development and Trade to promote entrepreneurial skills within Puerto Rico’s education system.

Over 30 educators attended the workshop, which covered the use of the Raspberry Pi 3 as a computer and digital making resource. The educators received a kit consisting of a Raspberry Pi 3 with an Explorer HAT Pro and an Arduino Uno. At the end of the workshop, the educators were able to keep the kit as a demonstration unit for their classrooms. They were enthusiastic to learn new concepts and immerse themselves in the world of physical computing.

In their first session, the educators were introduced to the Raspberry Pi as an affordable technology for robotic clubs. In their second session, they explored physical computing and the coding languages needed to control the Explorer HAT Pro. They started off coding with Scratch, with which some educators had experience, and ended with controlling the GPIO pins with Python. In the final session, they learned how to develop applications using the powerful combination of Arduino and Raspberry Pi for robotics projects. This gave them a better understanding of how they could engage their students in physical computing.

“The Raspberry Pi ecosystem is the perfect solution in the classroom because to us it is very resourceful and accessible.” – Alex Martínez

Computer science and robotics courses are important for many schools and teachers in Puerto Rico. The simple idea of programming a microcontroller from a $35 computer increases the chances of more students having access to more technology to create things.

Puerto Rico’s education system has faced enormous challenges after Hurricane Maria, including economic collapse and the government’s closure of many schools due to the exodus of families from the island. By attending training like this workshop, educators in Puerto Rico are becoming more experienced in fields like robotics in particular, which are key for 21st-century skills and learning. This, in turn, can lead to more educational opportunities, and hopefully the reopening of more schools on the island.

“We find it imperative that our children be taught STEM disciplines and skills. Our goal is to continue this work of spreading digital making and computer science using the Raspberry Pi around Puerto Rico. We want our children to have the best education possible.” – Alex Martínez

After attending Picademy in 2016, Alex has integrated the Raspberry Pi Foundation’s online resources into his classroom. He has also taught small workshops around the island and in the local Puerto Rican makerspace community. José is an electrical engineer, entrepreneur, educator and hobbyist who enjoys learning to use technology and sharing his knowledge through projects and challenges.

The post Puerto Rico’s First Raspberry Pi Educator Workshop appeared first on Raspberry Pi.

Bell/TSN Letter to University Connects Site-Blocking Support to Students’ Futures

Post Syndicated from Andy original https://torrentfreak.com/bell-tsn-letter-to-university-connects-site-blocking-support-to-students-futures-180510/

In January, a coalition of Canadian companies called on local telecoms regulator CRTC to implement a website-blocking regime in Canada.

The coalition, Fairplay Canada, is a collection of organizations and companies with ties to the entertainment industries and includes Bell, Cineplex, Directors Guild of Canada, Maple Leaf Sports and Entertainment, Movie Theatre Association of Canada, and Rogers Media. Its stated aim is to address Canada’s online piracy problems.

While CTRC reviews FairPlay Canada’s plans, the coalition has been seeking to drum up support for the blocking regime, encouraging a diverse range of supporters to send submissions endorsing the project. Of course, building a united front among like-minded groups is nothing out of the ordinary but a situation just uncovered by Canadian law Professor Micheal Geist, one of the most vocal opponents of the proposed scheme, is bound to raise eyebrows.

Geist discovered a submission by Brian Hutchings, who works as Vice-President, Administration at Brock University in Ontario. Dated March 22, 2018, it notes that one of the university’s most sought-after programs is Sports Management, which helps Brock’s students to become “the lifeblood” of Canada’s sport and entertainment industries.

“Our University is deeply alarmed at how piracy is eroding an industry that employs so many of our co-op students and graduates. Piracy is a serious, pervasive threat that steals creativity, undermines investment in content development and threatens the survival of an industry that is also part of our national identity,” the submission reads.

“Brock ardently supports the FairPlay Canada coalition of more than 25 organizations involved in every aspect of Canada’s film, TV, radio, sports entertainment and music industries. Specifically, we support the coalition’s request that the CRTC introduce rules that would disable access in Canada to the most egregious piracy sites, similar to measures that have been taken in the UK, France and Australia. We are committed to assist the members of the coalition and the CRTC in eliminating the theft of digital content.”

The letter leaves no doubt that Brock University as a whole stands side-by-side with Fairplay Canada but according to a subsequent submission signed by Michelle Webber, President, Brock University Faculty Association (BUFA), nothing could be further from the truth.

Noting that BUFA unanimously supports the position of the Canadian Association of University Teachers which opposes the FairPlay proposal, Webber adds that BUFA stands in opposition to the submission by Brian Hutchings on behalf of Brock University.

“Vice President Hutching’s intervention was undertaken without consultation with the wider Brock University community, including faculty, librarians, and Senate; therefore, his submission should not be seen as indicative of the views of Brock University as a whole.”

BUFA goes on to stress the importance of an open Internet to researchers and educators while raising concerns that the blocking proposals could threaten the principles of net neutrality in Canada.

While the undermining of Hutching’s position is embarrassing enough, via access to information laws Geist has also been able to reveal the chain of events that prompted the Vice-President to write a letter of support on behalf of the whole university.

It began with an email sent by former Brock professor Cheri Bradish to Mark Milliere, TSN’s Senior Vice President and General Manager, with Hutchings copied in. The idea was to connect the pair, with the suggestion that supporting the site-blocking plan would help to mitigate the threat to “future work options” for students.

What followed was a direct email from Mark Milliere to Brian Hutchings, in which the former laid out the contributions his company makes to the university, while again suggesting that support for site-blocking would be in the long-term interests of students seeking employment in the industry.

On March 23, Milliere wrote to Hutchings again, thanking him for “a terrific letter” and stating that “If you need anything from TSN, just ask.”

This isn’t the first time that Bell has asked those beholden to the company to support its site-blocking plans.

Back in February it was revealed that the company had asked its own employees to participate in the site-blocking submission process, without necessarily revealing their affiliations with the company.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Hello World Issue 5: Engineering

Post Syndicated from Russell Barnes original https://www.raspberrypi.org/blog/hello-world-issue-5/

Join us as we celebrate the Year of Engineering in the newest issue of Hello World, our magazine for computing and digital making educators.

 

Inspiring future engineers

We’ve brought together a wide range of experts to share their ideas and advice on how to bring engineering to your classroom — read issue 5 to find out the best ways to inspire the next generation.



Plus we’ve got plenty on GP and Scratch, we answer your latest questions, and we bring you our usual collection of useful features, guides, and lesson plans.

Highlights of issue 5 include:

  • The bluffers’ guide to putting together a tech-themed school trip
  • Inclusion, and coding for the visually impaired
  • Getting students interested in databases
  • Why copying may not always be a bad thing

How to get Hello World #5

Hello World is available as a free download under a Creative Commons license for everyone in world who is interested in computer science and digital making education. Get the latest issue as a PDF file straight from the Hello World website.

We’re currently offering free print copies of the magazine to serving educators in the UK. This offer is open to teachers, Code Club and CoderDojo volunteers, teaching assistants, teacher trainers, and others who help children and young people learn about computing and digital making. Subscribe to have your free print magazine posted directly to your home, or subscribe digitally — 20000 educators have already signed up to receive theirs!

Get in touch!

You could write for us about your experiences as an educator, and share your advice with the community. Wherever you are in the world, get in touch by emailing our editorial team about your article idea — we would love to hear from you!

Hello World magazine is a collaboration between the Raspberry Pi Foundation and Computing At School, which is part of the British Computing Society.

The post Hello World Issue 5: Engineering appeared first on Raspberry Pi.

3D-printed speakers from the Technical University of Denmark

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/technical-university-denmark-speakers/

Students taking Design of Mechatronics at the Technical University of Denmark have created some seriously elegant and striking Raspberry Pi speakers. Their builds are part of a project asking them to “explore, design and build a 3D printed speaker, around readily available electronics and components”.

The students have been uploading their designs, incorporating Raspberry Pis and HiFiBerry HATs, to Thingiverse throughout April. The task is a collaboration with luxury brand Bang & Olufsen’s Create initiative, and the results wouldn’t look out of place in a high-end showroom; I’d happily take any of these home.

The Sphere

Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker

Søren Qvist’s wall-mounted kitchen sphere uses 3D-printed and laser-cut parts, along with the HiFiBerry HAT and B&O speakers to create a sleek-looking design.

Hex One

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann’s group have designed the Hex One – a work-in-progress wireless 360° speaker. A particular objective for their project is to create a speaker using as many 3D-printed parts as possible.

