Tag Archives: Your Projects

Be a better Scrabble player with a Raspberry Pi High Quality Camera

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/be-a-better-scrabble-player-with-a-raspberry-pi-high-quality-camera/

One of our fave makers, Wayne from Devscover, got a bit sick of losing at Scrabble (and his girlfriend was likely raging at being stuck in lockdown with a lesser opponent). So he came up with a Raspberry Pi–powered solution!

Using a Raspberry Pi High Quality Camera and a bit of Python, you can quickly figure out the highest-scoring word your available Scrabble tiles allow you to play.

Hardware

  • Raspberry Pi 3B
  • Compatible touchscreen
  • Raspberry Pi High Quality Camera
  • Power supply for the touchscreen and Raspberry Pi
  • Scrabble board

You don’t have to use a Raspberry Pi 3B, but you do need a model that has both display and camera ports. Wayne also chose to use an official Raspberry Pi Touch Display because it can power the computer, but any screen that can talk to your Raspberry Pi should be fine.

Software

Firstly, the build takes a photo of your Scrabble tiles using raspistill.

Next, a Python script processes the image of your tiles and then relays the highest-scoring word you can play to your touchscreen.

The key bit of code here is twl, a Python script that contains every possible word you can play in Scrabble.

From 4.00 minutes into his build video, Wayne walks you through what each bit of code does and how he made it work for this project, including how he installed and used the Scrabble dictionary.

Fellow Scrabble-strugglers have suggested sneaky upgrades in the comments of Wayne’s YouTube video, such having the build relay answers to a more discreet smart watch.

No word yet on how the setup deals with the blank Scrabble tiles; those things are like gold dust.

In case you haven’t met the Raspberry Pi High Quality Camera yet, Wayne also did this brilliant unboxing and tutorial video for our newest piece of hardware.

And for more projects from Devscover, check out this great Amazon price tracker using a Raspberry Pi Zero W, and make sure to subscribe to the channel for more content.

The post Be a better Scrabble player with a Raspberry Pi High Quality Camera appeared first on Raspberry Pi.

Raspberry Pi High Quality Camera powers up homemade microscope

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-high-quality-camera-powers-up-homemade-microscope/

Wow, DIY-Maxwell, wow. This reddit user got their hands on one of our new Raspberry Pi High Quality Cameras and decided to upgrade their homemade microscope with it. The brains of the thing are also provided by a Raspberry Pi.

Key features

  • Raspberry Pi OS
  • 8 MegaPixel CMOS camera (Full HD 30 fps video)
  • Imaging features from several centimetres to several micrometers without changing the lens
  • 6 stepper motors (X, Y, tilt, rotation, magnification, focus)
  • Variable speed control using a joystick controller or keyboard
  • Uniform illumination for imaging reflective surface
  • Modular design: stages and modules can be arranged in any configuration depending on the application

Here’s what a penny looks like under this powerful microscope:

Check out this video from the original reddit post to see the microscope in action.

Bill of materials

Click image to enlarge

The user has put together very detailed, image-led build instructions walking you through how to create the linear actuators, camera setup, rotary stage, illumination, title mechanism, and electronics.

The project uses a program written in Python 3 (MicroscoPy.py) to control the microscope, modify camera settings, and take photos and videos controlled by keyboard input.

Click image to enlarge

Here is a quick visual to show you the exact ports you need for this project on whatever Raspberry Pi you have:

Click image to enlarge

In the comments of the original reddit post, DIY_Maxwell explains that $10 objective lens used in the project limited the Raspberry Pi High Quality Camera’s performance. They predict you can expect even better images with a heavier investment in the lens.

The project is the result of a team at IBM Research–Europe, in Zurich, who develop microfluidic technologies for medical applications, needing to provide high-quality photos and videos of their microfluidic chips.

In a blog for IEEE Spectrum, IBM team member Yuksel Temiz explains: “Taking a photo of a microfluidic chip is not easy. The chips are typically too big to fit into the field of view of a standard microscope, but they have fine features that cannot be resolved using a regular camera. Uniform illumination is also critical because the chips are often made of highly reflective or transparent materials. Looking at publications from other research groups, it’s obvious that this is a common challenge. With this motivation, I devoted some of my free time to designing a multipurpose and compact lab instrument that can take macro photos from almost any angle.”

Here’s the full story about how the Raspberry Pi-powered creation came to be.

And for some extra-credit homework, you can check out this document comparing the performance of the microscope using our Raspberry Pi Camera Module v2 and the High Quality Camera. The key takeaway for those wishing to upgrade their old projects with the newer camera is to remember that it’s heavier and 50% bigger, so you’ll need to tweak your housing to fit it in.

The post Raspberry Pi High Quality Camera powers up homemade microscope appeared first on Raspberry Pi.

Learning with Raspberry Pi — robotics, a Master’s degree, and beyond

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/learning-with-raspberry-pi-robotics-a-masters-degree-and-beyond/

Meet Callum Fawcett, who shares his journey from tinkering with the first Raspberry Pi while he was at school, to a Master’s degree in computer science and a real-life job in programming. We also get to see some of the awesome projects he’s made along the way.

I first decided to get a Raspberry Pi at the age of 14. I had already started programming a little bit before and found that I really enjoyed the language Python. At the time the first Raspberry Pi came out, my History teacher told us about them and how they would be a great device to use to learn programming. I decided to ask for one to help me learn more. I didn’t really know what I would use it for or how it would even work, but after a little bit of help at the start, I quickly began making small programs in Python. I remember some of my first programs being very simple dictionary-type programs in which I would match English words to German to help with my German homework.

Learning Linux, C++, and Python

Most of my learning was done through two sources. I learnt Linux and how the terminal worked using online resources such as Stack Overflow. I would have a problem that I needed to solve, look up solutions online, and try out commands that I found. This was perhaps the hardest part of learning how to use a Raspberry Pi, as it was something I had never done before, but it really helped me in later years when I would use Linux more than Windows. For learning programming, I preferred to use books. I had a book for C++ and a book for Python that I would work through. These were game-based books, so many of the fun projects that I did were simple text-based games where you typed in responses to questions.

A family robotics project

The first robot Callum made using a Raspberry Pi

By far the coolest project I did with the Raspberry Pi was to build a small robot (shown above). This was a joint project between myself and my dad. He sorted out the electronics and I programmed the robot. It was a great opportunity to learn about robotics and refine my programming skills. By the end, the robot was capable of moving around by itself, driving into objects, and then reversing and trying a new direction. It was almost like an unintelligent Roomba that couldn’t hoover, but I spent many hours improving small bits and pieces to make it as easy to use as possible. My one wish that I never managed to achieve with my robot was allowing it to map out its surroundings. This was a very ambitious project at the time, since I was still quite inexperienced in programming. The biggest problem with this was calibrating the robot’s turning circle, which was never consistent so it was very hard to have the robot know where in the room it was.

Sense HAT maze game

Another fun project that I worked on used the Sense HAT developed for the Astro Pi computers for use on the International Space Station. Using this, I was able to make a memory maze game (shown below), in which a player is shown a maze for several seconds and then has to navigate that maze from memory by shaking the device. This was my first introduction to using more interactive types of input, and this eventually led to my final-year project, which used these interesting interactions to develop another way of teaching.

