Tag Archives: Your Projects

Three-factor authentication is the new two-factor authentication

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/three-factor-authentication-raspberry-pi/

Two-factor authentication continues to provide our online selves with more security for our email and online banking. Meanwhile, in the physical world, protecting our valuables is now all about three-factor authentication.

A GIF of a thumbprint being scanned for authentication - three-factor authentication

Not sure what I mean? Here’s a video from Switched On Network that demonstrates how to use a Raspberry Pi to build a three-factor door lock comprised of an RFID keyring, 6-digit passcode, and one-time access code sent to your mobile phone.

Note that this is a fairly long video, so feel free to skip it for now and read my rather snazzy tl;dr. You can come back to the video later, with a cup of tea and 20 minutes to spare. It’ll be worth it, I promise.

Build a Raspberry Pi Smart Door Lock Security System with Three Factor Authentication!

https://amzn.to/2A98EaZ (UK) / https://amzn.to/2LDlxyc (US) – Get a free audiobook with a 30-day trial of Audible from Amazon! Build the ultimate door lock system, effectively turning your office or bedroom into a high-security vault!

The tl;dr of three-factor door locks by Alex Bate

To build Switched On Network’s three-factor door lock, you need to source a Raspberry Pi 3, a USB RFID reader and fob, a touchscreen, a electronic door strike, and a relay switch. You also need a few other extras, such as a power supply and a glue gun.

A screenshot from the three-factor authentication video of a glue gun

Once you’ve installed the appropriate drivers (if necessary) for your screen, and rotated the display by 90 degrees, you can skip ahead a few steps by installing the Python script from Switched On Network’s GitHub repo! Cheers!

A screenshot from the three-factor authentication video of the screen attached to the Pi in portrait mode

Then for the physical build: you need to attach the door strike, leads, and whatnot to the Pi — and all that together to the door and door frame. Again, I won’t go into the details, since that’s where the video excels.

A screenshot from the video of the components of the three-factor authentication door lock

The end result is a superior door lock that requires you to remember both your keys and your phone in order to open it. And while we’d never suggest using this tech to secure your house from the outside, it’s a perfect setup for inside doors to offices or basement lairs.

A GIF of Dexter from Dexter's Laboratory

Everyone should have a lair.

Now go watch the video!

The post Three-factor authentication is the new two-factor authentication appeared first on Raspberry Pi.

I feel the earth move under my feet (in Michigan)

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/michigan-seismic-activity-raspberry-pi/

The University of Michigan is home to the largest stadium in the USA (the second-largest in the world!). So what better place to test for spectator-induced seismic activity than The Big House?

The Big House stadium in Michigan

The Michigan Shake

University of Michigan geology professor Ben van der Pluijm decided to make waves by measuring the seismic activity produced during games at the university’s 107601 person-capacity stadium. Because earthquakes are (thankfully) very rare in the Midwest, and therefore very rarely experienced by van der Pluijm’s introductory geology class, he hoped this approach would make the movement of the Earth more accessible to his students.

“The bottom line was, I wanted something to show people that the Earth just shakes from all kinds of interactions,” explained van der Pluijm in his interview with The Michigan Daily. “All kinds of activity makes the Earth shake.”

The Big House stadium in Michigan

To measure the seismic activity, van der Pluijm used a Raspberry Pi, placing it on a flat concrete surface within the stadium.

Van der Pluijm installed a small machine called a Raspberry Pi computer in the stadium. He said his only requirements were that it needed to be able to plug into the internet and set up on a concrete floor. “Then it sits there and does its thing,” he said. “In fact, it probably does its thing right now.”

He then sent freshman student Sahil Tolia to some games to record the moments of spectator movement and celebration, so that these could be compared with the seismic activity that the Pi registers.

We’re not sure whether Professor van der Pluijm plans on releasing his findings to the outside world, or whether he’ll keep them a close secret with his introductory students, but we hope for the former!

Build your own Raspberry Pi seismic activity reader

We’re not sure what other technology van der Pluijm uses in conjunction with the Raspberry Pi, but it’s fairly easy to create your own seismic activity reader using our board. You can purchase the Raspberry Shake, an add-on board for the Pi that has vertical and horizontal geophones, MEMs accelerometers, and omnidirectional differential pressure transducers. Or you can fashion something at home, for example by taking hints from this project by Carlo Cristini, which uses household items to register movement.

The post I feel the earth move under my feet (in Michigan) appeared first on Raspberry Pi.

Can’t Drive This, the 4D arcade machine

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/4d-arcade-machine/

A Raspberry Pi–powered arcade display with hidden interactive controls won over the crowds at Gamescom. Rosie Hattersley and Rob Zwetsloot got the inside scoop.

Pixel Maniacs is a Nuremberg-based games maker that started out making mobile apps. These days it specialises in games for PC, Xbox One, PlayStation, and Nintendo Switch. You Can’t Drive is its first foray into gaming with a Raspberry Pi.

If you’re going to add a little something extra to wow the crowd at the Gamescom video games trade fair, a Raspberry Pi is a surefire way of getting you noticed. And that’s the way Pixel Maniacs went about it.

The Nuremberg-based games developer retrofitted an arcade machine with a Raspberry Pi to showcase its intentionally silly Can’t Drive This precarious driving game at Gamescom.

This two-player co-operative game involves one player building the track while the other drives along it.

Complete with wrecking balls, explosions, an inconvenient number of walls, and the jeopardy of having to construct your road as you negotiate your way, at speed, across an ocean to the relative safety of the next lump of land, Can’t Drive This is a fast‑paced racing game.

Splash action

Pixel Maniacs then took things up a notch by providing interactive elements, building a mock 4D arcade game (so-named because they feature interactive elements such as motion cabinets). The fourth dimension, in this case, saw the inclusion of a water spray, fan, and console lights. For its Gamescom debut, Pixel Maniacs presented Can’t Drive This in a retro arcade cabinet, where hordes of gaming fans gathered round its four-way split screen to enjoy the action.

Getting to the heart of the matter and replacing the original 1980s kit with modern-day processors and Pi-powered additions

Adding Raspberry Pi gaming to the mix was about aiding the game development process as much as anything. Andy Holtz, Pixel Maniacs’ software engineer, told The MagPi that the team wanted an LED matrix with 256 RGB LEDs to render sprite-sheet animations. “We knew we needed a powerful machine with enough RAM, and a huge community, to get the scripts running.”

Pixel Maniacs’ offices have several Raspberry Pi–controlled monitors and a soundboard, so the team knew the Pi’s potential.

The schematic for the 4D arcade machine, showing the importance of the Raspberry Pi as a controller.

The arcade version of the game runs off a gaming laptop cunningly hidden within the walls of the cabinet, while the Raspberry Pi delivers the game’s surprise elements such as an unexpected blast from a water spray. A fan can be triggered to simulate stormy weather, and lights start flashing crazily when the cars crash. Holtz explains that the laptop “constantly sends information about the game’s state to the Raspberry Pi, via a USB UART controller. The Pi reads these state messages, converts them, and sends according commands to the fans, water nozzle, camera, and the LED light matrix. So when players drive through water, the PC sends the info to the Pi, and [the latter] turns on the nozzle, spraying them.”