Portable B&O-Create Speaker



“The design is supposed to resemble that of a B&O speaker, and from a handful of categories we chose to create a portable and wearable speaker,” explain Gustav Larsen and his team.

Desktop Loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens and team have housed a Raspberry Pi and HiFiBerry HAT inside this this stylish airplay speaker. You can follow their design progress on their team blog.

B&O TILE



Tue Thomsen’s six-person team Mechatastic have produced the B&O TILE. “The speaker consists of four 3D-printed cabinet and top parts, where the top should be covered by fabric,” they explain. “The speaker insides consists of laser-cut wood to hold the tweeter and driver and encase the Raspberry Pi.”

The team aimed to design a speaker that would be at home in a kitchen. With a removable upper casing allowing for a choice of colour, the TILE can be customised to fit particular tastes and colour schemes.

Build your own speakers with Raspberry Pis

Raspberry Pi’s onboard audio jack, along with third-party HATs such as the HiFiBerry and Pimoroni Speaker pHAT, make speaker design and fabrication with the Pi an interesting alternative to pre-made tech. These builds don’t tend to be technically complex, and they provide some lovely examples of tech-based projects that reflect makers’ own particular aesthetic style.

If you have access to a 3D printer or a laser cutter, perhaps at a nearby maker space, then those can be excellent resources, but fancy kit isn’t a requirement. Basic joinery and crafting with card or paper are just a couple of ways you can build things that are all your own, using familiar tools and materials. We think more people would enjoy getting hands-on with this sort of thing if they gave it a whirl, and we publish a free magazine to help.

Raspberry Pi Zero AirPlay Speaker

Looking for a new project to build around the Raspberry Pi Zero, I came across the pHAT DAC from Pimoroni. This little add-on board adds audio playback capabilities to the Pi Zero. Because the pHAT uses the GPIO pins, the USB OTG port remains available for a wifi dongle.

This video by Frederick Vandenbosch is a great example of building AirPlay speakers using a Pi and HAT, and a quick search will find you lots more relevant tutorials and ideas.

Have you built your own? Share your speaker-based Pi builds with us in the comments.

The post 3D-printed speakers from the Technical University of Denmark appeared first on Raspberry Pi.

Own your own working Pokémon Pokédex!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-pokedex/

Squeal with delight as your inner Pokémon trainer witnesses the wonder of Adrian Rosebrock’s deep learning Pokédex.

Creating a real-life Pokedex with a Raspberry Pi, Python, and Deep Learning

This video demos a real-like Pokedex, complete with visual recognition, that I created using a Raspberry Pi, Python, and Deep Learning. You can find the entire blog post, including code, using this link: https://www.pyimagesearch.com/2018/04/30/a-fun-hands-on-deep-learning-project-for-beginners-students-and-hobbyists/ Music credit to YouTube user “No Copyright” for providing royalty free music: https://www.youtube.com/watch?v=PXpjqURczn8

The history of Pokémon in 30 seconds

The Pokémon franchise was created by video game designer Satoshi Tajiri in 1995. In the fictional world of Pokémon, Pokémon Trainers explore the vast landscape, catching and training small creatures called Pokémon. To date, there are 802 different types of Pokémon. They range from the ever recognisable Pikachu, a bright yellow electric Pokémon, to the highly sought-after Shiny Charizard, a metallic, playing-card-shaped Pokémon that your mate Alex claims she has in mint condition, but refuses to show you.

Pokemon GIF

In the world of Pokémon, children as young as ten-year-old protagonist and all-round annoyance Ash Ketchum are allowed to leave home and wander the wilderness. There, they hunt vicious, deadly creatures in the hope of becoming a Pokémon Master.

Adrian’s deep learning Pokédex

Adrian is a bit of a deep learning pro, as demonstrated by his Santa/Not Santa detector, which we wrote about last year. For that project, he also provided a great explanation of what deep learning actually is. In a nutshell:

…a subfield of machine learning, which is, in turn, a subfield of artificial intelligence (AI).While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

As with his earlier Raspberry Pi project, Adrian uses the Keras deep learning model and the TensorFlow backend, plus a few other packages such as Adrian’s own imutils functions and OpenCV.

Adrian trained a Convolutional Neural Network using Keras on a dataset of 1191 Pokémon images, obtaining 96.84% accuracy. As Adrian explains, this model is able to identify Pokémon via still image and video. It’s perfect for creating a Pokédex – an interactive Pokémon catalogue that should, according to the franchise, be able to identify and read out information on any known Pokémon when captured by camera. More information on model training can be found on Adrian’s blog.

Adrian Rosebeck deep learning pokemon pokedex

For the physical build, a Raspberry Pi 3 with camera module is paired with the Raspberry Pi 7″ touch display to create a portable Pokédex. And while Adrian comments that the same result can be achieved using your home computer and a webcam, that’s not how Adrian rolls as a Raspberry Pi fan.

Adrian Rosebeck deep learning pokemon pokedex

Plus, the smaller size of the Pi is perfect for one of you to incorporate this deep learning model into a 3D-printed Pokédex for ultimate Pokémon glory, pretty please, thank you.

Adrian Rosebeck deep learning pokemon pokedex

Adrian has gone into impressive detail about how the project works and how you can create your own on his blog, pyimagesearch. So if you’re interested in learning more about deep learning, and making your own Pokédex, be sure to visit.

The post Own your own working Pokémon Pokédex! appeared first on Raspberry Pi.

Security Vulnerabilities in VingCard Electronic Locks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/security_vulner_14.html

Researchers have disclosed a massive vulnerability in the VingCard eletronic lock system, used in hotel rooms around the world:

With a $300 Proxmark RFID card reading and writing tool, any expired keycard pulled from the trash of a target hotel, and a set of cryptographic tricks developed over close to 15 years of on-and-off analysis of the codes Vingcard electronically writes to its keycards, they found a method to vastly narrow down a hotel’s possible master key code. They can use that handheld Proxmark device to cycle through all the remaining possible codes on any lock at the hotel, identify the correct one in about 20 tries, and then write that master code to a card that gives the hacker free reign to roam any room in the building. The whole process takes about a minute.

[…]

The two researchers say that their attack works only on Vingcard’s previous-generation Vision locks, not the company’s newer Visionline product. But they estimate that it nonetheless affects 140,000 hotels in more than 160 countries around the world; the researchers say that Vingcard’s Swedish parent company, Assa Abloy, admitted to them that the problem affects millions of locks in total. When WIRED reached out to Assa Abloy, however, the company put the total number of vulnerable locks somewhat lower, between 500,000 and a million.

Patching is a nightmare. It requires updating the firmware on every lock individually.

And the researchers speculate whether or not others knew of this hack:

The F-Secure researchers admit they don’t know if their Vinguard attack has occurred in the real world. But the American firm LSI, which trains law enforcement agencies in bypassing locks, advertises Vingcard’s products among those it promises to teach students to unlock. And the F-Secure researchers point to a 2010 assassination of a Palestinian Hamas official in a Dubai hotel, widely believed to have been carried out by the Israeli intelligence agency Mossad. The assassins in that case seemingly used a vulnerability in Vingcard locks to enter their target’s room, albeit one that required re-programming the lock. “Most probably Mossad has a capability to do something like this,” Tuominen says.

Slashdot post.

Tackling climate change and helping the community

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/fair-haven-weather-station/

In today’s guest post, seventh-grade students Evan Callas, Will Ross, Tyler Fallon, and Kyle Fugate share their story of using the Raspberry Pi Oracle Weather Station in their Innovation Lab class, headed by Raspberry Pi Certified Educator Chris Aviles.

Raspberry Pi Certified Educator Chris Aviles Innovation Lab Oracle Weather Station

United Nations Sustainable Goals

The past couple of weeks in our Innovation Lab class, our teacher, Mr Aviles, has challenged us students to design a project that helps solve one of the United Nations Sustainable Goals. We chose Climate Action. Innovation Lab is a class that gives students the opportunity to learn about where the crossroads of technology, the environment, and entrepreneurship meet. Everyone takes their own paths in innovation and learns about the environment using project-based learning.

Raspberry Pi Certified Educator Chris Aviles Innovation Lab Oracle Weather Station

Raspberry Pi Oracle Weather Station

For our climate change challenge, we decided to build a Raspberry Pi Oracle Weather Station. Tackling the issues of climate change in a way that helps our community stood out to us because we knew with the help of this weather station we can send the local data to farmers and fishermen in town. Recent changes in climate have been affecting farmers’ crops. Unexpected rain, heat, and other unusual weather patterns can completely destabilize the natural growth of the plants and destroy their crops altogether. The amount of labour output needed by farmers has also significantly increased, forcing farmers to grow more food on less resources. By using our Raspberry Pi Oracle Weather Station to alert local farmers, they can be more prepared and aware of the weather, leading to better crops and safe boating.

