Tag Archives: SDK

Troubleshooting event publishing issues in Amazon SES

Post Syndicated from Dustin Taylor original https://aws.amazon.com/blogs/ses/troubleshooting-event-publishing-issues-in-amazon-ses/

Over the past year, we’ve released several features that make it easier to track the metrics that are associated with your Amazon SES account. The first of these features, launched in November of last year, was event publishing.

Initially, event publishing let you capture basic metrics related to your email sending and publish them to other AWS services, such as Amazon CloudWatch and Amazon Kinesis Data Firehose. Some examples of these basic metrics include the number of emails that were sent and delivered, as well as the number that bounced or received complaints. A few months ago, we expanded this feature by adding engagement metrics—specifically, information about the number of emails that your customers opened or engaged with by clicking links.

As a former Cloud Support Engineer, I’ve seen Amazon SES customers do some amazing things with event publishing, but I’ve also seen some common issues. In this article, we look at some of these issues, and discuss the steps you can take to resolve them.

Before we begin

This post assumes that your Amazon SES account is already out of the sandbox, that you’ve verified an identity (such as an email address or domain), and that you have the necessary permissions to use Amazon SES and the service that you’ll publish event data to (such as Amazon SNS, CloudWatch, or Kinesis Data Firehose).

We also assume that you’re familiar with the process of creating configuration sets and specifying event destinations for those configuration sets. For more information, see Using Amazon SES Configuration Sets in the Amazon SES Developer Guide.

Amazon SNS event destinations

If you want to receive notifications when events occur—such as when recipients click a link in an email, or when they report an email as spam—you can use Amazon SNS as an event destination.

Occasionally, customers ask us why they’re not receiving notifications when they use an Amazon SNS topic as an event destination. One of the most common reasons for this issue is that they haven’t configured subscriptions for their Amazon SNS topic yet.

A single topic in Amazon SNS can have one or more subscriptions. When you subscribe to a topic, you tell that topic which endpoints (such as email addresses or mobile phone numbers) to contact when it receives a notification. If you haven’t set up any subscriptions, nothing will happen when an email event occurs.

For more information about setting up topics and subscriptions, see Getting Started in the Amazon SNS Developer Guide. For information about publishing Amazon SES events to Amazon SNS topics, see Set Up an Amazon SNS Event Destination for Amazon SES Event Publishing in the Amazon SES Developer Guide.

Kinesis Data Firehose event destinations

If you want to store your Amazon SES event data for the long term, choose Amazon Kinesis Data Firehose as a destination for Amazon SES events. With Kinesis Data Firehose, you can stream data to Amazon S3 or Amazon Redshift for storage and analysis.

The process of setting up Kinesis Data Firehose as an event destination is similar to the process for setting up Amazon SNS: you choose the types of events (such as deliveries, opens, clicks, or bounces) that you want to export, and the name of the Kinesis Data Firehose stream that you want to export to. However, there’s one important difference. When you set up a Kinesis Data Firehose event destination, you must also choose the IAM role that Amazon SES uses to send event data to Kinesis Data Firehose.

When you set up the Kinesis Data Firehose event destination, you can choose to have Amazon SES create the IAM role for you automatically. For many users, this is the best solution—it ensures that the IAM role has the appropriate permissions to move event data from Amazon SES to Kinesis Data Firehose.

Customers occasionally run into issues with the Kinesis Data Firehose event destination when they use an existing IAM role. If you use an existing IAM role, or create a new role for this purpose, make sure that the role includes the firehose:PutRecord and firehose:PutRecordBatch permissions. If the role doesn’t include these permissions, then the Amazon SES event data isn’t published to Kinesis Data Firehose. For more information, see Controlling Access with Amazon Kinesis Data Firehose in the Amazon Kinesis Data Firehose Developer Guide.

CloudWatch event destinations

By publishing your Amazon SES event data to Amazon CloudWatch, you can create dashboards that track your sending statistics in real time, as well as alarms that notify you when your event metrics reach certain thresholds.

The amount that you’re charged for using CloudWatch is based on several factors, including the number of metrics you use. In order to give you more control over the specific metrics you send to CloudWatch—and to help you avoid unexpected charges—you can limit the email sending events that are sent to CloudWatch.

When you choose CloudWatch as an event destination, you must choose a value source. The value source can be one of three options: a message tag, a link tag, or an email header. After you choose a value source, you then specify a name and a value. When you send an email using a configuration set that refers to a CloudWatch event destination, it only sends the metrics for that email to CloudWatch if the email contains the name and value that you specified as the value source. This requirement is commonly overlooked.

