All posts by Dan Fisher

Ada Computer Science: A year in review

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/ada-computer-science-a-year-in-review/

With the new academic year fully under way in many parts of the world, it’s the perfect time to reflect on the growth and innovations we’ve achieved with the Ada Computer Science platform. Your feedback has helped us make improvements to better support teachers and students — here’s a look back at some of the key developments for Ada from the past 12 months.

Teachers in discussion at a table.
Teachers in discussion at a Raspberry Pi Foundation teacher training event.

Supporting students through personalised learning, new resources, and new questions

We made significant improvements throughout the year to support students with exam preparation and personalised learning. We introduced over 145 new self-marking questions and updated 50 existing ones, bringing the total to more than 1000. A new type of question was also launched to help students practise writing longer responses: they label parts of a sample answer and apply a mark scheme, simulating a peer review process. You can read more about this work in the AI section below.

We updated the question finder tool with an intuitive new design. Instead of seeing ten questions at random, students can now see all the questions we have on any given topic, and can use the filters to refine their searches by qualification and difficulty level. This enables students to better personalise their revision and progress tracking

“Ada Computer Science has been very effective for my revision. I like how it provides hints and pointers if you answer a question incorrectly.” 

– Ada Computer Science student

The ‘Representation of sound’ topic received a major update, with clearer explanations, new diagrams, and improved feedback to support students as they tackle common misconceptions in sound physics. We also refreshed the ‘Representation of numbers’ topic, adding new content and interactive quizzes to support teachers in assessing students’ understanding more effectively. 

We introduced a new database scenario titled ‘Repair & Reform’, offering an entity relationship diagram, a data dictionary, and a new SQL editor and question set to help students prepare for project-based assessments. We’ve further expanded this scenario into a full project covering all stages of development, including requirements analysis and evaluation. 

April was dedicated to gearing up for the exam season, with the introduction of revision flashcards and ready-made quizzes on key topics like bitmapped graphics and sorting algorithms. We also launched a student revision challenge, which ran from April to June and attracted over 600 participants.

“Ada Computer Science is an excellent resource to help support teachers and students. The explanations are clear and relevant, and the questions help students test their knowledge and understanding in a structured way, providing links to help them reconcile any discrepancies or misunderstandings.” 

– Patrick Kennedy, Computer Science teacher

Supporting teachers  

We expanded our efforts to support new computer science teachers with the launch of a teacher mentoring programme that offers free online drop-in sessions. We also hosted a teacher training event at the Raspberry Pi Foundation office in Cambridge (as seen in the picture below), where educators saw previews of upcoming content on AI and machine learning and contributed their own questions to the platform.

Group photo featuring computer science teachers and colleagues from the Raspberry PI Foundation.

AI content and AI features

We continued our focus on AI and machine learning, releasing new learning resources that explore the ethical and social implications of AI alongside the practical applications of AI and machine learning models. 

To expand the Ada platform’s features, we also made considerable progress in integrating a large language model (LLM) to mark free-text responses. Our research showed that, as of June, LLM marks matched real teachers’ marks 82% of the time. In July, we received ethics approval from the University of Cambridge to add LLM-marked questions to the Ada platform. 

Computer science education in Scotland

We made significant strides towards supporting Scottish teachers and students with resources tailored to the SQA Computing Science curriculum. From September to November last year, we piloted a new set of materials specifically designed for Scottish teachers, receiving valuable feedback that we’ve used in 2024 to develop new content. More than half of the theory content for the National 5 and Higher specifications is now available on the platform. 

Teacher, in the middle of a computing lesson.

Our ‘Reform & Repair’ database scenario and project align with both SQA Higher and A level standards, providing a comprehensive resource for students preparing for project-based assessments.

Looking ahead: New resources for September and beyond

We have big plans for Ada for the next 12 months. Our focus will remain on continuously improving our resources and supporting the needs of both educators and students. 

After the positive response to our ‘Repair & Reform’ database project, our content experts are planning additional practical projects to support students and teachers. The next one will be a web project that covers HTML, CSS, JavaScript, and PHP, supporting students taking SQA qualifications in Scotland or undertaking the non-examined assessment (NEA) at A level.

We’ll be working on a number of teacher-focused improvements to the platform, which you’ll also see on Ada’s sibling site, Isaac Physics. These will include an overhaul of the markbook to make it more user-friendly, and updates to the ‘Assignments’ tool so assignments better meet the needs of teachers in schools.

We’ll be welcoming the next cohort of computer science students to the STEM SMART programme in January 2025 where, in partnership with the University of Cambridge, we’ll offer free, complementary teaching and support to UK students at state schools. Applications are now open.

Thank you to every teacher and student who has given their time in the last year to share feedback about Ada Computer Science — your insights are invaluable as we work to make high-quality computer science materials easily accessible. Here’s to another fantastic year of learning and growth!

The post Ada Computer Science: A year in review appeared first on Raspberry Pi Foundation.

The Computing Curriculum: Three global perspectives

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/the-computing-curriculum-global-perspectives/

Across continents and cultural contexts, our free Computing Curriculum serves as a common thread that connects educators. Read the stories of 3 educators who share their thoughts on the curriculum’s application, adaptability, and the impact it’s had on their educational settings. 

I’m Freda, and I co-founded a non-profit organisation called Waloyo in South Africa.

Photo of Freda, co-founder of the non-profit organisation called Waloyo.

Coming from a background of technology consulting, I know the value of computing education. I have a real drive to teach young kids coding so they can get ahead and find jobs in our digital economy.

Our role at Waloyo is to work with non-profit organisations that work with young people and want to expand their services to include computing skills training. Waloyo trains non-profit facilitators, who in turn teach computing skills to youth between the ages of 6 and 18. A unique challenge is that the majority of facilitators we train don’t have any previous computing experience. The resources we use need to be clear and easy to follow.

What I really love about The Computing Curriculum resources is the facilitator guides.

Our initial plan was to run the training programmes after school and outside the school curriculum, but we were getting requests from schools to support them too. South Africa doesn’t have a national computing curriculum, so there aren’t many subject specialist teachers. So we looked for curriculum resources from other countries to support our work and that’s how we found The Computing Curriculum. 

