Tag Archives: Raspberry Pi Camera Module

Retrofit a vintage camera flash with a Raspberry Pi Camera Module

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/retrofit-vintage-camera-flash-with-camera-module/

Wanting to break from the standard practice of updating old analogue cameras with digital technology, Alan Wang decided to retrofit a broken vintage camera flash with a Raspberry Pi Zero W to produce a video-capturing action cam.

Raspberry Pi Zero Flash Cam Video Test

Full story of this project: https://www.hackster.io/alankrantas/raspberry-pi-zero-flash-cam-359875

By hacking a somewhat gnarly hole into the body of the broken flash unit, Alan fit in the Raspberry Pi Zero W and Camera Module, along with a few other components. He powers the whole unit via a USB power bank.

At every touch of the onboard touchpad, the retrofit camera films 12 seconds of footage and saves it as an MP4 file on the onboard SD card or an optional USB flash drive.

While the project didn’t technically bring the flash unit back to life — as the flash function is still broken — it’s a nice example of upcycling old tech, and it looks pretty sweet. Plus, you can attach it to your existing film camera to produce some cool side-by-side comparison imagery, as seen in the setup above.

For a full breakdown of the build, including the code needed to run the camera, check out the project’s Hackster.io page.

The post Retrofit a vintage camera flash with a Raspberry Pi Camera Module appeared first on Raspberry Pi.

Build your own Raspberry Pi night vision camera

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-your-own-raspberry-pi-night-vision-camera/

A Raspberry Pi Zero W, Pimoroni HyperPixel screen, and Raspberry Pi IR Camera Module are all you need to build this homemade night vision camera.

How to build a night vision camera

How to build a night vision camera, video showing the process and problems that I came across when building this camera

Raspberry Pi night vison camera

Built into the body of an old camera flash, Dan’s Raspberry Pi night vision camera is a homage to a childhood spent sneaking around the levels of Splinter Cell. Says Dan:

The iconic image from the game is the night vision goggles that Sam Fisher wears. I have always been fascinated by the idea that you can see in the dark and this formed the foundation of my idea to build a portable hand-held night vision piece of equipment.

The camera, running on Raspbian, boasts several handy functions, including touchscreen controls courtesy of the Pimoroni HyperPixel, realtime video and image capture, and a viewing distance of two to five metres.

It’s okay to FAIL

Embracing the FAIL (First Attempt In Learning) principle, Dan goes into detail about the issues he had to overcome while building the camera, which is another reason why we really enjoyed this project. It’s okay to fail when trying your hand at digital making, because you learn from your mistakes! Dan’s explanations of the struggles he faced and how he overcame them are 👌.

For a full rundown of the project and tips on building your own, check out its Hackster.io page.

The post Build your own Raspberry Pi night vision camera appeared first on Raspberry Pi.

Rather lovely Raspberry Pi time lapses

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/rather-lovely-raspberry-pi-time-lapses/

Having just sat and watched this gorgeous time lapse of a Finnish lake, we thought it would be nice to finish off the working week with a collection of lovely Raspberry Pi Camera Module time lapses.

Summer over a Finnish lake

Summer time lapse over a Finnish lake.

Time lapse over a Finnish lake from July 2019. Shot with a DIY all-weather HDR time-lapse camera built from ZWO ASI 224MC and Raspberry Pi 3. The camera was built to function as an all-sky camera for recording the night sky year round but since in July the stars were not visible in Finland I decided to test it aimed horizontally over a lake and was positively surprised about the results.

Time-lapse over a Finnish lake from July 2019. Shot with a DIY all-weather HDR time-lapse camera built from ZWO ASI 224MC and Raspberry Pi 3.

Six days of cress growth

Cress Seeds Growing Raspberry Pi Time Lapse Video

Filmed over 6 days using a Raspberry Pi Zero W and Raspberry Pi Camera. Once photo taken every 5 minutes and then played back at 24 fps. I removed the night time photos and then the images were stitched together using the ‘Stop Motion’ app on an iPhone.

Filmed over 6 days using a Raspberry Pi Zero W and Raspberry Pi Camera. Once photo taken every 5 minutes and then played back at 24 fps.

Growing salad

Salad Growth | Timelapse | Raspberry Pi Camera | PiMeetsPlants

Timelapse about salad growth. Period of Picture Making: 03-04 to 02-05-2016 Camera has shot 2087 pictures in a distance of 20 minutes. Camera: Raspberry Pi Camera Module Music: Valesco – Stay With Me: http://soundcloud.com/valesco_official/stay-with-me Valesco on Soundcloud: http://soundcloud.com/valesco_official My Links: Website: https://pimeetsplants.com Twitter: https://twitter.com/PiMeetsPlants Google+: https://plus.google.com/+Pimeetsplants

I think I have a thing for time-lapse videos of plant growth. They’re just so friggin’ cool!

Skyline time lapse

Skyline Timelapse: Day to Night l SainSmart FOV160° Raspberry Pi Camera

More info : https://www.sainsmart.com/products/wide-angle-fov160-5-megapixel-camera-module-for-raspberry-pi FOLLOW US Twitter: https://twitter.com/Sain_Smart Facebook: https://www.facebook.com/SainSmart/ Instagram: https://www.instagram.com/sainsmart/

A time lapse of slime

PHYSARUM MACHINE

Summer Project 2018 – Computational Arts MA, Goldsmiths University London. Time-lapse footage of Physarum Polycephalum captured with Raspberry Pi and IR camera, slit-scan program in Open Frameworks.

Summer Project 2018 – Computational Arts MA, Goldsmiths University London. Time-lapse footage of Physarum Polycephalum captured with Raspberry Pi and IR camera, slit-scan program in Open Frameworks.

