Tag Archives: Trading

Growing Raspberry Pi’s presence in Africa

Post Syndicated from Ken Okolo original https://www.raspberrypi.org/blog/growing-raspberry-pis-presence-in-africa/

Raspberry Pi is growing our presence in Africa, and we’re keen to talk to businesses and educational organisations in the region to learn and to build partnerships.

Developing partnerships

As part of our investments in the region, I am delighted to join Raspberry Pi as Strategic Partnerships Manager, and initially I will be focusing on Nigeria, Kenya, Ghana, Tanzania, Rwanda, Cameroon, and Uganda. We will prioritise building a network of Raspberry Pi Approved Resellers and developing the right partnerships across industry and the education sector.

Uber's First Hackathon in Lagos
Uber’s First Hackathon in Lagos, Nigeria

Ensuring affordability with Raspberry Pi Approved Resellers

Over the last decade, Raspberry Pi has established a strong presence in the European and North American markets through partnership with our network of excellent Raspberry Pi Approved Resellers, providing access to affordable technology for the home, for business, and for education. Customers in many areas across Asia and the Pacific, too, have a choice of Approved Resellers offering Raspberry Pi products.

So far, our presence in Africa has been through our approved reseller PiShop in South Africa, which also has some commercial operations into other countries in southern Africa. Much of West, East, and North Africa has been underserved, and consumers in these regions have often obtained Raspberry Pi products via e-commerce websites in Europe, North America, and sometimes China. This has meant high costs of shipping products into Africa, which undermines our goal of ensuring affordability and availability across the continent. To address this, we have begun work to provide African customers with easy and reliable access to Raspberry Pi products at an affordable price point.

Supporting technological innovation

Africa has seen an explosion of technological advances in recent years, with investors funding innovative businesses built around technology. The continent is facing challenges ranging from accessibility to uninterrupted energy supplies, climate change, enabling agricultural potential, and building smart cities, and Africa’s mainly young population is meeting them head on.

Random Hacks of Kindness, a two-day hackathon. “RHoK Nairobi, Kenya” by Erik (HASH) Hersman / CC BY

While there is no shortage of innovative ideas, there is a real need for the right equipment and tools to support this ecosystem of makers, hobbyists, innovators, and entrepreneurs. Raspberry Pi is poised to close this gap.

Get in touch

Over the next couple of months, we will be planning a tour of our focus countries to visit the leadership of engineering associations and bodies, engaging with engineering student communities and maker spaces on the continent and building strategic alliances to deepen our inroads in the region. As Covid restrictions are eased, we will be visiting several countries on the continent to help us discover how we can best provide products and services that directly impact the region by ensuring access to low-cost, high-quality technology.

ken okolo crop
Ken Okolo

Could your African retail business meet our high standards for Raspberry Pi Approved Resellers, or could your educational organisation or your enterprise benefit from affordable desktop computers? Do your products require embedded computing power, or could your business grow with low-cost, low-power process monitoring or control? Get in touch with us by emailing: [email protected]. We’re looking forward to hearing from you.

The post Growing Raspberry Pi’s presence in Africa appeared first on Raspberry Pi.

30-second blood analysis with Raspberry Pi

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/30-second-blood-analysis-with-raspberry-pi/

A portable, affordable Raspberry Pi-powered blood analyser is helping to “establish a robust healthcare ecosystem” in remote parts of India. Samples can be tested in just 30 seconds, and the cost and size of the parts make it an attractive solution for rural and resource-strapped areas.

It is the work of researchers Sangeeta Palekar and Jayu Kalambe from the Department of Electronics Engineering at Shri Ramdeobaba College of Engineering and Management.

blood analyser
(Image credit: Shri Ramdeobaba / College of Engineering And Management)

Tiny computer — massive processing power

Regular blood tests are vital in the tracking and elimination of many diseases, but there is a huge time and monetary cost currently tied to this type of laboratory work.

The researchers’s device measures light absorbance through a blood sample, a common type of analysis, and they harnessed the processing capability of Raspberry Pi 4 Model B to analyse the absorbance data. Their Raspberry Pi-powered solution was found to perform on a par with the kind of expensive lab-based blood test typically used.

Quick and easy

Sangeeta and Jayu’s analyser is not only cheaper to build and maintain than the lab-based version, it also does the job better. Using the lab-based method means that samples from patients in rural areas must be sent away for analysis, with results communicated back to patients at a much later date. In contrast, Sangeeta and Jayu’s device can process blood samples there and then. All you need is an electricity source. Patients get their results immediately, and there is no need to transport delicate samples across rural terrain.