In rural Africa where we work, students have low levels of exposure to computers and computing. So whether they are 6 or 18 years old, we usually start with Scratch. The younger kids then continue with Scratch and the older kids move quickly on to Python as they build confidence.

Screenshot of Scratch 3 interface

What I really love about The Computing Curriculum resources is the facilitator guides. They fit in well with our process of training NGO facilitators to work directly with the kids. I love the comprehensiveness and flexibility of what your curriculum provides to enable this method of delivery.

So far we’ve launched 3 programmes in communities in South Africa, impacting around 150 young people, and it’s worked beautifully. It’s phenomenal to see how excited the kids get when the computer does what they want it to do!

I’m Al, and I’ve been a secondary science teacher since 1991.

Photo of Al out hiking in rocky terrain.

For the past 13 years, I’ve taught in international schools. Two years ago, I decided to retrain in teaching computing. My wife and I are currently teaching in Kazakhstan. I now teach at primary level but still handle some secondary classes. For primary, there’s significant time pressure, especially with extra lessons for the local language, making it challenging to fit computing into the schedule.

The private schools where I work are starting to implement the UK computer science curriculum. At one of the schools, they have a robotics course which has given rise to a misconception that everything in computing is about robotics! My role, therefore, involves expanding the concept of robotics to include a broader range of computing activities and finding efficient ways to integrate these new materials into the curriculum with minimal effort from the staff. I focus on selecting appropriate units to fit into what the schools are already doing rather than implementing a comprehensive new program.

The Raspberry Pi Foundation’s curriculum resources are valuable because they provide comprehensive lists of programs and ideas that I can adapt for my colleagues. I adapt resources to make them more accessible for primary teachers, simplifying and customising them for ease of use.

The Raspberry Pi Foundation’s curriculum resources are valuable because they provide comprehensive lists of programs and ideas that I can adapt for my colleagues.

Once students understand that computing is a tool for developing skills rather than just passive consumption, they take ownership of their learning which boosts their confidence. Culturally relevant materials are particularly effective, especially in diverse international classrooms. Adapting resources to be culturally relevant and incorporating students’ examples enhances their usefulness and impact. The resources are excellent, but by tailoring them, they can be even more effective, particularly in an international context with diverse nationalities and learning concepts.

Head of ICT at an international school in Egypt

In a computing classroom, a boy looks down at a keyboard.

As Head of Department, I am responsible for what all the different age groups learn, from year 1 to year 12. We use the Cambridge International (CIE) curriculum, so I was looking for supplementary resources that build from the basics, have a clear progression map, and complement the resources we already had.

With The Computing Curriculum, it is easy to pick out individual lesson resources to use. I love that it doesn’t need a licence and that the students don’t face any problems when they download it to practise at home. I’m covering curriculums for both computing and digital literacy, so I use resources that are relevant to my curriculum maps.

With The Computing Curriculum, it is easy to pick out individual lesson resources to use.

In some schools, their idea of an ICT lesson is getting students to play games, use Word documents, make PowerPoint presentations, and that’s it. But this generation of students love coding and making their own games. So instead of playing the game, we teach them how to develop a game and how to add the characters themselves.

From year 1 to year 2, students take part in a wide range of computing activities and develop a lot of new skills. They find these skills amazing. It makes them feel engaged, excited, and that they are doing something valuable.

Using The Computing Curriculum 

These educators’ stories show how easy it is to adapt our Computing Curriculum to your unique context, enhancing students’ technical skills and inspiring creativity, critical thinking, and a passion for problem-solving. We look forward to continuing this journey with these and other educators as they transform computing education for their learners.

If you’re looking for new computing resources to teach with, why not give The Computing Curriculum a try? You can also read our culturally relevant pedagogy research that Al mentions in his interview.

The post The Computing Curriculum: Three global perspectives appeared first on Raspberry Pi Foundation.

Careers in computer science: Two perspectives

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/careers-in-computer-science-two-perspectives/

As educators, it’s important that we showcase the wide range of career opportunities available in the field of computing, not only to inspire learners, but also to help them feel sure they’re choosing to study a subject that is useful for their future. For example, a survey from the BBC in September 2023 found that more than a quarter of UK teenagers often feel anxious, with “exams and school life” among the main causes. To help young people chart their career paths, we recently hosted two live webinars for National Careers Week in the UK.

Our goal for the webinars was to highlight the breadth of careers within computing and to provide insights from professionals who are pursuing their own diverse and rewarding paths. Each webinar featured engaging discussions and an interactive Q&A session with learners who use our Ada Computer Science platform. The learners could ask their own questions to get firsthand knowledge and perspectives from our guest speakers.

Our guest speakers

Jess Van Brummelen is a Human–Computer Interaction Research Scientist at Niantic, the video games company behind augmented reality game Pokémon Go. After developing an interest in programming during her undergraduate degree in mechanical engineering, she went on to complete a Master’s degree and PhD in computer science at MIT.

Ashley Edwards is a Senior Research Scientist at Google DeepMind, working on reinforcement learning. She received her PhD in 2019 from Georgia Tech, spent time as an intern at Google Brain, and worked as a research scientist at Uber AI Labs.

You can read extracts from our interviews with Jess and Ashley and watch the full videos below. Teachers have contacted us to say they’ll be using the webinars for careers-focused sessions with their students. We hope you will do the same!

Please note that we have edited the extracts below to add clarity.

Jess Van Brummelen

Jessica Van Brummelen.

Hi Jess. What advice would you give to a student who is thinking about a career in human–computer interaction in the gaming industry?

In terms of HCI and gaming, I’d actually recommend that you keep gaming! It’s a small part of my job but it’s really important to understand what’s fun and enjoyable in games. Not only that; gaming can be great for learning to problem-solve — there’s been all sorts of research on the positive impact of gaming.

A second thing, going back to how I felt in my mechanical engineering classes, I really felt like an ‘other’ and not someone who is the standard computer scientist or engineer. I would encourage students to pursue their dreams anyway because it’s so important to have diversity in these types of careers, especially technology, because it goes out to so many different people and it can really affect society. It’s really important that the people who make it come from many different backgrounds and cultures so we can create technology that is better for everyone.