Having played your heart out, you get a photo-booth-style shot of you in full-on gaming action.

The arcade idea came about when Pixel Maniacs visited the offices of German gaming magazine M! Games and spied an abandoned, out-of-order 1980s arcade machine lurking unloved in a corner. Pixel Maniacs set about rejuvenating it, Da Doo Ron Ron soundtrack and all.

Sustained action

Ideas are one thing; standing up to the rigours of a full weekend’s uninterrupted gameplay at the world’s biggest games meet is something else. Holtz tells us, “The Raspberry Pi performed like a beast throughout the entire time. Gamescom was open from 9am till 8pm, so it had to run for eleven hours straight, without overheating or crashing. Fortunately, it did. None of the peripherals connected to the Pi had any problems, and we did not have a single crash.”

A Raspberry Pi 3B+ was used to trigger the water spray, lights, and fans, bringing an extra element to the gameplay, as well as rendering the arcade machine’s graphics.

Fans were enthusiastic too, with uniformly positive feedback, and one Gamescom attendee attempting to buy the arcade version there and then. As Andy Holtz says, though, you don’t sell your baby. Instead, Pixel Maniacs is demoing it at games conventions in Germany this autumn, before launching Can’t Drive This across gaming platforms at the end of the year.

This article was printed in The MagPi issue 75. Get your copy of The MagPi in stores now, or download it as a free PDF here.

The post Can’t Drive This, the 4D arcade machine appeared first on Raspberry Pi.

Raspberry Pi would like you to remember…

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/fireworks-2018/

…remember, the 5th of November. Happy Guy Fawkes Night, Bonfire Night, Fireworks Night…Day!

A brief history of the Gunpowder Plot

In 1605, York-born Guy Fawkes was arrested, along with other conspirators of the Gunpowder Plot, for their attempt to blow up the House of Lords that, at the time, was occupied by members of parliament, including King James I.

To celebrate their king surviving the attempt on his life, residents of London lit bonfires, and this became a recognised custom across England on every 5 November to follow. 413 years on, we continue the tradition by burning effigies of Guy Fawkes on bonfires, setting off fireworks, and eating over-priced hotdogs while getting a little tipsy on mulled cider at council-organised events.

Guy Fawkes, in case you’re wondering, was sentenced to death and, after breaking his neck while climbing the gallows, was quartered, and his body parts were distributed to the four corners of the kingdom — another tradition at the time. Good thing we haven’t kept that one going!

Bonfire Night and Raspberry Pi

“Okay, Alex, we get it. You like Bonfire Night. But what has this got to do with Raspberry Pi?”

I’m glad you asked.

While I do enjoy Bonfire Night, I’m not a massive fan of too many fireworks. Or rather, I’m not a fan of the way too many fireworks upset my cat Jimmy.

So when I saw this cute digital fireworks display by Mike ‘Recantha’ Horne, I cheered with delight. He says:

This is a nice little project that I wrote the code for a couple of Sundays ago. It uses the Pimoroni Mote to appear as fireworks and then uses Pygame to play the sound of fireworks as each Mote stick ‘explodes’ in a shower of sparkles! You can see the effect in the video below and see the code here. You can get hold of your own Mote from Pimoroni. This is all in aid of the Milton Keynes Raspberry Jam on 10 November, which is a “Fireworks Special”!

Mike’s project is a great example of using tech to overcome an everyday issue — in this case, letting me have pretty flashing lights in the dark that don’t scare my cat but still make me go “Oooh!” and “Aaah!”.

Fireworks on the Raspberry Pi with the Pimoroni Mote

Uploaded by Michael Horne on 2018-10-28.

If you’ve created any similar indoor versions of usually outdoor activities using a Raspberry Pi, now is the time to share them with us, either in the comments below or on social media.

The post Raspberry Pi would like you to remember… appeared first on Raspberry Pi.

Dance magic, dance

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/dance-magic-dance/

 Firstly, I’d like to apologise for rickrolling you all yesterday. I would LIKE to, but I can’t — it was just too funny to witness.

But as I’m now somewhat more alive and mobile, here’s a proper blog post about proper things. And today’s proper thing is these awesome Raspberry Pi–powered dance costumes from students at a German secondary school:

In the final two years at German gymnasiums (the highest one of our secondary school types), every student has to do a (graded) practical group project. Our school is known for its superb dancing groups, which are formed of one third of the students (voluntarily!), so our computer science teacher suggested to make animated costumes for our big dancing project at the end of the school year. Around 15 students chose this project, firstly because the title sounded cool and secondly because of the nice teacher 😉.

Let me just say how lovely it is that students decided to take part in a task because of how nice the teacher is. If you’re a nice teacher, congratulations!

The students initially tried using Arduinos and LED strips for their costumes. After some failed attempts, they instead opted for a Raspberry Pi Zero WH and side-emitting fibre connected to single RGB LEDs — and the result is rather marvellous.

To power the LEDs, we then had to shift the voltage up from the 3.3V logic level to 12V. For this, we constructed a board to hold all the needed components. At its heart, there are three ULN2803A to provide enough transistors at the smallest possible space still allowing hand-soldering.

Using pulse-width modulation (PWM), the students were able to control the colour of their lights freely. The rest of the code was written during after-school meetups; an excerpt can be found here, along with a complete write-up of the project.

I’m now going to hand this blog post over to our copy editor, Janina, who is going to write up a translated version of the above in German. Janina, over to you…

[Ed. note: Nein, danke.]

The post Dance magic, dance appeared first on Raspberry Pi.

Build your own robotic cat: Petoi returns

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robotic-cat-petoi-nybble/

Who wouldn’t want a robot kitten? Exactly — we knew you’d understand! And so does the Petoi team, hence their new crowdfunding campaign for Petoi Nybble.

Petoi Nybble

Main campaign video. Back our Indiegogo campaign to adopt Nybble the robo kitten! Share with your friends who may love it! Indiegogo: https://igg.me/at/nybble A more technical post: https://www.hackster.io/RzLi/petoi-nybble-944867 Don’t forget to follow Twitter @PetoiCamp and subscribe to Petoi.com for our newsletters! Most importantly, enjoy our new kitten!

Petoi mark 2

Earlier this year, we shared the robotic cat project Petoi by Rongzhong Li. You all loved it as much as we did, and eagerly requested more information on making one.

Petoi Raspberry Pi Robot Cat

Rongzhong’s goal always was for Petoi to be open-source, so that it can be a teaching aid as much as it is a pet. And with his team’s crowdfunding campaign, he has made building your own robot cat even easier.

Petoi the laser-cut robotic cat

Laser kitty

In the new Nybble version of Petoi, the team replaced 3D-printed parts with laser-cut wood, and cut down the parts list to be more manageable: a Raspberry Pi 3B+, a Sparkfun Arduino Pro Mini, and the Nybble kit, available in the Nybble IndieGoGo campaign.

Petoi the laser-cut robotic cat

The Nybble kit! “The wooden frame is a retro design in honor of its popstick-framed ancestor. I also borrowed the wisdom from traditional Chinese woodwork (in honor of my ancestors), to make the major frame screw-free.”