Setting up the Raspberry Pi Store, Cambridge

Setting up the Raspberry Pi Shop, Cambridge

Given that we had access to a bunch of Raspberry Pis, we thought that we should use some of them to get some timelapse footage of the shop being set up. Read more about the Raspberry Pi shop on our blog: http://rpf.io/ytstoreblog

We couldn’t help ourselves. When the time came to set up the Raspberry Pi retail store in Cambridge, we just had to install a time-lapse camera in the corner.

Technically…

While this time lapse wasn’t taken with a Raspberry Pi Camera Module, the slider moving the camera was controlled using Raspberry Pi. That counts, right?

The Burren

The Burren is a karst landscape region in north-west Co. Clare in Ireland. It is one of the largest karst regions in Europe. I have been photographing The Burren over the last 5 years, and recently got into time lapse photography. The Burren was an obvious place for me to do this first video.

The Burren is a karst landscape region in north-west Co. Clare in Ireland. It is one of the largest karst regions in Europe. I have been photographing The Burren over the last 5 years, and recently got into time-lapse photography. The Burren was an obvious place for me to do this first video.

Your turn

Want to set up your own Raspberry Pi time-lapse camera? Our handy guide shows you how.

Do you have a time-lapse video you’d like to share with us? Then please post your link in the comments below.

The post Rather lovely Raspberry Pi time lapses appeared first on Raspberry Pi.

Playback your favourite records with Plynth

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/playback-your-favourite-records-with-plynth/

Use album artwork to trigger playback of your favourite music with Plynth, the Raspberry Pi–powered, camera-enhanced record stand.

Plynth Demo

This is “Plynth Demo” by Plynth on Vimeo, the home for high quality videos and the people who love them.

Record playback with Plynth

Plynth uses a Raspberry Pi and Pi Camera Module to identify cover artwork and play the respective album on your sound system, via your preferred streaming service or digital library.

As the project’s website explains, using Plynth is pretty simple. Just:

  • Place a n LP, CD, tape, VHS, DVD, piece of artwork – anything, really – onto Plynth
  • Plynth uses its built-in camera to scan and identify the work
  • Plynth starts streaming your music on your connected speakers or home stereo system

As for Plynth’s innards? The stand houses a Raspberry Pi 3B+ and Camera Module, and relies on “a combination of the Google Vision API and OpenCV, which is great because there’s a lot of documentation online for both of them”, states the project creator, sp_cecamp, on Reddit.

Other uses

Some of you may wonder why you wouldn’t have your records with your record player and, as such, use that record player to play those records. If you are one of these people, then consider, for example, the beautiful Damien Rice LP I own that tragically broke during a recent house move. While I can no longer play the LP, its artwork is still worthy of a place on my record shelf, and with Plynth I can still play the album as well.

In addition, instead of album artwork to play an album, you could use photographs, doodles, or type to play curated playlists, or, as mentioned on the website, DVDs to play the movies soundtrack, or CDs to correctly select the right disc in a disc changer.

Convinced or not, I think what we can all agree on is that Plynth is a good-looking bit of kit, and at Pi Towers look forward to seeing where they project leads.

The post Playback your favourite records with Plynth appeared first on Raspberry Pi.

Penguin Watch — Pi Zeros and Camera Modules in the Antarctic

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/penguin-watch/

Long-time readers will remember Penguin Lifelines, one of our very favourite projects from back in the mists of time (which is to say 2014 — we have short memories around here).

Penguins

Click on penguins for fun and conservation

Penguin Lifelines was a programme run by the Zoological Society of London, crowdsourcing the tracking of penguin colonies in Antarctica. It’s since evolved into something called Penguin Watch, now working with the World Wildlife Fund (WWF) and British Antarctic Survey (BAS). It’s citizen science on a big scale: thousands of people from all over the world come together on the internet to…click on penguins. By counting the birds in their colonies, users help penguinologists measure changes in the birds’ behaviour and habitat, and in the larger ecosystem, thus assisting in their conservation.

The penguin people say this about Penguin Watch:

Some of these colonies are so difficult to get to that they haven’t been visited for 50 years! The images contain unprecedented detail, giving us the opportunity to gather new data on the number of penguins in the region. This information will help us understand how they are being affected by climate change, the potential impact of local fisheries, and how we can help conserve these incredible species.

Pis in the coldest, wildest place

And what are those special cameras? The static ones providing time-lapse images are Raspberry Pi Camera Modules, mounted on Raspberry Pi Zeros, and we’re really proud to see just how robust they’ve been in the face of Antarctic winters.

Alasdair Davies on Twitter

Success! The @arribada_i timelapse @Raspberry_Pi Zero cameras built for @penguin_watch survived the Antarctic winter! They captured these fantastic photos of a Gentoo penguin rookery for https://t.co/MEzxbqSyc1 #WorldPenguinDay 🐧@helenlynn @philipcolligan https://t.co/M0TK5NLT6G

These things are incredibly tough. They’re the same cameras that Alasdair and colleagues have been sticking on turtles, at depths of down to 500m; I can’t think of a better set of tests for robustness.

Want to get involved? Head over to Penguin Watch, and get clicking! We warn you, though — it’s a little addictive.

The post Penguin Watch — Pi Zeros and Camera Modules in the Antarctic appeared first on Raspberry Pi.

Raspberry Pi captures a Soyuz in space!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-captures-soyuz-in-space/

So this happened. And we are buzzing!

You’re most likely aware of the Astro Pi Challenge. In case you’re not, it’s a wonderfully exciting programme organised by the European Space Agency (ESA) and us at Raspberry Pi. Astro Pi challenges European young people to write scientific experiments in code, and the best experiments run aboard the International Space Station (ISS) on two Astro Pi units: Raspberry Pi 1 B+ and Sense HATs encased in flight-grade aluminium spacesuits.

It’s very cool. So, so cool. As adults, we’re all extremely jealous that we’re unable to take part. We all love space and, to be honest, we all want to be astronauts. Astronauts are the coolest.