For example, assume that you chose Message Tag as the value source, and specified “CategoryId” as the dimension name and “31415” as the dimension value. When you want to send events for an email to CloudWatch, you must specify the name of the configuration set that uses the CloudWatch destination. You must also include a tag in your message. The name of the tag must be “CategoryId” and the value must be “31415”.

For more information about adding tags and email headers to your messages, see Send Email Using Amazon SES Event Publishing in the Amazon SES Developer Guide. For more information about adding tags to links, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

Troubleshooting event publishing for open and click data

Occasionally, customers ask why they’re not seeing open and click data for their emails. This issue most often occurs when the customer only sends text versions of their emails. Because of the way Amazon SES tracks open and click events, you can only see open and click data for emails that are sent as HTML. For more information about how Amazon SES modifies your emails when you enable open and click tracking, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

The process that you use to send HTML emails varies based on the email sending method you use. The Code Examples section of the Amazon SES Developer Guide contains examples of several methods of sending email by using the Amazon SES SMTP interface or an AWS SDK. All of the examples in this section include methods for sending HTML (as well as text-only) emails.

If you encounter any issues that weren’t covered in this post, please open a case in the Support Center and we’d be more than happy to assist.

Sharing Secrets with AWS Lambda Using AWS Systems Manager Parameter Store

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/sharing-secrets-with-aws-lambda-using-aws-systems-manager-parameter-store/

This post courtesy of Roberto Iturralde, Sr. Application Developer- AWS Professional Services

Application architects are faced with key decisions throughout the process of designing and implementing their systems. One decision common to nearly all solutions is how to manage the storage and access rights of application configuration. Shared configuration should be stored centrally and securely with each system component having access only to the properties that it needs for functioning.

With AWS Systems Manager Parameter Store, developers have access to central, secure, durable, and highly available storage for application configuration and secrets. Parameter Store also integrates with AWS Identity and Access Management (IAM), allowing fine-grained access control to individual parameters or branches of a hierarchical tree.

This post demonstrates how to create and access shared configurations in Parameter Store from AWS Lambda. Both encrypted and plaintext parameter values are stored with only the Lambda function having permissions to decrypt the secrets. You also use AWS X-Ray to profile the function.

Solution overview

This example is made up of the following components:

  • An AWS SAM template that defines:
    • A Lambda function and its permissions
    • An unencrypted Parameter Store parameter that the Lambda function loads
    • A KMS key that only the Lambda function can access. You use this key to create an encrypted parameter later.
  • Lambda function code in Python 3.6 that demonstrates how to load values from Parameter Store at function initialization for reuse across invocations.

Launch the AWS SAM template

To create the resources shown in this post, you can download the SAM template or choose the button to launch the stack. The template requires one parameter, an IAM user name, which is the name of the IAM user to be the admin of the KMS key that you create. In order to perform the steps listed in this post, this IAM user will need permissions to execute Lambda functions, create Parameter Store parameters, administer keys in KMS, and view the X-Ray console. If you have these privileges in your IAM user account you can use your own account to complete the walkthrough. You can not use the root user to administer the KMS keys.

SAM template resources

The following sections show the code for the resources defined in the template.
Lambda function

    Type: 'AWS::Serverless::Function'
      FunctionName: 'ParameterStoreBlogFunctionDev'
      Description: 'Integrating lambda with Parameter Store'
      Handler: 'lambda_function.lambda_handler'
      Role: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
      CodeUri: './code'
          ENV: 'dev'
          APP_CONFIG_PATH: 'parameterStoreBlog'
          AWS_XRAY_TRACING_NAME: 'ParameterStoreBlogFunctionDev'
      Runtime: 'python3.6'
      Timeout: 5
      Tracing: 'Active'

    Type: AWS::IAM::Role
        Version: '2012-10-17'
            Effect: Allow
                - 'lambda.amazonaws.com'
              - 'sts:AssumeRole'
        - 'arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'
          PolicyName: 'ParameterStoreBlogDevParameterAccess'
            Version: '2012-10-17'
                Effect: Allow
                  - 'ssm:GetParameter*'
                Resource: !Sub 'arn:aws:ssm:${AWS::Region}:${AWS::AccountId}:parameter/dev/parameterStoreBlog*'
          PolicyName: 'ParameterStoreBlogDevXRayAccess'
            Version: '2012-10-17'
                Effect: Allow
                  - 'xray:PutTraceSegments'
                  - 'xray:PutTelemetryRecords'
                Resource: '*'

In this YAML code, you define a Lambda function named ParameterStoreBlogFunctionDev using the SAM AWS::Serverless::Function type. The environment variables for this function include the ENV (dev) and the APP_CONFIG_PATH where you find the configuration for this app in Parameter Store. X-Ray tracing is also enabled for profiling later.