But Nybble is more than just wooden parts and servo motors! The robotic cat’s artificial intelligence lets users teach it as well as control it,  so every kitty will be unique.

Nybble’s motion is driven by an Arduino-compatible micro-controller. It stores instinctive “muscle memory” to move around. An optional AI chip, such as a Raspberry Pi, can be mounted on top of Nybble’s back, to help Nybble with perception and decision. You can program in your favorite language, and direct Nybble to walk around simply by sending short commands, such as “walk” or “turn left”!

The NyBoard

For this version, the Petoi team has created he NyBoard, an all-in-one controller board for the Raspberry Pi. It’s available to back for $45 if you don’t want to pledge $200 for the entire cat kit.

Petoi the laser-cut robotic cat

Learn more

If you’d like to learn more about Nybble, visit its IndieGoGo campaign page, find more technical details on its Hackster.io project page, or check out the OpenCat GitHub repo.

Petoi the laser-cut robotic cat

And if you’ve built your own robotic pet, such as a K-9–inspired dog, or Raspberry Pi–connected android sheep, let us know!

The post Build your own robotic cat: Petoi returns appeared first on Raspberry Pi.

Rescuing old cine film with Raspberry Pi Zero

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/rescuing-old-cine-film-raspberry-pi-zero/

When Electrical Engineer Alan Platt was given the task of converting old cine film to digital footage for his father-in-law’s 70th birthday, his first instinct was to look online.

converting cine film to digital footage with a Raspberry Pi Zero

“There are plenty of companies happy to convert old films”, he explains, “but they are all extremely expensive. In addition, you have to send your original films away by post, and there’s no way to guarantee that they’ll be safe in transit.”

Alan was given a box of Super 8 films covering 15 years of family holidays and memories. A huge responsibility, and an enormous challenge. Not content to let someone else do the hard work, Alan decided to convert the films himself — and learn how to program a Raspberry Pi at the same time.

converting cine film to digital footage with a Raspberry Pi Zero

Alan’s cine film digitising machine

The best-laid plans

Alan’s initial plan involved using his father-in-law’s cine projector as the base for the conversion process, but this soon proved impossible. There was no space in the projector to house both the film-playing mechanism, and the camera for the digitisation process. Further attempts to use the projector came to an end when, on powering it up for the first time, the 50-year-old machine produced a loud bang and a large cloud of smoke.

Undeterred, Alan examined the bust projector’s mechanism and decided to build his own. This began with a large eBay order: 3-D printed components from Germany, custom-shaped PTFE sheets from the UK, and optical lenses from China. For the skeleton of the machine, Alan’s box of Technic LEGO was dusted off and unpacked; an old TV was dug out of storage to interface with the Raspberry Pi Zero.

converting cine film to digital footage with a Raspberry Pi Zero

Experimentation: Technic LEGO, clamps, and Blu Tack hold the equipment together

The build commenced with several weeks of trial and error using scraps of cine film, a Camera Module, and a motor. With the Raspberry Pi Zero, Alan controlled the motion of the film through the machine, and took photos of each frame.

“At one point, setting the tension on the film required a helper to stand next to me, holding a sledgehammer connected to the pick-up reel. Moving the sledgehammer up or down varied the tension, and allowed me to work out what power of motor I would need to make the film run smoothly.”

He refined the hardware and software until the machine could produce reliable, focused, and stable images.

A slow process

Over a period of two months, the finished machine was used to convert all the cine films. The process involves loading a reel onto a Technic LEGO arm, feeding the film through the mechanism with tweezers, and winding the first section on to the pick-up reel. The Raspberry Pi controls a stepper motor and the Camera Module, advancing the film frame by frame and taking individual photos of each film cell. The film is backlit through a sheet of translucent PTFE serving as a diffuser; the Camera Module is focused by moving it up and down on its aluminium mounting.

converting cine film to digital footage with a Raspberry Pi Zero

Alan taught himself to program in Python while working on this project

Finally, Alan used Avidemux, a free video-editing program, to stitch all the images together into an MP4 digital film.

The verdict

“I’m incredibly proud of this machine”, Alan says. “It has taken more than a quarter of a million photos, digitised hundreds of meters of film — and taught me to program in Python. It demonstrates you don’t need to be an expert software engineer to make something really cool!”

And Alan’s father-in-law?

“He was thrilled! Being able to watch the films on his TV without having to set up the projector was fantastic. It was a great present!”

Here, exclusively for the Raspberry Pi blog, we present the first moments of footage to be digitised using Alan’s machine.

converting cine film to digital footage with a Raspberry Pi Zero

Gripping footage, filmed at Windsor Safari Park in 1983

Digital footage

Have you used a Raspberry Pi to digitise family memories? Do you have a box of Super 8 films in the attic, waiting for a machine like Alan’s?

Tell us about it in the comments!

Thanks again, Rachel

The post Rescuing old cine film with Raspberry Pi Zero appeared first on Raspberry Pi.

Beer Cooler or: a Raspberry Pi Zero W walks into a bar…

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-beer-cooler/

You know how it is. You move into a house that used to be a pub, and you can’t bring yourself to do away with the bar. In fact, after several years of planning, you find yourself buying a hand pump on eBay, and a polypin of craft ale from the local microbrewery. Suddenly, you’re the landlord. The barkeep. Everyone’s best friend.

A GIF from the movie Shaun of the Dead - Raspberry Pi Beer Cooler

And yet …

There’s something not quite right about this setup. Something not quite perfect. You’re pulling pints and drinking your craft ale one day when you realise — the beer isn’t cold enough!

You need a beer cooler.

Cool customer

Electrical engineer Alan Platt found himself in this enviable position, and he decided to design his own draft ale fridge.

‘The original pub cellar had been filled in, so I couldn’t keep my beer underground and pipe it up to the handpump — it had to sit under the bar. I needed to build my own beer cooler, because there is only so much space under the bar, and a commercial fridge wouldn’t fit.”

Alan set about constructing a box for the beer using sheets of insulation board and elastic bands. He then installed two Peltier cooling pumps in the lid of the box, and routed a pipe up to the handpump for the beer. One trip to the microbrewery later, and the craft ale was chilling nicely.

The outside of Alan's beer cooler showing the cooling apparatus and insulation boards

Alan’s beer cooler

But there was a problem.

‘The Peltiers ran happily for an hour or two, but after that, they proved to be too effective. A layer of ice built up on the heat sink connected to the cold side of the Peltiers, jamming the fans, and allowing the beer to grow warm. They also made a horrible rattling sound, and disturbed everyone in the house.”

It seemed that the perfect pint was still out of reach.

Complex circuitry

Not to be defeated, Alan realised he would need a way to control the power to the Peltier units. Switching the power using a simple thermostat would cause damaging thermal shock in the Peltiers, so Alan turned to Raspberry Pi Zero W as his solution.