So imagine our excitement at Pi Towers when ESA shared this photo on Friday:

This is a Soyuz vehicle on its way to dock with the International Space Station. And while Soyuz vehicles ferry between earth and the ISS all the time, what’s so special about this occasion is that this very photo was captured using a Raspberry Pi 1 B+ and a Raspberry Pi Camera Module, together known as Izzy, one of the Astro Pi units!

So if anyone ever asks you whether the Raspberry Pi Camera Module is any good, just show them this photo. We don’t think you’ll need to provide any further evidence after that.

The post Raspberry Pi captures a Soyuz in space! appeared first on Raspberry Pi.

Hacking an Etch-A-Sketch with a Raspberry Pi and camera: Etch-A-Snap!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/hacking-etch-a-sketch-raspberry-pi-camera-etch-a-snap/

Kids of the 1980s, rejoice: the age of the digital Etch-A-Sketch is now!

What is an Etch-A-Sketch

Introduced in 1960, the Etch-A-Sketch was invented by Frenchman André Cassagnes and manufactured by the Ohio Art Company.

The back of the Etch-A-Sketch screen is covered in very fine aluminium powder. Turning one of the two directional knobs runs a stylus across the back of the screen, displacing the powder and creating a dark grey line visible in the front side.

can it run DOOM?

yes

The Etch-A-Sketch was my favourite childhood toy. So you can imagine how excited I was to see the Etch-A-Snap project when I logged into Reddit this morning!

Digital Etch-A-Sketch

Yesterday, Martin Fitzpatrick shared on Reddit how he designed and built Etch-A-Snap, a Raspberry Pi Zero– and Camera Module–connected Etch-A-Sketch that (slowly) etches photographs using one continuous line.

Etch-A-Snap is (probably) the world’s first Etch-A-Sketch Camera. Powered by a Raspberry Pi Zero (or Zero W), it snaps photos just like any other camera, but outputs them by drawing to an Pocket Etch-A-Sketch screen. Quite slowly.

Unless someone can show us another Etch-A-Sketch camera like this, we’re happy to agree that this is a first!

Raspberry Pi–powered Etch-A-Sketch

Powered by four AA batteries and three 18650 LiPo cells, Etch-A-Snap houses the $5 Raspberry Pi Zero and two 5V stepper motors within a 3D-printed case mounted on the back of a pocket-sized Etch-A-Sketch.

Photos taken using the Raspberry Pi Camera Module are converted into 1-bit, 100px × 60px, black-and-white images using Pillow and OpenCV. Next, these smaller images are turned into plotter commands using networkx. Finally, the Raspberry Pi engages the two 5V stepper motors to move the Etch-A-Sketch control knobs, producing a sketch within 15 minutes to an hour, depending on the level of detail in the image.

Build your own Etch-A-Snap

On his website, Martin goes into some serious detail about Etch-A-Snap, perfect for anyone interested in building their own, or in figuring out how it all works. You’ll find an overview with videos, along with breakdowns of the build, processing, drawing, and plotter.

The post Hacking an Etch-A-Sketch with a Raspberry Pi and camera: Etch-A-Snap! appeared first on Raspberry Pi.

Build a security camera with Raspberry Pi and OpenCV

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-security-camera-opencv/

Tired of opening the refrigerator only to find that your favourite snack is missing? Get video evidence of sneaky fridge thieves sent to your phone, with Adrian Rosebeck’s Raspberry Pi security camera project.

Building a Raspberry Pi security camera with OpenCV

Learn how to build a IoT + Raspberry Pi security camera using OpenCV and computer vision. Send TXT/MMS message notifications, images, and video clips when the security camera is triggered. Full tutorial (including code) here: https://www.pyimagesearch.com/2019/03/25/building-a-raspberry-pi-security-camera-with-opencv

Protecting hummus

Adrian loves hummus. And, as you can see from my author bio, so do I. So it wasn’t hard for me to relate to Adrian’s story about his college roommates often stealing his cherished chickpea dip.

Garlic dessert

“Of course, back then I wasn’t as familiar with computer vision and OpenCV as I am now,” he explains on his blog. “Had I known what I do at present, I would have built a Raspberry Pi security camera to capture the hummus heist in action!”

Raspberry Pi security camera

So, in homage to his time as an undergrad, Adrian decided to finally build that security camera for his fridge, despite now only needing to protect his hummus from his wife. And to build it, he opted to use OpenCV, a Raspberry Pi, and a Raspberry Pi Camera Module.

Adrian’s camera is an IoT project: it not only captures footage but also uses Twillo to send that footage, via a cloud service (AWS), to a smartphone.

Because the content of your fridge lives in the dark when you’re not inspecting it, the code for capturing video footage detects light and dark, and records everything that occurs between the fridge door opening and closing. “You could also deploy this inside a mailbox that opens/closes,” suggests Adrian.

Get the code and more

Adrian provides all the code for the project on his blog, pyimagesearch, with a full explanation of why each piece of code is used — thanks, Adrian!

For more from Adrian, check out his brilliant deep learning projects: a fully functional Pokémon Pokédex and Santa Detector.

The post Build a security camera with Raspberry Pi and OpenCV appeared first on Raspberry Pi.

Stereoscopic photography with StereoPi and a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/stereoscopic-photography-stereopi-raspberry-pi/

StereoPi allows users to attached two Camera Modules to their Raspberry Pi Compute Module — it’s a great tool for building stereoscopic cameras, 360º monitors, and virtual reality rigs.

StereoPi draft 1

No Description

My love for stereoscopic photography goes way back

My great-uncle Eric was a keen stereoscopic photographer and member of The Stereoscopic Society. Every memory I have of visiting him includes looking at his latest stereo creations through a pair of gorgeously antique-looking, wooden viewers. And I’ve since inherited the beautiful mahogany viewing cabinet that used to stand in his dining room.

It looks like this, but fancier

Stereoscopic photography has always fascinated me. Two images that seem identical suddenly become, as if by magic, a three-dimensional wonder. As a child, I couldn’t make sense of it. And even now, while I do understand how it actually works, it remains magical in my mind — like fairies at the bottom of the garden. Or magnets.