Shri Ramdeobaba College of Engineering and Management

Incorporating an IoT element into their design, which would allow for remote monitoring, is the next step for the researchers. They also intend to develop their invention to allow it to carry out different types of blood analyses.

Read more about the science behind the creation

The full research paper is behind a paywall, but the abstract does a great job succinctly explaining all the science. Sangeeta herself also explains a lot of the magic behind her creation in this interview with IEEE Spectrum.

The post 30-second blood analysis with Raspberry Pi appeared first on Raspberry Pi.

See what the sounds around you look like with Raspberry Pi Pico

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/see-what-the-sounds-around-you-look-like-with-raspberry-pi-pico/

Raspberry Pi Pico powers this real-time audio spectrogram visualiser using a digital microphone to pick up the sound and an LCD display to show us what those sounds ‘look’ like.

See Sound in Real-Time Using Your Raspberry Pi Pico

First things first

OK firstly, let’s make sure we know what all of those words mean, because ‘audio spectrogram visualiser’ is a bit of a mouthful:

  • A ‘spectrogram’ is a visual way of representing signal strength, or “loudness”, of a signal.
  • The ‘visualiser’ bit comes in when these frequencies are presented as waveforms on the little screen.
  • And the ‘audio‘ is simply because Sandeep is visualising sounds in this project.
Sadly, Sandeep’s machine can’t tell you why the baby is crying

Perfectly portable sound monitor

This pocket-sized device can be carried around with you and lets you see a visual representation of your surrounding audio environment in real-time. So, if you wander into a peaceful bird reserve or something, the LCD display will show you something very different than if you were in, say, Wembley Stadium during an FA Cup final.

Above, you can see Sandeep’s creation in action in the vicinity of a crying baby.

See Sound in Real-Time Using Your Raspberry Pi Pico

Hardware

That is a satisfyingly affordable hardware list.

How does it work?

In the video below, you can see there is a direct correlation between the original audio signal’s amplitude (on the left) and the audio spectrogram’s representation of the signal on the right.

The Microphone Library for Pico captures data from Sandeep’s digital microphone. And Arm’s CMSIS-DSP library processes the audio in real-time, then transforms it into spectrograms. These are then displayed one row at a time on the LCD screen using the ST7789 Library for Pico.

Maker Sandeep Mistry created the original project guide on behalf of the Arm Software Developers team. Check out his other tutorial on how to create a USB Microphone with the Raspberry Pi Pico.

The post See what the sounds around you look like with Raspberry Pi Pico appeared first on Raspberry Pi.

Machine Learning Prosthetic Arm | The MagPi #110

Post Syndicated from Phil King original https://www.raspberrypi.org/blog/machine-learning-prosthetic-arm-the-magpi-110/

This intelligent arm learns how to move naturally, based on what the wearer is doing, as Phil King discovers in the latest issue of The MagPi, out now.

Known for his robotic creations, popular YouTuber James Bruton is also a keen Iron Man cosplayer, and his latest invention would surely impress Tony Stark: an intelligent prosthetic arm that can move naturally and autonomously, depending on the wearer’s body posture and limb movements.

Equipped with three heavy-duty servos, the prosthetic arm moves naturally based on the data from IMU sensors on the wearer’s other limbs
Equipped with three heavy-duty servos, the prosthetic arm moves naturally based on the data from IMU sensors on the wearer’s other limbs

“It’s a project I’ve been thinking about for a while, but I’ve never actually attempted properly,” James tells us. “I thought it would be good to have a work stream of something that could be useful.”

Motion capture suit

To obtain the body movement data on which to base the arm’s movements, James considered using a brain computer, but this would be unreliable without embedding electrodes in his head! So, he instead opted to train it with machine learning.

For this he created a motion capture suit from 3D-printed parts to gather all the data from his body motions: arms, legs, and head. The suit measures joint movements using rotating pieces with magnetic encoders, along with limb and head positions – via a special headband – using MPU-6050 inertial measurement units and Teensy LC boards.

Part of the motion capture suit, the headband is equipped with an IMU to gather movement data
Part of the motion capture suit, the headband is equipped with an IMU to gather movement data

Collected by a Teensy 4.1, this data is then fed into a machine learning model running on the suit’s Raspberry Pi Zero using AOgmaNeo, a lightweight C++ software library designed to run on low-power devices such a microcontrollers.