A photo of the inside of Alan’s beer cooler complete with Raspberry Pi and a heap of wiring (as described in the paragraph below)

Testing the completed control circuit

In order to fine-tune the cooling process, Alan decided to control the current running through the Peltier units. He used a hardware PWM output on a Raspberry Pi Zero W alongside a power MOSFET, an inductor, a capacitor, and a current measurement circuit to create a switched-mode variable current power supply. By measuring the temperature on the cold side of the Peltier units, and using a PID control loop to adjust the PWM output, Alan was able to maintain the cold side at just above freezing. He used a second PID control loop to keep the beer inside the fridge at a perfect cellar temperature of 8°C.

Aware that this cooling system was both overcomplicated and built from very high-power components, Alan designed multiple failsafes using hardware and software to ensure that the control unit would not spontaneously combust while attempting to cool the beer.

The perfect pint was within reach.

Consultation

And then Alan tried to explain the failure modes to his wife, in case he wasn’t in the house when the electronics overheated, or the failsafes kicked in.

“I wanted her to know what to do if the cooler failed”, Alan explains. “But this required her to check the beer fridge regularly. It’s on the floor, under the bar, and she didn’t seem keen.”

The project was about to get significantly more complicated.

What about an audible alarm?

It was an innocent suggestion, but the idea grew from a simple beeping alarm to a series of spoken alerts. What could be used to produce these alerts?

“I found myself programming a second Raspberry Pi Zero with a DAC HAT, audio amp, and speaker, just to communicate the status of the beer cooler. Originally, the spoken alert was to indicate a fault in the control circuits, but it seemed a waste to stop at a single message.”

A breadboard covered in wires - Raspberry Pi Beer Cooler

Prototype for the audio amplifier

After days of planning, programming, and searching for MP3 files online, the fridge can now inform Alan (and his wife) when it is switched on, when the Peltiers power up, when it reaches maximum power, when it is switched off, and when there is a fault.

The alert messages are all quotes from sci-fi shows and films: Han Solo claiming he has a bad feeling about this; Scotty telling Captain Kirk that the Enterprise is giving it all she’s got; and Kaylee telling Captain Reynolds that everything is shiny.

And the fault alert?

“If there’s a problem with the beer cooler, the Raspberry Pi declares ‘Danger, Will Robinson, danger.’ on a loop, until someone checks it and resets the controls. It’s annoying and effective!”

The perfect pint

The Raspberry Pi also acts as a web server, using the REMI library to display and change the temperatures, currents, and control parameters, so the beer temperature can be monitored and regulated from anywhere on the home WiFi network.

The final build next to a laptop displaying the beer cooler web interface for maintenance on the go

Control box and web interface

Alan’s beer cooler has been successfully tested, and several polypins of local craft ale have been drunk and enjoyed — and it’s only taken two Raspberry Pis; some high-current circuitry; two Peltier units; a pile of household insulation board; and Han Solo, Scotty, Kaylee, and the robot from Lost In Space to achieve the perfect pint.

Over-engineering

Use the comments to tell us about your own over-engineered projects and any excuses you’ve found for including an extra Raspberry Pi in your build!

And thank you to Rachel, aka ‘the wife’, for this wonderful blog post!

The post Beer Cooler or: a Raspberry Pi Zero W walks into a bar… appeared first on Raspberry Pi.

Halloween voice-changer using Raspberry Pi Zero

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/halloween-voice-changer-using-raspberry-pi-zero/

Olivier Ros has put together a short and sweet tutorial for creating your own voice-changing mask for Halloween.

Voice changer with Raspberry Pi Zero for Halloween

How to make a voice changer with Raspberry Pi Zero for Halloween Buy MIC+ sound card on Amazon : goo.gl/VDFzu7 tutorial here: https://www.instructables.com/id/Halloween-Voice-Changer-With-Raspberry-Pi/ https://www.raspiaudio.com/halloween

Halloween — we love it!

Grab your ghostly fairy lights, hollow out your pumpkins, and hunt down your box of spooky knick-knacks — it’s Halloween season! And with every year that passes, we see more and more uses of the Raspberry Pi in haunting costumes and decorations.

Voice-changers

At the top of the list is an increase in the number of voice changers. And Olivier Ros’s recent project is a great example of an easy-to-build piece costumimg that’s possible thanks to the small footprint of the Raspberry Pi Zero.

An image of the Raspberry Pi Zero voice changer inside a scary mask

Playdough: so many uses, yet all we wanted to do as kids was eat it.

Oliver used a Pi Zero, though if you have the mask fit it into, you could use any 40-pin Pi and an audio DAC HAT such as this one. He also used Playdough to isolate the Zero and keep it in place, but some foam should do the trick too. Just see what you have lying around.

When I said this is an easy project, I meant it: Olivier has provided the complete code for you to install on a newly setup SD card, or to download via the terminal on your existing Raspbian configuration.

You can read through the entire build on his website, and see more of his projects over on his Instructables page.

More Halloween inspiration

If you’re looking to beef up your Halloween game this October, you should really include a Raspberry Pi in the mix. For example, our Halloween Pumpkin Light tutorial allows you to control the light show inside your carved fruit without the risk of fire. Yes, you read that correctly: a pumpkin is a fruit.

Halloween Pumpkin Light Effect

Use a Raspberry Pi and Pimoroni Blinkt! to create an realistic lighting effect for your Halloween Pumpkin.

For more inspiration and instructions, check out John Park’s Haunted Portrait, some of our favourite tweeted spooky projects from last year, and our list of some of the best Halloween projects online.

The post Halloween voice-changer using Raspberry Pi Zero appeared first on Raspberry Pi.

Google Tasks to-do list, or anti-baby-distraction device

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/interactive-raspberry-pi-google-tasks/

Organise your life with the help of a Raspberry Pi, a 3.5″ touchscreen, Google Tasks, and hackster.io user Michal Sporna.

Distracting baby optional, though advised.

Google Tasks Raspberry Pi to-do list Michael Sporna

Baby – in the workplace – thought you ought to know

There’s a baby in the office today. And, as babies tend to do in places of work, he’s stolen all of our attention away from what we’re meant to be doing (our jobs), and has redirected it for the greater good (keeping him entertained). Oh, baby!

If only I had a to-do list to keep all my day’s tasks in plain sight and constantly remind myself of what I should be doing (writing this blog post) instead of what I’m actually doing (naming all the kittens on my T-shirt with the help of a nine-month-old)!

Hold on…

Sorry, the baby just came over to my desk and stole my attention again. Where was I?

Oh yes…

…to-do lists!

Michal Sporna‘s interactive to-do list that syncs with Google Tasks consists of a Raspberry Pi 3 Model B and a 3.5″ touchscreen encased in a laser-cut wooden housing, though this last element is optional.

Google Tasks Raspberry Pi to-do list Michael Sporna

“This is yet another web to-do app, but designed for a 3.5″ screen and Raspberry Pi,” says Michal in the introduction to his hackster.io tutorial. “The idea is for this device to serve as task tracking device, replacing a regular notebook and having to write stuff with pen.”

Michal explains that, while he enjoys writing down tasks on paper, editing items on paper isn’t that user-friendly. By replacing pen and paper with stylus and touchscreen, and making use Google Tasks, he improved the process for himself.

