Tag Archives: DoD

AWS announces migration plans for NIST 800-53 Revision 5

Post Syndicated from James Mueller original https://aws.amazon.com/blogs/security/aws-announces-migration-plans-for-nist-800-53-revision-5/

Amazon Web Services (AWS) is excited to begin migration plans for National Institute of Standards and Technology (NIST) 800-53 Revision 5.

The NIST 800-53 framework is a regulatory standard that defines the minimum baseline of security controls for U.S. federal information systems. In 2020, NIST released Revision 5 of the framework to improve security standards for industry partners and government agencies. The set of NIST 800-53 controls provides a foundation for additional laws and regulations within the U.S. government.

The Federal Information Security Modernization Act (FISMA) of 2014 is a law that requires federal agencies and contractors to meet information security standards. The Federal Risk and Authorization Management Program (FedRAMP) is a federal government program that provides a standardized approach to security assessment, authorization, and continuous monitoring of cloud services. Both FISMA and FedRAMP rely on the NIST 800-53 framework.

NIST 800-53 Revision 5

AWS meets the NIST 800-53 Revision 4 regulatory standards mandated by government authorities. NIST added numerous security enhancements, such as privacy and supply chain management, to Revision 5 to keep abreast of emerging threats to federal information systems.

In preparation for federal regulators to accept NIST 800-53 Revision 5 as the new requirement standard, AWS has begun efforts to adapt to the new security controls, processes, and procedures. AWS security compliance teams have analyzed the new requirements and launched a project to implement the updates. Although AWS is not required to migrate to the new Revision 5 standard until NIST announces the official regulatory compliance deadline, we are already taking steps to meet the deadline.

To learn more about AWS compliance programs, see the AWS Compliance Programs page.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

James Mueller

James Mueller

James is a Security Assurance Manager for AWS. For over 20 years, he has served customers in the private, public, and non-profit sectors delivering innovative information technology solutions. He currently leads security compliance efforts to drive adoption of AWS services.

AWS achieves the first OSCAL format system security plan submission to FedRAMP

Post Syndicated from Matthew Donkin original https://aws.amazon.com/blogs/security/aws-achieves-the-first-oscal-format-system-security-plan-submission-to-fedramp/

Amazon Web Services (AWS) is the first cloud service provider to produce an Open Security Control Assessment Language (OSCAL)–formatted system security plan (SSP) for the FedRAMP Project Management Office (PMO). OSCAL is the first step in the AWS effort to automate security documentation to simplify our customers’ journey through cloud adoption and accelerate the authorization to operate (ATO) process.

AWS continues its commitment to innovation and customer obsession. Our incorporation of the OSCAL format will improve the customer experience of reviewing and assessing security documentation. It can take an estimated 4,200 workforce hours for companies to receive an ATO, with much of the effort due to manual review and transcription of documentation. Automating this process through a machine-translatable language gives our customers the ability to ingest security documentation into a governance, risk management, and compliance (GRC) tool to automate much of this time-consuming task. AWS worked with an AWS Partner, to ingest the AWS SSP through their tool, Xacta.

This is a first step in several initiatives AWS has planned to automate the security assurance process across multiple compliance frameworks. We continue to look for ways to earn trust with our customers, and over the next year we will continue to release new solutions that customers can use to rapidly deploy secure and innovative services.

“Providing the SSP packages in OSCAL is a great milestone in security automation marking the beginning of a new era in cybersecurity. We appreciate the leadership in this area and look forward to working with all cyber professionals, in particular with the visionary cloud service providers, to help deliver secure innovation faster to the people they serve.”

– Dr. Michaela Iorga, OSCAL Strategic Outreach Director, NIST

To learn more about OSCAL, visit the NIST OSCAL website. To learn more about FedRAMP’s plans for OSCAL, visit the FedRAMP Blog.

To learn what other public sector customers are doing on AWS, see our Government, Education, and Nonprofits case studies and customer success stories. Stay tuned for future updates on our Services in Scope by Compliance Program page. Let us know how this post will help your mission by reaching out to your AWS account team. Lastly, if you have feedback about this blog post, let us know in the Comments section.