Learning programming without formal lessons

I have now just finished my Master’s degree in computer science at the University of Bristol. Before going to university, I had no experience of being taught programming in a formal environment. It was not a taught subject at my secondary school or sixth form. I wanted to get more people at my school interested in this area of study though, which I did by running a coding club for people. I would help others debug their code and discuss interesting problems with them. The reason that I chose to study computer science is largely because of my experiences with Raspberry Pi and other programming I did in my own time during my teenage years. I likely would have studied history if it weren’t for the programming I had done by myself making robots and other games.

Raspberry Pi has continued to play a part in my degree and extra-curricular activities; I used them in two large projects during my time at university and used a similar device in my final project. My robot experience also helped me to enter my university’s ‘Robot Wars’ competition which, though we never won, was a lot of fun.

A tool for learning and a device for industry

Having a Raspberry Pi is always useful during a hackathon, because it’s such a versatile component. Tech like Raspberry Pi will always be useful for beginners to learn the basics of programming and electronics, but these computers are also becoming more and more useful for people with more experience to make fun and useful projects. I could see tech like Raspberry Pi being used in the future to help quickly prototype many types of electronic devices and, as they become more powerful, even being used as an affordable way of controlling many types of robots, which will become more common in the future.

Our guest blogger Callum

Now I am going on to work on programming robot control systems at Ocado Technology. My experiences of robot building during my years before university played a large part in this decision. Already, robots are becoming a huge part of society, and I think they are only going to become more prominent in the future. Automation through robots and artificial intelligence will become one of the most important tools for humanity during the 21st century, and I look forward to being a part of that process. If it weren’t for learning through Raspberry Pi, I certainly wouldn’t be in this position.

Cheers for your story, Callum! Has tinkering with our tiny computer inspired your educational or professional choices? Let us know in the comments below. 

The post Learning with Raspberry Pi — robotics, a Master’s degree, and beyond appeared first on Raspberry Pi.

Raspberry Pi–powered bonsai watering system

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-powered-bonsai-watering-system/

Bonsai trees are the most glorious of miniature shrubbery. But caring for them takes seriously green fingers. Luckily, this Raspberry Pi–powered bonsai watering system doesn’t require much to get started. Also, the Reddit user who shared the project is named Lord-of-the-Pis, so, we love.

You will need:

  • Raspberry Pi
  • Submersible water pump
  • Jumper wires

The Pimoroni Explorer HAT Pro isn’t essential to make this project work, it just makes things a whole lot easier by removing the need for a relay. It also comes with a Python library for interfacing with Raspberry Pi. The project uses an I2C connection, so it would also be possible to not use the HAT and instead plug a moisture sensor into an analogue-to-digital converter and then into Raspberry Pi’s GPIO pins.

How was it done?

Lord-of-the-Pis explains: “I used the Pimoroni Explorer HAT Pro in order to make the entire system on a small breadboard on top of  Raspberry Pi. The Explorer HAT has inbuilt analogue inputs over I2C, which I used for the input of the moisture sensor (two wires pushed into the soil as probes). Furthermore, the output GPIO pins on this HAT sink all current to ground when activated so they can be used as a transistor to power the small 5V motor (which was also attached to the 5V power pins on Raspberry Pi).”

Using the HAT also allowed this maker to simply hook the pump up to the GPIO pins and turn these on and off, so there’s no need for an on/off switch.

How does it work?

This project’s code is in Python 3, and you can find it all on GitHub.

The main watering program (plantWater.py) takes input from the moisture sensor, and if the soil moisture level is below a set amount, the bonsai gets watered.

Lord-of-the-Pis built a simple web interface for the project on a  localhost site that’s hosted using Apache. Apache SSI is used to execute the Python scripts. Due to the use of SSI, the index page is called index.shtml.

An image of the website. The Dip and then steadiness of the graph is due to the faulty moisture sensor. The maker has ordered another!

A lot more detail about the hardware and software involved is available in this second reddit post about the project.

Lord-of-the-Pis is now working on a dashboard that plots the soil moisture over time, as well as tracking other things like light intensity, temperature, and humidity.

May no other plant perish due to overwatering on our watch ever again!

The post Raspberry Pi–powered bonsai watering system appeared first on Raspberry Pi.

Raspberry Pi-powered wedding memories record player

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-powered-wedding-memories-record-player/

We’re a sentimental bunch and were bowled over by this intricate, musical wedding gift. It’s powered by a Raspberry Pi and has various other bits of geeky goodness under the hood. Honestly, the extra features just keep coming — you’ll see.

This beautifully crafted ‘record player’ plays one pair of newlyweds’ Spotify accounts, and there’s a special visual twist when their ‘first dance’ wedding song plays.

Midway through the build process

First, a little background: the newlyweds, Holly and Dougie, have been sweethearts since early highschool days. Their wedding took place on a farm near the village they grew up in, Fintry in rural Scotland.

No Title

No Description

Throughout the wedding day, the phrase “Music is a huge deal” was repeated often, which gave the bride’s older brother Ben Howell the idea for a homemade, Raspberry Pi–powered gift.

Custom tagline laser-cut and spray-painted

He built the couple a neatly finished music box, known as HD-001 (HD for ‘Holly Dougie’ of course) and home to a ‘smart turntable’. It can connect to a wireless network and has a touch screen where the record label would normally sit. When you lift the lid and switch it on, it asks “Hello. Who’s listening?”

Once you tap on the picture of either the bride or groom, it accesses their Spotify account and fetches the album artwork of whatever song it plays.

What’s inside?

The main brain is Raspberry Pi 3 running Raspberry Pi OS. The interface is built as a web page in mostly PHP and JavaScript. It uses the Spotify API to get the ‘now playing’ track of the bride’s or groom’s account, and to fish out the album artwork URL from the return data so it can display this on a rotating panel.

The audio side is a powered by a 50W Bluetooth amplifier, which is entirely independent from the Raspberry Pi computer.

The build details

The enclosure is all custom-designed and built using scrap wood wrapped in green faux leather material. Ben sourced most of the other materials — rubber feet, hinges, switches, metal grille — on Amazon.

The HD-001 also features a hand-built 4-way speaker system and a custom-made speaker grille with that famous phrase “Music is a huge deal” on the front.

The lettering on the grille was laser-cut by a company in Glasgow to order, and Ben spray-painted it metallic grey. The LCD panel and driver board are also from Amazon.

To play and pause music, Ben sourced a tone-arm online and routed cabling from the Raspberry Pi GPIO pins through to a micro-switch where the original needle should sit. That’s how lifting the arm pauses playback, and replacing it resumes the music.

Getting the audio to work

Ben explains: “Essentially, it’s a fancy Bluetooth speaker system disguised as an old-fashioned turntable and designed to behave and work like an old-fashioned turntable (skeuomorphism gone mad!).”

Oh, and our favourite adorable bonus feature? If the first dance song from Holly’s and Dougie’s wedding is played, the album artwork on the LCD panel fades away, to be replaced by a slideshow of photos from their wedding.