Raspberry Pi Certified Educator Chris Aviles Innovation Lab Oracle Weather Station

Growing teamwork and coding skills

The process of setting up our weather station was fun and simple. Raspberry Pi made the instructions very easy to understand and read, which was very helpful for our team who had little experience in coding or physical computing. We enjoyed working together as a team and were happy to be growing our teamwork skills.

Once we constructed and coded the weather station, we learned that we needed to support the station with PVC pipes. After we completed these steps, we brought the weather station up to the roof of the school and began collecting data. Our information is currently being sent to the Initial State dashboard so that we can share the information with anyone interested. This information will also be recorded and seen by other schools, businesses, and others from around the world who are using the weather station. For example, we can see the weather in countries such as France, Greece and Italy.

Raspberry Pi Certified Educator Chris Aviles Innovation Lab Oracle Weather Station

Raspberry Pi allows us to build these amazing projects that help us to enjoy coding and physical computing in a fun, engaging, and impactful way. We picked climate change because we care about our community and would like to make a substantial contribution to our town, Fair Haven, New Jersey. It is not every day that kids are given these kinds of opportunities, and we are very lucky and grateful to go to a school and learn from a teacher where these opportunities are given to us. Thanks, Mr Aviles!

To see more awesome projects by Mr Avile’s class, you can keep up with him on his blog and follow him on Twitter.

The post Tackling climate change and helping the community appeared first on Raspberry Pi.

Announcing Coolest Projects North America

Post Syndicated from Courtney Lentz original https://www.raspberrypi.org/blog/coolest-projects-north-america/

The Raspberry Pi Foundation loves to celebrate people who use technology to solve problems and express themselves creatively, so we’re proud to expand the incredibly successful event Coolest Projects to North America. This free event will be held on Sunday 23 September 2018 at the Discovery Cube Orange County in Santa Ana, California.

Coolest Projects North America logo Raspberry Pi CoderDojo

What is Coolest Projects?

Coolest Projects is a world-leading showcase that empowers and inspires the next generation of digital creators, innovators, changemakers, and entrepreneurs. The event is both a competition and an exhibition to give young digital makers aged 7 to 17 a platform to celebrate their successes, creativity, and ingenuity.

showcase crowd — Coolest Projects North America

In 2012, Coolest Projects was conceived as an opportunity for CoderDojo Ninjas to showcase their work and for supporters to acknowledge these achievements. Week after week, Ninjas would meet up to work diligently on their projects, hacks, and code; however, it can be difficult for them to see their long-term progress on a project when they’re concentrating on its details on a weekly basis. Coolest Projects became a dedicated time each year for Ninjas and supporters to reflect, celebrate, and share both the achievements and challenges of the maker’s journey.

three female coolest projects attendees — Coolest Projects North America

Coolest Projects North America

Not only is Coolest Projects expanding to North America, it’s also expanding its participant pool! Members of our team have met so many amazing young people creating in all areas of the world, that it simply made sense to widen our outreach to include Code Clubs, students of Raspberry Pi Certified Educators, and members of the Raspberry Jam community at large as well as CoderDojo attendees.

 a boy showing a technology project to an old man, with a girl playing on a laptop on the floor — Coolest Projects North America

Exhibit and attend Coolest Projects

Coolest Projects is a free, family- and educator-friendly event. Young people can apply to exhibit their projects, and the general public can register to attend this one-day event. Be sure to register today, because you make Coolest Projects what it is: the coolest.

The post Announcing Coolest Projects North America appeared first on Raspberry Pi.

Colour sensing with a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/colour-sensing-raspberry-pi/

In their latest video and tutorial, Electronic Hub shows you how to detect colour using a Raspberry Pi and a TCS3200 colour sensor.

Raspberry Pi Color Sensor (TCS3200) Interface | Color Detector

A simple Raspberry Pi based project using TCS3200 Color Sensor. The project demonstrates how to interface a Color Sensor (like TCS3200) with Raspberry Pi and implement a simple Color Detector using Raspberry Pi.

What is a TCS3200 colour sensor?

Colour sensors sense reflected light from nearby objects. The bright light of the TCS3200’s on-board white LEDs hits an object’s surface and is reflected back. The sensor has an 8×8 array of photodiodes, which are covered by either a red, blue, green, or clear filter. The type of filter determines what colour a diode can detect. Then the overall colour of an object is determined by how much light of each colour it reflects. (For example, a red object reflects mostly red light.)

Colour sensing with the TCS3200 Color Sensor and a Raspberry Pi

As Electronics Hub explains:

TCS3200 is one of the easily available colour sensors that students and hobbyists can work on. It is basically a light-to-frequency converter, i.e. based on colour and intensity of the light falling on it, the frequency of its output signal varies.

I’ll save you a physics lesson here, but you can find a detailed explanation of colour sensing and the TCS3200 on the Electronics Hub blog.

Raspberry Pi colour sensor

The TCS3200 colour sensor is connected to several of the onboard General Purpose Input Output (GPIO) pins on the Raspberry Pi.

Colour sensing with the TCS3200 Color Sensor and a Raspberry Pi

These connections allow the Raspberry Pi 3 to run one of two Python scripts that Electronics Hub has written for the project. The first displays the RAW RGB values read by the sensor. The second detects the primary colours red, green, and blue, and it can be expanded for more colours with the help of the first script.

Colour sensing with the TCS3200 Color Sensor and a Raspberry Pi

Electronic Hub’s complete build uses a breadboard for simply prototyping

Use it in your projects

This colour sensing setup is a simple means of adding a new dimension to your builds. Why not build a candy-sorting robot that organises your favourite sweets by colour? Or add colour sensing to your line-following buggy to allow for multiple path options!

If your Raspberry Pi project uses colour sensing, we’d love to see it, so be sure to share it in the comments!

The post Colour sensing with a Raspberry Pi appeared first on Raspberry Pi.

Artefacts in the classroom with Museum in a Box

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/museum-in-a-box/

Museum in a Box bridges the gap between museums and schools by creating a more hands-on approach to conservation education through 3D printing and digital making.

Artefacts in the classroom with Museum in a Box || Raspberry Pi Stories

Learn more: http://rpf.io/ Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Fantastic collections and where to find them

Large, impressive statues are truly a sight to be seen. Take for example the 2.4m Hoa Hakananai’a at the British Museum. Its tall stature looms over you as you read its plaque to learn of the statue’s journey from Easter Island to the UK under the care of Captain Cook in 1774, and you can’t help but wonder at how it made it here in one piece.

Hoa Hakananai’a Captain Cook British Museum
Hoa Hakananai’a Captain Cook British Museum

But unless you live near a big city where museums are plentiful, you’re unlikely to see the likes of Hoa Hakananai’a in person. Instead, you have to content yourself with online photos or videos of world-famous artefacts.

And that only accounts for the objects that are on display: conservators estimate that only approximately 5 to 10% of museums’ overall collections are actually on show across the globe. The rest is boxed up in storage, inaccessible to the public due to risk of damage, or simply due to lack of space.

Museum in a Box

Museum in a Box aims to “put museum collections and expert knowledge into your hand, wherever you are in the world,” through modern maker practices such as 3D printing and digital making. With the help of the ‘Scan the World’ movement, an “ambitious initiative whose mission is to archive objects of cultural significance using 3D scanning technologies”, the Museum in a Box team has been able to print small, handheld replicas of some of the world’s most recognisable statues and sculptures.

Museum in a Box Raspberry Pi

Each 3D print gets NFC tags so it can initiate audio playback from a Raspberry Pi that sits snugly within the laser-cut housing of a ‘brain box’. Thus the print can talk directly to us through the magic of wireless technology, replacing the dense, dry text of a museum plaque with engaging speech.

Museum in a Box Raspberry Pi

The Museum in a Box team headed by CEO George Oates (featured in the video above) makes use of these 3D-printed figures alongside original artefacts, postcards, and more to bridge the gap between large, crowded, distant museums and local schools. Modeled after the museum handling collections that used to be sent to schools, Museum in a Box is a cheaper, more accessible alternative. Moreover, it not only allows for hands-on learning, but also encourages children to get directly involved by hacking its technology! With NFC technology readily available to the public, students can curate their own collections about their local area, record their own messages, and send their own box-sized museums on to schools in other towns or countries. In this way, Museum in a Box enables students to explore, and expand the reach of, their own histories.