“AOgmaNeo is a reinforcement machine learning system which learns what all of the data is doing in relation to itself,” James explains. “This means that you can remove any piece of data and, after training, the software will do its best to replace the missing piece with a learned output. In my case, I’m removing the right arm and using the learned output to drive the prosthetic arm, but it could be any limb.”

While James notes that AOgmaNeo is actually meant for reinforcement learning,“in this case we know what the output should be rather than it being unknown and learning through binary reinforcement.”

The motion capture suit comprises 3D-printed parts, each equipped with a magnetic rotary encoder, MPU-6050 IMU, and Teensy LC
The motion capture suit comprises 3D-printed parts, each equipped with a magnetic rotary encoder, MPU-6050 IMU, and Teensy LC

To train the model, James used distinctive repeated motions, such as walking, so that the prosthetic arm would later be able to predict what it should do from incoming sensor data. He also spent some time standing still so that the arm would know what to do in that situation.

New model arm

With the machine learning model trained, Raspberry Pi Zero can be put into playback mode to control the backpack-mounted arm’s movements intelligently. It can then duplicate what the wearer’s real right arm was doing during training depending on the positions and movements of other body parts.

So, as he demonstrates in his YouTube video, if James starts walking on the spot, the prosthetic arm swings the opposite way to his left arm as he strides along, and moves forward as raises his left leg. If he stands still, the arm will hang down by his side. The 3D-printed hand was added purely for aesthetic reasons and the fingers don’t move.

Subscribe to James’ YouTube channel

James admits that the project is highly experimental and currently an early work in progress. “I’d like to develop this concept further,” he says, “although the current setup is slightly overambitious and impractical. I think the next step will be to have a simpler set of inputs and outputs.”

While he generally publishes his CAD designs and code, the arm “doesn’t work all that well, so I haven’t this time. AOgmaNeo is open-source, though (free for personal use), so you can make something similar if you wished.” What would you do with an extra arm? 

Get The MagPi #110 NOW!

MagPi 110 Halloween cover

You can grab the brand-new issue right now from the Raspberry Pi Press store, or via our app on Android or iOS. You can also pick it up from supermarkets and newsagents. There’s also a free PDF you can download.

The post Machine Learning Prosthetic Arm | The MagPi #110 appeared first on Raspberry Pi.

Raspberry Pi helped restore this boat to former glory

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-helped-restore-this-boat-to-former-glory/

Baltic is a handsome 1962 vintage tugboat that was built in Norway, where she operated until the 1980s. She’s now in English waters, having been registered in Southampton once renovations were complete. After some initial hull restoration work in France she sailed to the western Ligurian coast in Italy, where it took about five years to complete the work. The boat’s original exterior was restored, while the inside was fully refurbished to the standard of a luxury yacht.

restored boat being pulled out of water before any work had been done on it
You need quite a large crane to do this

But where is the Raspberry Pi?

Ulderico Arcidiaco, who coordinated the digital side of Baltic’s makeover, is the CEO of Sfera Labs, so naturally he turned to Raspberry Pi Compute Module 3+ in the guise of Sfera’s Strato Pi CM Duo for the new digital captain of the vessel.

Strato Pi CM Duo is an industrial server comprising a Raspberry Pi Compute Module 3+ inside a DIN-rail case with a slew of additional features. The MagPi magazine took a good look at them when they launched.

restored boat control room
Beats the view from our windows

The Strato Pi units are the four with red front panels in the cabinet pictured below. There are four other Raspberry Pi Compute Modules elsewhere onboard. Two are identical to the Strato Pi CM Duos in this photo; another is inside an Iono Pi Max; and there’s a Compute Module 4 inside an Exo Sense Pi down in the galley.

restored boat control cupboard
No spaghetti here

Thoroughly modern makeover

Baltic now has fully integrated control of all core and supplementary functions, from power distribution to tanks and pump control, navigation, alarms, fire, lighting, stabilisers, chargers, inverters, battery banks, and video. All powered by Raspberry Pi.

restored boat docked in sunny blue sky location
What a beauty

Ulderico says:

“When it was built sixty years ago, not even the wildest science fiction visionary could have imagined she would one day be fully computer controlled, and not by expensive dedicated computer hardware, but by a tiny and inexpensive device that any kid can easily buy and play with to have fun learning.

And, if there is some old-fashioned patriotism in things, the Raspberry Pi on board will surely like the idea of being back under their home British Flag.”

The post Raspberry Pi helped restore this boat to former glory appeared first on Raspberry Pi.

