Tag Archives: Your Projects

Protect your veggies from hail with a Raspberry Pi Zero W

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/protect-your-veggies-from-hail-with-a-raspberry-pi-zero-w/

Tired of losing vegetable crops to frequent summertime hail storms, Nick Rogness decided to build something to protect them. And the result is brilliant!

Digital Garden with hail protection

Tired of getting your garden destroyed by hail storms? I was, so I did something about it…maker style!

“I live in a part of the country where hail and severe weather are commonplace during the summer months,” Nick explains in his Hackster tutorial. “I was getting frustrated every year when my wife’s garden was get demolished by the nightly hail storms losing our entire haul of vegetable goodies!”

Nick drew up plans for a solution to his hail problem, incorporating liner actuators bolted to a 12ft × 12ft frame that surrounds the vegetable patch. When a storm is on the horizon, the actuators pull a heavy-duty tarp over the garden.

Nick connected two motor controllers to a Raspberry Pi Zero W. The Raspberry Pi then controls the actuators to pull the tarp, either when a manual rocker switch is flipped or when it’s told to do so via weather-controlled software.

“Software control of the garden was accomplished by using a Raspberry Pi and MQTT to communicate via Adafruit IO to reach the mobile app on my phone,” Nick explains. The whole build is powered by a 12V Marine deep-cycle battery that’s charged using a solar panel.

You can view the full tutorial on Hackster, including the code for the project.

The post Protect your veggies from hail with a Raspberry Pi Zero W appeared first on Raspberry Pi.

How to control multiple servo motors with Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/how-to-control-multiple-servo-motors-with-raspberry-pi/

In the latest Explaining Computers video, Christopher Barnatt explains how to use servo motors with Raspberry Pi. Using servos is a great introduction to the digital making side of computing; servos allow you to control the movement of all manner of project components with your Raspberry Pi and a motor controller attached to its GPIO pins.

Raspberry Pi Servo Motor Control

Control of SG90 servos in Python on a Raspberry Pi, including an explanation of PWM and how a servo differs from a motor. You can download the code from the video at: https://www.explainingcomputers.com/pi_servos_video.html The five-pack of SG90 servos used in this video was purchased on Amazon.co.uk here: https://www.amazon.co.uk/dp/B07H9VC698/ref=nosim?tag=explainin-21 with a similar product on Amazon.com here: https://amzn.to/2QHshx3 (affiliate links).

Servos and your Raspberry Pi

Christopher picked up his SG90 servo motors online, where you’ll find a variety of servo options. What type of servo you need depends on the project you want to create, so be sure to consider the weight and size of what you plan to move, and the speed at which you need to move it.

As the motor controller connects via GPIO, you can even use the tiny £5 Raspberry Pi Zero to control your servo, which makes adding movement to your projects an option even when you’re under tight space constraints.

Find out more

For other detailed computing videos, be sure to subscribe to the Explaining Computers YouTube channel.

And for more Raspberry Pi projects, check out the Raspberry Pi projects page.

Raspberry Pi projects PSA

We’re always looking for people to join our incredible community of translators to help us translate our free resources, including the free projects found on our projects page.

If you speak English and another language and would like to give a portion of your time to making our resources available to more people across the globe, sign up as a translator today.

The post How to control multiple servo motors with Raspberry Pi appeared first on Raspberry Pi.

Playing The Doors with a door (and a Raspberry Pi)

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/playing-the-doors-with-a-door-and-a-raspberry-pi/

Floyd Steinberg is back with more synthy Raspberry Pi musical magic, this time turning a door into a MIDI controller.

I played The Doors on a door – using a Raspberry PI DIY midi controller and a Yamaha EX5

You see that door? You secretly want that to be a MIDI controller? Here’s how to do it, and how to play a cover version of “Break On Through” by The Doors on a door 😉 Link to source code and the DIY kit below.

If you don’t live in a home with squeaky doors — living room door, I’m looking at you — you probably never think about the musical potential of mundane household objects.

Unless you’re these two, I guess:

When Mama Isn’t Home / When Mom Isn’t Home ORIGINAL (the Oven Kid) Timmy Trumpet – Freaks

We thought this was hilarious. Hope you enjoy! This video has over 60 million views worldwide! Social Media: @jessconte To use this video in a commercial player, advertising or in broadcasts, please email [email protected]

If the sound of a slammed oven door isn’t involved in your ditty of choice, you may instead want to add some electronics to that sweet, sweet harmony maker, just like Floyd.

Trusting in the melodic possibilities of incorporating a Raspberry Pi 3B+ and various sensory components into a humble door, Floyd created The Doors Door, a musical door that plays… well, I’m sure you can guess.

If you want to build your own, you can practice some sophisticated ‘copy and paste’ programming after downloading the code. And for links to all the kit you need, check out the description of the video over on YouTube. While you’re there, be sure to give the video a like, and subscribe to Floyd’s channel.

And now, to get you pumped for the weekend, here’s Jim:

The Doors – Break On Through HQ (1967)

recorded fall 1966 – lyrics: You know the day destroys the night Night divides the day Tried to run Tried to hide Break on through to the other side Break on through to the other side Break on through to the other side, yeah We chased our pleasures here Dug our treasures there But can you still recall The time we cried Break on through to the other side Break on through to the other side Yeah!

The post Playing The Doors with a door (and a Raspberry Pi) appeared first on Raspberry Pi.

Brass freeform circuit (Raspberry Pi) Instagram tracker

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/brass-freeform-circuit-raspberry-pi-instagram-tracker/

A few of our favourite online makers decided to take part in a makers’ Secret Santa, producing home-made gifts based on their skills. So, OBVIOUSLY, Estefannie used a Raspberry Pi. Thanks, Estefannie.