Moving forward

With the technology perfected and interest in the project ever-growing, Museum in a Box has a busy year ahead. Supporting the new ‘Unstacked’ learning initiative, the team will soon be delivering ten boxes to the Smithsonian Libraries. The team has curated two collections specifically for this: an exploration into Asia-Pacific America experiences of migration to the USA throughout the 20th century, and a look into the history of science.

Smithsonian Library Museum in a Box Raspberry Pi

The team will also be making a box for the British Museum to support their Iraq Scheme initiative, and another box will be heading to the V&A to support their See Red programme. While primarily installed in the Lansbury Micro Museum, the box will also take to the road to visit the local Spotlight high school.

Museum in a Box at Raspberry Fields

Lastly, by far the most exciting thing the Museum in a Box team will be doing this year — in our opinion at least — is showcasing at Raspberry Fields! This is our brand-new festival of digital making that’s taking place on 30 June and 1 July 2018 here in Cambridge, UK. Find more information about it and get your ticket here.

The post Artefacts in the classroom with Museum in a Box appeared first on Raspberry Pi.

Community profile: Dave Akerman

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-dave-akerman/

This column is from The MagPi issue 61. You can download a PDF of the full issue for free, or subscribe to receive the print edition through your letterbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve our charitable goals.

The pinned tweet on Dave Akerman’s Twitter account shows a table displaying the various components needed for a high-altitude balloon (HAB) flight. Batteries, leads, a camera and Raspberry Pi, plus an unusually themed payload. The caption reads ‘The Queen, The Duke of York, and my TARDIS”, and sums up Dave’s maker career in a heartbeat.

David Akerman on Twitter

The Queen, The Duke of York, and my TARDIS 🙂 #UKHAS #RaspberryPi

Though writing software for industrial automation pays the bills, the majority of Dave’s time is spent in the world of high-altitude ballooning and the ever-growing community that encompasses it. And, while he makes some money sending business-themed balloons to near space for the likes of Aardman Animations, Confused.com, and the BBC, Dave is best known in the Raspberry Pi community for his use of the small computer in every payload, and his work as a tutor alongside the Foundation’s staff at Skycademy events.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave continues to help others while breaking records and having a good time exploring the atmosphere.

Dave has dedicated many hours and many, many more miles to assist with the Foundation’s Skycademy programme, helping to explore high-altitude ballooning with educators from across the UK. Using a Raspberry Pi and various other pieces of lightweight tech, Dave and Foundation staff member James Robinson explored the incorporation of high-altitude ballooning into education. Through Skycademy, educators were able to learn new skills and take them to the classroom, setting off their own balloons with their students, and recording the results on Raspberry Pis.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave’s most recent flight broke a new record. On 13 August 2017, his HAB payload was able to send back the highest images taken by any amateur flight.

But education isn’t the only reason for Dave’s involvement in the HAB community. As with anyone passionate about a specific hobby, Dave strives to break records. The most recent record-breaking flight took place on 13 August 2017, when Dave’s Raspberry Pi Zero HAB sent home the highest images taken by any amateur high-altitude balloon launch: at 43014 metres. No other HAB balloon has provided images from such an altitude, and the lightweight nature of the Pi Zero definitely helped, as Dave went on to mention on Twitter a few days later.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave is recognised as being the first person to incorporate a Raspberry Pi into a HAB payload, and continues to break records with the help of the little green board. More recently, he’s been able to lighten the load by using the Raspberry Pi Zero.

When the first Pi made its way to near space, Dave tore the computer apart in order to meet the weight restriction. The Pi in the Sky board was created to add the extra features needed for the flight. Since then, the HAT has experienced a few changes.

Dave Akerman The MagPi Raspberry Pi Community Profile

The Pi in the Sky board, created specifically for HAB flights.

Dave first fell in love with high-altitude ballooning after coming across the hobby in a video shared on a photographic forum. With a lifelong interest in space thanks to watching the Moon landings as a boy, plus a talent for electronics and photography, it seems a natural progression for him. Throw in his coding skills from learning to program on a Teletype and it’s no wonder he was ready and eager to take to the skies, so to speak, and capture the curvature of the Earth. What was so great about using the Raspberry Pi was the instant gratification he got from receiving images in real time as they were taken during the flight. While other devices could control a camera and store captured images for later retrieval, thanks to the Pi Dave was able to transmit the files back down to Earth and check the progress of his balloon while attempting to break records with a flight.

Dave Akerman The MagPi Raspberry Pi Community Profile Morph

One of the many commercial flights Dave has organised featured the classic children’s TV character Morph, a creation of the Aardman Animations studio known for Wallace and Gromit. Morph took to the sky twice in his mission to reach near space, and finally succeeded in 2016.

High-altitude ballooning isn’t the only part of Dave’s life that incorporates a Raspberry Pi. Having “lost count” of how many Pis he has running tasks, Dave has also created radio receivers for APRS (ham radio data), ADS-B (aircraft tracking), and OGN (gliders), along with a time-lapse camera in his garden, and he has a few more Pi for tinkering purposes.

The post Community profile: Dave Akerman appeared first on Raspberry Pi.

Pi 3B+: 48 hours later

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/3b-plus-aftermath/

Unless you’ve been AFK for the last two days, you’ll no doubt be aware of the release of the brand-spanking-new Raspberry Pi 3 Model B+. With faster connectivity, more computing power, Power over Ethernet (PoE) pins, and the same $35 price point, the new board has been a hit across all our social media accounts! So while we wind down from launch week, let’s all pull up a chair, make yet another cup of coffee, and look through some of our favourite reactions from the last 48 hours.

Twitter

Our Twitter mentions were refreshing at hyperspeed on Wednesday, as you all began to hear the news and spread the word about the newest member to the Raspberry Pi family.

Tanya Fish on Twitter

Happy Pi Day, people! New @Raspberry_Pi 3B+ is out.

News outlets, maker sites, and hobbyists published posts and articles about the new Pi’s spec upgrades and their plans for the device.

Hackster.io on Twitter

This sort of attention to detail work is exactly what I love about being involved with @Raspberry_Pi. We’re squeezing the last drops of performance out of the 40nm process node, and perfecting Pi 3 in the same way that the original B+ perfected Pi 1.” https://t.co/hEj7JZOGeZ

And I think we counted about 150 uses of this GIF on Twitter alone:

YouTube

Andy Warburton 👾 on Twitter

Is something going on with the @Raspberry_Pi today? You’d never guess from my YouTube subscriptions page… 😀

A few members of our community were lucky enough to get their hands on a 3B+ early, and sat eagerly by the YouTube publish button, waiting to release their impressions of our new board to the world. Others, with no new Pi in hand yet, posted reaction vids to the launch, discussing their plans for the upgraded Pi and comparing statistics against its predecessors.

New Raspberry Pi 3 B+ (2018) Review and Speed Tests

Happy Pi Day World! There is a new Raspberry Pi 3, the B+! In this video I will review the new Pi 3 B+ and do some speed tests. Let me know in the comments if you are getting one and what you are planning on making with it!

Long-standing community members such as The Raspberry Pi Guy, Alex “RasPi.TV” Eames, and Michael Horne joined Adafruit, element14, and RS Components (whose team produced the most epic 3B+ video we’ve seen so far), and makers Tinkernut and Estefannie Explains It All in sharing their thoughts, performance tests, and baked goods on the big day.

What’s new on the Raspberry Pi 3 B+

It’s Pi day! Sorry, wondrous Mathematical constant, this day is no longer about you. The Raspberry Pi foundation just released a new version of the Raspberry Pi called the Rapsberry Pi B+.

If you have a YouTube or Vimeo channel, or if you create videos for other social media channels, and have published your impressions of the new Raspberry Pi, be sure to share a link with us so we can see what you think!

Instagram

We shared a few photos and videos on Instagram, and over 30000 of you checked out our Instagram Story on the day.

Some glamour shots of the latest member of the #RaspberryPi family – the Raspberry Pi 3 Model B+ . Will you be getting one? What are your plans for our newest Pi?

5,609 Likes, 103 Comments – Raspberry Pi (@raspberrypifoundation) on Instagram: “Some glamour shots of the latest member of the #RaspberryPi family – the Raspberry Pi 3 Model B+ ….”

As hot off the press (out of the oven? out of the solder bath?) Pi 3B+ boards start to make their way to eager makers’ homes, they are all broadcasting their excitement, and we love seeing what they plan to get up to with it.