So it’s no wonder that I was instantly taken with StereoPi when I stumbled across its crowdfunding campaign on Twitter. Having wanted to make a Pi-based stereoscopic camera ever since I joined the organisation, but not knowing how best to go about it, I thought this new board seemed ideal for me.

The StereoPi board

Despite its name, StereoPi is more than just a stereoscopic camera board. How to attach two Camera Modules to a Raspberry Pi is a question people ask us frequently and for various projects, from home security systems to robots, cameras, and VR.

Slim and standard editions of the StereoPi

Slim and standard editions of the StereoPi

The board attaches to any version of the Raspberry Pi Compute Module, including the newly released CM3+, and you can use it in conjunction with Raspbian to control it via the Python module picamera.

StereoPi stereoscopic livestream over 4G

StereoPi stereoscopic livestream over 4G. Project site: http://StereoPi.com

When it comes to what you can do with StereoPi, the possibilities are almost endless: mount two wide-angle lenses for 360º recording, build a VR rig to test out virtual reality games, or, as I plan to do, build a stereoscopic camera!

It’s on Crowd Supply now!

StereoPi is currently available to back on Crowd Supply, and purchase options start from $69. At 69% funded with 30 days still to go, we have faith that the StereoPi project will reach its goal and make its way into the world of impressive Raspberry Pi add-ons.

The post Stereoscopic photography with StereoPi and a Raspberry Pi appeared first on Raspberry Pi.

SelfieBot: taking and printing photos with a smile

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/selfiebot-sophy-wong-raspberry-pi-camera/

Does your camera giggle and smile as it takes your photo? Does your camera spit out your image from a thermal printer? No? Well, Sophy Wong’s SelfieBot does!

Raspberry Pi SelfieBot: Selfie Camera with a Personality

SelfieBot is a project Kim and I originally made for our booth at Seattle Mini Maker Faire 2017. Now, you can build your own! A full tutorial for SelfieBot is up on the Adafruit Learning System at https://learn.adafruit.com/raspberry-pi-selfie-bot/ This was our first Raspberry Pi project, and is an experiment in DIY AI.

Pasties, projects, and plans

Last year, I built a Raspberry Pi photobooth for a friend’s wedding, complete with a thermal printer for instant printouts, and a Twitter feed to keep those unable to attend the event in the loop. I called the project PastyCam, because I built it into the paper mache body of a Cornish pasty, and I planned on creating a tutorial blog post for the build. But I obviously haven’t. And I think it’s time, a year later, to admit defeat.

A photo of the Cornish Pasty photo booth Alex created for a wedding in Cornwall - SelfieBot Raspberry Pi Camera

The wedding was in Cornwall, so the Cornish pasty totally makes sense, alright?

But lucky for us, Sophy Wong has gifted us all with SelfieBot.

Sophy Wong

If you subscribe to HackSpace magazine, you’ll recognise Sophy from issue 4, where she adorned the cover, complete with glowing fingernails. And if you’re like me, you instantly wanted to be her as soon as you saw that image.

SelfieBot Raspberry Pi Camera

Makers should also know Sophy from her impressive contributions to the maker community, including her tutorials for Adafruit, her YouTube channel, and most recently her work with Mythbusters Jr.

sophy wong on Twitter

Filming for #MythbustersJr is wrapped, and I’m heading home to Seattle. What an incredible summer filled with amazing people. I’m so inspired by every single person, crew and cast, on this show, and I’ll miss you all until our paths cross again someday 😊

SelfieBot at MakerFaire

I saw SelfieBot in passing at Maker Faire Bay Area earlier this year. Yet somehow I managed to not introduce myself to Sophy and have a play with her Pi-powered creation. So a few weeks back at World Maker Faire New York, I accosted Sophy as soon as I could, and we bonded by swapping business cards and Pimoroni pins.

Creating SelfieBot

SelfieBot is more than just a printing photo booth. It giggles, it talks, it reacts to movement. It’s the robot version of that friend of yours who’s always taking photos. Always. All the time, Amy. It’s all the time! *ahem*

SelfieBot Raspberry Pi Camera

SelfieBot consists of a Raspberry Pi 2, a Pi Camera Module, a 5″ screen, an accelerometer, a mini thermal printer, and more, including 3D-printed and laser-cut parts.

sophy wong on Twitter

Getting SelfieBot ready for Maker Faire Bay Area next weekend! Super excited to be talking on Sunday with @kpimmel – come see us and meet SelfieBot!

If you want to build your own SelfieBot — and obviously you do — then you can find a complete breakdown of the build process, including info on all parts you’ll need, files for 3D printing, and so, so many wonderfully informative photographs, on the Adafruit Learning System!

The post SelfieBot: taking and printing photos with a smile appeared first on Raspberry Pi.

A waterproof Raspberry Pi?! Five 3D-printable projects to try

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/waterproof-3d-printing-raspberry-pi/

Summer is coming to a close. The evenings grow darker. So pack away your flip flops, hang up your beach towel, and settle in for the colder months with these fun 3D-printable projects to make at home or in your local makerspace.

Fallout 4 desktop terminal

Power Up Props’ replica of the Fallout desktop terminals fits a 3.5″ screen and a Raspberry Pi 3B. Any Fallout fans out there will be pleased to know that you don’t need to raise your Science level to hack into this terminal — you’ll just need access to a 3D printer and these free files from My Mini Factory.

Fallout 4 terminal 3d-printable raspberry pi case

And while you’re waiting for this to print, check out Power Up Props’ wall-mounted terminal!

Fallout 4 – Working Terminal (Raspberry Pi Version) – Power Up Props

Howdy neighbors, grab some fusion cores and put on your power armor because today we’re making a working replica of the wall mounted computer “terminals” from the Fallout series, powered by a Raspberry Pi! Want one of your very own terminals?