Listen to the weather change with The Sky Vane

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/listen-to-the-weather-change-with-the-sky-vane/

The Sky Vane provides the soundtrack to an immersive sky-driven experience. Just lie down on the grass, gaze up at the sky, and listen to the changing soundscape through the day.

sky vane at night
The structure is impressive, but it’s everything inside that little “shroom pod” at the bottom that powers this build

A Raspberry Pi powers the arresting structure in the middle of the circle of comfy skygazing mats in the photo above, and is connected to an array of atmospheric sensors. These sensors detect changes in light, temperature, pressure, and humidity. Then they send real-time data to the Raspberry Pi computer in order to create a dynamic soundtrack.


The Sky Vane’s creators produced a carefully written soundtrack for the experience. Raspberry Pi triggers changes to the number of musical layers, sequences, audio effects processing, and so on, based on the information the sensors read. That’s the “dynamic” bit. A huge gust of wind, for example, leads to a different musical change than the setting sun.

A portable Minirig sound system generates a seriously high-fidelity audio experience that can be heard clearly within a 25-metre radius of The Sky Vane.

Hardware

  • Pisound, a sound card and MIDI interface specially designed for Raspberry Pi
  • A Raspberry Pi, with the Pisound add-on attached, sitting inside the semi-transparent box in the bottom left of the image below
  • The little thing on the breadboard is a Teensy LC
  • Everything hides underneath the dome-shaped “shroom pod”, which in turn sits beneath the big sculpture
skyvane kit

Inspiration behind the installation

The Sky Vane is the latest installation from pyka, a collective of experienced designers who create digital artefacts that enable you to explore the world of sound. Commissioned by Tin Shed Theatre Company and Our Living Levels, The Sky Vane’s big debut was at the Big Skies 2021 event in south Wales.

When they were planning this installation, the creators at pyka weren’t sure how it would go down in a post-pandemic world. They’re used to building things that bring people together, but they were mindful of people’s anxiety around shared public activities. This led to a design that promotes quiet contemplation and mindfulness whilst enjoying the freedom of the outdoors. We think it’s lovely.

The post Listen to the weather change with The Sky Vane appeared first on Raspberry Pi.

RetroPie Cyberdeck | HackSpace #47

Post Syndicated from Ben Everard original https://www.raspberrypi.org/blog/retropie-cyberdeck-hackspace-47/

You know we love a good cyberdeck around here, and we think you’ll love this video game emulator fresh from the latest issue of HackSpace magazine, out now.

We’ve only just finished printing a series on building a games cabinet using the RetroPie games emulator on a Raspberry Pi… and now something comes along that makes our plywood, full-size arcade machine look old hat. 

hackspace cyberdeck

This mostly 3D-printed cyberdeck features a 5-inch 800 × 480 touchscreen display, as well as the usual ports available through the Raspberry Pi 3 Model B+ that powers it. Quite how useful the screen’s portrait orientation will be for Sonic The Hedgehog is anyone’s guess, but if you’re playing any sort of top-down shooter, you’re laughing. The maker describes this project as a “video game emulator with some edge” – we think it’s pretty impressive for a project that began as an excuse to learn 3D design.

hackspace cyberdeck

HackSpace magazine issue 47 out NOW!

Each month, HackSpace magazine brings you the best projects, tips, tricks and tutorials from the makersphere. You can get it from the Raspberry Pi Press online store or your local newsagents.

hackspace 47 cover

As always, every issue is free to download in PDF format from the HackSpace magazine website.

The post RetroPie Cyberdeck | HackSpace #47 appeared first on Raspberry Pi.

The Official Raspberry Pi Handbook 2022

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/the-official-raspberry-pi-handbook-2022/

Get the Official Raspberry Pi Handbook 2022 right now! Over 200 pages of Raspberry Pi projects, tutorials, tips, and reviews.

Official Raspberry Pi Handbook 2022

Hey folks, Rob from The MagPi here. It’s been a while! I hope you’re doing well.

We’ve been on double duty this month. As well as making an amazing new issue of The MagPi (out next week), we’ve also put together a brand new book: the Official Raspberry Pi Handbook 2022, which is on sale now!

Official Raspberry Pi Handbook 2022

Packed with projects

The new Handbook is crammed full of incredible community projects, some of our best build guides, an introduction to Raspberry Pi Pico, and reviews of cool Raspberry Pi kits and accessories – all stuffed into 200 pages. Here are some highlights from the book:

Official Raspberry Pi Handbook 2022

Lunchbox Arcade Game – make lunchtime far more exciting by busting out some Street Fighter II and having someone eat your hadoukens. Make sure to eat between rounds for maximum satisfaction.