And for extra, extra big brother points, Ben even took the time to create a manual to make sure the newlyweds got the most out of their musical gift.

We have it on good authority that Ben will entertain anyone who would like to place a pre-order for the HD-002.

The post Raspberry Pi-powered wedding memories record player appeared first on Raspberry Pi.

Vulkan update: now with added source code

Post Syndicated from Eben Upton original https://www.raspberrypi.org/blog/vulkan-update-now-with-added-source-code/

Today we have a guest post from Igalia’s Iago Toral, who has spent the past year working on the Mesa graphic driver stack for Raspberry Pi 4.

It is almost five months since we announced the Vulkan effort for Raspberry Pi 4. It was great to see how many people were excited about this, and today we would like to give you a status update on our progress over these last months.

When we announced the effort back in January we were at the point of rendering a coloured triangle, which required only minimal coverage of the Vulkan 1.0 API in the driver. Today, we are passing over 70,000 tests from the Khronos Conformance Test Suite for Vulkan 1.0 and we have an implementation for a significant subset of the Vulkan 1.0 API.

Progress so far, in pictures

While I could detail here all the features that we have implemented, I am sure that list would get long and boring very quickly for most of you. So, instead, we would like to show you our progress through pics taken from a bunch of the popular Vulkan demos by Sascha Willems running on Raspberry Pi 4:

Hopefully that is more entertaining than a feature checklist and will help you visualize better where we are now compared to January’s coloured triangle.

Before you get too excited though, while these demos are nice, they are still a far cry from actual games and applications. We still have a lot of work to do before the driver can handle these more complex workloads. Even some of Sascha’s demos don’t run yet, whether because of driver bugs or unimplemented Vulkan features. We still have a lot of work ahead of us.

Next up

I would also like to give you an overview of some of the things we will be working on in the coming months:

Our first priority is to support the basic Vulkan 1.0 feature set. This will involve, at least, supporting compute shaders, input attachments, texel buffers, storage images, pipeline caches, and multisampling. There are some other features that we need to support in Vulkan 1.0, such as robust buffer access etc, but those are probably the largest ones we are currently missing.

Once we are feature-complete we will probably move focus to CTS conformance, which will be all about bugfixing, and making sure we handle spec corner cases. And once we are close to conformance, the driver should hopefully be stable and robust enough that we should probably start testing actual Vulkan applications and games to drive further bugfixing work.

Finally, there will be a lot of performance tuning and optimization work that we will probably tackle in the last stages of development.

So as I said before, we still have a long way to go!

Moving development to an open repository

Before we end this post, I would also like to share another important piece of news: starting today, we are moving development of the driver to an open repository. You can find instructions on how to build and install the driver here. I know this is something that many of you have been asking for, and I am sorry that it took us a few months to get here. But I think that now that we have a more stable driver infrastructure in place, and we don’t feel like we are constantly making large changes every other day, development should be a lot friendlier to external contributors than it may have been a few months ago.

So that’s everything we wanted to share today – I hope you are still excited about Vulkan and looking forward to future updates. In the meantime, if you have questions or are interested in contributing to the driver, join us on irc.freenode.net, #videocore channel.

The post Vulkan update: now with added source code appeared first on Raspberry Pi.

Make it rain chocolate with a Raspberry Pi-powered dispenser

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/make-it-rain-chocolate-with-a-raspberry-pi-powered-dispenser/

This fully automated M&M’s-launching machine delivers chocolate on voice command, wherever you are in the room.

A quick lesson in physics

To get our head around Harrison McIntyre‘s project, first we need to understand parabolas. Harrison explains: “If we ignore air resistance, a parabola can be defined as the arc an object describes when launching through space. The shape of a parabolic arc is determined by three variables: the object’s departure angle; initial velocity; and acceleration due to gravity.”

Harrison uses a basketball shooter to illustrate parabolas

Lucky for us, gravity is always the same, so you really only have to worry about angle and velocity. You could also get away with only changing one variable and still be able to determine where a launched object will land. But adjusting both the angle and the velocity grants much greater precision, which is why Harrison’s machine controls both exit angle and velocity of the M&M’s.

Kit list

The M&M’s launcher comprises:

  • 2 Arduino Nanos
  • 1 Raspberry Pi 3
  • 3 servo motors
  • 2 motor drivers
  • 1 DC motor
  • 1 Hall effect limit switch
  • 2 voltage converters
  • 1 USB camera
  • “Lots” of 3D printed parts
  • 1 Amazon Echo Dot

A cordless drill battery is the primary power source.

The project relies on similar principles as a baseball pitching machine. A compliant wheel is attached to a shaft sitting a few millimetres above a feeder chute that can hold up to ten M&M’s. To launch an M&M’s piece, the machine spins up the shaft to around 1500 rpm, pushes an M&M’s piece into the wheel using a servo, and whoosh, your M&M’s piece takes flight.

Controlling velocity, angle and direction

To measure the velocity of the fly wheel in the machine, Harrison installed a Hall effect magnetic limit switch, which gets triggered every time it is near a magnet.

Two magnets were placed on opposite sides of the shaft, and these pass by the switch. By counting the time in between each pulse from the limit switch, the launcher determines how fast the fly wheel is spinning. In response, the microcontroller adjusts the motor output until the encoder reports the desired rpm. This is how the machine controls the speed at which the M&M’s pieces are fired.

Now, to control the angle at which the M&M’s pieces fly out of the machine, Harrison mounted the fly wheel assembly onto a turret with two degrees of freedom, driven by servos. The turret controls the angle at which the sweets are ‘pitched’, as well as the direction of the ‘pitch’.

So how does it know where I am?

With the angle, velocity, and direction at which the M&M’s pieces fly out of the machine taken care of, the last thing to determine is the expectant snack-eater’s location. For this, Harrison harnessed vision processing.


Harrison used a USB camera and a Python script running on Raspberry Pi 3 to determine when a human face comes into view of the machine, and to calculate how far away it is. The turret then rotates towards the face, the appropriate parabola is calculated, and an M&M’s piece is fired at the right angle and velocity to reach your mouth. Harrison even added facial recognition functionality so the machine only fires M&M’s pieces at his face. No one is stealing this guy’s candy!

So what’s Alexa for?

This project is topped off with a voice-activation element, courtesy of an Amazon Echo Dot, and a Python library called Sinric. This allowed Harrison to disguise his Raspberry Pi as a smart TV named ‘Chocolate’ and command Alexa to “increase the volume of ‘Chocolate’ by two” in order to get his machine to fire two M&M’s pieces at him.

       

Drawbacks

In his video, Harrison explaining that other snack-launching machines involve a spring-loaded throwing mechanism, which doesn’t let you determine the snack’s exit velocity. That means you have less control over how fast your snack goes and where it lands. The only drawback to Harrison’s model? His machine needs objects that are uniform in shape and size, which means no oddly shaped peanut M&M’s pieces for him.

He’s created quite the monster here, in that at first, the machine’s maximum firing speed was 40 mph. And no one wants crispy-shelled chocolate firing at their face at that speed. To keep his teeth safe, Harrison switched out the original motor for one with a lower rpm, which reduced the maximum exit velocity to a much more sensible 23 mph… Please make sure you test your own snack-firing machine outdoors before aiming it at someone’s face.