Falcon Heavy night light

Remixing DAKINGINDANORF‘s low-poly Arduino-based design, this 3D-printable night light is a replica of the SpaceX Falcon Heavy rocket. The replica uses a Raspberry Pi Zero and a Pimoroni Unicorn pHAT to create a rather lovely rocket launch effect. Perfect for the budding space explorer in your home!

Falcon Heavy night light

I 3D printed a SpaceX Falcon Heavy night light, with some nice effects like it’s actually launching. Useful? Hell no. Cool? Hell yes! Blogpost with files and code: https://www.dennisjanssen.be/tutorials/falcon-heavy-night-light/

You can download the files directly from Dennis Janssen’s website.

Swimming IoT satellite

We’re really excited about this design and already thinking about how we’ll use it for our own projects:

Floating Raspberry Pi case

Using an acrylic Christmas bauble and 3D-printed parts, you can set your Raspberry Pi Zero W free in local bodies of water — ideal for nature watching and citizen science experiments.

Art Deco clock and weather display

Channel your inner Jay Gatsby with this Art Deco-effect clock and weather display.

Art Deco Raspberry Pi Clock

Fitted with a Raspberry Pi Zero W and an Adafruit piTFT display, this build is ideally suited for any late-night cocktail parties you may have planned.

High-altitude rocket holder

Send four Raspberry Pi Zeros and Camera Modules into the skies with this holder design from Thingiverse user randysteck.

Raspberry Pi Zero rocket holder

The 3D-printable holder will keep your boards safe and sound while they simultaneously record photos or video of their airborne adventure.

More more more

What projects did we miss? Share your favourite 3D-printable designs for Raspberry Pis in the comments so we can see more builds from the internet’s very best community!

The post A waterproof Raspberry Pi?! Five 3D-printable projects to try appeared first on Raspberry Pi.

Your face, 14 ft tall: image mapping with As We Are

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/as-we-are-face-mapping/

While at World Maker Faire New York last weekend, I found myself chatting to a rather lovely gentleman by the name of Mac Pierce. During our conversation, Mac mentioned a project he’d worked on called As We Are, an interactive art installation located in the Greater Columbus Convention Center in Columbus, Ohio.

as we are

“So it’s this 14-foot head covered in LEDs…”, Mac began, and after his brief explanation, I found myself grabbing nearby makers to have him tell them about the project too. I was hooked! I hadn’t even seen photos of the sculpture, yet I was hooked. And true to his word, Mac had the press release for As We Are sitting in my inbox when I returned to Pi Towers.

So here is it:

The Greater Columbus Convention Center: “As We Are” – Creating the Ultimate Selfie Machine

DCL, an award-winning fabricator of architectural specialties and custom experiential design elements, worked with artist Matthew Mohr to develop, engineer and fabricate this 14ft, 7,000lb, interactive digital sculpture. Featuring custom LED modules, an integrated 3D photobooth, 32 cameras, and a touch-screen display – this unique project combines technologies to present a seamless experience for visitors to display their own portrait on the sculpture.

As We Are

The brainchild of artist Matthew Mohr, As We Are was engineered and produced by DCL, an award-winning Boston-based fabricator whose greatest achievement to date, in my opinion at least, is hiring Mac Pierce.

as we are

YAY!

DCL built the 14-foot structure using 24 layers of aluminium ‘ribs’ covered in custom Sansi LED modules. These modules add up to an astounding 850000 individual LEDs, allowing for crisp detail of images displayed by the build.

as we are

When a visitor to the Convention Center steps inside the interactive sculpture, they’re met with a wall of 32 Raspberry Pis plus Camera Modules. The Pis use facial recognition software to 3D scan the visitor’s face and flattened the image, and then map the face across the outer surface of the structure.

Matthew Mohr was inspired to show off the diversity of Columbus, OH, while also creating a sense of oneness with As We Are. Combining technology and interaction, the sculpture has been called “the ultimate selfie machine”.

If you’re in or near Columbus and able to visit the installation, we’d love to see your photos, so please share them with us on our social media platforms.

Raspberry Pi facial mapping as we are

You see now why I was dumbstruck when Mac told me about this project, yes?

Always tell us

Had it not been for a chance encounter with Mac at Maker Faire, we may never have heard of As We Are. While Matthew Mohr and DCL installed the sculpture in 2017, very little fuss was made about the use of Raspberry Pis within it, and it completely slipped under our radar. So if you are working on a project for your business, as a maker, or for any other reason, and you’re using a Raspberry Pi, please make sure to let us know by emailing [email protected].

The post Your face, 14 ft tall: image mapping with As We Are appeared first on Raspberry Pi.

Rock, paper, scissors, lizard, Spock, fire, water balloon!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/rock-paper-scissors-lizard-spock-fire-water-balloon/

Use a Raspberry Pi and a Pi Camera Module to build your own machine learning–powered rock paper scissors game!

Rock-Paper-Scissors game using computer vision and machine learning on Raspberry Pi

A Rock-Paper-Scissors game using computer vision and machine learning on the Raspberry Pi. Project GitHub page: https://github.com/DrGFreeman/rps-cv PROJECT ORIGIN: This project results from a challenge my son gave me when I was teaching him the basics of computer programming making a simple text based Rock-Paper-Scissors game in Python.

Virtual rock paper scissors

Here’s why you should always leave comments on our blog: this project from Julien de la Bruère-Terreault instantly had our attention when he shared it on our recent Android Things post.

Julien and his son were building a text-based version of rock paper scissors in Python when his son asked him: “Could you make a rock paper scissors game that uses the camera to detect hand gestures?” Obviously, Julien really had no choice but to accept the challenge.

“The game uses a Raspberry Pi computer and Raspberry Pi Camera Module installed on a 3D-printed support with LED strips to achieve consistent images,” Julien explains in the tutorial for the build. “The pictures taken by the camera are processed and fed to an image classifier that determines whether the gesture corresponds to ‘Rock’, ‘Paper’, or ‘Scissors’ gestures.”