Want more AWS Security news? Follow us on Twitter.

Matthew Donkin

Matthew Donkin

Matthew Donkin, AWS Security Compliance Lead, provides direction and guidance for security documentation automation, physical security compliance, and assists customers in navigating compliance in the cloud. He is leading the development of the industries’ first open security controls assessment language (OSCAL) artifacts for adoption of a faster and more reliable way to process resource intensive documentation within the authorization process.

10 additional AWS services authorized at DoD Impact Level 6 for the AWS Secret Region

Post Syndicated from Tyler Harding original https://aws.amazon.com/blogs/security/10-additional-aws-services-authorized-dod-impact-level-6-for-aws-secret-region/

The Defense Information Systems Agency (DISA) has authorized 10 additional AWS services in the AWS Secret Region for production workloads at the Department of Defense (DoD) Impact Level (IL) 6 under the DoD’s Cloud Computing Security Requirements Guide (DoD CC SRG). With this authorization at DoD IL 6, DoD Mission Owners can process classified and mission critical workloads for National Security Systems in the AWS Secret Region. The AWS Secret Region is available to the Department of Defense on the AWS’s GSA IT Multiple Award Schedule.

AWS successfully completed an independent evaluation by members of the Intelligence Community (IC) that confirmed AWS effectively implemented 859 security controls using applicable criteria from NIST SP 800-53 Rev 4, the DoD CC SRG, and the Committee on National Security Systems Instruction No. 1253 at the Moderate Confidentiality, Moderate Integrity, and Moderate Availability impact levels.

The 10 AWS services newly authorized by DISA at IL 6 provide additional choices for DoD Mission Owners to use the capabilities of the AWS Cloud in service areas such as compute and storage, management and developer tools, analytics, and networking. With the addition of these 10 newly authorized AWS services (listed with links below), AWS expands the capabilities for DoD Mission Owners to use a total of 36 services and features.

Compute and Storage:

Management and Developer Tools:

  • AWS Personal Health Dashboard: Monitor, manage, and optimize your AWS environment with a personalized view into the performance and availability of the AWS services underlying your AWS resources.
  • AWS Systems Manager: Automatically collect software inventory, apply OS patches, create system images, configure Windows and Linux operating systems, and seamlessly bridge your existing infrastructure with AWS.
  • AWS CodeDeploy: A fully managed deployment service that automates software deployments to a variety of compute services such as Amazon EC2, AWS Lambda, and on-premises servers.

Analytics:

  • AWS Data Pipeline: Reliably process and move data between different AWS compute and storage services, as well as on-premises data sources, at specified intervals.

Networking:

  • AWS PrivateLink: Use secure private connectivity between Amazon Virtual Private Cloud (Amazon VPC), AWS services, and on-premises applications on the AWS network, and eliminate the exposure of data to the public internet.
  • AWS Transit Gateway: Easily connect Amazon VPC, AWS accounts, and on-premises networks to a single gateway.
Figure 1: 10 additional AWS services authorized at DoD Impact Level 6

Figure 1: 10 additional AWS services authorized at DoD Impact Level 6

Newly authorized AWS services and features at DoD Impact Level 6

  1. Amazon Elastic Container Registry (ECR)
  2. Amazon Elastic Container Service (ECS)
  3. AWS CodeDeploy
  4. AWS Data Pipeline
  5. AWS Lambda
  6. AWS Personal Health Dashboard
  7. AWS PrivateLink
  8. AWS Snowball Edge
  9. AWS Systems Manager
  10. AWS Transit Gateway