The IAM role for this function extends the AWSLambdaBasicExecutionRole by adding IAM policies that grant the function permissions to write to X-Ray and get parameters from Parameter Store, limited to paths under /dev/parameterStoreBlog*.
Parameter Store parameter

    Type: AWS::SSM::Parameter
      Name: '/dev/parameterStoreBlog/appConfig'
      Description: 'Sample dev config values for my app'
      Type: String
      Value: '{"key1": "value1","key2": "value2","key3": "value3"}'

This YAML code creates a plaintext string parameter in Parameter Store in a path that your Lambda function can access.
KMS encryption key

    Type: AWS::KMS::Alias
      AliasName: 'alias/ParameterStoreBlogKeyDev'
      TargetKeyId: !Ref ParameterStoreBlogDevEncryptionKey

    Type: AWS::KMS::Key
      Description: 'Encryption key for secret config values for the Parameter Store blog post'
      Enabled: True
      EnableKeyRotation: False
        Version: '2012-10-17'
        Id: 'key-default-1'
            Sid: 'Allow administration of the key & encryption of new values'
            Effect: Allow
                - !Sub 'arn:aws:iam::${AWS::AccountId}:user/${IAMUsername}'
              - 'kms:Create*'
              - 'kms:Encrypt'
              - 'kms:Describe*'
              - 'kms:Enable*'
              - 'kms:List*'
              - 'kms:Put*'
              - 'kms:Update*'
              - 'kms:Revoke*'
              - 'kms:Disable*'
              - 'kms:Get*'
              - 'kms:Delete*'
              - 'kms:ScheduleKeyDeletion'
              - 'kms:CancelKeyDeletion'
            Resource: '*'
            Sid: 'Allow use of the key'
            Effect: Allow
              AWS: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
              - 'kms:Encrypt'
              - 'kms:Decrypt'
              - 'kms:ReEncrypt*'
              - 'kms:GenerateDataKey*'
              - 'kms:DescribeKey'
            Resource: '*'

This YAML code creates an encryption key with a key policy with two statements.

The first statement allows a given user (${IAMUsername}) to administer the key. Importantly, this includes the ability to encrypt values using this key and disable or delete this key, but does not allow the administrator to decrypt values that were encrypted with this key.

The second statement grants your Lambda function permission to encrypt and decrypt values using this key. The alias for this key in KMS is ParameterStoreBlogKeyDev, which is how you reference it later.

Lambda function

Here I walk you through the Lambda function code.

import os, traceback, json, configparser, boto3
from aws_xray_sdk.core import patch_all

# Initialize boto3 client at global scope for connection reuse
client = boto3.client('ssm')
env = os.environ['ENV']
app_config_path = os.environ['APP_CONFIG_PATH']
full_config_path = '/' + env + '/' + app_config_path
# Initialize app at global scope for reuse across invocations
app = None

class MyApp:
    def __init__(self, config):
        Construct new MyApp with configuration
        :param config: application configuration
        self.config = config

    def get_config(self):
        return self.config

def load_config(ssm_parameter_path):
    Load configparser from config stored in SSM Parameter Store
    :param ssm_parameter_path: Path to app config in SSM Parameter Store
    :return: ConfigParser holding loaded config
    configuration = configparser.ConfigParser()
        # Get all parameters for this app
        param_details = client.get_parameters_by_path(

        # Loop through the returned parameters and populate the ConfigParser
        if 'Parameters' in param_details and len(param_details.get('Parameters')) > 0:
            for param in param_details.get('Parameters'):
                param_path_array = param.get('Name').split("/")
                section_position = len(param_path_array) - 1
                section_name = param_path_array[section_position]
                config_values = json.loads(param.get('Value'))
                config_dict = {section_name: config_values}
                print("Found configuration: " + str(config_dict))

        print("Encountered an error loading config from SSM.")
        return configuration

def lambda_handler(event, context):
    global app
    # Initialize app if it doesn't yet exist
    if app is None:
        print("Loading config and creating new MyApp...")
        config = load_config(full_config_path)
        app = MyApp(config)

    return "MyApp config is " + str(app.get_config()._sections)

Beneath the import statements, you import the patch_all function from the AWS X-Ray library, which you use to patch boto3 to create X-Ray segments for all your boto3 operations.