The new #raspberrypi 3B+ suits the industrial setting. Check out my website for #RPI3B Vs RPI3BPlus network speed test. #NotEnoughTECH #network #test #internet

8 Likes, 1 Comments – Mat (@notenoughtech) on Instagram: “The new #raspberrypi 3B+ suits the industrial setting. Check out my website for #RPI3B Vs RPI3BPlus…”

The new Raspberry Pi 3 Model B+ is here and will be used for our Python staging server for our APIs #raspberrypi #pythoncode #googleadwords #shopify #datalayer

16 Likes, 3 Comments – Rob Edlin (@niddocks) on Instagram: “The new Raspberry Pi 3 Model B+ is here and will be used for our Python staging server for our APIs…”

In the news

Eben made an appearance on ITV Anglia on Wednesday, talking live on Facebook about the new Raspberry Pi.

ITV Anglia

As the latest version of the Raspberry Pi computer is launched in Cambridge, Dr Eben Upton talks about the inspiration of Professor Stephen Hawking and his legacy to science. Add your questions in…

He was also fortunate enough to spend the morning with some Sixth Form students from the local area.

Sascha Williams on Twitter

On a day where science is making the headlines, lovely to see the scientists of the future in our office – getting tips from fab @Raspberry_Pi founder @EbenUpton #scientists #RaspberryPi #PiDay2018 @sirissac6thform

Principal Hardware Engineer Roger Thornton will also make a live appearance online this week: he is co-hosting Hack Chat later today. And of course, you can see more of Roger and Eben in the video where they discuss the new 3B+.

Introducing the Raspberry Pi 3 Model B+

Raspberry Pi 3 Model B+ is now on sale now for $35.

It’s been a supremely busy week here at Pi Towers and across the globe in the offices of our Approved Resellers, and seeing your wonderful comments and sharing in your excitement has made it all worth it. Please keep it up, and be sure to share the arrival of your 3B+ as well as the projects into which you’ll be integrating them.

If you’d like to order a Raspberry Pi 3 Model B+, you can do so via our product page. And if you have any questions at all regarding the 3B+, the conversation is still taking place in the comments of Wednesday’s launch post, so head on over.

The post Pi 3B+: 48 hours later appeared first on Raspberry Pi.

Transition from Scratch to Python with FutureLearn

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/futurelearn-scratch-to-python/

With the launch of our first new free online course of 2018 — Scratch to Python: Moving from Block- to Text-based Programming — two weeks away, I thought this would be a great opportunity to introduce you to the ins and outs of the course content so you know what to expect.

FutureLearn: Moving from Scratch to Python

Learn how to apply the thinking and programming skills you’ve learnt in Scratch to text-based programming languages like Python.

Take the plunge into text-based programming

The idea for this course arose from our conversations with educators who had set up a Code Club in their schools. Most people start a club by teaching Scratch, a block-based programming language, because it allows learners to drag and drop blocks of pre-written code into a window to create a program. The blocks automatically snap together, making it easy to build fun and educational projects that don’t require much troubleshooting. You can do almost anything a beginner could wish for with Scratch, even physical computing to control LEDs, buzzers, buttons, motors, and more!

Scratch to Python FutureLearn Raspberry Pi

However, on our face-to-face training programme Picademy, educators told us that they were finding it hard to engage children who had outgrown Scratch and needed a new challenge. It was easy for me to imagine: a young learner, who once felt confident about programming using Scratch, is now confused by the alien, seemingly awkward interface of Python. What used to take them minutes in Scratch now takes them hours to code, and they start to lose interest — not a good result, I’m sure you’ll agree. I wanted to help educators to navigate this period in their learners’ development, and so I’ve written a course that shows you how to take the programming and thinking skills you and your learners have developed in Scratch, and apply them to Python.

Scratch to Python FutureLearn Raspberry Pi

Who is the course for?

Educators from all backgrounds who are working with secondary school-aged learners. It will also be interesting to anyone who has spent time working with Scratch and wants to understand how programming concepts translate between different languages.

“It was great fun, and I thought that the ideas and resources would be great to use with Year 7 classes.”
Sue Grey, Classroom Teacher

What is covered?

After showing you the similarities and differences of Scratch and Python, and how the skills learned using one can be applied to the other, we will look at turning more complex Scratch scripts into Python programs. Through creating a Mad Libs game and developing a username generator, you will see how programs can be simplified in a text-based language. We will give you our top tips for debugging Python code, and you’ll have the chance to share your ideas for introducing more complex programs to your students.

Scratch to Python FutureLearn Raspberry Pi

After that, we will look at different data types in Python and write a script to calculate how old you are in dog years. Finally, you’ll dive deeper into the possibilities of Python by installing and using external Python libraries to perform some amazing tasks.

By the end of the course, you’ll be able to:

  • Transfer programming and thinking skills from Scratch to Python
  • Use fundamental Python programming skills
  • Identify errors in your Python code based on error messages, and debug your scripts
  • Produce tools to support students’ transition from block-based to text-based programming
  • Understand the power of text-based programming and what you can create with it

Where can I sign up?

The free four-week course starts on 12 March 2018, and you can sign up now on FutureLearn. While you’re there, be sure to check out our other free courses, such as Prepare to Run a Code Club, Teaching Physical Computing with a Raspberry Pi and Python, and our second new course Build a Makerspace for Young People — more information on it will follow in tomorrow’s blog post.

The post Transition from Scratch to Python with FutureLearn appeared first on Raspberry Pi.

Mission Space Lab flight status announced!

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/mission-space-lab-flight-status-announced/

In September of last year, we launched our 2017/2018 Astro Pi challenge with our partners at the European Space Agency (ESA). Students from ESA membership and associate countries had the chance to design science experiments and write code to be run on one of our two Raspberry Pis on the International Space Station (ISS).

Astro Pi Mission Space Lab logo

Submissions for the Mission Space Lab challenge have just closed, and the results are in! Students had the opportunity to design an experiment for one of the following two themes:

  • Life in space
    Making use of Astro Pi Vis (Ed) in the European Columbus module to learn about the conditions inside the ISS.
  • Life on Earth
    Making use of Astro Pi IR (Izzy), which will be aimed towards the Earth through a window to learn about Earth from space.

ESA astronaut Alexander Gerst, speaking from the replica of the Columbus module at the European Astronaut Center in Cologne, has a message for all Mission Space Lab participants:

ESA astronaut Alexander Gerst congratulates Astro Pi 2017-18 winners

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Flight status

We had a total of 212 Mission Space Lab entries from 22 countries. Of these, a 114 fantastic projects have been given flight status, and the teams’ project code will run in space!

But they’re not winners yet. In April, the code will be sent to the ISS, and then the teams will receive back their experimental data. Next, to get deeper insight into the process of scientific endeavour, they will need produce a final report analysing their findings. Winners will be chosen based on the merit of their final report, and the winning teams will get exclusive prizes. Check the list below to see if your team got flight status.

Belgium

Flight status achieved:

  • Team De Vesten, Campus De Vesten, Antwerpen
  • Ursa Major, CoderDojo Belgium, West-Vlaanderen
  • Special operations STEM, Sint-Claracollege, Antwerpen

Canada

Flight status achieved:

  • Let It Grow, Branksome Hall, Toronto
  • The Dark Side of Light, Branksome Hall, Toronto
  • Genie On The ISS, Branksome Hall, Toronto
  • Byte by PIthons, Youth Tech Education Society & Kid Code Jeunesse, Edmonton
  • The Broadviewnauts, Broadview, Ottawa

Czech Republic

Flight status achieved:

  • BLEK, Střední Odborná Škola Blatná, Strakonice

Denmark

Flight status achieved:

  • 2y Infotek, Nærum Gymnasium, Nærum
  • Equation Quotation, Allerød Gymnasium, Lillerød
  • Team Weather Watchers, Allerød Gymnasium, Allerød
  • Space Gardners, Nærum Gymnasium, Nærum

Finland

Flight status achieved:

  • Team Aurora, Hyvinkään yhteiskoulun lukio, Hyvinkää

France

Flight status achieved:

  • INC2, Lycée Raoul Follereau, Bourgogne
  • Space Project SP4, Lycée Saint-Paul IV, Reunion Island
  • Dresseurs2Python, clg Albert CAMUS, essonne
  • Lazos, Lycée Aux Lazaristes, Rhone
  • The space nerds, Lycée Saint André Colmar, Alsace
  • Les Spationautes Valériquais, lycée de la Côte d’Albâtre, Normandie
  • AstroMega, Institut de Genech, north
  • Al’Crew, Lycée Algoud-Laffemas, Auvergne-Rhône-Alpes
  • AstroPython, clg Albert CAMUS, essonne
  • Aruden Corp, Lycée Pablo Neruda, Normandie
  • HeroSpace, clg Albert CAMUS, essonne
  • GalaXess [R]evolution, Lycée Saint Cricq, Nouvelle-Aquitaine
  • AstroBerry, clg Albert CAMUS, essonne
  • Ambitious Girls, Lycée Adam de Craponne, PACA

Germany

Flight status achieved:

  • Uschis, St. Ursula Gymnasium Freiburg im Breisgau, Breisgau
  • Dosi-Pi, Max-Born-Gymnasium Germering, Bavaria

Greece

Flight status achieved:

  • Deep Space Pi, 1o Epal Grevenon, Grevena
  • Flox Team, 1st Lyceum of Kifissia, Attiki
  • Kalamaria Space Team, Second Lyceum of Kalamaria, Central Macedonia
  • The Earth Watchers, STEM Robotics Academy, Thessaly
  • Celestial_Distance, Gymnasium of Kanithos, Sterea Ellada – Evia
  • Pi Stars, Primary School of Rododaphne, Achaias
  • Flarions, 5th Primary School of Salamina, Attica

Ireland

Flight status achieved:

  • Plant Parade, Templeogue College, Leinster
  • For Peats Sake, Templeogue College, Leinster
  • CoderDojo Clonakilty, Co. Cork

Italy

Flight status achieved:

  • Trentini DOP, CoderDojo Trento, TN
  • Tarantino Space Lab, Liceo G. Tarantino, BA
  • Murgia Sky Lab, Liceo G. Tarantino, BA
  • Enrico Fermi, Liceo XXV Aprile, Veneto
  • Team Lampone, CoderDojoTrento, TN
  • GCC, Gali Code Club, Trentino Alto Adige/Südtirol
  • Another Earth, IISS “Laporta/Falcone-Borsellino”
  • Anti Pollution Team, IIS “L. Einaudi”, Sicily
  • e-HAND, Liceo Statale Scientifico e Classico ‘Ettore Majorana’, Lombardia
  • scossa team, ITTS Volterra, Venezia
  • Space Comet Sisters, Scuola don Bosco, Torino

Luxembourg

Flight status achieved:

  • Spaceballs, Atert Lycée Rédange, Diekirch
  • Aline in space, Lycée Aline Mayrisch Luxembourg (LAML)

Poland

Flight status achieved:

  • AstroLeszczynPi, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • Astrokompasy, High School nr XVII in Wrocław named after Agnieszka Osiecka, Lower Silesian
  • Cosmic Investigators, Publiczna Szkoła Podstawowa im. Św. Jadwigi Królowej w Rzezawie, Małopolska
  • ApplePi, III Liceum Ogólnokształcące im. prof. T. Kotarbińskiego w Zielonej Górze, Lubusz Voivodeship
  • ELE Society 2, Zespol Szkol Elektronicznych i Samochodowych, Lubuskie
  • ELE Society 1, Zespol Szkol Elektronicznych i Samochodowych, Lubuskie
  • SpaceOn, Szkola Podstawowa nr 12 w Jasle – Gimnazjum Nr 2, Podkarpackie
  • Dewnald Ducks, III Liceum Ogólnokształcące w Zielonej Górze, lubuskie
  • Nova Team, III Liceum Ogolnoksztalcace im. prof. T. Kotarbinskiego, lubuskie district
  • The Moons, Szkola Podstawowa nr 12 w Jasle – Gimnazjum Nr 2, Podkarpackie
  • Live, Szkoła Podstawowa nr 1 im. Tadeusza Kościuszki w Zawierciu, śląskie
  • Storm Hunters, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • DeepSky, Szkoła Podstawowa nr 1 im. Tadeusza Kościuszki w Zawierciu, śląskie
  • Small Explorers, ZPO Konina, Malopolska
  • AstroZSCL, Zespół Szkół w Czerwionce-Leszczynach, śląskie
  • Orchestra, Szkola Podstawowa nr 12 w Jasle, Podkarpackie
  • ApplePi, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • Green Crew, Szkoła Podstawowa nr 2 w Czeladzi, Silesia

Portugal

Flight status achieved:

  • Magnetics, Escola Secundária João de Deus, Faro
  • ECA_QUEIROS_PI, Secondary School Eça de Queirós, Lisboa
  • ESDMM Pi, Escola Secundária D. Manuel Martins, Setúbal
  • AstroPhysicists, EB 2,3 D. Afonso Henriques, Braga

Romania

Flight status achieved:

  • Caelus, “Tudor Vianu” National High School of Computer Science, District One
  • CodeWarriors, “Tudor Vianu” National High School of Computer Science, District One
  • Dark Phoenix, “Tudor Vianu” National High School of Computer Science, District One
  • ShootingStars, “Tudor Vianu” National High School of Computer Science, District One
  • Astro Pi Carmen Sylva 2, Liceul Teoretic “Carmen Sylva”, Constanta
  • Astro Meridian, Astro Club Meridian 0, Bihor

Slovenia

Flight status achieved:

  • astrOSRence, OS Rence
  • Jakopičevca, Osnovna šola Riharda Jakopiča, Ljubljana

Spain

Flight status achieved:

  • Exea in Orbit, IES Cinco Villas, Zaragoza
  • Valdespartans, IES Valdespartera, Zaragoza
  • Valdespartans2, IES Valdespartera, Zaragoza
  • Astropithecus, Institut de Bruguers, Barcelona
  • SkyPi-line, Colegio Corazón de María, Asturias
  • ClimSOLatic, Colegio Corazón de María, Asturias
  • Científicosdelsaz, IES Profesor Pablo del Saz, Málaga
  • Canarias 2, IES El Calero, Las Palmas
  • Dreamers, M. Peleteiro, A Coruña
  • Canarias 1, IES El Calero, Las Palmas

The Netherlands

Flight status achieved:

  • Team Kaki-FM, Rkbs De Reiger, Noord-Holland

United Kingdom

Flight status achieved:

  • Binco, Teignmouth Community School, Devon
  • 2200 (Saddleworth), Detached Flight Royal Air Force Air Cadets, Lanchashire
  • Whatevernext, Albyn School, Highlands
  • GraviTeam, Limehurst Academy, Leicestershire
  • LSA Digital Leaders, Lytham St Annes Technology and Performing Arts College, Lancashire
  • Mead Astronauts, Mead Community Primary School, Wiltshire
  • STEAMCademy, Castlewood Primary School, West Sussex
  • Lux Quest, CoderDojo Banbridge, Co. Down
  • Temparatus, Dyffryn Taf, Carmarthenshire
  • Discovery STEMers, Discovery STEM Education, South Yorkshire
  • Code Inverness, Code Club Inverness, Highland
  • JJB, Ashton Sixth Form College, Tameside
  • Astro Lab, East Kent College, Kent
  • The Life Savers, Scratch and Python, Middlesex
  • JAAPiT, Taylor Household, Nottingham
  • The Heat Guys, The Archer Academy, Greater London
  • Astro Wantenauts, Wantage C of E Primary School, Oxfordshire
  • Derby Radio Museum, Radio Communication Museum of Great Britain, Derbyshire
  • Bytesyze, King’s College School, Cambridgeshire

Other

Flight status achieved:

  • Intellectual Savage Stars, Lycée français de Luanda, Luanda

 

Congratulations to all successful teams! We are looking forward to reading your reports.

The post Mission Space Lab flight status announced! appeared first on Raspberry Pi.

Tech wishes for 2018

Post Syndicated from Eevee original https://eev.ee/blog/2018/02/18/tech-wishes-for-2018/

Anonymous asks, via money:

What would you like to see happen in tech in 2018?

(answer can be technical, social, political, combination, whatever)

Hmm.

Less of this

I’m not really qualified to speak in depth about either of these things, but let me put my foot in my mouth anyway:

The Blockchain™

Bitcoin was a neat idea. No, really! Decentralization is cool. Overhauling our terrible financial infrastructure is cool. Hash functions are cool.

Unfortunately, it seems to have devolved into mostly a get-rich-quick scheme for nerds, and by nearly any measure it’s turning into a spectacular catastrophe. Its “success” is measured in how much a bitcoin is worth in US dollars, which is pretty close to an admission from its own investors that its only value is in converting back to “real” money — all while that same “success” is making it less useful as a distinct currency.