[From Owen, a student on the livestream] What’s the most impossible idea you’ve come up with while working at Niantic?

I’m currently publishing a paper addressing the question, ‘Can we guide people without using anything visual on their phone?’ That means using audio and haptic (technology that transmits information via touch, e.g. vibrations) prompts instead. We tried out different commands where the phone said ‘turn left’ and ‘turn right’, but we really wanted to test how to guide someone more specifically in a game environment. For example, if there was a hidden object on a wall in a game that a person couldn’t see, could we guide them to that object while they’re walking? So I ran a study where I guided people to scan a statue by moving around it. Scanning is the process of using the camera on your phone to scan an object in real life, which is then reconstructed on your phone. Scanning objects can trigger other augmented reality experiences within a game. For example, you might scan a real-life box in a room and this might trigger an animation of that box opening to reveal a secret within the game. We tested a lot of different things. For example, test subjects listened to music as they were walking and when they were on the right path, the music sounded really good. But when they were off the path, it sounded terrible. So it helped them to look for the right path. Then if you were pointing the phone in the wrong direction for scanning objects, you would get warning vibrations on the phone. So we did the study and we were hoping it would improve safety. It turns out it was neutral on improving safety — I think this is because it was such a novel system. People weren’t used to using it and still bumped into things! But it did make people better at scanning the objects, which was interesting.

Watch Jess’s full interview:

Ashley Edwards

Ashley Edwards.

Hi Ashley. Is there something you studied in school that you found to be more useful now than you ever thought it would be?

Maths! I always enjoyed doing maths, but I didn’t realise I would need it as a computer scientist. You see it popping up all the time, especially in machine learning. Having a strong knowledge of calculus and linear algebra is really helpful.

How do you train an AI model using machine learning

You start by asking the question, ‘What is the problem I’m trying to solve?’ Then typically you need input data and the outputs you want to achieve, so you ask two more questions, ‘What data do I want to come in?’ and ‘What do I want to come out?’ Let’s say you decide to use a supervised learning model (a category of machine learning where labelled data sets are used to train algorithms to detect patterns and predict outcomes) to predict whether a photo contains a cat. You train the model using a giant set of images with labels that say either ‘This is a cat’ or ‘This isn’t a cat’. By training the model with the images, you get to a point where your model can analyse the features of any image and predict whether it contains a cat or not.

In my field of research, I work on something called reinforcement learning, which is where you train your model through trial and error and the use of ‘rewards’. Let’s imagine we are trying to train a robot. We might write a program that tells the robot, ‘I am going to give you a reward if you take the right step forward and it’s going to be a positive reward. If you fall over, I’m going to give you a negative reward.’ So you train the robot to prioritise the right behaviours to optimise the rewards it’s getting.

[From a student] Will I still need to learn to code in the future?

I think it is going to be very different in the future, but we’ll still need to learn how to build different types of algorithms and we’re going to need to understand the concepts behind coding as well. We’ll still need to ask questions like, ‘What is it that I want to build?’ and ‘Is this actually doing the correct thing?’

Watch Ashley’s full interview:

Broadening access

Jess and Ashley are forging successful careers not only through a combination of smart choices, hard work, talent, and a passion for technology; they also had access to opportunities to discover their passion and receive an education in this field. Too many young people around the world still don’t have these opportunities.

That is why we provide free resources and training to help schools broaden access to computing education. For example, our free learning platform, Ada Computer Science, provides students aged 14 to 19 with high-quality computing resources and interactive questions, written by experts from our team. To learn more, visit adacomputerscience.org.

The post Careers in computer science: Two perspectives appeared first on Raspberry Pi Foundation.

The Experience AI Challenge: Make your own AI project

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/experience-ai-challenge-announcement/

We are pleased to announce a new AI-themed challenge for young people: the Experience AI Challenge invites and supports young people aged up to 18 to design and make their own AI applications. This is their chance to have a taste of getting creative with the powerful technology of machine learning. And equally exciting: every young creator will get feedback and encouragement from us at the Raspberry Pi Foundation.

As you may have heard, we recently launched a series of classroom lessons called Experience AI in partnership with Google DeepMind. The lesson materials make it easy for teachers of all subjects to teach their learners aged up to 18 about artificial intelligence and machine learning. Now the Experience AI Challenge gives young people the opportunity to develop their skills further and build their own AI applications.

Key information

  • Starts on 08 January 2024
  • Free to take part in
  • Designed for beginners, based on the tools Scratch and Machine Learning for Kids
  • Open for official submissions made by UK-based young people aged up to 18 and their mentors 
  • Young people and their mentors around the world are welcome to access the Challenge resources and make AI projects
  • Tailored resources for young people and mentors to support you to take part
  • Register your interest and we’ll send you a reminder email on the launch day

The Experience AI Challenge

For the Experience AI Challenge, you and the young people you work with will learn how to make a machine learning (ML) classifier that organises data types such as audio, text, or images into different groupings that you specify.

A girl points excitedly at a project on the Raspberry Pi Foundation's projects site.

The Challenge resources show young people the basic principles of using the tools and training ML models. Then they will use these new skills to create their own projects, and it’s a chance for their imaginations to run free. Here are some examples of projects your young tech creators could make:

  • An instrument classifier to identify the type of musical instrument being played in pieces of music
  • An animal sound identifier to determine which animal is making a particular sound
  • A voice command recogniser to detect voice commands like ‘stop’, ‘go’, ‘left’, and ‘right’
  • A photo classifier to identify what kind of food is shown in a photograph

All creators will receive expert feedback on their projects.

To make the Experience AI Challenge as familiar and accessible as possible for young people who may be new to coding, we designed it for beginners. We chose the free, easy-to-use, online tool Machine Learning for Kids for young people to train their machine learning models, and Scratch as the programming environment for creators to code their projects. If you haven’t used these tools before, don’t worry. The Challenge resources will provide all the support you need to get up to speed.

Training an ML model and creating a project with it teaches many skills beyond coding, including computational thinking, ethical programming, data literacy, and developing a broader understanding of the influence of AI on society.

The three Challenge stages

Our resources for creators and mentors walk you through the three stages of the Experience AI Challenge.