We Still Fax – one part escape room, one part performance theatre, this relic of office technology has been hacked with a Raspberry Pi to be the centrepiece of a special show in your own living room.

iPod Classic Spotify Player – using a Raspberry Pi Zero W, this old-school iPod has been upgraded with Spotify access. The interface has even been recreated to work the same way as the old iPod, scroll wheel and all.

Official Raspberry Pi Handbook 2022

Play classic console games legally on Raspberry Pi – there are a surprising number of ways to get legal ROMs for Raspberry Pi-powered consoles, as well as a plethora of modern games made for the older hardware.

Build the ultimate media centre – get TV, movies, games, streaming, music, and more on one incredible Raspberry Pi build. It looks good too, thanks to the excellent case.

Stellina – this automated telescope is powered by Raspberry Pi and connects to a tablet to look at planets and other distant celestial objects.

… And much, much more!

Official Raspberry Pi Handbook 2022

Where can I buy it?

You can grab the Official Raspberry Pi Handbook 2022 from our online store, the Raspberry Pi Store in Cambridge, from our Android and iOS app, and in the real world at some newsagents. It will make an excellent stocking stuffer in a few months time. You can also get the PDF free from our website.

Until next time, take care of yourselves!

Official Raspberry Pi Handbook 2022

The post The Official Raspberry Pi Handbook 2022 appeared first on Raspberry Pi.

Automatically tune your guitar with Raspberry Pi Pico

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/automatically-tune-your-guitar-with-raspberry-pi-pico/

You sit down with your six-string, ready to bash out that new song you recently mastered, but find you’re out of tune. Redditor u/thataintthis (Guyrandy Jean-Gilles) has taken the pain out of tuning your guitar, so those of us lacking this necessary skill can skip the boring bit and get back to playing.

Before you dismiss this project as just a Raspberry Pi Pico-powered guitar tuning box, read on, because when the maker said this is a fully automatic tuner, they meant it.

How does it work?

Guyrandy’s device listens to the sound of a string being plucked and decides which note it needs to be tuned to. Then it automatically turns the tuning keys on the guitar’s headstock just the right amount until it achieves the correct note.

Genius.

If this were a regular tuning box, it would be up to the musician to fiddle with the tuning keys while twanging the string until they hit a note that matches the one being made by the tuning box.

It’s currently hardcoded to do standard tuning, but it could be tweaked to do things like Drop D tuning.

Pico automatic guitar tuner
Waiting for that green light

Upgrade suggestions

Commenters were quick to share great ideas to make this build even better. Issues of harmonics were raised, and possible new algorithms to get around it were shared. Another commenter noticed the maker wrote their own code in C and suggested making use of the existing ulab FFT in MicroPython. And a final great idea was training the Raspberry Pi Pico to accept the guitar’s audio output as input and analyse the note that way, rather than using a microphone, which has a less clear sound quality.

These upgrades seemed to pique the maker’s interest. So maybe watch this space for a v2.0 of this project…

Shred, Otto, shred

(Watch out for some spicy language in the comments section of the original reddit post. People got pretty lively when articulating their love for this build.)

Inspiration

This project was inspired by the Roadie automatic tuning device. Roadie is sleek but it costs big cash money. And it strips you of the hours of tinkering fun you get from making your own version.

All the code for the project can be found here.

The post Automatically tune your guitar with Raspberry Pi Pico appeared first on Raspberry Pi.

Sir Clive Sinclair, 1940-2021

Post Syndicated from original https://www.raspberrypi.org/blog/sir-clive-sinclair-1940-2021/

It’s an incredibly sad day for the British computing industry.

We’re always going to be very grateful to Sir Clive for being one of the founding fathers of the UK home computing boom that helped so many of us at Raspberry Pi get hooked on programming as kids.

He was someone from whom the business behind Raspberry Pi has drawn great inspiration. He’ll be very sadly missed.

sir clive sinclair

The post Sir Clive Sinclair, 1940-2021 appeared first on Raspberry Pi.

Who remembers E.T. for the Atari 2600?

Post Syndicated from Ian Dransfield original https://www.raspberrypi.org/blog/who-remembers-e-t-for-the-atari-2600/

In the latest issue of Wireframe magazine, video game pioneer Howard Scott Warshaw reflects on the calamitous E.T. for the Atari 2600. Could it serve as a useful metaphor for real life?