Go subscribe

Check out the end of Harrison’s videos for some more testing to see what his machine was capable of: he takes out an entire toy army and a LEGO Star Wars squad by firing M&M’s pieces at them. And remember to subscribe to his channel and like the video if you enjoyed what you saw, because that’s just a nice thing to do.

The post Make it rain chocolate with a Raspberry Pi-powered dispenser appeared first on Raspberry Pi.

Fix slow Nintendo Switch play with your Raspberry Pi

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/fix-slow-nintendo-switch-play-with-your-raspberry-pi/

Is your Nintendo Switch behaving more like a Nintendon’t due to poor connectivity? Well, TopSpec (hosted Chris Barlas) has shared a brilliant Raspberry Pi-powered hack on YouTube to help you fix that.

 

Here’s the problem…

When you play Switch online, the servers are peer-to-peer. The Switches decide which Switch’s internet connection is more stable, and that player becomes the host.

However, some users have found that poor internet performance causes game play to lag. Why? It’s to do with the way data is shared between the Switches, as ‘packets’.

 

What are packets?

Think of it like this: 200 postcards will fit through your letterbox a few at a time, but one big file wrapped as a parcel won’t. Even though it’s only one, it’s too big to fit. So instead, you could receive all the postcards through the letterbox and stitch them together once they’ve been delivered.

Similarly, a packet is a small unit of data sent over a network, and packets are reassembled into a whole file, or some other chunk of related data, by the computer that receives them.

Problems arise if any of the packets containing your Switch game’s data go missing, or arrive late. This will cause the game to pause.

Fix Nintendo Switch Online Lag with a Raspberry Pi! (Ethernet Bridge)

Want to increase the slow internet speed of your Nintendo Switch? Having lag in games like Smash, Mario Maker, and more? Well, we decided to try out a really…

Chris explains that games like Call of Duty have code built in to mitigate the problems around this, but that it seems to be missing from a lot of Switch titles.

 

How can Raspberry Pi help?

The advantage of using Raspberry Pi is that it can handle wireless networking more reliably than Nintendo Switch on its own. Bring the two devices together using a LAN adapter, and you’ve got a perfect pairing. Chris reports speeds up to three times faster using this hack.

A Nintendo Switch > LAN adaptor > Raspberry Pi

He ran a download speed test using a Nintendo Switch by itself, and then using a Nintendo Switch with a LAN adapter plugged into a Raspberry Pi. He found the Switch connected to the Raspberry Pi was quicker than the Switch on its own.

At 02mins 50secs of Chris’ video, he walks through the steps you’ll need to take to get similar results.

We’ve handily linked to some of the things Chris mentions here:

 

 

To test his creation, Chris ran a speed test downloading a 10GB game, Pokémon Shield, using three different connection solutions. The Raspberry Pi hack came out “way ahead” of the wireless connection relying on the Switch alone. Of course, plugging your Switch directly into your internet router would get the fastest results of all, but routers have a habit of being miles away from where you want to sit and play.

Have a look at TopSpec on YouTube for more great videos.

The post Fix slow Nintendo Switch play with your Raspberry Pi appeared first on Raspberry Pi.

Go back in time with a Raspberry Pi-powered radio

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/go-back-in-time-with-a-raspberry-pi-powered-radio/

Take a musical trip down memory lane all the way back to the 1920s.

Sick of listening to the same dozen albums on repeat, or feeling stifled by the funnel of near-identical YouTube playlist rabbit holes? If you’re looking to broaden your musical horizons and combine that quest with a vintage-themed Raspberry Pi–powered project, here’s a great idea…

Alex created a ‘Radio Time Machine’ that covers 10 decades of music, from the 1920s up to the 2020s. Each decade has its own Spotify playlist, with hundreds of songs from that decade played randomly. This project with the look of a vintage radio offers a great, immersive learning experience and should throw up tonnes of musical talent you’ve never heard of.

In the comments section of their reddit post, Alex explained that replacing the screen of the vintage shell they housed the tech in was the hardest part of the build. On the screen, each decade is represented with a unique icon, from a gramophone, through to a cassette tape and the cloud. Here’s a closer look at it:

Now let’s take a look at the hardware and software it took to pull the whole project together…

Hardware:

  • Vintage Bluetooth radio (Alex found this affordable one on Amazon)
  • Raspberry Pi 4
  • Arduino Nano
  • 2 RGB LEDs for the dial
  • 1 button (on the back) to power on/off (long press) or play the next track (short press)

The Raspberry Pi 4 audio output is connected to the auxiliary input on the radio (3.5mm jack).

Software:

    • Mopidy library (Spotify)
    • Custom NodeJS app with JohnnyFive library to read the button and potentiometer values, trigger the LEDs via the Arduino, and load the relevant playlists with Mopidy

Take a look at the video on reddit to hear the Radio Time Machine in action. The added detail of the white noise that sounds as the dial is turned to switch between decades is especially cool.

How do you find ten decades of music?

Alex even went to the trouble of sharing each decade’s playlist in the comments of their original reddit post.

Here you go:

1920s
1930s
1940s
1950s
1960s
1970s
1980s
1990s
2000s
2010s

Comment below to tell us which decade sounds the coolest to you. We’re nineties kids ourselves!

The post Go back in time with a Raspberry Pi-powered radio appeared first on Raspberry Pi.

Retro Nixie tube lights get smart

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/retro-nixie-tube-lights-get-smart/

Nixie tubes: these electronic devices, which can display numerals or other information using glow discharge, made their first appearance in 1955, and they remain popular today because of their cool, vintage aesthetic. Though lots of companies manufactured these items back in the day, the name ‘Nixie’ is said to derive from a Burroughs corporation’s device named NIX I, an abbreviation of ‘Numeric Indicator eXperimental No. 1’.

We liked this recent project shared on reddit, where user farrp2011 used Raspberry Pi  to make his Nixie tube display smart enough to tell the time.

A still from Farrp2011’s video shows he’s linked the bulb displays up to tell the time

Farrp2011’s set-up comprises six Nixie tubes controlled by Raspberry Pi 3, along with eight SN74HC shift registers to turn the 60 transistors on and off that ground the pin for the digits to be displayed on the Nixie tubes. Sounds complicated? Well, that’s why farrp2011 is our favourite kind of DIY builder — they’ve put all the code for the project on GitHub.

Tales of financial woe from users trying to source their own Nixie tubes litter the comments section on the reddit post, but farrp2011 says they were able to purchase the ones used in this project for about about $15 each on eBay. Here’s a closer look at the bulbs, courtesy of a previous post by farrp2011 sharing an earlier stage of project…

Farrp2011 got started with one, then two Nixie bulbs before building up to six for the final project

Digging through the comments, we learned that for the video, farrp2011 turned their house lights off to give the Nixie tubes a stronger glow. So the tubes are not as bright in real life as they appear. We also found out that the drop resistor is 22k, with 170V as the supply. Another comments section nugget we liked was the name of the voltage booster boards used for each bulb: “Pile o’Poo“.