HOW I HACKED INSTAGRAM FOR MY SECRET SANTA

I got in a Maker Secret Santa this year so I decided to make a thing and hack Instagram for it. #YTMakersSecretSanta MAKERS SECRET SANTA! FOLLOW EVERYONE: Kids Invent Stuff https://www.youtube.com/channel/UC-glo52BMvZH9PPUamjGIcw Colin Furze https://www.youtube.com/user/colinfurze The Hacksmithhttps://www.youtube.com/user/MstrJames Look Mum No Computer https://www.youtube.com/channel/UCafxR2HWJRmMfSdyZXvZMTw Sufficiently Advanced https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A Subscribe to my channel if you’d like to be the first to know when I publish the next video 🙂 Let me know what other videos you would like to see.

In the video above, Estefannie uses a Raspberry Pi to hack Instagram to illuminate a handmade freeform circuit whenever Kids Invent Stuff gains a like on a post.

“But why not use the Instagram API?”, I hear you cry. Well, as Estefannie explains, she wanted the gift to be a surprise, and if she had used the Instagram API, she would have had to have asked them for their details in order to access it.

Watch to the end of the video to see the gift that Estefannie received from her Secret Santa, a certain Colin Furze. You can see his complete build video for the Cat-o-Matic below.

CAT-O-MATIC auto cat feeder/terrifier YTMakers Secret Santa

Fear not your cat feeding issues are sorted………..Furzestyle No cat was harmed in making of this but it did run off……….but came back and is fine. Thanks to the Kids Invent Stuff channel for organising this Secret Santa check them out here https://www.youtube.com/channel/UC-glo52BMvZH9PPUamjGIcw And the other channels involved Estefannie Explains https://www.youtube.com/user/estefanniegg Sufficiently Advanced https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A Look Mum No Computer https://www.youtube.com/channel/UCafxR2HWJRmMfSdyZXvZMTw The Hacksmiths https://www.youtube.com/user/MstrJames Check out the new FURZE Merch store.

The post Brass freeform circuit (Raspberry Pi) Instagram tracker appeared first on Raspberry Pi.

Hands-free Raspberry Pi Airdrum | The MagPi 89

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/hands-free-raspberry-pi-airdrum-the-magpi-89/

We’re always going to beat the drum for projects that seek to improve the lives of people with disabilities. That’s why we fell in love with the Airdrum, which was created to allow anyone, in particular people with disabilities, to play a musical instrument.

The Airdrum – speaker and MIDI song demo

This video demonstrates the speaker functionality with playing a song from a midi file on the Raspberry pi using Fluidsynth. (The hand movement is just for fun) The Airdrum is powered by a power supply for demonstration purposes.

Raspberry Pi Airdrum

Designed by two Dutch electrical engineering students, Alessandro Verdiesen and Luuk van Kuijk, the project came to life during their first year at university. “We aimed to develop a musical instrument that could be used to generate music by moving,” explains Alessandro, who has recently been working on a fully modular version 2.0.

After speaking with therapists and health care institutions, the pair decided to make a drum that could be played by moving objects above a set of panels and they put Raspberry Pi at its heart. “The basic functionality of the Airdrum is to detect the distance of an object above each connected panel and play a sound,” says Alessandro. “These panels contain IR distance sensors and coloured LEDs for visual feedback.”

Sorting the bass-ics

From the outset, Alessandro and Luuk needed their project to be accessible, affordable, adjustable and, in the latest iteration, modular, with each drummable section containing an Arduino Mini, an IR sensor, and LEDs. They also wanted the instrument to have a broader appeal and be suitable for everybody, including professional musicians, so it had to sound as good as it played.

“We needed it to be as versatile as it can be and allow people to choose custom sounds, colours, and lights while being a standalone instrument and a multi-purpose input/output device,” Alessandro reveals. To make it easy to place the modules together, they used magnetic connections between the panels. This allowed them to be placed together in various configurations, with a minimum of two per Airdrum.

These speaker modules can bookend the sensor panels, although the sound can be outputted via the Raspberry Pi to a different sound system too

With a structured plan that divided milestones into electrical, mechanical, and software components, the pair used 3D printing for the enclosure, which allowed rapid prototyping for quick interactions. They used speaker panels to bookend the modules for auditive feedback.

Panel beating

Each of the panels includes a buck converter so that the current through the connectors can be drawn to a minimum. The master module panel contains Raspberry Pi 3 running custom programs written in C and Python, as well as the free, open-source software synthesiser FluidSynth. It connects to the other panels through I2C, constantly polling the panels for their measurements and for the configuration of their colour.

“If an object has been detected, the Raspberry Pi generates a sound and outputs it on the AUX audio jack,” says Alessandro. “This output is then used by the mono D-class amplifiers in the speaker panels to make the tones audible.”

Custom-made Airdrum detecting modules fit snugly into their 3D-printed cases and can be arranged in a full circle if you have enough of them

The pair chose Raspberry Pi because of its versatility and technical prowess. “The Airdrum needed something powerful enough to run software to generate audio through MIDI using the input from the panels and the Raspberry Pi is a great universal and low-cost development board with integrated DAC for audio,” explains Alessandro. “It also has a I2C bus to act as a data transfer master unit and they’re compact enough to fit inside of the casing. The Raspberry Pi enables easy implementation of future upgrades, too.”

Indeed, the pair want to explore the MIDI possibilities and connect the Airdrum with a smartphone or tablet. An app is being planned, as is a built-in synthesiser. “The people we have shown the Airdrum to have been very enthusiastic,” Alessandro says. “That has been very motivating.”

Read The MagPi for free!

There’s loads more amazing projects and tutorials in The MagPi #89, out today, including our 50 tools and tips for makers, and a huge accessory guide! You can get The MagPi #89 online at our store, or in print from the Raspberry Pi Store in Cambridge and all good newsagents and supermarkets. You can also access The MagPi magazine via our Android and iOS apps.

Don’t forget our amazing subscription offers either, which include a free gift of a Raspberry Pi Zero W when you subscribe for twelve months.

And, as with all our Raspberry Pi publications, you can download the free PDF from our website.

The post Hands-free Raspberry Pi Airdrum | The MagPi 89 appeared first on Raspberry Pi.

Raspberry Pi capacitive-touch musical Christmas tree

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/capacitive-touch-musical-christmas-tree/

What, your Christmas tree ISN’T touch-enabled?