Google Tasks

The Google Tasks platform allows you to record and edit tasks, and to share them across multiple devices. The app integrates nicely with Gmail and Google Calendar, and its browser functionality allowed Michal to auto-run it on Chromium in Raspbian, so his tasks automatically display on the touchscreen. #NotSponsored

Google Tasks Raspberry Pi to-do list Michael Sporna

Build your own

Find full build details for the to-do list device on hackster.io! This is the first project Michal has shared on the website, and we’re looking forward to more makes from him in the future.

Now, where did that baby go?

The post Google Tasks to-do list, or anti-baby-distraction device appeared first on Raspberry Pi.

A waterproof Raspberry Pi?! Five 3D-printable projects to try

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/waterproof-3d-printing-raspberry-pi/

Summer is coming to a close. The evenings grow darker. So pack away your flip flops, hang up your beach towel, and settle in for the colder months with these fun 3D-printable projects to make at home or in your local makerspace.

Fallout 4 desktop terminal

Power Up Props’ replica of the Fallout desktop terminals fits a 3.5″ screen and a Raspberry Pi 3B. Any Fallout fans out there will be pleased to know that you don’t need to raise your Science level to hack into this terminal — you’ll just need access to a 3D printer and these free files from My Mini Factory.

Fallout 4 terminal 3d-printable raspberry pi case

And while you’re waiting for this to print, check out Power Up Props’ wall-mounted terminal!

Fallout 4 – Working Terminal (Raspberry Pi Version) – Power Up Props

Howdy neighbors, grab some fusion cores and put on your power armor because today we’re making a working replica of the wall mounted computer “terminals” from the Fallout series, powered by a Raspberry Pi! Want one of your very own terminals?

Falcon Heavy night light

Remixing DAKINGINDANORF‘s low-poly Arduino-based design, this 3D-printable night light is a replica of the SpaceX Falcon Heavy rocket. The replica uses a Raspberry Pi Zero and a Pimoroni Unicorn pHAT to create a rather lovely rocket launch effect. Perfect for the budding space explorer in your home!

Falcon Heavy night light

I 3D printed a SpaceX Falcon Heavy night light, with some nice effects like it’s actually launching. Useful? Hell no. Cool? Hell yes! Blogpost with files and code: https://www.dennisjanssen.be/tutorials/falcon-heavy-night-light/

You can download the files directly from Dennis Janssen’s website.

Swimming IoT satellite

We’re really excited about this design and already thinking about how we’ll use it for our own projects:

Floating Raspberry Pi case

Using an acrylic Christmas bauble and 3D-printed parts, you can set your Raspberry Pi Zero W free in local bodies of water — ideal for nature watching and citizen science experiments.

Art Deco clock and weather display

Channel your inner Jay Gatsby with this Art Deco-effect clock and weather display.

Art Deco Raspberry Pi Clock

Fitted with a Raspberry Pi Zero W and an Adafruit piTFT display, this build is ideally suited for any late-night cocktail parties you may have planned.

High-altitude rocket holder

Send four Raspberry Pi Zeros and Camera Modules into the skies with this holder design from Thingiverse user randysteck.

Raspberry Pi Zero rocket holder

The 3D-printable holder will keep your boards safe and sound while they simultaneously record photos or video of their airborne adventure.

More more more

What projects did we miss? Share your favourite 3D-printable designs for Raspberry Pis in the comments so we can see more builds from the internet’s very best community!

The post A waterproof Raspberry Pi?! Five 3D-printable projects to try appeared first on Raspberry Pi.

Working model of the Trinity Buoy Wharf Lighthouse

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-model-trinity-buoy-wharf-lighthouse/

When Dave shared his Raspberry Pi Zero–powered model of the Trinity Buoy Wharf Lighthouse on Reddit, we fell a little bit in love.

Lame_Dave's Raspberry Pi Trinity Buoy Wharf Lighthouse

Hello from the Trinity Buoy Wharf Lighthouse

Dave was getting married inside London’s only lighthouse, situated at Trinity Buoy Wharf across the water from the O2 Arena.

Lame_Dave's Raspberry Pi Trinity Buoy Wharf Lighthouse

The Trinity Buoy Wharf Lighthouse

The Trinity Buoy Wharf lighthouse sits at the confluence of the River Thames (the big ol’ river running through London) and Bow Creek, a tidal estuary of the River Lea (the river Adele sings about in her song River Lea*!). When the wharf was closed in 1988, the lighthouse was put out of commission.

Dave is wonderful, and so are his lighthouses

On Reddit, Dave goes by the username Lame_Dave, but considering how wonderful and thoughtful his project for his lighthouse wedding is, we hereby rename him Wonderful_Thoughtful_Dave. Don’t put yourself down, Dave. You’re brilliant!

“I knew I wanted to make something involving electronics and 3D printing,” explains Wonderful_Thoughtful_Dave in an imgur post. “So I decided to make working model lighthouses as the table centrepieces.”

Designing and building ten tabletop lighthouses

Dave designed the 3D model in Autodesk 123D, with a plethora of photographs of the lighthouse as reference points. And many hours later, he began 3D printing ten lighthouse shells using his Prusa MK2.5.



With Samsung 18650 batteries and a 18650 shield for power, Dave hooked up Raspberry Pi Zeros to 6×2 LCD displays, LEDs, and stepper motors. With these components, each lighthouse to gives off a rather lovely light while also showing table number and meal status to guests. Neat!

Lame_Dave's Raspberry Pi Trinity Buoy Wharf Lighthouse

“Each lighthouse has a JSON file on the Pi that tells it what messages to display when, so each table is personalised.”

The final result is beautiful and would look at home anywhere from a model town to a toy shop, or indeed the entrance of the Trinity Buoy Wharf Lighthouse itself.

We love how Dave put different maker skills to use here, from 3D design and printing, to constructing and coding. Hopefully, we’ll see more projects from him in the future!

Remaking classic landmarks

Here in the UK, people have a thing for iconic buildings. And at Pi Towers, we adore it when you recreate historic landmarks like this with the help of our humble board.

Why not try creating your own reimagining, such as the Project Arthur ISS tracker, a papercraft and Pi build that pays homage to Arthur, the first satellite dish at the Cornish Goonhilly Earth Satellite Station?

Arthur satellite dish Trinity Buoy Wharf Lighthouse

Or come up with something completely new! We’d love to see, say, a working model of London’s Tower Bridge, or a light-up King’s College Chapel. Whatever landmark makes your day, why not build a scale model using your maker skills and electronics?

 

 

 

*Sadly, we are unable to share the song for copyright issues, so here is the Adele edition of Carpool Karaoke instead.

The post Working model of the Trinity Buoy Wharf Lighthouse appeared first on Raspberry Pi.

Your face, 14 ft tall: image mapping with As We Are

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/as-we-are-face-mapping/

While at World Maker Faire New York last weekend, I found myself chatting to a rather lovely gentleman by the name of Mac Pierce. During our conversation, Mac mentioned a project he’d worked on called As We Are, an interactive art installation located in the Greater Columbus Convention Center in Columbus, Ohio.

as we are

“So it’s this 14-foot head covered in LEDs…”, Mac began, and after his brief explanation, I found myself grabbing nearby makers to have him tell them about the project too. I was hooked! I hadn’t even seen photos of the sculpture, yet I was hooked. And true to his word, Mac had the press release for As We Are sitting in my inbox when I returned to Pi Towers.