Upcoming improvements farrp201 has planned include displaying the date, temperature, and Bitcoin exchange rate, but more suggestions are welcome. They’re also going to add some more capacitors to help with a noise problem and remove the need for the tubes to be turned off before changing the display.

And for extra nerd-points, we found this mesmerising video from Dalibor Farný showing the process of making Nixie tubes:

The post Retro Nixie tube lights get smart appeared first on Raspberry Pi.

These loo rolls formed a choir

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/these-loo-rolls-formed-a-choir/

Have all of y’all been hoarding toilet roll over recent weeks in an inexplicable response to the global pandemic, or is that just a quirk here in the UK? Well, the most inventive use of the essential household item we’ve ever seen is this musical project by Max Björverud.

Ahh, the dulcet tones of wall-mounted toilet roll holders, hey? This looks like one of those magical ‘how do they do that?’ projects but, rest assured, it’s all explicable.

Max explains that Singing Toilet is made possible with a Raspberry Pi running Pure Data. The invention also comprises a HiFiBerry Amp, an Arduino Mega, eight hall effect sensors, and eight magnets. The toilet roll holders are controlled with the hall effect sensors, and the magnets connect to the Arduino Mega.

In this video, you can see the hall effect sensor and the 3D-printed attachment that holds the magnet:

Max measures the speed of each toilet roll with a hall effect sensor and magnet. The audio is played and sampled with a Pure Data patch. In the comments on his original Reddit post, he says this was all pretty straight-forward but that it took a while to print a holder for the magnets, because you need to be able to change the toilet rolls when the precious bathroom tissue runs out!

Max began prototyping his invention last summer and installed it at creative agency Snask in his hometown of Stockholm in December.

The post These loo rolls formed a choir appeared first on Raspberry Pi.

Track your cat’s activity with a homemade speedometer

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/track-your-cats-activity-with-a-homemade-speedometer/

Firstly, hamster wheels for cats are (still) a thing. Secondly, Bengal cats run far. And Shawn Nunley on reddit is the latest to hit on this solution for kitty exercise and bonus cat stats.

Here is the wheel itself. That part was shop-bought. (Apparently it’s a ZiggyDoo Ferris Cat Wheel.)

Smol kitty in big wheel

Shawn has created a speedometer that tracks distance and speed. Every time a magnet mounted on the wheel passes a fixed sensor, a Raspberry Pi Zero writes to a log file so he can see how far and fast his felines have travelled. The wheel has six sensors, which each record 2.095 ft of travel. This project revealed the cats do about 4-6 miles per night on their wheel, and they reach speeds of 14 miles an hour.

Here’s your shopping list:

  • Raspberry Pi
  • Reed switch (Shawn got these)
  • Jumper wires
  • Ferris cat wheel

The tiny white box sticking out at the base of the wheel is the sensor

Shawn soldered a 40-pin header to his Raspberry Pi Zero and used jumper wires to connect to the sensor. He mounted the sensor to the cat wheel using hot glue and a pill box cut in half, which provided the perfect offset so it could accurately detect the magnets passing by. The code is written in Python.

Upcoming improvements include adding RFID so the wheel can distinguish between the cats in this two-kitty household.

Shawn also plans to calculate how much energy the Bengals are expending, and he’ll soon be connecting the Raspberry Pi to their Google Cloud Platform account so you can all keep up with the cats’ stats.

The stats are currently available only locally

And, get this – this was Shawn’s first ever time doing anything with Raspberry Pi or Python. OK, so as an ex-programmer he had a bit of a head start, but he assures us he hasn’t touched the stuff since the 1990s. He explains: “I was totally shocked at how easy it was once I figured out how to get the Raspberry Pi to read a sensor.” Start to finish, the project took him just one week.

The post Track your cat’s activity with a homemade speedometer appeared first on Raspberry Pi.

Create your own home office work status light with Raspberry Pi

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/create-your-own-home-office-work-status-light-with-raspberry-pi/

If you’re working from home and you have children, you’re probably finding it all pretty demanding at the moment. Spreadsheets and multiple tabs and concentrating aren’t nearly so manageable without the dedicated workspace you have at the office and with, instead, small people vying relentlessly for your attention.

And that’s not to mention the horror that is arranging video conference calls and home life around one another. There’s always the danger that a housemate (young offspring or otherwise) might embarrassingly crash your formal party like what happened to Professor Robert Kelly live on BBC News. (See above. Still funny!)

Well, Belgian maker Elio Struyf has created a homemade solution to mitigate against such unsolicited workspace interferences: he built a status light that integrates with Microsoft Teams so that his kids know when he’s on a call and they should stay away from his home office.

DIY busy light created with Raspberry Pi and Pimoroni Unicorn pHAT

The light listens to to Elio’s Microsoft Teams status and accordingly displays the colour red if he’s busy chatting online, yellow if his status is set to ‘Away’, or green if he’s free for his kids to wander in and say “Hi”.

Here’s what you need to build your own:

The Pimoroni Unicorn pHAT has an 8×4 grid of RGB LEDs that Elio set to show a single colour (though you can tell them to display different colours). His Raspberry Pi runs DietPi, which is a lightweight Debian distro. On top of this, running Homebridge makes it compatible with Apple’s HomeKit libraries, which is how Elio was able to connect the build with Microsoft Teams on his MacBook.

Elio’s original blog comprehensively walks you through the setup process, so you too can try to manage your home working plus domestic duties. All you need is to get your five-year-old to buy into your new traffic-light system, and with that we wish you all the luck in the world.

And give Elio a follow on Twitter. Fella has mad taste in T-shirts.

The post Create your own home office work status light with Raspberry Pi appeared first on Raspberry Pi.

Resurrecting a vintage microwave sensor with Raspberry Pi

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/resurrecting-a-vintage-microwave-sensor-with-raspberry-pi/

Here’s one of those lovely “old tech new spec” projects, courtesy of hackster.io pro Martin Mander.

After finding a vintage Apollo microwave detector at a car boot sale, and realising the display hole in the top was roughly the same size as a small Adafruit screen, he saw the potential to breath new life into its tired exterior. And resurrected it as a thermal camera!

Right up top – the finished product!

Martin assumes it would have been used to test microwave levels in some kind of industrial setting, given microwave ovens were a rarity when it was produced.

Old components stripped and ready for a refit

Anyhow, a fair bit of the original case needed to be hacked at or sawn off to make sure all the new components could fit inside.  A Raspberry Pi Zero provides the brains of the piece. Martin chose this because he wanted to run the scipy python module to perform bicubic interpolation on the captured data, making the captured images look bigger and better. The thermal sensor is an Adafruit AMG8833IR Thermal Camera Breakout, which uses an 8×8 array of sensors to create the heat image.

The tiny but readable display screen

The results are displayed in real time on a bright 1.3″ TFT display. Power comes from a cylindrical USB battery pack concealed in the hand grip, which is recharged by opening up the nose cone and plugging in a USB lead. Just three Python scripts control the menu logic, sensor, and Adafruit.io integration, with the display handled by PyGame.

It gets better: with the click of a button, a snapshot of whatever the thermal camera is looking at is taken and then uploaded to an Adafruit dashboard for you to look at or share later.