Capacitive Touch Christmas Tree How To | Raspberry Pi | Bare Conductive Pi Cap

Turn your Christmas tree into a capacitive touch-interactive musical instrument using a Raspberry Pi and a Bare Conductive Pi Cap. You’ll be rocking around the Christmas tree in no time! /* Bare Conductive */ Pi Cap: https://www.bareconductive.com/shop/pi-cap/ Touch Board: https://www.bareconductive.com/shop/touch-board/ Code: https://github.com/BareConductive/picap-touch-mp3-py #RasberryPi #BareConductive #Christmas

Using the Bare Conductive Pi Cap, Davy Wybiral hooked up his fairy lights and baubles to a Raspberry Pi. The result? Musical baubles that allow the user to play their favourite festive classics at the touch of a finger. These baubles are fantastic, and it’s easy to make your own. Just watch the video for Davy’s how-to.

The code for Bare Conductive’s Pi Cap polyphonic touch MP3 utility can be found in this GitHub repo, and you can pick up a Pi Cap on the Bare Conductive website. Then all you need to do is hook up your favourite tree decorations to the Pi Cap via insulated wires, and you’re good to go. It’s OK if your decorations aren’t conductive: you’ll actually be touching the wires and not the ornaments themselves.

And don’t worry about touching the wires, it’s perfectly safe. But just in this instance. Please don’t make a habit of touching wires.

Make sure to subscribe to Davy on YouTube (we did) and give him a like for the baubles video. Also, leave a comment to tell him how great it is, because nice comments are lovely, and we should all be leaving as many of them as we can on the videos for our favourite creators.

The post Raspberry Pi capacitive-touch musical Christmas tree appeared first on Raspberry Pi.

Using a Raspberry Pi as a synthesiser

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/virtual-analogue-synthesiser/

Synthesiser? Synthesizer? Whichever it is*, check out this video of Floyd Steinberg showing how he set up his Raspberry Pi as one of them.

How to use a Raspberry PI as a synthesizer

How to use a Raspberry PI as a synthesizer. Table of contents below! The Raspberry PI is a popular card-sized computer. In this video, I show how to set up a Raspberry PI V3 as a virtual analog synthesizer with keyboard and knobs for realtime sound tweaking, using standard MIDI controllers and some very minor shell script editing.

“In this video,” Floyd explains on YouTube, “I show how to set up a Raspberry Pi 3 as a virtual analogue synthesiser with keyboard and knobs for real-time sound tweaking, using standard MIDI controllers and some very minor shell script editing. The result is a battery-powered mini synth creating quite impressive sounds!”

The components of a virtual analogue Raspberry Pu synthesiser

We know a fair few of you (Raspberry Pi staff included) love dabbling in the world of Raspberry Pi synth sound, so be sure to watch the video to see what Floyd gets up to while turning a Raspberry Pi 3 into a virtual analogue synthesiser.

Be sure to check out Floyd’s other videos for more synthy goodness, and comment on his video if you’d like him to experiment further with Raspberry Pi. (The answer is yes, yes we would 🙏🙌)

 

*[Editor’s note: it’s spelled with a z in US English, and with an s in UK English. You’re welcome, Alex.]

The post Using a Raspberry Pi as a synthesiser appeared first on Raspberry Pi.

Really, really awesome Raspberry Pi NeoPixel LED mirror

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/awesome-neopixel-led-mirror/

Check out Super Make Something’s awesome NeoPixel LED mirror: a 576 RGB LED display that converts images via the Raspberry Pi Camera Module and Raspberry Pi 3B+ into a pixelated light show.

Neopixel LED Mirror (Python, Raspberry Pi, Arduino, 3D Printing, Laser Cutting!) DIY How To

Time to pull out all the stops for the biggest Super Make Something project to date! Using 3D printing, laser cutting, a Raspberry Pi, computer vision, Python, and nearly 600 Neopixel LEDs, I build a low resolution LED mirror that displays your reflection on a massive 3 foot by 3 foot grid made from an array of 24 by 24 RGB LEDs!

Mechanical mirrors

If you’re into cool uses of tech, you may be aware of Daniel Rozin, the creative artist building mechanical mirrors out of wooden panels, trash, and…penguins, to name but a few of his wonderful builds.

A woman standing in front of a mechanical mirror made of toy penguins

Yup, this is a mechanical mirror made of toy penguins.

A digital mechanical mirror?

Inspired by Daniel Rozin’s work, Alex, the person behind Super Make Something, put an RGB LED spin on the concept, producing this stunning mirror that thoroughly impressed visitors at Cleveland Maker Faire last month.

“Inspired by Danny Rozin’s mechanical mirrors, this 3 foot by 3 foot mirror is powered by a Raspberry Pi, and uses Python and OpenCV computer vision libraries to process captured images in real time to light up 576 individual RGB LEDs!” Alex explains on Instagram. “Also onboard are nearly 600 3D-printed squares to diffuse the light from each NeoPixel, as well as 16 laser-cut panels to hold everything in place!”

The video above gives a brilliantly detailed explanation of how Alex made the, so we highly recommend giving it a watch if you’re feeling inspired to make your own.

Seriously, we really want to make one of these for Raspberry Pi Towers!

As always, be sure to subscribe to Super Make Something on YouTube and leave a comment on the video if, like us, you love the project. Most online makers are producing content such as this with very little return on their investment, so every like and subscriber really does make a difference.

The post Really, really awesome Raspberry Pi NeoPixel LED mirror appeared first on Raspberry Pi.

IoT ugly Christmas sweaters

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/iot-ugly-christmas-sweaters/

If there’s one thing we Brits love, it’s an ugly Christmas sweater. Jim Bennett, a Senior Cloud Advocate at Microsoft, has taken his ugly sweater game to the next level by adding IoT-controlled, Twitter-connected LEDs thanks to a Raspberry Pi Zero.