Blah, blah, everyone already knows this.

What concerns me slightly more is the gold rush hype cycle, which is putting cryptocurrency and “blockchain” in the news and lending it all legitimacy. People have raked in millions of dollars on ICOs of novel coins I’ve never heard mentioned again. (Note: again, that value is measured in dollars.) Most likely, none of the investors will see any return whatsoever on that money. They can’t, really, unless a coin actually takes off as a currency, and that seems at odds with speculative investing since everyone either wants to hoard or ditch their coins. When the coins have no value themselves, the money can only come from other investors, and eventually the hype winds down and you run out of other investors.

I fear this will hurt a lot of people before it’s over, so I’d like for it to be over as soon as possible.


That said, the hype itself has gotten way out of hand too. First it was the obsession with “blockchain” like it’s a revolutionary technology, but hey, Git is a fucking blockchain. The novel part is the way it handles distributed consensus (which in Git is basically left for you to figure out), and that’s uniquely important to currency because you want to be pretty sure that money doesn’t get duplicated or lost when moved around.

But now we have startups trying to use blockchains for website backends and file storage and who knows what else? Why? What advantage does this have? When you say “blockchain”, I hear “single Git repository” — so when you say “email on the blockchain”, I have an aneurysm.

Bitcoin seems to have sparked imagination in large part because it’s decentralized, but I’d argue it’s actually a pretty bad example of a decentralized network, since people keep forking it. The ability to fork is a feature, sure, but the trouble here is that the Bitcoin family has no notion of federation — there is one canonical Bitcoin ledger and it has no notion of communication with any other. That’s what you want for currency, not necessarily other applications. (Bitcoin also incentivizes frivolous forking by giving the creator an initial pile of coins to keep and sell.)

And federation is much more interesting than decentralization! Federation gives us email and the web. Federation means I can set up my own instance with my own rules and still be able to meaningfully communicate with the rest of the network. Federation has some amount of tolerance for changes to the protocol, so such changes are more flexible and rely more heavily on consensus.

Federation is fantastic, and it feels like a massive tragedy that this rekindled interest in decentralization is mostly focused on peer-to-peer networks, which do little to address our current problems with centralized platforms.

And hey, you know what else is federated? Banks.

AI

Again, the tech is cool and all, but the marketing hype is getting way out of hand.

Maybe what I really want from 2018 is less marketing?

For one, I’ve seen a huge uptick in uncritically referring to any software that creates or classifies creative work as “AI”. Can we… can we not. It’s not AI. Yes, yes, nerds, I don’t care about the hair-splitting about the nature of intelligence — you know that when we hear “AI” we think of a human-like self-aware intelligence. But we’re applying it to stuff like a weird dog generator. Or to whatever neural network a website threw into production this week.

And this is dangerously misleading — we already had massive tech companies scapegoating The Algorithm™ for the poor behavior of their software, and now we’re talking about those algorithms as though they were self-aware, untouchable, untameable, unknowable entities of pure chaos whose decisions we are arbitrarily bound to. Ancient, powerful gods who exist just outside human comprehension or law.

It’s weird to see this stuff appear in consumer products so quickly, too. It feels quick, anyway. The latest iPhone can unlock via facial recognition, right? I’m sure a lot of effort was put into ensuring that the same person’s face would always be recognized… but how confident are we that other faces won’t be recognized? I admit I don’t follow all this super closely, so I may be imagining a non-problem, but I do know that humans are remarkably bad at checking for negative cases.

Hell, take the recurring problem of major platforms like Twitter and YouTube classifying anything mentioning “bisexual” as pornographic — because the word is also used as a porn genre, and someone threw a list of porn terms into a filter without thinking too hard about it. That’s just a word list, a fairly simple thing that any human can review; but suddenly we’re confident in opaque networks of inferred details?

I don’t know. “Traditional” classification and generation are much more comforting, since they’re a set of fairly abstract rules that can be examined and followed. Machine learning, as I understand it, is less about rules and much more about pattern-matching; it’s built out of the fingerprints of the stuff it’s trained on. Surely that’s just begging for tons of edge cases. They’re practically made of edge cases.


I’m reminded of a point I saw made a few days ago on Twitter, something I’d never thought about but should have. TurnItIn is a service for universities that checks whether students’ papers match any others, in order to detect cheating. But this is a paid service, one that fundamentally hinges on its corpus: a large collection of existing student papers. So students pay money to attend school, where they’re required to let their work be given to a third-party company, which then profits off of it? What kind of a goofy business model is this?

And my thoughts turn to machine learning, which is fundamentally different from an algorithm you can simply copy from a paper, because it’s all about the training data. And to get good results, you need a lot of training data. Where is that all coming from? How many for-profit companies are setting a neural network loose on the web — on millions of people’s work — and then turning around and selling the result as a product?

This is really a question of how intellectual property works in the internet era, and it continues our proud decades-long tradition of just kinda doing whatever we want without thinking about it too much. Nothing if not consistent.

More of this

A bit tougher, since computers are pretty alright now and everything continues to chug along. Maybe we should just quit while we’re ahead. There’s some real pie-in-the-sky stuff that would be nice, but it certainly won’t happen within a year, and may never happen except in some horrific Algorithmic™ form designed by people that don’t know anything about the problem space and only works 60% of the time but is treated as though it were bulletproof.

Federation

The giants are getting more giant. Maybe too giant? Granted, it could be much worse than Google and Amazon — it could be Apple!

Amazon has its own delivery service and brick-and-mortar stores now, as well as providing the plumbing for vast amounts of the web. They’re not doing anything particularly outrageous, but they kind of loom.

Ad company Google just put ad blocking in its majority-share browser — albeit for the ambiguously-noble goal of only blocking obnoxious ads so that people will be less inclined to install a blanket ad blocker.

Twitter is kind of a nightmare but no one wants to leave. I keep trying to use Mastodon as well, but I always forget about it after a day, whoops.

Facebook sounds like a total nightmare but no one wants to leave that either, because normies don’t use anything else, which is itself direly concerning.

IRC is rapidly bleeding mindshare to Slack and Discord, both of which are far better at the things IRC sadly never tried to do and absolutely terrible at the exact things IRC excels at.

The problem is the same as ever: there’s no incentive to interoperate. There’s no fundamental technical reason why Twitter and Tumblr and MySpace and Facebook can’t intermingle their posts; they just don’t, because why would they bother? It’s extra work that makes it easier for people to not use your ecosystem.

I don’t know what can be done about that, except that hope for a really big player to decide to play nice out of the kindness of their heart. The really big federated success stories — say, the web — mostly won out because they came along first. At this point, how does a federated social network take over? I don’t know.

Social progress

I… don’t really have a solid grasp on what’s happening in tech socially at the moment. I’ve drifted a bit away from the industry part, which is where that all tends to come up. I have the vague sense that things are improving, but that might just be because the Rust community is the one I hear the most about, and it puts a lot of effort into being inclusive and welcoming.

So… more projects should be like Rust? Do whatever Rust is doing? And not so much what Linus is doing.

Open source funding

I haven’t heard this brought up much lately, but it would still be nice to see. The Bay Area runs on open source and is raking in zillions of dollars on its back; pump some of that cash back into the ecosystem, somehow.

I’ve seen a couple open source projects on Patreon, which is fantastic, but feels like a very small solution given how much money is flowing through the commercial tech industry.

Ad blocking

Nice. Fuck ads.

One might wonder where the money to host a website comes from, then? I don’t know. Maybe we should loop this in with the above thing and find a more informal way to pay people for the stuff they make when we find it useful, without the financial and cognitive overhead of A Transaction or Giving Someone My Damn Credit Card Number. You know, something like Bitco— ah, fuck.

Year of the Linux Desktop

I don’t know. What are we working on at the moment? Wayland? Do Wayland, I guess. Oh, and hi-DPI, which I hear sucks. And please fix my sound drivers so PulseAudio stops blaming them when it fucks up.

AWS Hot Startups for February 2018: Canva, Figma, InVision

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-for-february-2018-canva-figma-invision/

Note to readers! Starting next month, we will be publishing our monthly Hot Startups blog post on the AWS Startup Blog. Please come check us out.

As visual communication—whether through social media channels like Instagram or white space-heavy product pages—becomes a central part of everyone’s life, accessible design platforms and tools become more and more important in the world of tech. This trend is why we have chosen to spotlight three design-related startups—namely Canva, Figma, and InVision—as our hot startups for the month of February. Please read on to learn more about these design-savvy companies and be sure to check out our full post here.