When Julius Caesar ran into Brutus on the Ides of March so many years ago, it changed his life dramatically. I would say the same thing about my life when I ran into the E.T. project, though in my case, the change wasn’t quite so abrupt… or pointed. People say that my E.T. game was ahead of its time, so much so that it didn’t work for many players in its time. Fair enough. But E.T. is more than that. On many levels, that game has served as a metaphor for life, at least for my life. Let me explain, and perhaps it will sound familiar in yours as well.

ET for Atari

There was an aura of promise and anticipation on the advent of the E.T. project – much like the prospect of graduating from college and entering the working world as a computer programming professional. This was super-exciting to me. Once I began the challenge of delivering this game, however, the bloom left the rose (no matter how many times I healed it). Similarly, on my entry into the working world, my excitement was quashed by the unsatisfying nature and demands of typical corporate computing tasks. This is analogous to the experience of E.T. players, having just unwrapped the game. They pop the cartridge in, fire it up, and venture forward with innocent exuberance… only to be crushed by a confusing and unforgiving game world. Perhaps the E.T. game was some sort of unconscious impulse on my part. Was I recreating the disappointment of my first foray into corporate life? Highly unlikely, but the therapist in me just had to ask.

In the E.T. game, I spend a lot of time wandering around and falling into pits. Sometimes I find treasure in those pits. Sometimes I’m just stuck in a pit and I need to dig my way out. That costs energy I could have used on more productive endeavours. There’s also a power-up in the game you can use to find out if there is something worth diving in for. Sadly, there’s no such power-up in life. Figuring out the difference between the treasure and the waste has always been one of my biggest questions, and it’s rarely obvious to me.

ET for Atari

One of the treasures you find in the game is the flower. The act of healing it brings benefits and occasional delightful surprises. I was at the bottom of a ‘pit’ in my life when I found the path to becoming a psychotherapist (another act of healing). It helped me climb out and take some big steps toward winning the bigger game.

E.T. is all about the pits, at least it seems so for many who talk about it. And they do so with such derision. Many times I’ve heard the phrase, “E.T. isn’t about the pits. It is the pits!” But are pits really so bad? After all, there are situations in which being stuck in a pit can be an advantage – OK, perhaps not so much in the game. But in life, I find it’s unwise to judge where I am until I see where it takes me. There have been times where major disappointments ended up saving me from a far worse fate had I been granted my original desire. And in more concrete terms, during a hurricane or tornado, there are far worse outcomes than stumbling into a pit. Sometimes when I trip and fall, I wind up dodging a bullet.

ET for Atari

Yes, in the game you can wind up wandering aimlessly around, feeling hopeless and without direction (somehow, they didn’t put that on the box). But ultimately, if you persevere (and read the directions), you can create a reasonably satisfying win. After finishing development of the game, there was a long period of waiting before any feedback arrived. Then it came with a vengeance. Of course, that only lasted for decades. My life after Atari seemed a bit of a wasteland for a long time too. Rays of sunlight broke through on occasion, but mostly cloudy skies persisted. Things didn’t improve until I broke free from the world in which I was stuck in order to launch the improbable life I truly wanted.

ET for Atari

But it’s not like there were no lingering issues from my E.T. experience. It turns out that ever since the E.T. project, I have a much greater propensity to procrastinate, regularly shorting myself of dev time. I didn’t used to do that before E.T., but I’ve done it quite a bit since. I delay launching a genuine effort, then rush into things and try to do them too quickly. This results in a flurry of motion that doesn’t quite realise the potential of the original concept. More flailing and more failing. It doesn’t mean my idea was poor; it means it was unrefined and didn’t receive sufficient nourishment. On reflection, I see there are both challenges and opportunities at every turn. Pits and treasures. Which of those I emphasise as I move forward is how I construct the life I’m going to have, and I’m doing that all the time.

ET for Atari

Pits and treasures, this is much of life. My E.T. game has mostly pits. Truth be known, people like to call them ‘pits’, but I’ve always thought of them as wells: a place to hide, to take repose and to weather out life’s storms. For me, that has been the value of having so many wells. I hope it works for you as well. Try it on. It just might fit like Caesar’s toga. And if it doesn’t, you can say what Brutus said on that fateful day: “At least I took a stab at it.”

Get your copy of Wireframe issue 55

You can read more features like this one in Wireframe issue 54, available directly from Raspberry Pi Press — we deliver worldwide.

wireframe 54 cover

And if you’d like a handy digital version of the magazine, you can also download issue 54 for free in PDF format.

The post Who remembers E.T. for the Atari 2600? appeared first on Raspberry Pi.