IoT is Fun for Everyone! (Ugly Sweater Edition)

An Ugly Sweater is great-but what’s even better (https://aka.ms/IoTShow/UglySweater) is an IoT-enabled Ugly Sweater. In this episode of the IoT Show, Olivier Bloch is joined by Jim Bennett, a Senior Cloud Advocate at Microsoft. Jim has built an Ugly Sweater using Azure IoT Central, Microsoft’s IoT app platform, and a Raspberry Pi Zero.

Jim upgraded his ugly sweater to become IoT-compatible using Microsoft’s IoT app platform Azure IoT Central, Adafruit’s programmable NeoPixel LED Dots Strand and, of course, our sweet baby, the Raspberry Pi Zero W.

After sewing the LED strand into the ugly sweater and connecting it to Raspberry Pi Zero, Jim was able to control the colour of the LEDs. Taking it one step further, he then built a list of commands within Azure IoT Central and linked the Raspberry Pi Zero to a Twitter account to create the IoT element of the project.

Watch the video above for full details on the project, and find all the code on Github.

The post IoT ugly Christmas sweaters appeared first on Raspberry Pi.

The Nest Box: DIY Springwatch with Raspberry Pi

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/the-nest-box-diy-springwatch/

Last week, lots and lots of you shared your Raspberry Pi builds with us on social media using the hashtag #IUseMyRaspberryPiFor. Jay Wainwright from Liverpool noticed the conversation and got in touch to tell us about The Nest Box, which uses Raspberry Pi to bring impressively high-quality images and video from British bird boxes to your Facebook feed.

Jay runs a small network of livestreaming nest box cameras, with three currently sited and another three in the pipeline; excitingly, the new ones will include a kestrel box and a barn owl box! During the spring, all the cameras stream live to The Nest Box’s Facebook page, which has steadily built a solid following of several thousand wildlife fans.

A pair of blue tits feeds their chicks in a woolly nest

The Nest Box’s setup uses a Raspberry Pi and Camera Module, along with a Raspberry Pi PoE HAT to provide both power and internet connectivity, so there’s only one cable connection to weatherproof. There’s also a custom HAT that Jay has designed to control LED lights and to govern the Raspberry Pi Camera Module’s IR filter, ensuring high-quality images both during the day and at night. To top it all off, he has written some Python code to record visitors to the nest boxes and go into live streaming mode whenever the action is happening.

As we can see from this nest box design for swifts, shown on the project’s crowdfunding profile, plenty of thought has evidently been put into the design of the boxes so that they provide tempting quarters for their feathered occupants while also accommodating all the electronic components.

Follow The Nest Box on Facebook to add British birds into your social media mix — whatever you’ve got now, I’ll bet all tomorrow’s coffees that it’ll be an improvement. And if you’re using Raspberry Pi for a wildlife project, or you’ve got plans along those lines, let us know in the comments.

The post The Nest Box: DIY Springwatch with Raspberry Pi appeared first on Raspberry Pi.

Your amazing Raspberry Pi projects #IUseMyRaspberryPiFor

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/your-amazing-raspberry-pi-projects-iusemyraspberrypifor/

Yesterday, we asked you to share your Raspberry Pi builds on social media using the hashtag #IUseMyRaspberryPiFor. The result was amazing, with so many of you sharing some really interesting projects, inspiring both us, and others, to get creative.

While we can’t share them all here today, we picked out some to highlight, and we strongly recommend you check out the hashtag on Twitter to see them all.

Making music

$danielKraft; on Twitter

🤘 Live digital audio effects processing with @blokaslabs MODEP #IUseMyRaspberryPiFor https://t.co/7HVhxns2p1

We see a lot of music-based Raspberry Pi projects, from guitar pedals to radios, soundboards, and capacitive-touch fruit baskets. This effects processor for Daniel Kraft’s drum kit will have many of the musically inclined members of Raspberry Pi Towers getting code-happy in no time.

Spying on hedgehogs

Matt Nayler on Twitter

IUseMyRaspberryPiFor monitoring the wildlife in my garden.

Matt uses his Raspberry Pi to monitor wildlife in his garden. Add a motion sensor and a camera to your Raspberry Pi, and you’ve made your own nature camera trap.

Inspiring the next generation

Pierre-yves Baloche on Twitter

IUseMyRaspberryPiFor building autonomous robots, securing our house Internet access, picturing wildlife in our garden, but mostly to introduce IT to my daughter and how much can be accomplished and learned through it (creativity, patience,…), all thanks to the community 🙂 !

Pierre-Yves Baloche uses his Raspberry Pi for a multitude of tasks, including as a tool to introduce his daughter to technology, and to the technical and non-technical skills that come with learning to make stuff.

Accessibility assistant

Gabriel Cruz on Twitter

RT:(@Raspberry_Pi) RT @sarru1291: I’m using raspberry pi for building a visual guide for visually impaired people. It is portable and fully voice-controlled. It can be used for most of the daily life activities. #IUseMyRaspberryPiFor #RaspberryPi https://t.co/QMhBYxzpKJ #don…

This project from Gabriel Cruz is a great example of how Raspberry Pi can be used to create low-cost accessibility aids.

Plane-spotting

selftronics on Twitter

This is how planespotters use their TVs. ☺ Log and monitor the planes approaching and landing to an airport with @Raspberry_Pi #IUseMyRaspberryPiFor #AI #flightradar24 Source here: https://t.co/1t5Lau2bt9

Our colleagues at the Raspberry Pi North America office have a similar setup for plane spotting.

Reptile management

Patrick Fitzgerald on Twitter

IUseMyRaspberryPiFor monitoring and managing my bearded dragon’s vivarium.

Patrick uses a Raspberry Pi to monitor a bearded dragons vivarium. We really appreciate this photo, because bearded dragons are awesome!

Everything

Nathan Chantrell on Twitter

IUseMyRaspberryPiFor Loads of things! Everything from home automation with Node-RED, HA touch screens, sensor monitoring with InfluxDB/Grafana, VoIP PBX, Octoprint, fixed & pan/tilt cameras, control of a Cambridge Audio amp, UniFi controller, PiHole, probably missed loads!