Next, you create a boto3 SSM client at the global scope for reuse across function invocations, following Lambda best practices. Using the function environment variables, you assemble the path where you expect to find your configuration in Parameter Store. The class MyApp is meant to serve as an example of an application that would need its configuration injected at construction. In this example, you create an instance of ConfigParser, a class in Python’s standard library for handling basic configurations, to give to MyApp.

The load_config function loads the all the parameters from Parameter Store at the level immediately beneath the path provided in the Lambda function environment variables. Each parameter found is put into a new section in ConfigParser. The name of the section is the name of the parameter, less the base path. In this example, the full parameter name is /dev/parameterStoreBlog/appConfig, which is put in a section named appConfig.

Finally, the lambda_handler function initializes an instance of MyApp if it doesn’t already exist, constructing it with the loaded configuration from Parameter Store. Then it simply returns the currently loaded configuration in MyApp. The impact of this design is that the configuration is only loaded from Parameter Store the first time that the Lambda function execution environment is initialized. Subsequent invocations reuse the existing instance of MyApp, resulting in improved performance. You see this in the X-Ray traces later in this post. For more advanced use cases where configuration changes need to be received immediately, you could implement an expiry policy for your configuration entries or push notifications to your function.

To confirm that everything was created successfully, test the function in the Lambda console.

  1. Open the Lambda console.
  2. In the navigation pane, choose Functions.
  3. In the Functions pane, filter to ParameterStoreBlogFunctionDev to find the function created by the SAM template earlier. Open the function name to view its details.
  4. On the top right of the function detail page, choose Test. You may need to create a new test event. The input JSON doesn’t matter as this function ignores the input.

After running the test, you should see output similar to the following. This demonstrates that the function successfully fetched the unencrypted configuration from Parameter Store.

Create an encrypted parameter

You currently have a simple, unencrypted parameter and a Lambda function that can access it.

Next, you create an encrypted parameter that only your Lambda function has permission to use for decryption. This limits read access for this parameter to only this Lambda function.

To follow along with this section, deploy the SAM template for this post in your account and make your IAM user name the KMS key admin mentioned earlier.

  1. In the Systems Manager console, under Shared Resources, choose Parameter Store.
  2. Choose Create Parameter.
    • For Name, enter /dev/parameterStoreBlog/appSecrets.
    • For Type, select Secure String.
    • For KMS Key ID, choose alias/ParameterStoreBlogKeyDev, which is the key that your SAM template created.
    • For Value, enter {"secretKey": "secretValue"}.
    • Choose Create Parameter.
  3. If you now try to view the value of this parameter by choosing the name of the parameter in the parameters list and then choosing Show next to the Value field, you won’t see the value appear. This is because, even though you have permission to encrypt values using this KMS key, you do not have permissions to decrypt values.
  4. In the Lambda console, run another test of your function. You now also see the secret parameter that you created and its decrypted value.

If you do not see the new parameter in the Lambda output, this may be because the Lambda execution environment is still warm from the previous test. Because the parameters are loaded at Lambda startup, you need a fresh execution environment to refresh the values.

Adjust the function timeout to a different value in the Advanced Settings at the bottom of the Lambda Configuration tab. Choose Save and test to trigger the creation of a new Lambda execution environment.

Profiling the impact of querying Parameter Store using AWS X-Ray

By using the AWS X-Ray SDK to patch boto3 in your Lambda function code, each invocation of the function creates traces in X-Ray. In this example, you can use these traces to validate the performance impact of your design decision to only load configuration from Parameter Store on the first invocation of the function in a new execution environment.

From the Lambda function details page where you tested the function earlier, under the function name, choose Monitoring. Choose View traces in X-Ray.

This opens the X-Ray console in a new window filtered to your function. Be aware of the time range field next to the search bar if you don’t see any search results.
In this screenshot, I’ve invoked the Lambda function twice, one time 10.3 minutes ago with a response time of 1.1 seconds and again 9.8 minutes ago with a response time of 8 milliseconds.