Existing authorized AWS services and features at DoD Impact Level 6

  1. Amazon CloudWatch
  2. Amazon DynamoDB (DDB)
  3. Amazon Elastic Block Store (EBS)
  4. Amazon Elastic Compute Cloud (EC2)
  5. Amazon Elastic Compute Cloud (EC2) – Auto Scaling
  6. Amazon Elastic Compute Cloud (EC2) – Elastic Load Balancing (ELB) (Classic and Application Load Balancer)
  7. Amazon ElastiCache
  8. Amazon Kinesis Data Streams
  9. Amazon Redshift
  10. Amazon S3 Glacier
  11. Amazon Simple Notification Service (SNS)
  12. Amazon Simple Queue Service (SQS)
  13. Amazon Simple Storage Service (S3)
  14. Amazon Simple Workflow (SWF)
  15. Amazon Virtual Private Cloud (VPC)
  16. AWS CloudFormation
  17. AWS CloudTrail
  18. AWS Config
  19. AWS Database Migration Service (DMS)
  20. AWS Direct Connect (Dx)
  21. AWS Identity and Access Management (IAM)
  22. AWS Key Management Service (KMS)
  23. Amazon Relational Database Service (RDS) (including MariaDB, MySQL, Oracle, Postgres, and SQL Server)
  24. AWS Snowball
  25. AWS Step Functions
  26. AWS Trusted Advisor

To learn more about AWS solutions for DoD, please see our AWS solution offerings. Follow the AWS Security Blog for future updates on our Services in Scope by Compliance Program page. If you have feedback about this post, let us know in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Tyler Harding

Tyler is the DoD Compliance Program Manager within AWS Security Assurance. He has over 20 years of experience providing information security solutions to federal civilian, DoD, and intelligence agencies.

How AWS Meets a Physical Separation Requirement with a Logical Separation Approach

Post Syndicated from Min Hyun original https://aws.amazon.com/blogs/security/how-aws-meets-a-physical-separation-requirement-with-a-logical-separation-approach/

We have a new resource available to help you meet a requirement for physically-separated infrastructure using logical separation in the AWS cloud. Our latest guide, Logical Separation: An Evaluation of the U.S. Department of Defense Cloud Security Requirements for Sensitive Workloads outlines how AWS meets the U.S. Department of Defense’s (DoD) stringent physical separation requirement by pioneering a three-pronged logical separation approach that leverages virtualization, encryption, and deploying compute to dedicated hardware.

This guide will help you understand logical separation in the cloud and demonstrates its advantages over a traditional physical separation model. Embracing this approach can help organizations confidently meet or exceed security requirements found in traditional on-premises environments, while also providing increased security control and flexibility.

Logical Separation is the second guide in the AWS Government Handbook Series, which examines cybersecurity policy initiatives and identifies best practices.

If you have questions or want to learn more, contact your account executive or AWS Support.

Securing messages published to Amazon SNS with AWS PrivateLink

Post Syndicated from Otavio Ferreira original https://aws.amazon.com/blogs/security/securing-messages-published-to-amazon-sns-with-aws-privatelink/

Amazon Simple Notification Service (SNS) now supports VPC Endpoints (VPCE) via AWS PrivateLink. You can use VPC Endpoints to privately publish messages to SNS topics, from an Amazon Virtual Private Cloud (VPC), without traversing the public internet. When you use AWS PrivateLink, you don’t need to set up an Internet Gateway (IGW), Network Address Translation (NAT) device, or Virtual Private Network (VPN) connection. You don’t need to use public IP addresses, either.

VPC Endpoints doesn’t require code changes and can bring additional security to Pub/Sub Messaging use cases that rely on SNS. VPC Endpoints helps promote data privacy and is aligned with assurance programs, including the Health Insurance Portability and Accountability Act (HIPAA), FedRAMP, and others discussed below.

VPC Endpoints for SNS in action

Here’s how VPC Endpoints for SNS works. The following example is based on a banking system that processes mortgage applications. This banking system, which has been deployed to a VPC, publishes each mortgage application to an SNS topic. The SNS topic then fans out the mortgage application message to two subscribing AWS Lambda functions:

  • Save-Mortgage-Application stores the application in an Amazon DynamoDB table. As the mortgage application contains personally identifiable information (PII), the message must not traverse the public internet.
  • Save-Credit-Report checks the applicant’s credit history against an external Credit Reporting Agency (CRA), then stores the final credit report in an Amazon S3 bucket.