Nathan uses a Raspberry Pi for just about everything! Great work!

Octoprint

🌦 Phil 🌤🌪 on Twitter

IUseMyRaspberryPiFor Remote controlling my 3D printer and recording timelapses as it prints. Just like now! #octoprint @Creality3dprint

Phil uses a Raspberry Pi to run Octoprint, allowing for remote control of a 3D printer. We do this too in the Raspberry Pi Foundation makerspace.

As we said, there are simply too many projects to share in one blog post. However, we found some great blog-fodder that we’ll be writing more about in the near future — keep your eyes peeled.

It’s not too late to share your Raspberry Pi project using #IUseMyRaspberryPiFor, so keep posting!

The post Your amazing Raspberry Pi projects #IUseMyRaspberryPiFor appeared first on Raspberry Pi.

Fabric-licious Raspberry Pi projects

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/fabric-licious-raspberry-pi-projects/

I’m currently (re)learning how to knit. Here are some textile-themed Raspberry Pi projects for the yarn-curious.

The Raspberry Pi-powered loom

Loom Operation

The general sequence of events for running my Raspberry Pi controlled loom. The project was really a proof of concept idea rather than an actual production model. This video is intended to supplement my blog at www.photographic-perspectives.com Sorry, there is not audio with this.

Fred Hoefler has taken a desktop loom and added a Raspberry Pi to automate it. Read more in our blog post.

Networked knitting machine: not your average knit one, purl one

Knitting Printer! (slowest speed)

Printing a scarf on a Brother KM950i knitting machine from the 1980’s. To do this I have a Brother Motor arm to push the carriage back and forth and a homemade colour changer that automatically selects the colour on the left (the white and purple device with the LED).

The moment we saw Sarah Spencer‘s knitted Stargazing tapestry, we knew we needed to know more. A couple of emails later, and here’s Sarah with a guest blog post telling you all you need to know about her hacking adventure with a 1980s knitting machine and a Raspberry Pi.

Raspberry Pi spinning wheel

Hendrix College Raspberry Pi Bake-Off

Uploaded by Hendrix College on 2014-04-08.

Cyndi Minister runs The Twisted Purl, a yarn company in Arkansas. She’s also a bit of a geek, and when her ankles became sore from too much work at the treadle, she hit on the idea of making a Raspberry Pi-powered spinning wheel for her hand-made yarn. Read more.

Jacquard looms, and a Pi simulator

Loom Computer (Jacquard Simulator)

Raspberry Pi based Jacquard Loom simulator on display at Macclesfield Silk Museum (http://http://www.silkmacclesfield.org.uk).

Next time you’re out shopping for curtain fabric, or buying intricately woven cushion covers, step back for a moment and think about the computing history you’re holding in your hands. Computing’s everywhere. Find out more here.

The post Fabric-licious Raspberry Pi projects appeared first on Raspberry Pi.

Sustainable clothing with Rapanui and Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/sustainable-clothing-with-rapanui-and-raspberry-pi/

New to the Raspberry Pi Store, Cambridge: T-shirts made using Raspberry Pis in Rapanui’s sustainable factory.

Oli Wilkin – our Glorious Retail Guru, to give him his formal title – has been hard at work this year bringing the Raspberry Pi Store, Cambridge, to life. Open since February, the store continues to evolve as it introduces our credit card-sized computer to a high-street audience. Oli and the store team are always talking to customers, exploring new ideas, and making changes. Here’s Oli on the latest development: Rapanui clothing, made sustainably with the help of Raspberry Pis.

Rapanui 2

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Rapanui

Brothers Mart and Rob started bespoke clothing company Rapanui in a garden shed on the Isle of Wight, with an initial investment of £200 (about $257 US). Ten years later, Rapanui has grown to a fully fledged factory providing over 100 jobs. Their vision to create a sustainable clothing brand has seen them increase Rapanui’s offering from T-shirts to a much wider range of clothing, including jumpers, socks, and jackets. Another reason we like them a lot is that the factory uses over 100 Raspberry Pis with a wide variety of functions.

Rapanui’s early early days weres not without their challenges. Mart and Rob found early on that every improvement in sustainability came with a price tag. They realised that they could use technology to help keep costs down without cutting corners:

Along the way, we needed a real low-cost option for us to be able to get computing in and around the place. Someone said,
“Oh, you should check out Raspberry Pi.”
“What’s that?”
“It’s a computer, and costs twenty quid or something, and it’s the size of a credit card.”
“OK – that can’t be true!”

We got one, and it just blew our mind, because there’s no limit to what we could do with it.
– Mart

The Raspberry Pis are supporting things like productivity improvements, order tracking, workload prioritisation, and smart lighting. All employees are encouraged to try coding when they start working for Rapanui, and they’re empowered to change their workplace to make it smarter and more efficient.



As Mart explains,

In the world today, there’s a lot of issues around environment and sustainability, which feel like compromises – you want to do your bit, but it costs more. What this kind of technology allows us to do is make things cost less because you can create these massive efficiencies through technology, and that’s what enables you to be able to afford the things that you want to do with sustainability, without having to compromise on price.

Circular economy

All of the organic cotton that Rapanui uses is fully traced from India to the Isle of Wight, where it is turned into amazing quality branded items for their customers. Once a garment has come to the end of its life, a customer can simply scan the QR code on the inside label, and this QR code generates a Freepost address. This allows the customer to send their item back to Rapanui for a webshop credit, thus creating a circular economy.

Raspberry Pi + Rapanui

All of this makes us very pleased to be working with Rapanui to print the T-shirts you buy in the Raspberry Pi store.

Rapanui – from workshop to store

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

We have started with our Raspberry Pi 4 T-shirt, and others will follow. Our hope is that all our T-shirts will be fully sustainable and better for you, our customers.

The post Sustainable clothing with Rapanui and Raspberry Pi appeared first on Raspberry Pi.