Stage 1: Explore and discover

The first stage of the Challenge is designed to ignite young people’s curiosity. Through our resources, mentors let participants explore the world of AI and ML and discover how these technologies are revolutionising industries like healthcare and entertainment.

Stage 2: Get hands-on

In the second stage, young people choose a data type and embark on a guided example project. They create a training dataset, train an ML model, and develop a Scratch application as the user interface for their model. 

Stage 3: Design and create

In the final stage, mentors support young people to apply what they’ve learned to create their own ML project that addresses a problem they’re passionate about. They submit their projects to us online and receive feedback from our expert panel.

Things to do today

  1. Visit our new Experience AI Challenge homepage to find out more details
  2. Register your interest so you receive a reminder email on launch day, 8 January
  3. Get your young people excited and thinking about what kind of AI project they might like to create

We can’t wait to see how you and your young creators choose to engage with the Experience AI Challenge!

The post The Experience AI Challenge: Make your own AI project appeared first on Raspberry Pi Foundation.

Take part in the UK Bebras Challenge 2023 for schools

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/uk-bebras-challenge-2023/

The UK Bebras Challenge is back and ready to accept entries from schools for its annual event, which runs from 6 to 17 November.

UK Bebras 2023 logo.

More than 3 million students from 59 countries took part in the Bebras Computational Thinking Challenge in 2022. In the UK alone, over 365,000 students participated. Read on to find out how you can get your school involved.

“This is now an annual event for our Year 5 and 6 students, and one of the things I actually love about it is the results are not always what you might predict. There are children who have a clear aptitude for these puzzles who find this is their opportunity to shine!”

Claire Rawlinson, Primary Teacher, Lancashire

What is the Bebras Challenge?

Bebras is a free, annual challenge that helps schools introduce computational thinking to their students. No programming is involved, and it’s completely free for schools to enter. All Bebras questions are self-marking.

We’re making Bebras accessible by offering age-appropriate challenges for different school levels and a challenge tailored for visually impaired students. Schools can enter students from age 6 to 18 and know they’ll get interesting and challenging (but not too challenging) activities. 

Students aged 10 to 18 who do particularly well will get invited to the Oxford University Computing Challenge (OUCC).

A group of young people posing for a photo.
The winners of the Oxford University Computing Challenge 2023, with Professor Peter Millican at the OUCC Prize Day in the Raspberry Pi Foundation office.

What is the thinking behind Bebras?

We want young people to get excited about computing. Through Bebras, they will learn about computational and logical thinking by answering questions and solving problems.

Bebras questions are based on classic computing problems and are presented in a friendly, age-appropriate way. For example, an algorithm-based puzzle for learners aged 6 to 8 is presented in terms of a hungry tortoise finding an efficient eating path across a lawn; for 16- to 18-year-olds, a difficult problem based on graph theory asks students to sort out quiz teams by linking quizzers who know each other.

“This has been a really positive experience. Thank you. Shared results with Head and Head of Key Stage 3. Really useful for me when assessing Key Stage 4 options.”

– Secondary teacher, North Yorkshire

Can you solve our example Bebras puzzle?

Here’s a Bebras question for the Castors category (ages 8 to 10) from 2021. You will find the answer at the end of this blog. 

Cleaning

A robot picks up litter.

A simple drawing showing a robot and litter.
  1. The robot moves to the closest piece of litter and picks it up.
  2. It then moves to the next closest piece of litter and picks it up.
  3. It carries on in this way until all the litter has been picked up.

Question: Which kind of litter will the robot pick up last?

Four simple drawings: an apple, a cup, a can, and crumpled paper.

How do I get my school involved in Bebras?

The Bebras challenge for UK schools takes place from 6 to 17 November. Register at bebras.uk/admin to get free access to the challenge.

By registering, you also get access to the Bebras back catalogue of questions, from which you can build your own quizzes to use in your school at any time during the year. All the quizzes are self-marking, and you can download your students’ results for your mark book. Schools have reported using these questions for end-of-term activities, lesson starters, and schemes of lessons about computational thinking.


Puzzle answer

The answer to the example puzzle is:

A simple drawing of a cup.

The image below shows the route the robot takes by following the instructions:

A simple drawing showing the route a robot walks to pick up litter.

The post Take part in the UK Bebras Challenge 2023 for schools appeared first on Raspberry Pi Foundation.

Join the UK Bebras Challenge 2022 for schools

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/uk-bebras-challenge-2022/

The UK Bebras Challenge is back and ready to accept entries from schools for its annual event from 7 to 18 November.

UK Bebras 2022 logo.

More than 3 million students from 54 countries took part in the Bebras Challenge in 2021. Read on to find out how you can get your school involved.

What is Bebras?

Bebras a free, annual challenge that helps schools introduce computational thinking to their students. No programming is involved, and it’s completely free for schools to take part. All Bebras questions are self-marking. Schools can enter students from age 6 to 18 and know they’ll get interesting and challenging (but not too challenging) activities.

“This has been a really positive experience. Thank you. Shared results with head and Head of KS3. Really useful for me when assessing KS4 options.” – Secondary teacher, North Yorkshire

We’re making Bebras accessible by offering age-appropriate challenges for different school levels, and a challenge tailored for visually impaired students.

What is the idea behind Bebras?

We want young people to get excited about computing. Through Bebras, they will learn about computational and logical thinking by answering questions and solving puzzles.

Bebras questions are based on classic computing problems and presented in friendly, age-appropriate contexts. For example, an algorithm-based puzzle for learners aged 6 to 8 is presented in terms of a hungry tortoise find an efficient eating path across a lawn; for 16- to 18-year-olds, a difficult question based on graph theory asks students to sort out some quiz teams by linking quizzers who know each other.

Can you solve the example puzzle?

Here’s a question from the 2021 challenge for the Junior category (ages 10 to 12). You’ll find the correct answer at the bottom of this blog post. 

Science Fair

  • Bebras High School is having a science fair.
  • All the events in the fair need to follow a specific order, and only one event can be held at a time.
  • The diagram below shows all the events that must be included in the flow of the science fair.
A flow chart.
  • The arrows between events indicate that the event the arrow is drawn from has to occur before the event the arrow points to. For example, ‘Social Interaction’ can only happen after both ‘Opening Speeches’ and ‘Project Presentations’ have finished.