Canva (Sydney, Australia)

For a long time, creating designs required expensive software, extensive studying, and time spent waiting for feedback from clients or colleagues. With Canva, a graphic design tool that makes creating designs much simpler and accessible, users have the opportunity to design anything and publish anywhere. The platform—which integrates professional design elements, including stock photography, graphic elements, and fonts for users to build designs either entirely from scratch or from thousands of free templates—is available on desktop, iOS, and Android, making it possible to spin up an invitation, poster, or graphic on a smartphone at any time.

To learn more about Canva, read our full interview with CEO Melanie Perkins here.

Figma (San Francisco, CA)

Figma is a cloud-based design platform that empowers designers to communicate and collaborate more effectively. Using recent advancements in WebGL, Figma offers a design tool that doesn’t require users to install any software or special operating systems. It also allows multiple people to work in a file at the same time—a crucial feature.

As the need for new design talent increases, the industry will need plenty of junior designers to keep up with the demand. Figma is prepared to help students by offering their platform for free. Through this, they “hope to give young designers the resources necessary to kick-start their education and eventually, their careers.”

For more about Figma, check out our full interview with CEO Dylan Field here.

InVision (New York, NY)

Founded in 2011 with the goal of helping improve every digital experience in the world, digital product design platform InVision helps users create a streamlined and scalable product design process, build and iterate on prototypes, and collaborate across organizations. The company, which raised a $100 million series E last November, bringing the company’s total funding to $235 million, currently powers the digital product design process at more than 80 percent of the Fortune 100 and brands like Airbnb, HBO, Netflix, and Uber.

Learn more about InVision here.

Be sure to check out our full post on the AWS Startups blog!

-Tina

Astro Pi celebrates anniversary of ISS Columbus module

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-celebrates-anniversary/

Right now, 400km above the Earth aboard the International Space Station, are two very special Raspberry Pi computers. They were launched into space on 6 December 2015 and are, most assuredly, the farthest-travelled Raspberry Pi computers in existence. Each year they run experiments that school students create in the European Astro Pi Challenge.

Raspberry Astro Pi units on the International Space Station

Left: Astro Pi Vis (Ed); right: Astro Pi IR (Izzy). Image credit: ESA.

The European Columbus module

Today marks the tenth anniversary of the launch of the European Columbus module. The Columbus module is the European Space Agency’s largest single contribution to the ISS, and it supports research in many scientific disciplines, from astrobiology and solar science to metallurgy and psychology. More than 225 experiments have been carried out inside it during the past decade. It’s also home to our Astro Pi computers.

Here’s a video from 7 February 2008, when Space Shuttle Atlantis went skywards carrying the Columbus module in its cargo bay.

STS-122 Launch NASA TV Coverage

From February 7th, 2008 NASA-TV Coverage of The 121st Space Shuttle Launch Launched At:2:45:30 P.M E.T – Coverage begins exactly one hour till launch STS-122 Crew:

Today, coincidentally, is also the deadline for the European Astro Pi Challenge: Mission Space Lab. Participating teams have until midnight tonight to submit their experiments.

Anniversary celebrations

At 16:30 GMT today there will be a live event on NASA TV for the Columbus module anniversary with NASA flight engineers Joe Acaba and Mark Vande Hei.

Our Astro Pi computers will be joining in the celebrations by displaying a digital birthday candle that the crew can blow out. It works by detecting an increase in humidity when someone blows on it. The video below demonstrates the concept.

AstroPi candle

Uploaded by Effi Edmonton on 2018-01-17.

Do try this at home

The exact Astro Pi code that will run on the ISS today is available for you to download and run on your own Raspberry Pi and Sense HAT. You’ll notice that the program includes code to make it stop automatically when the date changes to 8 February. This is just to save time for the ground control team.

If you have a Raspberry Pi and a Sense HAT, you can use the terminal commands below to download and run the code yourself:

wget http://rpf.io/colbday -O birthday.py
chmod +x birthday.py
./birthday.py

When you see a blank blue screen with the brightness increasing, the Sense HAT is measuring the baseline humidity. It does this every 15 minutes so it can recalibrate to take account of natural changes in background humidity. A humidity increase of 2% is needed to blow out the candle, so if the background humidity changes by more than 2% in 15 minutes, it’s possible to get a false positive. Press Ctrl + C to quit.

Please tweet pictures of your candles to @astro_pi – we might share yours! And if we’re lucky, we might catch a glimpse of the candle on the ISS during the NASA TV event at 16:30 GMT today.

The post Astro Pi celebrates anniversary of ISS Columbus module appeared first on Raspberry Pi.

Astro Pi Mission Zero: your code is in space

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-mission-zero-day/

Every school year, we run the European Astro Pi challenge to find the next generation of space scientists who will program two space-hardened Raspberry Pi units, called Astro Pis, living aboard the International Space Station.

Italian ESA Astronaut Paolo Nespoli with the Astro Pi units. Image credit ESA.

Astro Pi Mission Zero

The 2017–2018 challenge included the brand-new non-competitive Mission Zero, which guaranteed that participants could have their code run on the ISS for 30 seconds, provided they followed the rules. They would also get a certificate showing the exact time period during which their code ran in space.

Astro Pi Mission Zero logo

We asked participants to write a simple Python program to display a personalised message and the air temperature on the Astro Pi screen. No special hardware was needed, since all the code could be written in a web browser using the Sense HAT emulator developed in partnership with Trinket.

Scott McKenzie on Twitter

Students coding #astropi emulator to scroll a message to astronauts on @Raspberry_Pi in space this summer. Try it here: https://t.co/0KURq11X0L #Rm9Parents #CSforAll #ontariocodes

And now it’s time…

We received over 2500 entries for Mission Zero, and we’re excited to announce that tomorrow all entries with flight status will be run on the ISS…in SPAAACE!

There are 1771 Python programs with flight status, which will run back-to-back on Astro Pi VIS (Ed). The whole process will take about 14 hours. This means that everyone will get a timestamp showing 1 February, so we’re going to call this day Mission Zero Day!

Part of each team’s certificate will be a map, like the one below, showing the exact location of the ISS while the team’s code was running.

The grey line is the ISS orbital path, the red marker shows the ISS’s location when their code was running. Produced using Google Static Maps API.

The programs will be run in the same sequence in which we received them. For operational reasons, we can’t guarantee that they will run while the ISS flies over any particular location. However, if you have submitted an entry to Mission Zero, there is a chance that your code will run while the ISS is right overhead!

Go out and spot the station

Spotting the ISS is a great activity to do by yourself or with your students. The station looks like a very fast-moving star that crosses the sky in just a few minutes. If you know when and where to look, and it’s not cloudy, you literally can’t miss it.

Source Andreas Möller, Wikimedia Commons.

The ISS passes over most ground locations about twice a day. For it to be clearly visible though, you need darkness on the ground with sunlight on the ISS due to its altitude. There are a number of websites which can tell you when these visible passes occur, such as NASA’s Spot the Station. Each of the sites requires you to give your location so it can work out when visible passes will occur near you.

Visible ISS pass star chart from Heavens Above, on which familiar constellations such as the Plough (see label Ursa Major) can be seen.

A personal favourite of mine is Heavens Above. It’s slightly more fiddly to use than other sites, but it produces brilliant star charts that show you precisely where to look in the sky. This is how it works:

  1. Go to www.heavens-above.com
  2. To set your location, click on Unspecified in the top right-hand corner
  3. Enter your location (e.g. Cambridge, United Kingdom) into the text box and click Search
  4. The map should change to the correct location — scroll down and click Update
  5. You’ll be taken back to the homepage, but with your location showing at the top right
  6. Click on ISS in the Satellites section
  7. A table of dates will now show, which are the upcoming visible passes for your location
  8. Click on a row to view the star chart for that pass — the line is the path of the ISS, and the arrow shows direction of travel
  9. Be outside in cloudless weather at the start time, look towards the direction where the line begins, and hope the skies stay clear

If you go out and do this, then tweet some pictures to @raspberry_pi, @astro_pi, and @esa. Good luck!

More Astro Pi

Mission Zero certificates will be arriving in participants’ inboxes shortly. We would like to thank everyone who participated in Mission Zero this school year, and we hope that next time you’ll take it one step further and try Mission Space Lab.

Mission Zero and Mission Space Lab are two really exciting programmes that young people of all ages can take part in. If you would like to be notified when the next round of Astro Pi opens for registrations, sign up to our mailing list here.

The post Astro Pi Mission Zero: your code is in space appeared first on Raspberry Pi.