Listen to World War II radio recordings with a Raspberry Pi Zero

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/listen-to-world-war-ii-radio-recordings-with-a-raspberry-pi-zero/

With the 50th anniversary of the D-Day landings very much in the news this year, Adam Clark found himself interested in all things relating to that era. So it wasn’t long before he found himself on the Internet Archive listening to some of the amazing recordings of radio broadcasts from that time. In this month’s HackSpace magazine, Adam details how he built his WW2 radio-broadcast time machine using a Raspberry Pi Zero W, and provides you with the code to build your own.

As good as the recordings on the Internet Archive were, it felt as if something was missing by listening to them on a modern laptop, so I wanted something to play them back on that was more evocative of that time, and would perhaps capture the feeling of listening to them on a radio set.

I also wanted to make the collection portable and to make the interface for selecting and playing the tracks as easy as possible – this wasn’t going to be screen-based!

Another important consideration was to house the project in something that would not look out of place in the living room, and not to give away the fact that it was being powered by modern tech.

So I came up with the idea of using an original radio as the project case, and to use as many of the original knobs and dials as possible. I also had the idea to repurpose the frequency dial to select individual years of the war and to play broadcasts from whichever year was selected.

Of course, the Raspberry Pi was immediately the first option to run all this, and ideally, I wanted to use a Raspberry Pi Zero to keep the costs down and perhaps to allow expansion in the future outside of being a standalone playback device.

Right off the bat, I knew that I would have a couple of obstacles to overcome as the Raspberry Pi Zero doesn’t have an easy way to play audio out, and I also wanted to have analogue inputs for the controls. So the first thing was to get some audio playing to see if this was possible.

Audio playback

The first obstacle was to find a satisfactory way to playback audio. In the past, I have had some success using PWM pins, but this needs a low-pass filter as well as an amplifier, and the quality of audio was never as good as I’d hoped for.

The other alternative is to use one of the many HATs available, but these come at a price as they are normally aimed at more serious quality of audio. I wanted to keep the cost down, so these were excluded as an option. The other option was to use a mono I2S 3W amplifier breakout board – MAX98357A from Adafruit – which is extremely simple to use.

As the BBC didn’t start broadcasting stereo commercially until the late 1950s, this was also very apt for the radio (which only has one speaker).
Connecting up this board is very easy – it just requires three GPIO pins, power, and the speaker. For this, I just soldered some female jumper leads to the breakout board and connected them to the header pins of the Raspberry Pi Zero. There are detailed instructions on the Adafruit website for this which basically entails running their install script.

I’d now got a nice playback device that would easily play the MP3 files downloaded from archive.org and so the next task was to find a suitable second-hand radio set.

Preparing the case

After a lot of searching on auction sites, I eventually found a radio that was going to be suitable: wasn’t too large, was constructed from wood, and looked old enough to convince the casual observer. I had to settle for something that actually came from the early 1950s, but it drew on design influences from earlier years and wasn’t too large as a lot of the real period ones tended to be (and it was only £15). This is a fun project, so a bit of leeway was fine by me in this respect.

When the radio arrived, my first thought as a tinkerer was perhaps I should get the valves running, but a quick piece of research turned up that I’d probably have to replace all the resistors and capacitors and all the old wiring and then hope that the valves still worked. Then discovering that the design used a live chassis running at 240 V soon convinced me that I should get back on track and replace everything.

With a few bolts and screws removed, I soon had an empty case.

I then stripped out all the interior components and set about restoring the case and dial glass, seeing what I could use by way of the volume and power controls. Sadly, there didn’t seem to be any way to hook into the old controls, so I needed to design a new chassis to mount all the components, which I did in Tinkercad, an online 3D CAD package. The design was then downloaded and printed on my 3D printer.

It took a couple of iterations, and during this phase, I wondered if I could use the original speaker. It turned out to be absolutely great, and the audio took on a new quality and brought even more authenticity to the project.

The case itself was pretty worn and faded, and the varnish had cracked, so I decided to strip it back. The surface was actually veneer, but you can still sand this. After a few applications of Nitromors to remove the varnish, it was sanded to remove the scratches and finished off with fine sanding.

The wood around the speaker grille was pretty cracked and had started to delaminate. I carefully removed the speaker grille cloth, and fixed these with a few dabs of wood glue, then used some Tamiya brown paint to colour the edges of the wood to blend it back in with the rest of the case. I was going to buy replacement cloth, but it’s fairly pricey – I had discovered a trick of soaking the cloth overnight in neat washing-up liquid and cold water, and it managed to lift the years of grime out and give it a new lease of life.

At this point, I should have just varnished or used Danish oil on the case, but bitten by the restoration bug I thought I would have a go at French polishing. This gave me a huge amount of respect for anyone that can do this properly. It’s messy, time-consuming, and a lot of work. I ended up having to do several coats, and with all the polishing involved, this was probably one of the most time-consuming tasks, plus I ended up with some pretty stained fingers as a result.

The rest of the case was pretty easy to clean, and the brass dial pointer polished up nice and shiny with some Silvo polish. The cloth was glued back in place, and the next step was to sort out the dial and glass.

Frequency, volume, glass, and knobs

Unfortunately, the original glass was cracked, so a replacement part was cut from some Makrolon sheet, also known as Lexan. I prefer this to acrylic as it’s much easier to cut and far less likely to crack when drilling it. It’s used as machine guards as well and can even be bent if necessary.

With the dial, I scanned it into the PC and then in PaintShop I replaced the existing frequency scale with a range of years running from 1939 to 1945, as the aim was for anyone using the radio to just dial the year they wanted to listen to. The program will then read the value of the potentiometer, and randomly select a file to play from that year.

It was also around about now that I had to come up with some means of having the volume control the sound and an interface for the frequency dial. Again there are always several options to consider, and I originally toyed with using a couple of rotary encoders and using one of these with the built-in push button as the power switch, but eventually decided to just use some potentiometers. Now I just had to come up with an easy way to read the analogue value of the pots and get that into the program.