Question: What is the correct order of events for the science fair?

How do I get my school involved?

The Bebras challenge for UK schools takes place from 7 to 18 November. Register at bebras.uk/admin to get full access to the challenge.

By registering, you also get access to the back catalogue of questions, from which you can build your own quizzes to use in your school at any time during the year. All the quizzes are self-marking, and you can download your students’ results for your mark book. Schools have reported using the back catalogue of questions for end-of-term activities, lesson starters, and schemes of lessons about computational thinking.

You can also see more of our free resources for Computing and Computer Science teachers, and find out about our newest research project, which you can get involved in if you teach primary Computing.


There are actually two possible answers to the example puzzle:

Option 1 Option 2
Chorus Performance
Preparation of Stands
Opening Speeches
Project Presentations
Social Interaction
Referee Reviews
Awarding Prizes
Preparation of Stands
Chorus Performance
Opening Speeches
Project Presentations
Social Interaction
Referee Reviews
Awarding Prizes

The post Join the UK Bebras Challenge 2022 for schools appeared first on Raspberry Pi.

Back to school 2022: Our support for teachers

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/back-to-school-2022-support-teachers-computing-computer-science/

The summer months are an exciting time at the Foundation: you can feel the buzz of activity as we prepare for the start of a new school year in many parts of the world. Across our range of fantastic (and free) programmes, everyone works hard to create new and improved resources that help teachers and students worldwide. 

We’ve asked some of our programme leads to tell you what’s new in their respective areas. We hope that you’ll come away with a good idea of the breadth and depth of teacher support that’s on offer. Is there something we aren’t doing yet that we should be? Tell us in the comments below.

A waving person.

Sway Grantham has been at the forefront of writing resources for our Teach Computing Curriculum over the last three years. The Curriculum is part of the wider National Centre for Computing Education (NCCE) and provides hundreds of free classroom resources for teachers, from Key Stage 1 to 4. Each resource includes lesson plans, slides, activity sheets, homework, and assessments. Since we published the Curriculum in 2020, all lessons have been reviewed and updated at least once. Managing the process of continuously improving these resources is a key part of Sway’s work.

Hi Sway, what updates have you been making to the Teach Computing Curriculum to help teachers this year? 

We make changes to the Teach Computing Curriculum all the time! However, specific things we are excited about ahead of the new school year are updates to how our content is presented on the website so that it’s really easy to see which unit you should be teaching in each half term. We’ve also renamed some of the units to make it clearer what they cover. And to help Key Stage 3 teachers launch Computing in secondary school with skills that are foundational for progress through the requirements of the Key Stage 3 curriculum, we’ve updated the first Year 7 unit, now called Clear messaging in digital media.

You recently asked for teachers’ feedback as part of an annual impact survey. What did you find out?

We are still in the process of looking through the feedback in detail, but I can share some high-level insights. 96% of teachers who responded to the survey gave a score between 7 and 10 for recommending that other teachers use the Teach Computing Curriculum. Over 80% reported that the Teach Computing Curriculum has improved their confidence, subject knowledge, and the quality of their teaching ‘a little’ or ‘a lot’. Finally, over 90% of respondents said the Curriculum is effective at supporting teachers, developing teachers’ subject knowledge, and saving teachers’ time.

We are grateful to the 907 people who took part in the survey! You have all helped us to ensure the Curriculum has a positive impact on teachers and learners throughout England and beyond.

A waving person.

James Robinson dedicates his work at the Foundation to creating free pedagogical resources that underpin the classroom practice of computing teachers worldwide. He has led the creation of the Pedagogy Quick Reads and the Research Bytes newsletter for the NCCE, and the development of our 12 principles of computing pedagogy, available as a handy poster. He also works on our Hello World magazine, produces the associated Hello World podcast, and curates Hello World’s special issues, such as The Big Book of Computing Pedagogy.

James, why is it so important for teachers to underpin their classroom practice with best-practice pedagogical approaches? 

In order to teach any area of the curriculum effectively, educators need to understand both the content they are teaching and the most effective ways to deliver that content. Computing is a broad discipline made up of lots of inter-connected knowledge. Different areas of the subject benefit from different approaches, and this may vary depending on the experience of the learners and the context within which they are learning. Understanding which approaches are best suited to different content helps educators support learners effectively.

Computing education research related to school-aged learners is still in its early stages compared to other subjects, and new approaches and pedagogies are being developed, tested, and evaluated. Staying aware of these developments is important for educators and that’s why it’s something the Foundation is dedicated to supporting.

What do you have in store for teachers this year?  

This year we continue to share best practice and hear from educators applying new ideas in their classroom through Hello World magazine and podcast. Educators should also keep a look out for our second Hello World special edition exploring the breadth and depth of Computing. To get hold of a copy of this later this year, make sure you’re subscribed to Hello World.

A waving person.

Allen Heard and his team have very recently completed a huge project: creating a full curriculum of GCSE topics and associated questions for Isaac Computer Science, our free online learning platform for teachers and students. The new topics cover the entirety of the GCSE exam board specifications for AQA, Edexcel, Eduqas, OCR, and WJEC, and are integrated with our existing A level computer science resources. They are great to pick up and use for classwork, homework, and revision.  

Allen, what has gone into the making of these new GCSE resources?

I think one of the biggest and most important things that’s been evident to me while working on this project is the care and thought that our content creators have put into each and every piece they worked on. To the end user it will simply be material on a web page, but sitting behind each page are countless discussions involving the whole team around how to present certain facts, concepts, or processes. Sometimes these discussions have even caused us to reevaluate our own thinking around how we deliver computer science content. We have debated the smallest things such as glossary terms, questioning every word to make sure we are as clear and concise as possible. Hopefully the care, expertise, and dedication of the team shines through in what really is a fantastic source of information for teachers and learners.

What do you have in store for teachers and learners this year?

With 96% of teachers and 88% of students reporting that the content is of high quality and easily accessible, we still need to continue to support them to ultimately enable learners to achieve their potential. Looking ahead, there is still lots of work to do to make sure Isaac offers the best possible user experience. And we plan to add a lot more questions to really bolster the numbers of questions at varying levels of difficulty for learners. This will have the added benefit of being useful for any teachers wanting to up-skill too! A massive strength of the platform is its questions, and we are really keen to give as wide a range of them as possible.