How does it work?

Physically, the build uses a Pi 3 Model B and a Camera Module V2 alongside 3D-printed parts. The parts are all green, since a consistent colour allows easy subtraction of background from the captured images. You can download the files for the setup from Thingiverse.

rock paper scissors raspberry pi

To illustrate how the software works, Julien has created a rather delightful pipeline demonstrating where computer vision and machine learning come in.

rock paper scissors using raspberry pi

The way the software works means the game doesn’t need to be limited to the standard three hand signs. If you wanted to, you could add other signs such as ‘lizard’ and ‘Spock’! Or ‘fire’ and ‘water balloon’. Or any other alterations made to the game in your pop culture favourites.

rock paper scissors lizard spock

Check out Julien’s full tutorial to build your own AI-powered rock paper scissors game here on Julien’s GitHub. Massive kudos to Julien for spending a year learning the skills required to make it happen. And a massive thank you to Julien’s son for inspiring him! This is why it’s great to do coding and digital making with kids — they have the best project ideas!

Sharing is caring

If you’ve built your own project using Raspberry Pi, please share it with us in the comments below, or via social media. As you can tell from today’s blog post, we love to see them and share them with the whole community!

The post Rock, paper, scissors, lizard, Spock, fire, water balloon! appeared first on Raspberry Pi.

Recording lost seconds with the Augenblick blink camera

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/augenblick-camera/

Warning: a GIF used in today’s blog contains flashing images.

Students at the University of Bremen, Germany, have built a wearable camera that records the seconds of vision lost when you blink. Augenblick uses a Raspberry Pi Zero and Camera Module alongside muscle sensors to record footage whenever you close your eyes, producing a rather disjointed film of the sights you miss out on.

Augenblick blink camera recording using a Raspberry Pi Zero

Blink and you’ll miss it

The average person blinks up to five times a minute, with each blink lasting 0.5 to 0.8 seconds. These half-seconds add up to about 30 minutes a day. What sights are we losing during these minutes? That is the question asked by students Manasse Pinsuwan and René Henrich when they set out to design Augenblick.

Blinking is a highly invasive mechanism for our eyesight. Every day we close our eyes thousands of times without noticing it. Our mind manages to never let us wonder what exactly happens in the moments that we miss.

Capturing lost moments

For Augenblick, the wearer sticks MyoWare Muscle Sensor pads to their face, and these detect the electrical impulses that trigger blinking.

Augenblick blink camera recording using a Raspberry Pi Zero

Two pads are applied over the orbicularis oculi muscle that forms a ring around the eye socket, while the third pad is attached to the cheek as a neutral point.

Biology fact: there are two muscles responsible for blinking. The orbicularis oculi muscle closes the eye, while the levator palpebrae superioris muscle opens it — and yes, they both sound like the names of Harry Potter spells.

The sensor is read 25 times a second. Whenever it detects that the orbicularis oculi is active, the Camera Module records video footage.

Augenblick blink recording using a Raspberry Pi Zero

Pressing a button on the side of the Augenblick glasses set the code running. An LED lights up whenever the camera is recording and also serves to confirm the correct placement of the sensor pads.

Augenblick blink camera recording using a Raspberry Pi Zero

The Pi Zero saves the footage so that it can be stitched together later to form a continuous, if disjointed, film.

Learn more about the Augenblick blink camera

You can find more information on the conception, design, and build process of Augenblick here in German, with a shorter explanation including lots of photos here in English.

And if you’re keen to recreate this project, our free project resource for a wearable Pi Zero time-lapse camera will come in handy as a starting point.

The post Recording lost seconds with the Augenblick blink camera appeared first on Raspberry Pi.

Own your own working Pokémon Pokédex!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-pokedex/

Squeal with delight as your inner Pokémon trainer witnesses the wonder of Adrian Rosebrock’s deep learning Pokédex.

Creating a real-life Pokedex with a Raspberry Pi, Python, and Deep Learning

This video demos a real-like Pokedex, complete with visual recognition, that I created using a Raspberry Pi, Python, and Deep Learning. You can find the entire blog post, including code, using this link: https://www.pyimagesearch.com/2018/04/30/a-fun-hands-on-deep-learning-project-for-beginners-students-and-hobbyists/ Music credit to YouTube user “No Copyright” for providing royalty free music: https://www.youtube.com/watch?v=PXpjqURczn8

The history of Pokémon in 30 seconds

The Pokémon franchise was created by video game designer Satoshi Tajiri in 1995. In the fictional world of Pokémon, Pokémon Trainers explore the vast landscape, catching and training small creatures called Pokémon. To date, there are 802 different types of Pokémon. They range from the ever recognisable Pikachu, a bright yellow electric Pokémon, to the highly sought-after Shiny Charizard, a metallic, playing-card-shaped Pokémon that your mate Alex claims she has in mint condition, but refuses to show you.

Pokemon GIF

In the world of Pokémon, children as young as ten-year-old protagonist and all-round annoyance Ash Ketchum are allowed to leave home and wander the wilderness. There, they hunt vicious, deadly creatures in the hope of becoming a Pokémon Master.

Adrian’s deep learning Pokédex

Adrian is a bit of a deep learning pro, as demonstrated by his Santa/Not Santa detector, which we wrote about last year. For that project, he also provided a great explanation of what deep learning actually is. In a nutshell:

…a subfield of machine learning, which is, in turn, a subfield of artificial intelligence (AI).While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

As with his earlier Raspberry Pi project, Adrian uses the Keras deep learning model and the TensorFlow backend, plus a few other packages such as Adrian’s own imutils functions and OpenCV.

Adrian trained a Convolutional Neural Network using Keras on a dataset of 1191 Pokémon images, obtaining 96.84% accuracy. As Adrian explains, this model is able to identify Pokémon via still image and video. It’s perfect for creating a Pokédex – an interactive Pokémon catalogue that should, according to the franchise, be able to identify and read out information on any known Pokémon when captured by camera. More information on model training can be found on Adrian’s blog.