Sensor and screen wired up

Martin’s original post is incredibly detailed, walking you through the teardown of the original piece, the wiring, how to tweak all the code and, of course, how he went about giving it that fabulous BB-8 orange-and-white makeover. He recorded the entire process in this 24-minute opus:

Apollo Pi Thermal Camera

This vintage Apollo microwave detector now has a shiny new purpose as a thermal camera, powered by a Raspberry Pi Zero with an Adafruit thermal camera sensor…

But what can you actually do with it? Martin’s suggestions range from checking your beer is cold enough before opening it, to testing your washing machine temperature mid-cycle. If you watch his video, you’ll see he’s also partial to monitoring cat tummy temperatures. His kid doesn’t like having his forehead Apollo Pi’d though.

Check out more of Martin’s projects on hackster.io.

The post Resurrecting a vintage microwave sensor with Raspberry Pi appeared first on Raspberry Pi.

This clock really, really doesn’t want to tell you the time

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/this-clock-really-really-doesnt-want-to-tell-you-the-time/

What’s worse than a clock that doesn’t work? One that makes an “unbearably loud screeching noise” every minute of every day is a strong contender.

That was the aural nightmare facing YouTuber Burke McCabe. But rather than just fix the problem, he decided, in true Raspberry Pi community fashion, to go one step further. Because why not?

The inventor of the clock holds it with the back facing the camera to show us how it works and is looking down at it.

Burke showing YouTube viewers his invention

On the back of the clock, alongside the built-in mechanism controlling the clock’s arms, Burke added a Raspberry Pi to control a motor, which he hooked up to a webcam. The webcam was programmed using open computer vision library OpenCV to detect whenever a human face comes into view. Why would a clock need to know when someone looks at it? We’ll come to that.

First up, more on how that webcam works. OpenCV detects when a pair of eyes is in view of the webcam for three consecutive frames. You have to be really looking at it, not just passing it – that is, you have to be trying to tell the time. When this happens, the Raspberry Pi rotates the attached motor 180 degrees and back again.

But why? Well:

A clock that falls off the wall when you look at it

hello #invention #robot #raspberrypi

Burke has created a clock which, when you look at it to tell the time, falls off the wall.

We know: you want your own. So do we. Thankfully, Burke responded to calls in the comments on his original video for a more detailed technical walkthrough, and, boy, did he deliver.

How I made A clock that falls off the wall when you look at it

I dunno why I sounded depressed in this video Original Video – https://www.youtube.com/watch?v=R3HUuf6LGQE&t=41s The Code – https://github.com/SmothDragon/Fa…

In his walkthrough video, you get a good look at Burke’s entire setup, including extra batteries to make sure your Raspberry Pi gets enough juice, advice on how to get to grips with the code, and even the slots your different coloured wires need to go in. And so very, very much duct tape. Who’s going to start a GoFundMe to get Burke the glue gun sticks he so desperately needs? And hit subscribe for his YouTube channel while you’re at it!

The post This clock really, really doesn’t want to tell you the time appeared first on Raspberry Pi.

Crunch your way through morning meetings

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/crunch-your-way-through-morning-meetings/

OK, so, we’re not really here. It is a public holiday in the UK and we are all between three and seventeen pounds of Easter chocolate and hot cross buns deep. Our teeth hurt. Anyway, we’re not sure what possessed our cute friends over at Deep Local to do this, but we like it, and not all Raspberry Pi projects need to make sense.

A cereal box with a built in screen

They’ve married the necessary remote-working evil that is conference calls with the kids’ cereal we’re just not ready to let go of, despite being grown-up professionals who take conference calls.

Conference Call’n Crunch

No Description

Taylor Tabb cut a hole in a Cap’n Crunch cereal box to fit a 5″ display, and brought together a Logitech USB webcam and microphone, a USB speaker, and a battery pack, all powered by a Raspberry Pi 3B+. The best bit? It still works as a cereal box. Just don’t forget to mute your mic.

We found this project via Jeremy S. Cook on hackster.io, but Taylor has a wee online collection of all his projects here.

There’s a virtual prize of our love and admiration for the first person to work Taylor’s idea into an Easter egg box.

The post Crunch your way through morning meetings appeared first on Raspberry Pi.

Five years of Raspberry Pi clusters

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/five-years-of-raspberry-pi-clusters/

In this guest blog post, OpenFaaS founder and Raspberry Pi super-builder Alex Ellis walks us down a five-year-long memory lane explaining how things have changed for cluster users.

I’ve been writing about running Docker on Raspberry Pi for five years now and things have got a lot easier than when I started back in the day. There’s now no need to patch the kernel, use a bespoke OS, or even build Go and Docker from scratch.

My stack of seven Raspberry Pi 2s running Docker Swarm (2016)

Since my first blog post and printed article, I noticed that Raspberry Pi clusters were a hot topic. They’ve only got even hotter as the technology got easier to use and the devices became more powerful.

Back then we used ‘old Swarm‘, which was arguably more like Kubernetes with swappable orchestration and a remote API that could run containers. Load-balancing wasn’t built-in, and so we used Nginx to do that job.

I built out a special demo using kit from Pimoroni.com. Each LED lit up when a HTTP request came in.

Docker load-balanced LED cluster Raspberry Pi

Ask questions and get all the details including the code over on the blog at: http://blog.alexellis.io/iot-docker-cluster/

After that, I adapted the code and added in some IoT sensor boards to create a smart datacenter and was invited to present the demo at Dockercon 2016:

IoT Dockercon Demo

Get all the write-up here: http://blog.alexellis.io/meet-me-at-dockercon/

Docker then released a newer version of Swarm also called ‘Swarm’ and I wrote up these posts:

Docker Swarm mode Deep Dive on Raspberry Pi (scaled)

Please Subscribe to the channel! Get all the details @ http://blog.alexellis.io/live-deep-dive-pi-swarm/

This is still my most popular video on my YouTube channel.

Now that more and more people were trying out Docker on Raspberry Pi (arm), we had to educate them about not running potentially poisoned images from third-parties and how to port software to arm. I created a Git repository (alexellis/docker-arm) to provide a stack of common software.

I wanted to share with users how to use GPIO for accessing hardware and how to create an IoT doorbell. This was one of my first videos on the topic, a live run-through in one take.

birds eye view of a raspberry pi in a red case

Did you know? I used to run blog.alexellis.io on my Raspberry Pi 3

Then we all started trying to run upstream Kubernetes on our 1GB RAM Raspberry Pis with kubeadm. Lucas Käldström did much of the groundwork to port various Kubernetes components and even went as far as to fix some issues in the Go language.

I wrote a recap on everything you needed to know including exec format error and various other things. I also put together a solid set of instructions and workarounds for kubeadm on Raspberry Pi 2/3.

Users often ask what a practical use-case is for a cluster. They excel at running distributed web applications, and OpenFaaS is loved by developers for making it easy to build, deploy, monitor, and scale APIs.

In this post you’ll learn how to deploy a fun Pod to generate ASCII text, from there you can build your own with Python or any other language:

This blog post was one of the ones that got pinned onto the front page of Hacker News for some time, a great feeling when it happens, but something that only comes every now and then.