There are quite a few good analogue-to-digital boards and HATs available, but with simplicity in mind, I chose to use an MCP3002 chip as it was only about £2. This is a two-channel analogue-to-digital converter (ADC) and outputs the data as a 10-bit value onto the SPI bus. This sounds easy when you say it, but it proved to be one of the trickier technical tasks as none of the code around for the four-channel MCP3008 seemed to work for the MCP3002, nor did many of the examples that were around for the MCP3002 – I think I went through about a dozen examples. At long last, I did find some code examples that worked, and with a bit of modification, I had a simple way of reading the values from the two potentiometers. You can download the original code by Stéphane Guerreau from GitHub. To use this on your Raspberry Pi, you’ll also need to run up raspi-config and switch on the SPI interface. Then it is simply a case of hooking up the MCP3002 and connecting the pots between the 3v3 line and ground and reading the voltage level from the wiper of the pots. When coding this, I just opted for some simple if-then statements in cap-Python to determine where the dial was pointing, and just tweaked the values in the code until I got each year to be picked out.

Power supply and control

One of the challenges when using a Raspberry Pi in headless mode is that it likes to be shut down in an orderly fashion rather than just having the power cut. There are lots of examples that show how you can hook up a push button to a GPIO pin and initiate a shutdown script, but to get the Raspberry Pi to power back up you need to physically reset the power. To overcome this piece of the puzzle, I use a Pimoroni OnOff SHIM which cleverly lets you press a button to start up, and then press and hold it for a second to start a shutdown. It’s costly in comparison to the price of a Raspberry Pi Zero, but I’ve not found a more convenient option. The power itself is supplied by using an old power bank that I had which is ample enough to power the radio long enough to be shown off, and can be powered by USB connector if longer-term use is required.

To illuminate the dial, I connected a small LED in series with a 270R resistor to the 3v3 rail so that it would come on as soon as the Raspberry Pi received power, and this lets you easily see when it’s on without waiting for the Raspberry Pi to start up.

The code






If you’re interested in the code Adam used to build his time machine, especially if you’re considering making your own, you’ll find it all in this month’s HackSpace magazine. Download the latest issue for free here, subscribe for more issues here, or visit your local newsagent or the Raspberry Pi Store, Cambridge to pick up the magazine in physical, real-life, in-your-hands print.

The post Listen to World War II radio recordings with a Raspberry Pi Zero appeared first on Raspberry Pi.

Real-life DOR-15 bowler hat from Disney’s Meet the Robinsons

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/real-life-dor-15-bowler-hat-from-disneys-meet-the-robinsons/

Why wear a boring bowler hat when you can add technology to make one of Disney’s most evil pieces of apparel?

Meet the Robinsons

Meet the Robinsons is one of Disney’s most underrated movies. Thank you for coming to my TED talk.

What’s not to love? Experimental, futuristic technology, a misunderstood villain, lessons of love and forgiveness aplenty, and a talking T-Rex!

For me, one of the stand-out characters of Meet the Robinsons is DOR-15, a best-of-intentions experiment gone horribly wrong. Designed as a helper hat, DOR-15 instead takes over the mind of whoever is wearing it, hellbent on world domination.

Real-life DOR-15

Built using a Raspberry Pi and the MATRIX Voice development board, the real-life DOR-15, from Team MATRIX Labs, may not be ready to take over the world, but it’s still really cool.

With a plethora of built-in audio sensors, the MATRIX Voice directs DOR-15 towards whoever is making sound, while a series of servos wiggle 3D‑printed legs for added creepy.

This project uses ODAS (Open embeddeD Audition System) and some custom code to move a servo motor in the direction of the most concentrated incoming sound in a 180 degree radius. This enables the hat to face a person calling to it.

The added wiggly spider legs come courtesy of this guide by the delightful Jorvon Moss, whom HackSpace readers will remember from issue 21.

In their complete Hackster walkthrough, Team Matrix Lab talk you through how to build your own DOR-15, including all the files needed to 3D‑print the legs.

Realising animated characters and props

So, what fictional wonder would you bring to life? Your own working TARDIS? Winifred’s spellbook? Mary Poppins’ handbag? Let us know in the comments below.

The post Real-life DOR-15 bowler hat from Disney’s Meet the Robinsons appeared first on Raspberry Pi.

Securely tailor your TV viewing with BBC Box and Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/securely-tailor-your-tv-viewing-with-bbc-box-and-raspberry-pi/

Thanks to BBC Box, you might be able to enjoy personalised services without giving up all your data. Sean McManus reports:

One day, you could watch TV shows that are tailored to your interests, thanks to BBC Box. It pulls together personal data from different sources in a household device, and gives you control over which apps may access it.

“If we were to create a device like BBC Box and put it out there, it would allow us to create personalised services without holding personal data,” says Max Leonard.

TV shows could be edited on the device to match the user’s interests, without those interests being disclosed to the BBC. One user might see more tech news and less sport news, for example.

BBC Box was partly inspired by a change in the law that gives us all the right to reuse data that companies hold on us. “You can pull out data dumps, but it’s difficult to do anything with them unless you’re a data scientist,” explains Max. “We’re trying to create technologies to enable people to do interesting things with their data, and allow organisations to create services based on that data on your behalf.”

Building the box

BBC Box is based on Raspberry Pi 3B+, the most powerful model available when this project began. “Raspberry Pi is an amazing prototyping platform,” says Max. “Relatively powerful, inexpensive, with GPIO, and able to run a proper OS. Most importantly, it can fit inside a small box!”

That prototype box is a thing of beauty, a hexagonal tube made of cedar wood. “We created a set of principles for experience and interaction with BBC Box and themes of strength, protection, and ownership came out very strongly,” says Jasmine Cox. “We looked at shapes in nature and architecture that were evocative of these themes (beehives, castles, triangles) and played with how they could be a housing for Raspberry Pi.”

The core software for collating and managing access to data is called Databox. Alpine Linux was chosen because it’s “lightweight, speedy but most importantly secure”, in Max’s words. To get around problems making GPIO access work on Alpine Linux, an Arduino Nano is used to control the LEDs. Storage is a 64GB microSD card, and apps run inside Docker containers, which helps to isolate them from each other.