The following diagram depicts the underlying architecture for this banking system:
 
Diagram depicting the architecture for the example banking system
 
To protect applicants’ data, the financial institution responsible for developing this banking system needed a mechanism to prevent PII data from traversing the internet when publishing mortgage applications from their VPC to the SNS topic. Therefore, they created a VPC endpoint to enable their publisher Amazon EC2 instance to privately connect to the SNS API. As shown in the diagram, when the VPC endpoint is created, an Elastic Network Interface (ENI) is automatically placed in the same VPC subnet as the publisher EC2 instance. This ENI exposes a private IP address that is used as the entry point for traffic destined to SNS. This ensures that traffic between the VPC and SNS doesn’t leave the Amazon network.

Set up VPC Endpoints for SNS

The process for creating a VPC endpoint to privately connect to SNS doesn’t require code changes: access the VPC Management Console, navigate to the Endpoints section, and create a new Endpoint. Three attributes are required:

  • The SNS service name.
  • The VPC and Availability Zones (AZs) from which you’ll publish your messages.
  • The Security Group (SG) to be associated with the endpoint network interface. The Security Group controls the traffic to the endpoint network interface from resources in your VPC. If you don’t specify a Security Group, the default Security Group for your VPC will be associated.

Help ensure your security and compliance

SNS can support messaging use cases in regulated market segments, such as healthcare provider systems subject to the Health Insurance Portability and Accountability Act (HIPAA) and financial systems subject to the Payment Card Industry Data Security Standard (PCI DSS), and is also in-scope with the following Assurance Programs:

The SNS API is served through HTTP Secure (HTTPS), and encrypts all messages in transit with Transport Layer Security (TLS) certificates issued by Amazon Trust Services (ATS). The certificates verify the identity of the SNS API server when encrypted connections are established. The certificates help establish proof that your SNS API client (SDK, CLI) is communicating securely with the SNS API server. A Certificate Authority (CA) issues the certificate to a specific domain. Hence, when a domain presents a certificate that’s issued by a trusted CA, the SNS API client knows it’s safe to make the connection.

Summary

VPC Endpoints can increase the security of your pub/sub messaging use cases by allowing you to publish messages to SNS topics, from instances in your VPC, without traversing the internet. Setting up VPC Endpoints for SNS doesn’t require any code changes because the SNS API address remains the same.

VPC Endpoints for SNS is now available in all AWS Regions where AWS PrivateLink is available. For information on pricing and regional availability, visit the VPC pricing page.
For more information and on-boarding, see Publishing to Amazon SNS Topics from Amazon Virtual Private Cloud in the SNS documentation.

If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Amazon SNS forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Mission Space Lab flight status announced!

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/mission-space-lab-flight-status-announced/

In September of last year, we launched our 2017/2018 Astro Pi challenge with our partners at the European Space Agency (ESA). Students from ESA membership and associate countries had the chance to design science experiments and write code to be run on one of our two Raspberry Pis on the International Space Station (ISS).

Astro Pi Mission Space Lab logo

Submissions for the Mission Space Lab challenge have just closed, and the results are in! Students had the opportunity to design an experiment for one of the following two themes:

  • Life in space
    Making use of Astro Pi Vis (Ed) in the European Columbus module to learn about the conditions inside the ISS.
  • Life on Earth
    Making use of Astro Pi IR (Izzy), which will be aimed towards the Earth through a window to learn about Earth from space.

ESA astronaut Alexander Gerst, speaking from the replica of the Columbus module at the European Astronaut Center in Cologne, has a message for all Mission Space Lab participants:

ESA astronaut Alexander Gerst congratulates Astro Pi 2017-18 winners

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Flight status

We had a total of 212 Mission Space Lab entries from 22 countries. Of these, a 114 fantastic projects have been given flight status, and the teams’ project code will run in space!

But they’re not winners yet. In April, the code will be sent to the ISS, and then the teams will receive back their experimental data. Next, to get deeper insight into the process of scientific endeavour, they will need produce a final report analysing their findings. Winners will be chosen based on the merit of their final report, and the winning teams will get exclusive prizes. Check the list below to see if your team got flight status.