So here is it:

The Greater Columbus Convention Center: “As We Are” – Creating the Ultimate Selfie Machine

DCL, an award-winning fabricator of architectural specialties and custom experiential design elements, worked with artist Matthew Mohr to develop, engineer and fabricate this 14ft, 7,000lb, interactive digital sculpture. Featuring custom LED modules, an integrated 3D photobooth, 32 cameras, and a touch-screen display – this unique project combines technologies to present a seamless experience for visitors to display their own portrait on the sculpture.

As We Are

The brainchild of artist Matthew Mohr, As We Are was engineered and produced by DCL, an award-winning Boston-based fabricator whose greatest achievement to date, in my opinion at least, is hiring Mac Pierce.

as we are

YAY!

DCL built the 14-foot structure using 24 layers of aluminium ‘ribs’ covered in custom Sansi LED modules. These modules add up to an astounding 850000 individual LEDs, allowing for crisp detail of images displayed by the build.

as we are

When a visitor to the Convention Center steps inside the interactive sculpture, they’re met with a wall of 32 Raspberry Pis plus Camera Modules. The Pis use facial recognition software to 3D scan the visitor’s face and flattened the image, and then map the face across the outer surface of the structure.

Matthew Mohr was inspired to show off the diversity of Columbus, OH, while also creating a sense of oneness with As We Are. Combining technology and interaction, the sculpture has been called “the ultimate selfie machine”.

If you’re in or near Columbus and able to visit the installation, we’d love to see your photos, so please share them with us on our social media platforms.

Raspberry Pi facial mapping as we are

You see now why I was dumbstruck when Mac told me about this project, yes?

Always tell us

Had it not been for a chance encounter with Mac at Maker Faire, we may never have heard of As We Are. While Matthew Mohr and DCL installed the sculpture in 2017, very little fuss was made about the use of Raspberry Pis within it, and it completely slipped under our radar. So if you are working on a project for your business, as a maker, or for any other reason, and you’re using a Raspberry Pi, please make sure to let us know by emailing [email protected].

The post Your face, 14 ft tall: image mapping with As We Are appeared first on Raspberry Pi.

Explore the depths with the PiCam Marine

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/picam-marine/

This article from The MagPi issue 74 highlights the use of the Raspberry Pi Zero to build a marine camera for coral exploration. Get your copy of The MagPi in stores now, or download it as a free PDF here.

Raspberry Pi Picam Marine

The crew took 20 000 photos in total during the cruise.

Ecologists in Germany are deploying camera-equipped Pi Zero Ws off the coast of Norway to discover more about coral activity. Dr Autun Purser works in the Deep Sea Ecology and Technology group of the Alfred Wegener Institute. The group has a keen interest in cold-water corals, which are found in most European seas.

Raspberry Pi Picam Marine

Besides coral, they identified dozens of crabs.

“In the last three decades, we’ve started to understand these can form reefs whenever conditions are suitable for growth,” explains Autun. “During our cruise in the Skagerrak, we intended to map corals and see when, and under what conditions, they did most feeding.”

Feeding time

Their aim was to continue the development of “cheap camera systems which can be used for a range of applications in the deep sea, down to depths of at least 6000 metres. We investigated the use of Pi Zero W computers and [Raspberry Pi Camera Modules] to record video snippets of both the seafloor and any scientific devices that we place underwater, and we found the small size of the computers to be of great benefit to us.”

Raspberry Pi Picam Marine

The PiCam Marines are sent underwater in the deployment basket of a submarine. The captain, crew, and scientists aboard RV Poseidon cruise POS526 were also essential for the initial deployments.

The Pi Zero Ws and cameras are placed in strong, waterproof pressure containers, and powered by Li-ion batteries that can withstand the cold deep ocean conditions. “The WiFi connectivity allowed us to set up a router on deck to both initiate our cameras and, on retrieval from the sea-floor, download our collected images without having to reopen the pressure housings,” reveals Autun.


He and two colleagues programmed the camera system using Python 3 to turn on an LED light and take a maximum resolution image, at set times. It has proven “capable of imaging individual corals from 2 m distance, allowing us to tell if the tentacles were actively extended or not.”

The post Explore the depths with the PiCam Marine appeared first on Raspberry Pi.

Networked knitting machine: not your average knit one, purl one

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/knitting-network-printer/

The moment we saw Sarah Spencer‘s knitted Stargazing tapestry, we knew we needed to know more. A couple of emails later, and here’s Sarah with a guest blog post telling you all you need to know about her hacking adventure with a 1980s knitting machine and a Raspberry Pi.

Knitting Printer! (slowest speed)

Printing a scarf on a Brother KM950i knitting machine from the 1980’s. To do this I have a Brother Motor arm to push the carriage back and forth and a homemade colour changer that automatically selects the colour on the left (the white and purple device with the LED).

Here’s Sarah…

Raspberry Pi: what’s there not to like? It’s powerful, compact, and oh so affordable! I used one as a portable media box attached to a pico projector for years. Setting one up as a media box is one of the most popular uses for them, but there’s so much more you can do.

Cue a 1980s Brother domestic knitting machine. Yep, you read that right. A knitting machine – to knit jumpers, hats, scarves, you name it. They don’t make domestic knitting machines any more, so a machine from the 1980s is about as modern as you can get. It comes with an onboard scanner to scan knitting patterns and a floppy drive port to back up your scans to an old floppy disk. Aah, the eighties – what a time to be alive!

Building a networked knitting machine

But this is an article about Raspberry Pi, right? So what does a 30-year-old knitting machine have to do with that? Well, I hacked my domestic knitting machine and turned it into a network printer with the help of a Raspberry Pi. By using a floppy drive emulator written in Python and a web interface, I can send an image to the Raspberry Pi over the network, preview it in a knitting grid, and tell it to send the knitting pattern to the knitting machine via the floppy drive port.

Sarah Spencer Networked knitting machine

OctoKnit

I call this set-up OctoKnit in honour of a more famous and widely used tool, OctoPrint for 3D printers, another popular application for Raspberry Pi.

Sarah Spencer Knitting Network Printer

I’ve made the OctoKnit web interface open source. You can find it on GitHub.

This project has been in the works for several years, and there’s been a few modifications to the knitting machine over that time. With the addition of a motor arm and an automatic colour changer, my knitting is getting very close to being hands-free. Here’s a photo of the knitting machine today, although the Raspberry Pi is hiding behind the machine in this shot:

Sarah Spencer Networked knitting machine

I’ve specialised in knitting multicolour work using a double-layered technique called double Jacquard, which requires two beds of needles. Hence the reason the machine has doubled in size from when I first started.

Knitting for Etsy

I made a thing that can make things, so I need to make something with it, right? Here are a few custom orders I’ve completed through my Etsy store:

Sarah Spencer Networked knitting machine

Stargazing

However, none of my previous works quite compares to my latest piece, Stargazing: a knitted tapestry. Knitted in seven panels stitched together by hand, the pattern on the Raspberry Pi is 21 times bigger than the memory available on the vintage knitting machine, so it’s knitted in 21 separate but seamless file transfers. It took over 100 hours of work and weighs 15kg.