Combining data securely

The BBC has piloted two apps based on BBC Box. One collects your preferred type of TV programme from BBC iPlayer and your preferred music genre from Spotify. That unique combination of data can be used to recommend events you might like from Skiddle’s database.

Another application helps two users to plan a holiday together. It takes their individual preferences and shows them the destinations they both want to visit, with information about them brought in from government and commercial sources. The app protects user privacy, because neither user has to reveal places they’d rather not visit to the other user, or the reason why.

The team is now testing these concepts with users and exploring future technology options for BBC Box.

The MagPi magazine

This article was lovingly yoinked from the latest issue of The MagPi magazine. You can read issue 87 today, for free, right now, by visiting The MagPi website.

You can also purchase issue 87 from the Raspberry Pi Press website with free worldwide delivery, from the Raspberry Pi Store, Cambridge, and from newsagents and supermarkets across the UK.

 

The post Securely tailor your TV viewing with BBC Box and Raspberry Pi appeared first on Raspberry Pi.

Raspberry Pi snail habitats for Mrs Nation’s class

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-snail-habitats-for-mrs-nations-class/

These Raspberry Pis take hourly photographs of snails in plastic container habitats, sharing them to the Snail Habitat website.

Snails

While some might find them kind of icky, I am in love with snails (less so with their homeless cousin, the slug), so this snail habitat project from Mrs Nation’s class is right up my alley.

Snail Habitats



This project was done in a classroom with 22 students. We broke the kids out into groups and created 5 snail habitats. It would be a great project to do school-wide too, where you create 1 snail habitat per class. This would allow the entire school to get involved and monitor each other’s habitats.

Each snail habitat in Mrs Nation’s class is monitored by a Raspberry Pi and camera module, and Misty Lackie has written specific code to take a photo every hour, uploading the image to the dedicated Snail Habitat website. This allows the class to check in on their mollusc friends without disturbing their environment.

“I would love to see others habitats,” Misty states on the project’s GitHub repo, “so if you create one, please share it and I would be happy to publish it on snailhabitat.com.”

Snail facts according to Emma, our resident Bug Doctor

  • The World Snail Racing Championships take place in Norfolk every year. Emma’s friend took a snail there once, but it didn’t win.
  • Roman snails, while common in the UK, aren’t native to the country. They were brought to the country by the Romans. Emma is 99% sure this fact is correct.
  • Garlic snails, when agitated, emit a garlic scent. Helen likes the idea of self-seasoning escargots. Alex is less than convinced.
  • Snails have no backbone, making them awful wingmen during late-night pub brawls and confrontations.
  • This GIF may be fake:

The post Raspberry Pi snail habitats for Mrs Nation’s class appeared first on Raspberry Pi.

Project anyone’s face onto your own with Raspberry Pi Zero

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/project-anyones-face-onto-your-own-with-raspberry-pi-zero/

Sean Hodgins is back with a new Halloween-themed project, this time using a pico projector and a Raspberry Pi Zero to display images and animations onto a mask.

It’s kinda creepy but very, very cool.

Face Changing Projection Mask – Be Anyone

Have a hard time deciding what to be on Halloween? Just be everything. Some links for the project below. Support my Free Open Source Projects by becoming joining the Patreon!

Face-changing projection mask

Sean designed his own PCB – classic Sean – to connect the header pins of a Raspberry Pi Zero to a pico projector. He used Photoshop to modify video and image files in order to correct the angle of projection onto the mask.

He then 3D-printed this low poly mask from Thingiverse, adapting the design to allow him to attach it to a welding mask headband he purchased online.

As Sean explains in the video, there are a lot of great ways you can use the mask. Our favourite suggestion is using a camera to take a photo of someone and project their own face back at them. This idea is reminiscent of the As We Are project in Columbus, Ohio, where visitors sit inside a 14-foot tall head as their face is displayed on screens covering the outside.

For more of Sean’s excellent Raspberry Pi projects, check out his YouTube channel, and be sure to show him some love by clicking the ol’ subscribe button.

The post Project anyone’s face onto your own with Raspberry Pi Zero appeared first on Raspberry Pi.

Build a Raspberry Pi chartplotter for your boat

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-a-raspberry-pi-chartplotter-for-your-boat/

Earlier this year, James Conger built a chartplotter for his boat using a Raspberry Pi. Here he is with a detailed explanation of how everything works:

Building your own Chartplotter with a Raspberry Pi and OpenCPN

Provides an overview of the hardware and software needed to put together a home-made Chartplotter with its own GPS and AIS receiver. Cost for this project was about $350 US in 2019.

The entire build cost approximately $350. It incorporates a Raspberry Pi 3 Model B+, dAISy AIS receiver HAT, USB GPS module, and touchscreen display, all hooked up to his boat.



Perfect for navigating the often foggy San Francisco Bay, the chartplotter allows James to track the position, speed, and direction of major vessels in the area, superimposed over high-quality NOAA nautical charts.

Raspberry Pi at sea

For more nautically themed Raspberry Pi projects, check out Rekka Bellum and Devine Lu Linvega’s stunning Barometer and Ufuk Arslan’s battery-saving IoT boat hack.

The post Build a Raspberry Pi chartplotter for your boat appeared first on Raspberry Pi.

Rob’s Raspberry Pi Dungeons and Dragons table

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robs-raspberry-pi-dungeons-and-dragons-table/

Rob made an interactive Dungeons and Dragons table using a Raspberry Pi and an old TV. He thought it best to remind me, just in case I had forgotten. I hadn’t forgotten. Honest. Here’s a photo of it.

The table connects to Roll20 via Chromium, displaying the quest maps while the GM edits and reveals the layout using their laptop. Yes, they could just plug their laptop directly into the monitor, but using the Raspberry Pi as a bridge means there aren’t any awkward wires in the way, and the GM can sit anywhere they want around the table.

Rob wrote up an entire project how-to for The MagPi magazine. Go forth and read it!

The post Rob’s Raspberry Pi Dungeons and Dragons table appeared first on Raspberry Pi.