Tag Archives: Medical Research

30-second blood analysis with Raspberry Pi

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/30-second-blood-analysis-with-raspberry-pi/

A portable, affordable Raspberry Pi-powered blood analyser is helping to “establish a robust healthcare ecosystem” in remote parts of India. Samples can be tested in just 30 seconds, and the cost and size of the parts make it an attractive solution for rural and resource-strapped areas.

It is the work of researchers Sangeeta Palekar and Jayu Kalambe from the Department of Electronics Engineering at Shri Ramdeobaba College of Engineering and Management.

blood analyser
(Image credit: Shri Ramdeobaba / College of Engineering And Management)

Tiny computer — massive processing power

Regular blood tests are vital in the tracking and elimination of many diseases, but there is a huge time and monetary cost currently tied to this type of laboratory work.

The researchers’s device measures light absorbance through a blood sample, a common type of analysis, and they harnessed the processing capability of Raspberry Pi 4 Model B to analyse the absorbance data. Their Raspberry Pi-powered solution was found to perform on a par with the kind of expensive lab-based blood test typically used.

Quick and easy

Sangeeta and Jayu’s analyser is not only cheaper to build and maintain than the lab-based version, it also does the job better. Using the lab-based method means that samples from patients in rural areas must be sent away for analysis, with results communicated back to patients at a much later date. In contrast, Sangeeta and Jayu’s device can process blood samples there and then. All you need is an electricity source. Patients get their results immediately, and there is no need to transport delicate samples across rural terrain.

Shri Ramdeobaba College of Engineering and Management

Incorporating an IoT element into their design, which would allow for remote monitoring, is the next step for the researchers. They also intend to develop their invention to allow it to carry out different types of blood analyses.

Read more about the science behind the creation

The full research paper is behind a paywall, but the abstract does a great job succinctly explaining all the science. Sangeeta herself also explains a lot of the magic behind her creation in this interview with IEEE Spectrum.

The post 30-second blood analysis with Raspberry Pi appeared first on Raspberry Pi.

Foot pressure sensors detect Parkinson’s disease

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/foot-pressure-sensors-detect-parkinsons-disease/

A team from National Yang Ming Chiao Tung University has developed a foot-pressure-sensing insole to detect Parkinson’s disease. Using our tiny computers, they managed to create something discreet that can monitor people as they walk around in their own shoes.

Check out Team Forelook‘s project video

What is Parkinson’s disease?

Parkinson’s disease is a neurodegenerative disorder that mostly affects people aged over 60, though it can affect younger people too. One symptom that can suggest a diagnosis of Parkinson’s disease is an abnormal gait – that is, when someone’s walk has changed from its usual pattern. It’s this that the project aims to detect.

While there is currently no cure for Parkinson’s, many people respond well to treatment with medication and physical therapy, and early detection gives people a better chance of a good quality of life for as long as possible.

Hardware

parksinson's detector

Eight FlexiForce sensors are placed evenly on each insole of a user’s shoes to measure their gait as they go about their day:

foot sensors on soles of shoes to detect parkinson's disease

A Raspberry Pi 3 is fixed to a strap around the user’s knee and paired with Himax WE-I Plus. Cables connect the knee- strapped hardware to the sensors in the insoles.

raspberry pi strapped to user's knee to detect Parkinson's Disease

How does it work?

The sensors in the user’s shoes detect pressure across the whole foot while walking. Data is then processed by the Raspberry Pi and the user’s gait is assessed. Users pair the device with a mobile app to see their results. The app also shows real-time data while they’re walking.

parksinson's detector
A user with the devices strapped to their knees, checking out real-time data from the sensors in their shoes

The team took advantage of a free online database that collects foot pressure data from both Parkinson’s disease patients and people without Parkinson’s who have a typical gait. They used this to train their own machine learning model, which predicts whether a user has a gait that may indicate Parkinson’s disease.

Check out a live demo from this point in the project video.

Award-winning design

The team submitted this project in the 2021 Synopsys ARC AIoT Design Contest and scored a second-place prize. Check out more project videos from this year’s submissions.

Assessing gait as part of a diagnosis of potential Parkinson’s disease usually requires that patients take trips to the hospital to have tests on large pressure-sensored walking mats. The team’s new device offers a much more portable and affordable approach.

The post Foot pressure sensors detect Parkinson’s disease appeared first on Raspberry Pi.