Adrian Rosebeck deep learning pokemon pokedex

For the physical build, a Raspberry Pi 3 with camera module is paired with the Raspberry Pi 7″ touch display to create a portable Pokédex. And while Adrian comments that the same result can be achieved using your home computer and a webcam, that’s not how Adrian rolls as a Raspberry Pi fan.

Adrian Rosebeck deep learning pokemon pokedex

Plus, the smaller size of the Pi is perfect for one of you to incorporate this deep learning model into a 3D-printed Pokédex for ultimate Pokémon glory, pretty please, thank you.

Adrian Rosebeck deep learning pokemon pokedex

Adrian has gone into impressive detail about how the project works and how you can create your own on his blog, pyimagesearch. So if you’re interested in learning more about deep learning, and making your own Pokédex, be sure to visit.

The post Own your own working Pokémon Pokédex! appeared first on Raspberry Pi.

AIY Projects 2: Google’s AIY Projects Kits get an upgrade

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/google-aiy-projects-2/

After the outstanding success of their AIY Projects Voice and Vision Kits, Google has announced the release of upgraded kits, complete with Raspberry Pi Zero WH, Camera Module, and preloaded SD card.

Google AIY Projects Vision Kit 2 Raspberry Pi

Google’s AIY Projects Kits

Google launched the AIY Projects Voice Kit last year, first as a cover gift with The MagPi magazine and later as a standalone product.

Makers needed to provide their own Raspberry Pi for the original kit. The new kits include everything you need, from Pi to SD card.

Within a DIY cardboard box, makers were able to assemble their own voice-activated AI assistant akin to the Amazon Alexa, Apple’s Siri, and Google’s own Google Home Assistant. The Voice Kit was an instant hit that spurred no end of maker videos and tutorials, including our own free tutorial for controlling a robot using voice commands.

Later in the year, the team followed up the success of the Voice Kit with the AIY Projects Vision Kit — the same cardboard box hosting a camera perfect for some pretty nifty image recognition projects.

For more on the AIY Voice Kit, here’s our release video hosted by the rather delightful Rob Zwetsloot.

AIY Projects adds natural human interaction to your Raspberry Pi

Check out the exclusive Google AIY Projects Kit that comes free with The MagPi 57! Grab yourself a copy in stores or online now: http://magpi.cc/2pI6IiQ This first AIY Projects kit taps into the Google Assistant SDK and Cloud Speech API using the AIY Projects Voice HAT (Hardware Accessory on Top) board, stereo microphone, and speaker (included free with the magazine).

AIY Projects 2

So what’s new with version 2 of the AIY Projects Voice Kit? The kit now includes the recently released Raspberry Pi Zero WH, our Zero W with added pre-soldered header pins for instant digital making accessibility. Purchasers of the kits will also get a micro SD card with preloaded OS to help them get started without having to set the card up themselves.

Google AIY Projects Vision Kit 2 Raspberry Pi

Everything you need to build your own Raspberry Pi-powered Google voice assistant

In the newly upgraded AIY Projects Vision Kit v1.2, makers are also treated to an official Raspberry Pi Camera Module v2, the latest model of our add-on camera.

Google AIY Projects Vision Kit 2 Raspberry Pi

“Everything you need to get started is right there in the box,” explains Billy Rutledge, Google’s Director of AIY Projects. “We knew from our research that even though makers are interested in AI, many felt that adding it to their projects was too difficult or required expensive hardware.”

Google AIY Projects Vision Kit 2 Raspberry Pi
Google AIY Projects Vision Kit 2 Raspberry Pi
Google AIY Projects Vision Kit 2 Raspberry Pi

Google is also hard at work producing AIY Projects companion apps for Android, iOS, and Chrome. The Android app is available now to coincide with the launch of the upgraded kits, with the other two due for release soon. The app supports wireless setup of the AIY Kit, though avid coders will still be able to hack theirs to better suit their projects.

Google has also updated the AIY Projects website with an AIY Models section highlighting a range of neural network projects for the kits.

Get your kit

The updated Voice and Vision Kits were announced last night, and in the US they are available now from Target. UK-based makers should be able to get their hands on them this summer — keep an eye on our social channels for updates and links.

The post AIY Projects 2: Google’s AIY Projects Kits get an upgrade appeared first on Raspberry Pi.

Build a solar-powered nature camera for your garden

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/solar-powered-nature-camera/

Spring has sprung, and with it, sleepy-eyed wildlife is beginning to roam our gardens and local woodlands. So why not follow hackster.io maker reichley’s tutorial and build your own solar-powered squirrelhouse nature cam?

Raspberry Pi- and solar-powered nature camera

Inspiration

“I live half a mile above sea level and am SURROUNDED by animals…bears, foxes, turkeys, deer, squirrels, birds”, reichley explains in his tutorial. “Spring has arrived, and there are LOADS of squirrels running around. I was in the building mood and, being a nerd, wished to combine a common woodworking project with the connectivity and observability provided by single-board computers (and their camera add-ons).”

Building a tiny home

reichley started by sketching out a design for the house to determine where the various components would fit.

Raspberry Pi- and solar-powered nature camera

Since he’s fan of autonomy and renewable energy, he decided to run the project’s Raspberry Pi Zero W via solar power. To do so, he reiterated the design to include the necessary tech, scaling the roof to fit the panels.

Raspberry Pi- and solar-powered squirrel cam
Raspberry Pi- and solar-powered squirrel cam
Raspberry Pi- and solar-powered squirrel cam

To keep the project running 24/7, reichley had to figure out the overall power consumption of both the Zero W and the Raspberry Pi Camera Module, factoring in the constant WiFi connection and the sunshine hours in his garden.