Looking at the details of the longer running trace by clicking the trace ID, you can see that the Lambda function spent the first ~350 ms of the full 1.1 sec routing the request through Lambda and creating a new execution environment for this function, as this was the first invocation with this code. This is the portion of time before the initialization subsegment.

Next, it took 725 ms to initialize the function, which includes executing the code at the global scope (including creating the boto3 client). This is also a one-time cost for a fresh execution environment.

Finally, the function executed for 65 ms, of which 63.5 ms was the GetParametersByPath call to Parameter Store.

Looking at the trace for the second, much faster function invocation, you see that the majority of the 8 ms execution time was Lambda routing the request to the function and returning the response. Only 1 ms of the overall execution time was attributed to the execution of the function, which makes sense given that after the first invocation you’re simply returning the config stored in MyApp.

While the Traces screen allows you to view the details of individual traces, the X-Ray Service Map screen allows you to view aggregate performance data for all traced services over a period of time.

In the X-Ray console navigation pane, choose Service map. Selecting a service node shows the metrics for node-specific requests. Selecting an edge between two nodes shows the metrics for requests that traveled that connection. Again, be aware of the time range field next to the search bar if you don’t see any search results.

After invoking your Lambda function several more times by testing it from the Lambda console, you can view some aggregate performance metrics. Look at the following:

  • From the client perspective, requests to the Lambda service for the function are taking an average of 50 ms to respond. The function is generating ~1 trace per minute.
  • The function itself is responding in an average of 3 ms. In the following screenshot, I’ve clicked on this node, which reveals a latency histogram of the traced requests showing that over 95% of requests return in under 5 ms.
  • Parameter Store is responding to requests in an average of 64 ms, but note the much lower trace rate in the node. This is because you only fetch data from Parameter Store on the initialization of the Lambda execution environment.


Deduplication, encryption, and restricted access to shared configuration and secrets is a key component to any mature architecture. Serverless architectures designed using event-driven, on-demand, compute services like Lambda are no different.

In this post, I walked you through a sample application accessing unencrypted and encrypted values in Parameter Store. These values were created in a hierarchy by application environment and component name, with the permissions to decrypt secret values restricted to only the function needing access. The techniques used here can become the foundation of secure, robust configuration management in your enterprise serverless applications.

When tiny robot COZMO met our tiny Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/cozmo-raspberry-pi/

Hack your COZMO for ultimate control, using a Raspberry Pi and this tutorial from Instructables user Marcelo ‘mjrovai’ Rovai.

Cozmo – RPi 4

Full integration The complete tutorial can be found here: https://www.instructables.com/id/When-COZMO-the-Robot-Meets-the-Raspberry-Pi/


COZMO is a Python-programmable robot from ANKI that boasts a variety of on-board sensors and a camera, and that can be controlled via an app or via code. To get an idea of how COZMO works, check out this rather excitable video from the wonderful Mayim Bialik.


COZMO’s creators, ANKI, provide a Software Development Kit (SDK) so that users can get the most out of their COZMO. This added functionality is a great opportunity for budding coders to dive into hacking their toys, without the risk of warranty voiding/upsetting parents/not being sure how to put a toy back together again.

By the way, I should point out that this is in no way a sponsored blog post. I just think COZMO is ridiculously cute…because tiny robots are adorable, no matter their intentions.

Raspberry Pi Doctor Who Cybermat

Marcelo Rovai + Raspberry Pi + COZMO

For his Instructables tutorial, Marcelo connected an Android device running the COZMO app to his Raspberry Pi 3 via USB. Once USB debugging had been enabled on his device, he installed the Android Debug Bridge (ADB) to the Raspberry Pi. Then his Pi was able to recognise the connected Android device, and from there, Marcelo moved on to installing the SDK, including support for COZMO’s camera.

COZMO Raspberry Pi

The SDK comes with pre-installed examples, allowing users to try out the possibilities of the kit, such as controlling what COZMO says by editing a Python script.

Cozmo and RPi

Hello World The complete tutorial can be found here: https://www.instructables.com/id/When-COZMO-the-Robot-Meets-the-Raspberry-Pi/

Do more with COZMO

Marcelo’s tutorial offers more example code for users of the COZMO SDK, along with the code to run the LED button game featured in the video above, and tips on utilising the SDK to take full advantage of COZMO. Check it out here on Instructables, and visit his website for even more projects.

The post When tiny robot COZMO met our tiny Raspberry Pi appeared first on Raspberry Pi.