Sarah Spencer Networked knitting machine

Stargazing is a celestial map of the night sky, featuring all 88 constellations across both Northern and Southern hemispheres. The line through the center is the Earth’s equator, projected out into space, with the sun, moon and planets of our solar system featured along it. The grey cloud is a representation of our galaxy, the Milky Way.

Heart of Pluto on Twitter

Happy 6pm, Fri 31st Aug 2018 😊 The tapestry is installed and the planets in the sky have now aligned with those in the knitting

When I first picked up a Raspberry Pi and turned it over in my hand, marvelling at the computing power in such a small, affordable unit, I never imagined in my wildest dreams what I’d end up doing with it.

What will you do with your Raspberry Pi?

The post Networked knitting machine: not your average knit one, purl one appeared first on Raspberry Pi.

Watching VinylVideo with a Raspberry Pi A+

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/vinylvideo-with-raspberry-pi/

Play back video and sound on your television using your turntable and the VinylVideo converter, as demonstrated by YouTuber TechMoan.

VinylVideo – Playing video from a 45rpm record

With a VinylVideo convertor you can play video from a vinyl record played on a standard record player. Curiosity, tech-demo or art?

A brief history of VinylVideo

When demand for vinyl dipped in the early nineties, Austrian artist Gebhard Sengmüller introduced the world to his latest creation: VinylVideo. With VinylVideo you can play audio and visuals from an LP vinyl record using a standard turntable and a converter box plugged into a television set.

Gebhard Sengmüller original VinylVideo

While the project saw some interest throughout the nineties and early noughties, in the end only 20 conversion sets were ever produced.

However, when fellow YouTuber Randy Riddle (great name) got in touch with UK-based tech enthusiast TechMoan to tell him about a VinylVideo revival device becoming available, TechMoan had no choice but to invest.

Where the Pi comes in

After getting the VinylVideo converter box to work with an old Sony CRT unit, TechMoan decided to take apart the box to better understand how it works

You’ll notice a familiar logo at the top right there. Yes, it’s using a Raspberry Pi, a model A+ to be precise, to do the video decoding and output. It makes sense in a low-volume operation — use something that’s ready-made rather than getting a custom-made board done that you probably have to buy in batches of a thousand from China.

There’s very little else inside the sturdy steel casing, but what TechMoan’s investigation shows is that the Pi is connected to a custom-made phono preamp via USB and runs software written specifically for the VinylVideo conversion and playback.

Using Raspberry Pi for VinylVideo playback

For more information on the original project, visit the extremely dated VinylVideo website. And for more on the new product, you can visit the revival converter’s website.

Be sure to subscribe to TechMoan’s YouTube channel for more videos, and see how you can support him on Patreon.

And a huge thank you to David Ferguson for the heads-up! You can watch David talk about his own Raspberry Pi project, PiBakery, on our YouTube channel.

The post Watching VinylVideo with a Raspberry Pi A+ appeared first on Raspberry Pi.

How to mod your Etch A Sketch, or Toy Story in real life

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/mod-etch-a-sketch-toy-story/

We’d like to file this under ‘things we wish we’d had when we were younger’. Who else is envious of the kids of today and all the cool things they can make with our old classic toys?

Etch A Sketch Robot – Elephant

Read about how this works on my blog! http://sunnybala.com/2018/09/10/python-etch-a-sketch.html

To a wave of upvotes and comments, Sunny Balasubramanian shared their Etch A Sketch project on Reddit, including all the information and code you need to build your own. Thanks, Sunny!

Dismantling the toys of our childhoods

The physical set up of the automated Etch A Sketch is pretty simple: motors attached to couplers replace the original plastic nobs, and a connected Raspberry Pi 3 controls the motors as directed by the code.

Etch a Sketch modded with a Raspberry Pi

For stability, Sunny attached a wooden block to the plastic housing that keeps the motors in place.

Coding new life into an Etch A Sketch

Sunny explains:

There’s a few different ways to go about this portion of the project. When I started out, I googled to see if anyone had done things like this before. A few projects popped up. They seemed to approach the drawing in one of two ways. I wanted to do it in a fully automated way where the only input is a picture and the output is a cleanly drawn image.

The code Sunny ended up using first takes an image and simplifies it into a line drawing using Canny edge detection. It then turns each pixel to a node and draws a path between the nodes, connecting them one by one. So that the Etch A Sketch draws the picture, the Raspberry Pi then directs the motors to follow the connections and create uncannily precise sketches.

Raspberry Pi Etch-a-sketch
Raspberry Pi Etch-a-sketch

Head to Sunny’s website for more information about their project, and download the full code from GitHub.

Two down, more to go…

With this automated Etch A Sketch, and this talking Fisher Price Chatter Telephone, the Raspberry Pi community is well on the way to recreating the entire Toy Story cast, and we are fully on board with that!

A GIF of Toy Story characters

So what’s next? A remote-controlled Slinky? A falling with style flying Buzz Lightyear? What would you build?

The post How to mod your Etch A Sketch, or Toy Story in real life appeared first on Raspberry Pi.

You wouldn’t download a car…

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/you-wouldnt-download-car-telsa-hack/

You wouldn’t download a car…but is that just because none of us know how to? And OF COURSE none of us know how to: it’s a really hard thing to do!

Raspberry Pi Tesla

Dramatic reenactment using a Mini because, c’mon, as if I can afford a Tesla!

Nikola Tesla was in love with a pigeon 😍🐦

True story. He was also the true father of the electrical age (sorry, not sorry, Edison) and looked so much like David Bowie that here’s David Bowie playing Nikola Tesla:

David Bowie as Nicola Tesla — Raspberry Pi Tesla

Not even pigeon love

Which is the perfect segue, as here’s a Tesla playing David Bowie, and here’s also where our story truly begins…

Some people dislike Tesla (the car manufacturer, not the scientist) but we love them

But some people also dislike going to the dentist, so ¯\_(ツ)_/¯. (I also love going to the dentist.)

I’m pretty sure the reason some people have issues with Tesla is that electric cars still seem like a form of magic we’re not quite comfortable with.

Whatever people’s reason for holding a grudge against Tesla, recent findings at a university in Belgium this week have left the tech community aflutter: the academics announced that, with the aid of a “$35 computer”, they can clone your Tesla car key and steal. Your. Car.

If you haven’t guessed yet, we’re the ones behind the $35 computer. (Hi!)

Says WIRED: A team of researchers at the KU Leuven University in Belgium on Monday plan to present a paper at the Cryptographic Hardware and Embedded Systems conference in Amsterdam, revealing a technique for defeating the encryption used in the wireless key fobs of Tesla’s Model S luxury sedans. With about $600 in radio and computing equipment, they can wirelessly read signals from a nearby Tesla owner’s fob. Less than two seconds of computation yields the fob’s cryptographic key, allowing them to steal the associated car without a trace.

When I said that the tech community was all aflutter, what I meant was, on the whole, we find this hack somewhat entertaining but aren’t all that shocked by it. Not because we hate Tesla, but because these things happen. Technology is ever evolving, and that $600 worth of kit can do a thing to another thing isn’t all that unbelievable.