Raspberry Pi- and solar-powered nature camera

He used a LiPo SHIM to bump up the power to the required 5V for the Zero. Moreover, he added a BH1750 lux sensor to shut off the LiPo SHIM, and thus the Pi, whenever it’s too dark for decent video.

Raspberry Pi- and solar-powered nature camera

To control the project, he used Calin Crisan’s motionEyeOS video surveillance operating system for single-board computers.

Build your own nature camera

To build your own version, follow reichley’s tutorial, in which you can also find links to all the necessary code and components. You can also check out our free tutorial for building an infrared bird box using the Raspberry Pi NoIR Camera Module. As Eben said in our YouTube live Q&A last week, we really like nature cameras here at Pi Towers, and we’d love to see yours. So if you have any live-stream links or photography from your Raspberry Pi–powered nature cam, please share them with us!

The post Build a solar-powered nature camera for your garden appeared first on Raspberry Pi.

The robotic teapot from your nightmares

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robotic-teapot/

For those moments when you wish the cast of Disney’s Beauty and the Beast was real, only to realise what a nightmare that would be, here’s Paul-Louis Ageneau’s robotic teapot!

Paul-Louis Ageneau Robotic teapot Raspberry Pi Zero

See what I mean?

Tale as old as time…

It’s the classic story of guy meets digital killer teapot, digital killer teapot inspires him to 3D print his own. Loosely based on a boss level of the video game Alice: Madness Returns, Paul-Louis’s creation is a one-eyed walking teapot robot with a (possible) thirst for blood.

Kill Build the beast

“My new robot is based on a Raspberry Pi Zero W with a camera.” Paul-Louis explains in his blog. “It is connected via a serial link to an Arduino Pro Mini board, which drives servos.”

Each leg has two points of articulation, one for the knee and one for the ankle. In order to move each of the joints, the teapot uses eight servo motor in total.

Paul-Louis Ageneau Robotic teapot Raspberry Pi Zero

Paul-Louis designed and 3D printed the body of the teapot to fit the components needed. So if you’re considering this build as a means of acquiring tea on your laziest of days, I hate to be the bearer of bad news, but the most you’ll get from your pour will be jumper leads and Pi.

Paul-Louis Ageneau Robotic Raspberry Pi Zero teapot
Paul-Louis Ageneau Robotic Raspberry Pi Zero teapot
Paul-Louis Ageneau Robotic Raspberry Pi Zero teapot

While the Arduino board controls the legs, it’s the Raspberry Pi’s job to receive user commands and tell the board how to direct the servos. The protocol for moving the servos is simple, with short lines of characters specifying instructions. First a digit from 0 to 7 selects a servo; next the angle of movement, such as 45 or 90, is input; and finally, the use of C commits the instruction.

Typing in commands is great for debugging, but you don’t want to be glued to a keyboard. Therefore, Paul-Louis continued to work on the code in order to string together several lines to create larger movements.

Paul-Louis Ageneau Robotic teapot Raspberry Pi Zero

The final control system of the teapot runs on a web browser as a standard four-axis arrow pad, with two extra arrows for turning.

Something there that wasn’t there before

Jean-Paul also included an ‘eye’ in the side of the pot to fit the Raspberry Pi Camera Module as another nod to the walking teapot from the video game, but with a purpose other than evil and wrong-doing. As you can see from the image above, the camera live-streams footage, allowing for remote control of the monster teapot regardless of your location.

If you like it all that much, it’s yours

In case you fancy yourself as an inventor, Paul-Louis has provided the entire build process and the code on his blog, documenting how to bring your own teapot to life. And if you’ve created any robotic household items or any props from video games or movies, we’d love to see them, so leave a link in the comments or share it with us across social media using the hashtag #IBuiltThisAndNowIThinkItIsTryingToKillMe.

The post The robotic teapot from your nightmares appeared first on Raspberry Pi.

PipeCam: the low-cost underwater camera

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pipecam-low-cost-underwater-camera/

Fred Fourie is building a low-cost underwater camera for shallow deployment, and his prototypes are already returning fascinating results. You can build your own PipeCam, and explore the undiscovered depths with a Raspberry Pi and off-the-shelf materials.

PipeCam underwater Raspberry Pi Camera

Materials and build

In its latest iteration, PipeCam consists of a 110mm PVC waste pipe with fittings and a 10mm perspex window at one end. Previous prototypes have also used plumbing materials for the body, but this latest version employs heavy-duty parts that deliver the good seal this project needs.

PipeCam underwater Raspberry Pi Camera

In testing, Fred and a friend determined that the rig could withstand 4 bar of pressure. This is enough to protect the tech inside at the depths Fred plans for, and a significant performance improvement on previous prototypes.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

Inside the pipe are a Raspberry Pi 3, a camera module, and a real-time clock add-on board. A 2.4Ah rechargeable lead acid battery powers the set-up via a voltage regulator.

Using foam and fibreboard, Fred made a mount that holds everything in place and fits snugly inside the pipe.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

PipeCam will be subject to ocean currents, not to mention the attentions of sea creatures, so it’s essential to make sure that everything is held securely inside the pipe – something Fred has learned from previous versions of the project.

Software

It’s straightforward to write time-lapse code for a Raspberry Pi using Python and one of our free online resources, but Fred has more ambitious plans for PipeCam. As well as a Python script to control the camera, Fred made a web page to display the health of the device. It shows battery level and storage availability, along with the latest photo taken by the camera. He also made adjustments to the camera’s exposure settings using raspistill. You can see the effect in this side-by-side comparison of the default python-picam image and the edited raspistill one.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

Underwater testing

Fred has completed the initial first test of PipeCam, running the device under water for an hour in two-metre deep water off the coast near his home. And the results? Well, see for yourself:

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

PipeCam is a work in progress, and you can read Fred’s build log at the project’s Hackaday.io page, so be sure to follow along.

The post PipeCam: the low-cost underwater camera appeared first on Raspberry Pi.