A waving person.

Tamasin Greenough Graham leads the team at Code Club, our global network of free, in-school coding clubs for young people aged 9 to 13. In Code Clubs, participants learn to code while having fun getting creative with their new skills. Clubs can be run by anyone who wants to help young people explore digital technologies — you don’t need coding experience at all. The Code Club team offers everything you need, including coding projects with easy-to-follow, step-by-step instructions, and lots of resources to help you support your club members. They are also on hand to answer your questions. 

Tamasin, what kind of support can teachers expect when they decide to set up a Code Club?

Running a Code Club really is simple and a lot of fun! We have free training to suit everyone, including webinars that guide you through getting started, a self-study online course you can take to prepare for running your Code Club, and drop-in online Q&A sessions where you can chat about your questions to our friendly team or to other educators who run clubs. 

Once you have registered your Code Club, you’ll get access to an online dashboard packed with useful resources: from guidance on preparing and delivering your first session, to certificates to celebrate your club members’ successes, and unplugged activities for learners to do away from the screen.

What experience do you need to run a Code Club?

You don’t need to have any coding experience to run a club, as we provide a giant range of fun coding projects and support materials that can be easily followed by educators and young people alike. You just need to support and encourage your young coders, and you can get in touch with the Code Club team if you need any help!

The project paths we offer provide a framework for young coders to develop their skills, whatever their starting point is. Each path starts with three Explore projects, where coders learn new coding concepts and skills. The next two Design projects in the path help them practise these skills through creating fun games, animations, or websites. The final Invent project of the path gives a design brief, and based on this learners have the space to use their new skills and their creativity to code something based on their own ideas. 

Our project paths start with the basics of Scratch, and work through to creating websites in HTML and CSS, and to text-based coding in Python. For more advanced or adventurous coders, we also offer project paths to make physical projects with Raspberry Pi Pico, create 3D models in Blender, or even build 3D worlds in Unity.

Why is it important to teach coding to primary-aged children?

Lots of primary-aged children use digital technology every day, whether that be a TV, a phone, playing video games, or a computer at school. But they don’t have to be just consumers of technology. Through learning to code, young people become able to create their own technology, and our projects are designed to help them see how these new skills allow them to express themselves and solve problems that matter to them.

What young people do with their new skills is up to them – that’s the exciting part! Computing skills open paths to a wide range of projects and work where digital skills are helpful. And while learning coding is fun and useful, it also helps learners develop a many other important skills to do with problem solving, teamwork, and creativity.

A waving person.

Martin O’Hanlon heads the team that produces our free online courses programme. If you’re looking for continued professional development in computer science, look no further than to our more than 35 courses. (For teachers in England, a large number of the courses count towards the NCCE’s Primary, Secondary, or GCSE certificates.) Curated in 13 curated learning pathways, all of our courses provide high-quality training that you can take at home, at a time that suits you.

Martin, what can learners expect from taking one of our online courses?

Our online computing courses are free and have something for everyone who is interested in computing. We offer pathways for learning to program in Python or Scratch, teaching computing in the classroom, getting started with physical computing, and many more. 

We vary the materials and formats used in our courses, including videos, written articles, quizzes, and discussions to help learners get the most out of the experience. You will find a lot of practical activities and opportunities to practice what you learn. There are loads of opportunities to interact with and learn from others who are doing the course at the same time as you. And educators from the Raspberry Pi Foundation join the courses during facilitation periods to give their advice, support, and encouragement.

What is the idea behind the course pathways?

We have a large catalogue of online training courses, and the pathways give learners a starting point. They group the courses into useful collections, offering a recommended path for everyone, whether that’s people who are brand-new to computing or who have identified a gap in their existing computing skills or knowledge.

Our aim is that these pathways help people find the right course at the right point in their computing journey.

Thanks, everyone.

One more thing…

We’re also very excited to work on new research projects this school year, to help deepen the computing education community’s understanding of how to teach the subject in schools. Are you a primary teacher in England who is interested in making computing culturally relevant for your pupils?

Young learners at computers in a classroom.

We’re currently looking for teachers to take part in our research project around primary school culturally adapted resources, running from October 2022 to July 2023. Find out more about what taking part involves.

The post Back to school 2022: Our support for teachers appeared first on Raspberry Pi.

How do we create engaging online courses for computing educators?

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/creating-free-online-courses-training-computing-computer-science-teachers-educators/

With our online courses programme, launched in 2017, we made it our mission to provide computing educators with the best possible free training we can design. Five years on, here are some of the key stats about the courses’ impact:

  • We’ve produced and launched 35 free online courses 
  • We’ve created over 650 educational course videos 
  • More than 234,000 learners have participated in the courses
  • Over 19,000 teachers in England have participated through the National Centre for Computing Education
A teacher attending Picademy laughs as she works through an activity

Designed and created in-house, each and every course is a real cross-team effort that involves a lot of careful planning and a number of different stages. Here we’re taking you behind the scenes to show you how we make our courses, introduce you to the people involved, and explain how we ensure our courses are of high quality.

But first, here’s some quick answers to questions you may have:

Our free online courses — key questions answered

What are the courses? 

They are online training courses to help you learn about computing and computing education. The courses are hosted on the FutureLearn website. They are asynchronous, meaning you can take them whenever and wherever you want.

Are the courses free?

Yes! All our courses are free when you sign up for time-limited access, which gives you full access to the learning materials for the complete course duration. FutureLearn also has a paid-for ‘unlimited’ option, where you receive a certificate for each course you take.

alt=""

Are the courses right for me? 

They are aimed at educators, particularly classroom teachers, but they are also beneficial to anyone who wants to learn more about computing.

How long does a course take?

To help you structure your learning, our courses are divided into three or four weeks, but it’s up to you how quickly you work through them. You can complete a course in one afternoon, or spread your learning out and study for 30 minutes a day over three or four weeks. This flexibility makes it easy to fit a course into a busy schedule. 

How can I access the courses?

""

What goes into creating an engaging online course?