Sweet Cyber Jones on Twitter

The keys to my new Tesla https://t.co/jNViEZBxrB

The academics showed an example of the hack using “just” a couple of radios, a Raspberry Pi, some batteries, and your basic, off-the-shelf “pre-computed table of keys on a portable hard drive”. And through the magic of electric car IoT technology, Tesla instantly released a series of fixes to allow existing Tesla users to protect their cars against the attack, which is all kinds of cool.

Alex, why are you making such light of this?!

Because The Fast and the Furious isn’t real. And I highly doubt there’s a criminal enterprise out there that’s capable of building the same technology as well-funded university researchers.

Yes, this study from KU Leuven University is interesting. And yes, we all had a good laugh at the expense of Tesla and Elon Musk, but we don’t need academics to provide material for that. And I genuinely love Tesla and the work Elon is doing. True love.

Instead, we should be seeing this as a reminder that data encryption and online security are things we all need to take seriously in this digital world. So stop connecting your phone to whatever free WiFi network you can find, stop using PASSWORD123 for all your online accounts, and spend a little more time learning how you can better protect yourself and your family from nasty people on the internet.

And leave Britney Tesla alone!

The post You wouldn’t download a car… appeared first on Raspberry Pi.

Cabin Cloud: bump-free travel on the night bus

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/cabin-cloud-bump-free-travel-night-bus/

Planes, trains, and automobiles — we all have our preference. And at one company in California, the team is trying to smooth bus travel to broaden commuters’ options for a blissful night’s sleep.

Cabin bus Raspberry Pi Wired

Leaving on a jet plane

Not everyone wants to fly. While many enjoy the feel of take-off and landing and the high speed at which they can travel from A to B, others see planes as worrisome tin cans of doom, suspended in the air by unreliable magic. I consider myself mostly the former, with a hint of the latter for balance.

In truth, I’d rather catch a train, where the smooth ride sends me into blissful sleep, only occasionally interrupted by a snap of “Damn, did I miss my stop?!”.

But trains are limited to where their tracks lead, which is why so many people still opt to travel by bus. But who can sleep on a bus when the roads are dotted with potholes and cracks? I can’t, and neither can many of the 10000 passengers of the Cabin bus, an overnight service running between Los Angeles and San Francisco.

Cabin bus travel

To address complaints about the road conditions affecting costumers’ sleep, the Cabin team decided to challenge gravity using a Raspberry Pi and the electric motor from a hoverboard in their new venture Cabin Cloud.

Introducing the first active suspension system designed specifically with passenger sleep in mind. Combining patent-pending software and hardware, our technology mutes ‘road turbulence’ and dramatically reduces vibration, so you can get a good night’s sleep while on a moving vehicle.

“We can isolate a passenger’s body, and input frequencies that help people relax and fall asleep,” explains Cabin CTO Tom Currier. “We have a set of sensors that are measuring the acceleration of the vehicle, and also the bed, to compute in real time what we should be cancelling out.”

Cabin bus Raspberry Pi Wired

The sensors are accelerometers, two per bed, that measure the bumps from the road and adjust the bed accordingly — up to 1000 times a second. The Cabin Cloud beds only adjust for motion up and down: the team isn’t too concerned about back-and-forth movements due to breaking too hard or turning corners, since Cabin busses predominantly travel on wide, open highways.

Delve a little deeper

Check out this article from Wired for more about the project, and about how similar tech is implemented in trucks for long-haul drivers, and in aeroplanes for turbulence-free travel. You can also sign up for the Cabin Cloud newsletter here.

But the big question about Cabin Cloud is…

Does it have Bluetooth?

The post Cabin Cloud: bump-free travel on the night bus appeared first on Raspberry Pi.

Build a Raspberry Pi pocket projector…how awesome is that?!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-raspberry-pi-pocket-projector/

YouTuber MickMake has been working hard on producing a Raspberry Pi pocket projector with the Raspberry Pi Zero W. We’re excited. We know you’re excited. So enough of us talking, here’s Mick with more!

#210 Build a Pi Zero W pocket projector! // Project

2 for 10 PCBs (48 hour quick turn around): https://jlcpcb.com/?ref=mickmake Make a pocket projector based on the DLP2000EVM and Raspberry Pi Zero W! Nice!

Sharing is caring

YouTuber Novaspirit Tech released a new video yesterday, reviewing MickMake’s Raspberry Pi Zero W pocket projector, and the longer the video ran on, the more we found ourselves wanting our own!

Thank you, Novaspirit Tech, for reminding us to subscribe to MickMake. And thank you, MickMake, for this awesome project!

The Pi Zero W pocket projector of your dreams

In his project video, Mick goes into great detail about the tech required for the project, along with information on the PCB he’s created to make it simpler and easier for other makers to build their own version.

raspberry pi pocket pi projector mickmakes

The overall build consists of the $10 Raspberry Pi Zero W, a DLP2000 board, and MickMake’s homemade $4 PCB, which allows you to press-fit the projector together into a very tidy unit with the same footprint as a Raspberry Pi 3B+ — perfectly pocket-sized.

Specs and things

While the projected images obviously aren’t as clear as those of high-end projectors, MickMake’s projector is definitely good enough to replace a cheap desktop display, or to help you show off your projects on the go at events such as Raspberry JamsCoolest Projects, and Maker Faire. And due to its low power consumption, the entire unit can run off the kind of rechargeable battery pack you may already be carrying around for your mobile phone. Nice!

In his review video, NovaSpirit Tech goes through more of the projector’s playback and spec details, and also does a series of clarity tests in various lights. So why read about it when you can watch it? Here you go:

Pi Projector by MickMake | The Raspberry Pi Zero Pocket Projector

this is a small footprint low power consumption raspberry pi zero powered projector using DLP2000 by mickmake ○○○ LINKS ○○○ MickMake PiProjector Video ► https://www.youtube.com/watch?v=XFciR-U7yhc MickMake Channel ► https://youtube.com/mickmake DLP2000 digikey ► https://www.digikey.com/product-detail/en/texas-instruments/DLPDLCR2000EVM/296-47119-ND/7598640 raspberry pi zero ► https://amzn.to/2Q8h1Hz ○○○ SHOP ○○○ Novaspirit Shop ► https://goo.gl/gptPNf Amazon Store ► http://amzn.to/2AYs3dI ○○○ SUPPORT ○○○ patreon ► https://goo.gl/xpgbzB ○○○ SOCIAL ○○○ novaspirit tv ► https://goo.gl/uokXYr twitter ► https://twitter.com/novaspirittech discord chat ► https://discord.gg/v8dAnFV FB Group Novaspirit ► https://www.facebook.com/groups/novas…

Custom PCBs

We see more and more makers designing their own custom PCBs to make everyone’s life that little bit easier.

Raspberry Pi pocket pi projector mickmakes

If you’ve created a custom PCB for your Raspberry Pi project, feel free to use the comments section as free advertising space for one day only! You’re welcome.

The post Build a Raspberry Pi pocket projector…how awesome is that?! appeared first on Raspberry Pi.