The instructions for kubeadm and Raspbian were breaking with every other minor release of Kubernetes, so I moved my original gist into a Git repo to accept PRs and to make the content more accessible.

I have to say that this is the one piece of Intellectual Property (IP) I own which has been plagiarised and passed-off the most.

You’ll find dozens of blog posts which are almost identical, even copying my typos. To begin with I found this passing-off of my work frustrating, but now I take it as a vote of confidence.

Shortly after this, Scott Hanselman found my post and we started to collaborate on getting .NET Core to work with OpenFaaS.

Lego batman and his lego friend atop a cluster of Raspberry Pi

This lead to us co-presenting at NDC, London in early 2018. We were practising the demo the night before, and the idea was to use Pimoroni Blinkt! LEDs to show which Raspberry Pi a Pod (workload) was running on. We wanted the Pod to stop showing an animation and to get rescheduled when we pulled a network cable.

It wasn’t working how we expected, and Scott just said “I’ll phone Kelsey”, and Mr Hightower explained to us how to tune the kubelet tolerance flags.

As you can see from the demo, Kelsey’s advice worked out great!

Building a Raspberry Pi Kubernetes Cluster and running .NET Core – Alex Ellis & Scott Hanselman

Join Scott Hanselman and Alex Ellis as they discuss how you can create your own Raspberry Pi cluster that runs Kubernetes on the metal. Then, take it to the …

 

Fast forward and we’re no longer running Docker, or forcing upstream Kubernetes into 1GB of RAM, but running Rancher’s light-weight k3s in as much as 4GB of RAM.

k3s is a game-changer for small devices, but also runs well on regular PCs and cloud. A server takes just 500MB of RAM and each agent only requires 50MB of RAM due to the optimizations that Darren Shepherd was able to make.

I wrote a new Go CLI called k3sup (‘ketchup’) which made building clusters even easier than it was already and brought back some of the UX of the Docker Swarm CLI.

Kubernetes Homelab with Raspberry Pi 4

Join me for this hands-on tutorial where I build out a Kubernetes Homelab with a Raspberry Pi 4 and get internet access with a LoadBalancer, something normal…

To help combat the issues around the Kubernetes ecosystem and tooling like Helm, which wasn’t available for ARM, I started a new project named arkade . arkade makes it easy to install apps whether they use helm charts or kubectl for installation.

k3s, k3sup, and arkade are all combined in my latest post which includes installing OpenFaaS and the Kubernetes dashboard.

In late March I put together a webinar with Traefik to show off all the OpenFaaS tooling including k3sup and arkade to create a practical demo. The demo showed how to get a public IP for the Raspberry Pi cluster, how to integrate with GitHub webhooks and Postgresql.

The latest and most up-to-date tutorial, with everything set up step by step:

Cloud Native Tools for Developers with Alex Ellis and Alistair Hey

In this Traefik Online Meetup, Alex Ellis, Founder of OpenFaaS, and Alistair Hey, from the OpenFaaS community, will show you how to bootstrap a Kubernetes cl…

 

In the webinar you’ll find out how to get a public IP for your IngressController using the inlets-operator.

Take-aways

  • People will always hate

Some people try to reason about whether you should or should not build a cluster of Raspberry Pis. If you’re asking this question, then don’t do it and don’t ask me to convince you otherwise.

  • It doesn’t have to be expensive

You don’t need special equipment, you don’t even need more than one Raspberry Pi, but I would recommend two or three for the best experience.

  • Know what to expect

Kubernetes clusters are built to run web servers and APIs, not games like you do with your PC. They don’t magically combine the memory of each node into a single supercomputer, but allow for horizontal scaling, i.e. more replicas of the same thing.

  • Not everything will run on it

Some popular software like Istio, Minio, Linkerd, Flux and SealedSecrets do not run on ARM devices because the maintainers are not incentivised to make them do so. It’s not trivial to port software to ARM and then to support that on an ongoing basis. Companies tend to have little interest since paying customers do not tend to use Raspberry Pis. You have to get ready to hear “no”, and sometimes you’ll be lucky enough to hear “not yet” instead.

  • Things are always moving and getting better

If you compare my opening statement where we had to rebuild kernels from scratch, and even build binaries for Go, in order to build Docker, we live in a completely different world now. We’ve seen classic swarm, new swarm (swarmkit), Kubernetes, and now k3s become the platform of choice for clustering on the Raspberry Pi. Where will we be in another five years from now? I don’t know, but I suspect things will be better.

  • Have fun and learn

In my opinion, the primary reason to build a cluster is to learn and to explore what can be done. As a secondary gain, the skills that you build can be used for work in DevOps/Cloud Native, but if that’s all you want out of it, then fire up a few EC2 VMs on AWS.

Recap on projects

Featured: my 24-node uber cluster, chassis by Bitscope.

Featured: my 24-node uber cluster, chassis by Bitscope.

    • k3sup — build Raspberry Pi clusters with Rancher’s lightweight cut of Kubernetes called k3s
    • arkade — install apps to Kubernetes clusters using an easy CLI with flags and built-in Raspberry Pi support
    • OpenFaaS — easiest way to deploy web services, APIs, and functions to your cluster; multi-arch (arm + Intel) support is built-in
    • inlets — a Cloud Native Tunnel you can use to access your Raspberry Pi or cluster from anywhere; the inlets-operator adds integration into Kubernetes

Want more?

Well, all of that should take you some time to watch, read, and to try out — probably less than five years. I would recommend working in reverse order from the Traefik webinar back or the homelab tutorial which includes a bill of materials.

Become an Insider via GitHub Sponsors to support my work and to receive regular email updates from me each week on Cloud Native, Kubernetes, OSS, and more: github.com/sponsors/alexellis

And you’ll find hundreds of blog posts on Docker, Kubernetes, Go, and more on my blog over at blog.alexellis.io.

The post Five years of Raspberry Pi clusters appeared first on Raspberry Pi.

FluSense takes on COVID-19 with Raspberry Pi

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/flusense-takes-on-covid-19-with-raspberry-pi/

Raspberry Pi devices are often used by scientists, especially in biology to capture and analyse data, and a particularly striking – and sobering – project has made the news this week. Researchers at UMass Amherst have created FluSense, a dictionary-sized piece of equipment comprising a cheap microphone array, a thermal sensor, an Intel Movidius 2 neural computing engine, and a Raspberry Pi. FluSense monitors crowd sounds to forecast outbreaks of viral respiratory disease like seasonal flu; naturally, the headlines about their work have focused on its potential relevance to the COVID-19 pandemic.

A photo of Forsad Al Hossain and Tauhidur Rahman with the FluSense device alongside a logo from the Amherst University of Massachusetts

Forsad Al Hossain and Tauhidur Rahman with the FluSense device. Image courtesy of the University of Massachusetts Amherst

The device can distinguish coughing from other sounds. When cough data is combined with information about the size of the crowd in a location, it can provide an index predicting how many people are likely to be experiencing flu symptoms.

It was successfully tested in in four health clinic waiting rooms, and now, PhD student Forsad Al Hossain and his adviser, assistant professor Tauhidur Rahman, plan to roll FluSense out in other large spaces to capture data on a larger scale and strengthen the device’s capabilities. Privacy concerns are mitigated by heavy encryption, and Al Hossain and Rahman explain that the emphasis is on aggregating data, not identifying sickness in any single patient.