Creating our online courses is a team effort involving writers, videographers, illustrators, animators, copy editors, presenters, and subject matter experts working together over months of production. The entire process is guided by our online course producers, Martin O’Hanlon, Ross Exton, and Michael Conterio, who know a thing or two about creating high-quality learning experiences. We spoke to them about what it takes to create an engaging course. 

The educators working at the Raspberry Pi Foundation.
The educators at the Raspberry Pi Foundation. On screen: Ross Exton. Left to right in person: Michael Conterio, Martin O’Hanlon.

Hi guys. You’ve created courses on a wide range of computing subjects. How do you decide what the focus of your next course is going to be?

Martin: We are driven by the needs of teachers. “What are teachers telling us they want to learn? Or what are the gaps in the curriculum where our learners need additional support?”

For example, our Introduction to Machine Learning and AI course was introduced as a result of feedback from teachers that while the subject wasn’t necessarily on the curriculum, they felt underprepared to answer questions from students or provide context when teaching other topics.

A woman holds up a Raspberry Pi computer in front of a laptop screen.

How do you then go about planning it out and turning that plan into an actual course structure?

Michael: Working with the course authors, we’ll generally agree on the big topics we want to cover or questions that we want to answer. We’ll often also have individual elements that we want to fit in somewhere, for example an activity involving making a learning resource more accessible. From there it’s a case of taking the bigger topics and working out how we can split them up into smaller chunks, until we get down to individual learning activities.

Ross: But then we’ll end up shuffling things around until we are happy — not only that we’ve got everything that we wanted to cover, but that the overall structure makes sense. We often talk about the ‘narrative’ of a course.

What is your approach to pedagogy in online courses?

Martin: At the Raspberry Pi Foundation we have a set of 12 pedagogy principles that we use through our learning resources (including online courses). We take particular care to lead with concepts, model processes, and activities; add variety for our learners; and include opportunities to create projects. 

The Raspberry Pi Foundation's 12 principles of computing pedagogy: lead with concepts; structure lessons; make concrete; unplug, unpack, repack; work together; read and explore code first; foster program comprehension; model everything; challenge misconceptions; create projects; get hands-on; add variety.
Learn more about the 12 principles in the free special edition of Hello World, The Big book of Computing Pedagogy, downloadable in PDF format.

Can you tell us about some of the pitfalls with course writing that you’ve learned along the way?

Michael: Because the learner is not present, you have to be incredibly precise with instructions as you can’t help learners directly as they are working through the content. And even if you think something is obvious, it’s easy for learners to accidentally miss an instruction, so it’s generally good to try to keep them together rather than spread out.

Martin: Luckily, it is often possible to tell from comments that learners have shared when something is hard to understand so we can improve future runs of the course.

How important is the media you add to the courses, like animations and videos? What is the process for creating this type of content?

Ross: It’s essential! It brings the abstract concepts of computing to life. The media in our courses helps our learners to visualise the ideas we’re presenting in ways that are engaging and relatable. 

alt=""

As we’re writing the course, we capture every creative idea that will best support our learners in gaining the knowledge and skills that they need. From ‘how-to’ guides with live coding, to physical computing demonstrations, or animations of robots, we think carefully about each image and video and how we’re not just telling the learner something, but showing them.

We then work with a brilliantly talented team of illustrators, animators, videographers, and presenters to create all of that media. 

A videographer preparing to film a course presenter.
And… action! We film all the video content for courses in-house, working closely with the educators who present the content.

There are lots of opportunities for social learning within the courses. Can you explain more about its importance and how we integrate it?

Ross: Social learning is a really important part of our online courses experience. Over the past year we have made significant investment to make it easier for participants to share programs they’ve written as part of their learning, for example, and for facilitators to provide support.

Martin: It is important people have the opportunity to share their learning with others. This is something often lost when taking an online course and it can feel like you are ‘on your own’. 

In the Raspberry Pi Foundation’s online courses learners are given the opportunity to ask questions, share what they have created, and provide their own insight in the comments. Educators from the Foundation facilitate the courses — responding to comments and providing advice is a big part of what they do.

Thank you Martin, Michael, and Ross. 

What new online course would you like us to create? Tell us in the comments below.

The post How do we create engaging online courses for computing educators? appeared first on Raspberry Pi.

Why a great teacher can make all the difference

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/a-great-teacher-can-make-all-the-difference/

When we think back to our school days, we can all recall that one teacher who inspired us, believed in us, and made all the difference to how we approached a particular subject. It was someone we maybe took for granted at the time and so we only realised (much) later how amazing they were. 

I hope this post makes you think of a teacher or mentor who has made a key difference in your life!

Here computer science student Jonathan Alderson and our team’s Ben Garside talk to me about how Ben supported and inspired Jonathan in his computer science classroom.

Ben Garside and Jonathan Alderson holding physical and virtual chess games
The teacher: Ben Garside. The student: Jonathan Alderson.

Hi Jonathan! How did you get into computing?

Jonathan: My first memories of using a computer were playing 3D Pinball, Club Penguin, and old Disney games, so nothing productive there…or so I thought! I was always good at IT and Maths at school, and Computing seemed to be a cross between the two, so I thought it would be good.

Jonathan and Ben, can you remember your time working together? It’s been a while now! 

Jonathan: I met Mr Garside at the start of sixth form. Our school didn’t have a computer science course, so a few of us would walk between schools twice a week. Mr Garside really made me feel welcome in a place where I didn’t know anyone.

When learning computer science, it’s difficult to understand the importance of new concepts like recursion, classes, or linked lists when the examples are so small. Mr Garside’s teaching made me see the relevance of them and how they could fit into other projects; it’s easy to go a long time without using concepts because you don’t necessarily need them, even when it would make your life a lot easier.

Mr Garside really made me feel welcome in a place where I didn’t know anyone. […] Mr Garside’s teaching made me see the relevance of [new computer science concepts] and how they could fit into other projects.