Belgium

Flight status achieved:

  • Team De Vesten, Campus De Vesten, Antwerpen
  • Ursa Major, CoderDojo Belgium, West-Vlaanderen
  • Special operations STEM, Sint-Claracollege, Antwerpen

Canada

Flight status achieved:

  • Let It Grow, Branksome Hall, Toronto
  • The Dark Side of Light, Branksome Hall, Toronto
  • Genie On The ISS, Branksome Hall, Toronto
  • Byte by PIthons, Youth Tech Education Society & Kid Code Jeunesse, Edmonton
  • The Broadviewnauts, Broadview, Ottawa

Czech Republic

Flight status achieved:

  • BLEK, Střední Odborná Škola Blatná, Strakonice

Denmark

Flight status achieved:

  • 2y Infotek, Nærum Gymnasium, Nærum
  • Equation Quotation, Allerød Gymnasium, Lillerød
  • Team Weather Watchers, Allerød Gymnasium, Allerød
  • Space Gardners, Nærum Gymnasium, Nærum

Finland

Flight status achieved:

  • Team Aurora, Hyvinkään yhteiskoulun lukio, Hyvinkää

France

Flight status achieved:

  • INC2, Lycée Raoul Follereau, Bourgogne
  • Space Project SP4, Lycée Saint-Paul IV, Reunion Island
  • Dresseurs2Python, clg Albert CAMUS, essonne
  • Lazos, Lycée Aux Lazaristes, Rhone
  • The space nerds, Lycée Saint André Colmar, Alsace
  • Les Spationautes Valériquais, lycée de la Côte d’Albâtre, Normandie
  • AstroMega, Institut de Genech, north
  • Al’Crew, Lycée Algoud-Laffemas, Auvergne-Rhône-Alpes
  • AstroPython, clg Albert CAMUS, essonne
  • Aruden Corp, Lycée Pablo Neruda, Normandie
  • HeroSpace, clg Albert CAMUS, essonne
  • GalaXess [R]evolution, Lycée Saint Cricq, Nouvelle-Aquitaine
  • AstroBerry, clg Albert CAMUS, essonne
  • Ambitious Girls, Lycée Adam de Craponne, PACA

Germany

Flight status achieved:

  • Uschis, St. Ursula Gymnasium Freiburg im Breisgau, Breisgau
  • Dosi-Pi, Max-Born-Gymnasium Germering, Bavaria

Greece

Flight status achieved:

  • Deep Space Pi, 1o Epal Grevenon, Grevena
  • Flox Team, 1st Lyceum of Kifissia, Attiki
  • Kalamaria Space Team, Second Lyceum of Kalamaria, Central Macedonia
  • The Earth Watchers, STEM Robotics Academy, Thessaly
  • Celestial_Distance, Gymnasium of Kanithos, Sterea Ellada – Evia
  • Pi Stars, Primary School of Rododaphne, Achaias
  • Flarions, 5th Primary School of Salamina, Attica

Ireland

Flight status achieved:

  • Plant Parade, Templeogue College, Leinster
  • For Peats Sake, Templeogue College, Leinster
  • CoderDojo Clonakilty, Co. Cork

Italy

Flight status achieved:

  • Trentini DOP, CoderDojo Trento, TN
  • Tarantino Space Lab, Liceo G. Tarantino, BA
  • Murgia Sky Lab, Liceo G. Tarantino, BA
  • Enrico Fermi, Liceo XXV Aprile, Veneto
  • Team Lampone, CoderDojoTrento, TN
  • GCC, Gali Code Club, Trentino Alto Adige/Südtirol
  • Another Earth, IISS “Laporta/Falcone-Borsellino”
  • Anti Pollution Team, IIS “L. Einaudi”, Sicily
  • e-HAND, Liceo Statale Scientifico e Classico ‘Ettore Majorana’, Lombardia
  • scossa team, ITTS Volterra, Venezia
  • Space Comet Sisters, Scuola don Bosco, Torino

Luxembourg

Flight status achieved:

  • Spaceballs, Atert Lycée Rédange, Diekirch
  • Aline in space, Lycée Aline Mayrisch Luxembourg (LAML)

Poland

Flight status achieved:

  • AstroLeszczynPi, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • Astrokompasy, High School nr XVII in Wrocław named after Agnieszka Osiecka, Lower Silesian
  • Cosmic Investigators, Publiczna Szkoła Podstawowa im. Św. Jadwigi Królowej w Rzezawie, Małopolska
  • ApplePi, III Liceum Ogólnokształcące im. prof. T. Kotarbińskiego w Zielonej Górze, Lubusz Voivodeship
  • ELE Society 2, Zespol Szkol Elektronicznych i Samochodowych, Lubuskie
  • ELE Society 1, Zespol Szkol Elektronicznych i Samochodowych, Lubuskie
  • SpaceOn, Szkola Podstawowa nr 12 w Jasle – Gimnazjum Nr 2, Podkarpackie
  • Dewnald Ducks, III Liceum Ogólnokształcące w Zielonej Górze, lubuskie
  • Nova Team, III Liceum Ogolnoksztalcace im. prof. T. Kotarbinskiego, lubuskie district
  • The Moons, Szkola Podstawowa nr 12 w Jasle – Gimnazjum Nr 2, Podkarpackie
  • Live, Szkoła Podstawowa nr 1 im. Tadeusza Kościuszki w Zawierciu, śląskie
  • Storm Hunters, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • DeepSky, Szkoła Podstawowa nr 1 im. Tadeusza Kościuszki w Zawierciu, śląskie
  • Small Explorers, ZPO Konina, Malopolska
  • AstroZSCL, Zespół Szkół w Czerwionce-Leszczynach, śląskie
  • Orchestra, Szkola Podstawowa nr 12 w Jasle, Podkarpackie
  • ApplePi, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • Green Crew, Szkoła Podstawowa nr 2 w Czeladzi, Silesia

Portugal

Flight status achieved:

  • Magnetics, Escola Secundária João de Deus, Faro
  • ECA_QUEIROS_PI, Secondary School Eça de Queirós, Lisboa
  • ESDMM Pi, Escola Secundária D. Manuel Martins, Setúbal
  • AstroPhysicists, EB 2,3 D. Afonso Henriques, Braga

Romania

Flight status achieved:

  • Caelus, “Tudor Vianu” National High School of Computer Science, District One
  • CodeWarriors, “Tudor Vianu” National High School of Computer Science, District One
  • Dark Phoenix, “Tudor Vianu” National High School of Computer Science, District One
  • ShootingStars, “Tudor Vianu” National High School of Computer Science, District One
  • Astro Pi Carmen Sylva 2, Liceul Teoretic “Carmen Sylva”, Constanta
  • Astro Meridian, Astro Club Meridian 0, Bihor

Slovenia

Flight status achieved:

  • astrOSRence, OS Rence
  • Jakopičevca, Osnovna šola Riharda Jakopiča, Ljubljana

Spain

Flight status achieved:

  • Exea in Orbit, IES Cinco Villas, Zaragoza
  • Valdespartans, IES Valdespartera, Zaragoza
  • Valdespartans2, IES Valdespartera, Zaragoza
  • Astropithecus, Institut de Bruguers, Barcelona
  • SkyPi-line, Colegio Corazón de María, Asturias
  • ClimSOLatic, Colegio Corazón de María, Asturias
  • Científicosdelsaz, IES Profesor Pablo del Saz, Málaga
  • Canarias 2, IES El Calero, Las Palmas
  • Dreamers, M. Peleteiro, A Coruña
  • Canarias 1, IES El Calero, Las Palmas

The Netherlands

Flight status achieved:

  • Team Kaki-FM, Rkbs De Reiger, Noord-Holland

United Kingdom

Flight status achieved:

  • Binco, Teignmouth Community School, Devon
  • 2200 (Saddleworth), Detached Flight Royal Air Force Air Cadets, Lanchashire
  • Whatevernext, Albyn School, Highlands
  • GraviTeam, Limehurst Academy, Leicestershire
  • LSA Digital Leaders, Lytham St Annes Technology and Performing Arts College, Lancashire
  • Mead Astronauts, Mead Community Primary School, Wiltshire
  • STEAMCademy, Castlewood Primary School, West Sussex
  • Lux Quest, CoderDojo Banbridge, Co. Down
  • Temparatus, Dyffryn Taf, Carmarthenshire
  • Discovery STEMers, Discovery STEM Education, South Yorkshire
  • Code Inverness, Code Club Inverness, Highland
  • JJB, Ashton Sixth Form College, Tameside
  • Astro Lab, East Kent College, Kent
  • The Life Savers, Scratch and Python, Middlesex
  • JAAPiT, Taylor Household, Nottingham
  • The Heat Guys, The Archer Academy, Greater London
  • Astro Wantenauts, Wantage C of E Primary School, Oxfordshire
  • Derby Radio Museum, Radio Communication Museum of Great Britain, Derbyshire
  • Bytesyze, King’s College School, Cambridgeshire

Other

Flight status achieved:

  • Intellectual Savage Stars, Lycée français de Luanda, Luanda

 

Congratulations to all successful teams! We are looking forward to reading your reports.

The post Mission Space Lab flight status announced! appeared first on Raspberry Pi.

AWS Earns Department of Defense Impact Level 5 Provisional Authorization

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/aws-earns-department-of-defense-impact-level-5-provisional-authorization/

AWS GovCloud (US) Region image

The Defense Information Systems Agency (DISA) has granted the AWS GovCloud (US) Region an Impact Level 5 (IL5) Department of Defense (DoD) Cloud Computing Security Requirements Guide (CC SRG) Provisional Authorization (PA) for six core services. This means that AWS’s DoD customers and partners can now deploy workloads for Controlled Unclassified Information (CUI) exceeding IL4 and for unclassified National Security Systems (NSS).

We have supported sensitive Defense community workloads in the cloud for more than four years, and this latest IL5 authorization is complementary to our FedRAMP High Provisional Authorization that covers 18 services in the AWS GovCloud (US) Region. Our customers now have the flexibility to deploy any range of IL 2, 4, or 5 workloads by leveraging AWS’s services, attestations, and certifications. For example, when the US Air Force needed compute scale to support the Next Generation GPS Operational Control System Program, they turned to AWS.

In partnership with a certified Third Party Assessment Organization (3PAO), an independent validation was conducted to assess both our technical and nontechnical security controls to confirm that they meet the DoD’s stringent CC SRG standards for IL5 workloads. Effective immediately, customers can begin leveraging the IL5 authorization for the following six services in the AWS GovCloud (US) Region:

AWS has been a long-standing industry partner with DoD, federal-agency customers, and private-sector customers to enhance cloud security and policy. We continue to collaborate on the DoD CC SRG, Defense Acquisition Regulation Supplement (DFARS) and other government requirements to ensure that policy makers enact policies to support next-generation security capabilities.

In an effort to reduce the authorization burden of our DoD customers, we’ve worked with DISA to port our assessment results into an easily ingestible format by the Enterprise Mission Assurance Support Service (eMASS) system. Additionally, we undertook a separate effort to empower our industry partners and customers to efficiently solve their compliance, governance, and audit challenges by launching the AWS Customer Compliance Center, a portal providing a breadth of AWS-specific compliance and regulatory information.

We look forward to providing sustained cloud security and compliance support at scale for our DoD customers and adding additional services within the IL5 authorization boundary. See AWS Services in Scope by Compliance Program for updates. To request access to AWS’s DoD security and authorization documentation, contact AWS Sales and Business Development. For a list of frequently asked questions related to AWS DoD SRG compliance, see the AWS DoD SRG page.

To learn more about the announcement in this post, tune in for the AWS Automating DoD SRG Impact Level 5 Compliance in AWS GovCloud (US) webinar on October 11, 2017, at 11:00 A.M. Pacific Time.

– Chris Gile, Senior Manager, AWS Public Sector Risk & Compliance