The researchers believe the secret to FluSense’s success lies in how much of the processing work is done locally, via the neural computing engine and Raspberry Pi: “Symptom information is sent wirelessly to the lab for collation, of course, but the heavy lifting is accomplished at the edge.”

A bird's-eye view of the components inside the Flu Sense device

Image courtesy of the University of Massachusetts Amherst

FluSense offers a different set of advantages to other tools, such as the extremely popular self-reporting app developed by researchers at Kings College Hospital in London, UK, together with startup Zoe. Approaches like this rely on the public to sign up, and that’s likely to skew the data they gather, because people in some demographic groups are more likely than others to be motivated and able to participate. FluSense can be installed to capture data passively from groups across the entire population. This could be particularly helpful to underprivileged groups who are less likely to have access to healthcare.

Makers, engineers, and scientists across the world are rising to the challenge of tackling COVID-19. One notable initiative is the Montreal General Hospital Foundation’s challenge to quickly design a low-cost, easy to use ventilator which can be built locally to serve patients, with a prize of CAD $200,000 on offer. The winning designs will be made available to download for free.

There is, of course, loads of chatter on the Raspberry Pi forum about the role computing has in beating the virus. We particularly liked this PSA letting you know how to free up some of your unused processing power for those researching treatments.

screenshot of the hand washer being built from a video on instagram

Screenshot via @deeplocal on Instagram

And to end on a cheering note, we *heart* this project from @deeplocal on Instagram. They’ve created a Raspberry Pi-powered soap dispenser which will play 20 seconds of your favourite song to keep you at the sink and make sure you’re washing your hands for long enough to properly protect yourself.

The post FluSense takes on COVID-19 with Raspberry Pi appeared first on Raspberry Pi.

Ashley’s top five projects for Raspberry Pi first-timers

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/ashleys-top-five-projects-for-raspberry-pi-first-timers/

It is time. Time to go to that little stack of gifts from well-wishers who have badged you as “techie” or noted that you “play computer games”. Armed with this information, they decided you’d like to receive one of our small and perfectly formed Raspberry Pis. You were thrilled. You could actually make a thing.

Except you haven’t. You had to go to that job thingy, and talk to that partner thingy, and wash and feed those children thingies. Don’t worry, we’re not offended. We know that embarking on your first coding project is daunting and that the community has taken off like a rocket so there are eight bajillion ideas floating around. Good job we’re here to help, then, isn’t?

First-timer project 01

Some of us have found ourselves spending more time with our online communities recently. Those whose digital family of choice is to be found on Reddit should see an uptick in their personal ‘Karma’ if they’re spending more time digging into “the front page of the internet”. If you’d like to see a real-world indicator of the fruits of your commenting/sharing/Let-Me-Google-That-For-You labour, a super-easy Raspberry Pi first-timer project is building a Karma counter, like this one we found on Reddit.

Now, Squiddles1227 is one of those flash 3D printer-owning types, but you could copy the premise and build your own crafty Karma-themed housing around your counter.

On a similar note (and featuring a comprehensive ‘How To’), GiovanniBauer on instructables.com used his Raspberry Pi to create an Instagram follower counter. Developed on Raspbian with Node.js, this project walk-through should get you started on whichever social media counter project you’d like to have a bash at.

First-timer project 02

We know this is a real-life Raspberry Pi first-timer project because the Reddit post title says so. Ninjalionman1 made an e-ink calendar using a Raspberry Pi Zero so they can see their daily appointments, weather report, and useful updates.

We mined the original Reddit thread to find you the comment linking to all the info you need about hardware and setup. Like I said, good job we’re here.

First-timer project 03

Raspberry Pi 3 and 4, as well as Raspberry Pi Zero W, come with built-in Bluetooth connectivity. This means you can build something to let your lockdown-weary self take your emotional-health-preserving music/podcasts/traditional chant soundtrack with you as you migrate around your living space. “Mornings in the lounge… mid-afternoons at the kitchen table…” – we feel you.

Circuitdigest.com posted this comprehensive walk-through to show you how a Raspberry Pi can convert an ordinary speaker with a 3.5mm jack into a wireless Bluetooth speaker.

First-timer project 04

PCWorld.com shared 10 Raspberry Pi projects they bet anyone can do, and we really like the look of this one. It shows you how to give a “dumb” TV extra smarts, like web browsing, which could be especially useful if screen availability is limited in a multi-user household.

The PCWorld article recommends using a Raspberry Pi 2, 3 or 4, and points out that this is a much cheaper option than things like Chromebits and Compute Sticks.

First-timer project 05

Lastly, electromaker.io have hidden the coding education vegetables in the Minecraft tomato sauce using Raspberry Pi. The third post down on this thread features a video explaining how you can hack your kids’ favourite game to get them learning to code.

The video blurb also helpfully points out that Minecraft comes pre-installed on Raspbian, making it “one of the greatest Pi projects for kids.”

If you’re not quite ready to jump in and try any of the above, try working your way through these really simple steps to set up your Raspberry Pi and see what it can do. Then come back here and try one of these first-timer projects, share the results of your efforts, tag us, and receive a virtual round of applause!

The post Ashley’s top five projects for Raspberry Pi first-timers appeared first on Raspberry Pi.

Stay busy in your Vault with a Raspberry Pi Zero Pipboy

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-fallout-pipboy/

While being holed up in the Vaults living off our stash of Nuke cola, we’ve come across this mammoth junk-build project, which uses Raspberry Pi Zero W to power a working Pipboy.

Pipboy scrap build

No Description

UK-based JustBuilding went full Robert House and, over several months, built the device’s body by welding together scrap plastic. Raspberry Pi Zero W serves as the brain, with a display header mounted to the GPIO pins. The maker wrote a Pipboy-style user interface, including demo screens, in Python — et voilà…



Lucky for him, semiconductors were already invented but, as JustBuilding admits, this is not what we’d call a beginner’s project. Think the Blue Peter show’s Tracey Island extravaganza, except you don’t have crafty co-presenters/builders, and you also need to make the thing do something useful (for our US readers who just got lost there, think Mr Rogers with glitter glue and outdoor adventure challenges).

The original post on Instructables is especially dreamy, as JustBuilding has painstakingly produced a really detailed, step-by-step guide for you to follow, including in-the-making photos and links to relevant Raspberry Pi forum entries to help you out where you might get stuck along the way.

And while Raspberry Pi can help you create your own post-apocalyptic wristwear, we’re still working on making that Stealthboy personal cloaking device a reality…

If you’re lucky enough to have access to a 3D printer, the following is the kind of Pipboy you can knock up for yourself (though we really like JustBuilding’s arts’n’crafts upcycling style):

3D Printed Pipboy 3000 MKIV with Raspberry Pi

Find out how to 3D print and build your own functional Pipboy 3000 using a Raspberry Pi and Adafruit 3.5″ PiTFT. The pypboy python program for the Raspberry …

The post Stay busy in your Vault with a Raspberry Pi Zero Pipboy appeared first on Raspberry Pi.