Jonathan Alderson

Ben: It was a real pleasure to teach Jonathan. He stands out as being one of the most inquisitive students that I have taught. If something wasn’t clear to him, he’d certainly let me know and ask relevant questions so that he could fully understand. Jonathan was also constantly working on his own programming projects outside of lessons. During his A level, I remember him taking it upon himself to write a program that played chess. Each week he would demonstrate the progress he had made to the class. It was a perfect example of decomposition as he tackled the project in small sections and had a clear plan as to what he wanted to achieve. By the end of his project, not only did he have a program that played chess, but it was capable of playing against real online users including making the mouse clicks on the screen!

Moving from procedural to object-oriented programming (OOP) can be a sticking point for a lot of learners, and I remember Jonathan finding this difficult at first. I think what helped Jonathan in particular was getting him to understand that this wasn’t as new a concept as he first thought. OOP was just a different paradigm where he could still apply all of the coding structures that he was already confident in using.

That sounds like a very cool project. What other projects did you make, Jonathan? And how did Ben help you?

Jonathan: My final-year project, [a video game] called Vector Venture, ended up becoming quite a mammoth task! I didn’t really have a clue about organising large projects, what an IDE was, or you could split files apart. Mr Garside helped me spend enough time on the final report and get things finished. He was very supportive of me releasing the game and got me a chance to speak at the Python North East group, which was a great opportunity.

Ben: Vector Venture was a very ambitious project that Jonathan undertook, but I think by then he had learned a lot about how to tackle a project of that size from previous projects such as the chess program. The key to his success was that whilst he was learning, he was picking projects to undertake that he had a genuine interest in and enjoyed developing. I would also tell my A level students to pick as a project something that they will enjoy developing. Jonathan clearly enjoyed developing games, but I also had students who picked projects to develop programs that would solve problems. For example, one of my students developed a system that would take online bookings for food orders and manage table allocation for a local restaurant.

I would tell my A level students to pick as a project something that they will enjoy developing.

Ben Garside

I think that point about having fun while learning something challenging like programming is really important to highlight. So what are you doing now, Jonathan?

Jonathan: I have just completed my undergraduate degree at the University of Leeds (UoL) with a place on the Dean’s List and am staying to complete a Masters in High Performance Graphics. 

During my time at UoL, I’ve had three summer placements creating medical applications and new systems for the university. This helped me understand the social benefits of computer science; it was great to work on something that is now benefitting so many people. My dissertation was on music visualisation, mapping instrument attributes of a currently playing song to control parameters inside sharers on the GPU to produce reactive visualisations. I’ve just completed an OpenGL project to create procedural underwater scenes, with realistic lighting, reflections, and fish simulations. I’m now really looking forward to completing my Game Engine project for my masters and graduating.

Teachers are often brilliant at taking something complicated and presenting it in a clearer way. Are those moments of clarity part of what motivates you to teach, Ben? 

Ben: There are lots of things that excite me about teaching computer science. Before I worked for the Raspberry Pi Foundation, there was a phrase I heard Carrie Anne Philbin say when I attended a Picademy: we are teaching young people to be digital makers, logical thinkers, and problem solvers, not just to be consumers of technology. I felt this really summed up how great it is to teach our subject. Teaching computer science means that we’re educating young people about the world around them and how technology plays its part in their lives. By doing this, we are empowering them to solve problems and to make educated choices about how they use technology.

Teaching computer science means that we’re educating young people about the world around them and how technology plays its part in their lives.

Ben Garside

As for my previous in-school experiences, I loved those lightbulb moments when something suddenly made sense to a student and a loud “Yesssss!” would break the silence of a quietly focused classroom. I loved teaching something that regularly sparked their imaginations; give them a single lesson on programming, and they would start to ask questions like: “Now I’ve made it do that…does this mean I could make it do this next?“. It wasn’t uncommon for students to want to do more outside of the classroom that wasn’t a homework activity. That, for me, was the ultimate win! 

How about you?

Who was the teacher who helped shape your future when you were at school? Tell us about them in the comments below.

The post Why a great teacher can make all the difference appeared first on Raspberry Pi.

Join the UK Bebras Challenge 2020 for schools!

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/join-uk-bebras-challenge-2020/

The annual UK Bebras Computational Thinking Challenge for schools, brought to you by the Raspberry Pi Foundation and Oxford University, is taking place this November!

UK Bebras Challenge logo

The Bebras Challenge is a great way for your students to practise their computational thinking skills while solving exciting, accessible, and puzzling questions. Usually this 40-minute challenge would take place in the classroom. However, this year for the first time, your students can participate from home too!

If your students haven’t entered before, now is a great opportunity for them to get involved: they don’t need any prior knowledge. 

Do you have any students who are up for tackling the Bebras Challenge? Then register your school today!

School pupils in a computing classroom

What you need to know about the Bebras Challenge

  • It’s a great whole-school activity open to students aged 6 to 18, in different age group categories.
  • It’s completely free!
  • The closing date for registering your school is 30 October.
  • Let your students complete the challenge between 2 and 13 November 2020.
  • The challenge is made of a set of short tasks, and completing it takes 40 minutes.
  • The challenge tasks focus on logical thinking and do not require any prior knowledge of computer science.
  • There are practice questions to help your students prepare for the challenge.
  • This year, students can take part at home (please note they must still be entered through their school).
  • All the marking is done for you! The results will be sent to you the week after the challenge ends, along with the answers, so that you can go through them with your students.

“Thank you for another super challenge. It’s one of the highlights of my year as a teacher. Really, really appreciate the high-quality materials, website, challenge, and communication. Thank you again!”

– A UK-based teacher

Support your students to develop their computational thinking skills with Bebras materials

Bebras is an international challenge that started in Lithuania in 2004 and has grown into an international event. The UK became involved in Bebras for the first time in 2013, and the number of participating students has increased from 21,000 in the first year to more than 260,000 last year! Internationally, nearly 3 million learners took part in 2019. 

Bebras is a great way to engage your students of all ages in problem-solving and give them a taste of what computing is all about. In the challenge results, computing principles are highlighted, so Bebras can be educational for you as a teacher too.

The annual Bebras Challenge is only one part of the equation: questions from previous years are available as a resource that you can use to create self-marking quizzes for your classes. You can use these materials throughout the year to help you to deliver the computational thinking part of your curriculum!

The post Join the UK Bebras Challenge 2020 for schools! appeared first on Raspberry Pi.