Recent EC2 Goodies – Launch Templates and Spread Placement

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/recent-ec2-goodies-launch-templates-and-spread-placement/

We launched some important new EC2 instance types and features at AWS re:Invent. I’ve already told you about the M5, H1, T2 Unlimited and Bare Metal instances, and about Spot features such as Hibernation and the New Pricing Model. Randall told you about the Amazon Time Sync Service. Today I would like to tell you about two of the features that we launched: Spread placement groups and Launch Templates. Both features are available in the EC2 Console and from the EC2 APIs, and can be used in all of the AWS Regions in the “aws” partition:

Launch Templates
You can use launch templates to store the instance, network, security, storage, and advanced parameters that you use to launch EC2 instances, and can also include any desired tags. Each template can include any desired subset of the full collection of parameters. You can, for example, define common configuration parameters such as tags or network configurations in a template, and allow the other parameters to be specified as part of the actual launch.

Templates give you the power to set up a consistent launch environment that spans instances launched in On-Demand and Spot form, as well as through EC2 Auto Scaling and as part of a Spot Fleet. You can use them to implement organization-wide standards and to enforce best practices, and you can give your IAM users the ability to launch instances via templates while withholding the ability to do so via the underlying APIs.

Templates are versioned and you can use any desired version when you launch an instance. You can create templates from scratch, base them on the previous version, or copy the parameters from a running instance.

Here’s how you create a launch template in the Console:

Here’s how to include network interfaces, storage volumes, tags, and security groups:

And here’s how to specify advanced and specialized parameters:

You don’t have to specify values for all of these parameters in your templates; enter the values that are common to multiple instances or launches and specify the rest at launch time.

When you click Create launch template, the template is created and can be used to launch On-Demand instances, create Auto Scaling Groups, and create Spot Fleets:

The Launch Instance button now gives you the option to launch from a template:

Simply choose the template and the version, and finalize all of the launch parameters:

You can also manage your templates and template versions from the Console:

To learn more about this feature, read Launching an Instance from a Launch Template.

Spread Placement Groups
Spread placement groups indicate that you do not want the instances in the group to share the same underlying hardware. Applications that rely on a small number of critical instances can launch them in a spread placement group to reduce the odds that one hardware failure will impact more than one instance. Here are a couple of things to keep in mind when you use spread placement groups:

  • Availability Zones – A single spread placement group can span multiple Availability Zones. You can have a maximum of seven running instances per Availability Zone per group.
  • Unique Hardware – Launch requests can fail if there is insufficient unique hardware available. The situation changes over time as overall usage changes and as we add additional hardware; you can retry failed requests at a later time.
  • Instance Types – You can launch a wide variety of M4, M5, C3, R3, R4, X1, X1e, D2, H1, I2, I3, HS1, F1, G2, G3, P2, and P3 instances types in spread placement groups.
  • Reserved Instances – Instances launched into a spread placement group can make use of reserved capacity. However, you cannot currently reserve capacity for a placement group and could receive an ICE (Insufficient Capacity Error) even if you have some RI’s available.
  • Applicability – You cannot use spread placement groups in conjunction with Dedicated Instances or Dedicated Hosts.

You can create and use spread placement groups from the AWS Management Console, the AWS Command Line Interface (CLI), the AWS Tools for Windows PowerShell, and the AWS SDKs. The console has a new feature that will help you to learn how to use the command line:

You can specify an existing placement group or create a new one when you launch an EC2 instance:

To learn more, read about Placement Groups.


Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.

12 B2 Power Tips for Experts and Developers

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/advanced-cloud-storage-tips/

B2 Tips for Pros
If you’ve been using B2 Cloud Storage for a while, you probably think you know all that you can do with it. But do you?

We’ve put together a list of blazing power tips for experts and developers that will take you to the next level. Take a look below.

If you’re new to B2, we have a list of power tips for you, too.
Visit 12 Power Tips for New B2 Users.
Backblaze logo

1    Manage File Versions

Use Lifecycle Rules on a Bucket to set how many days to keep files that are no longer the current version. This is a great way to manage the amount of space your B2 account is using.

Backblaze logo

2    Easily Stay on Top of Your B2 Account Limits

Set usage caps and get text/email alerts for your B2 account when you approach limits that you define.

Backblaze logo

3    Bring on Your Big Files

You can upload files as large as 10TB to B2.

Backblaze logo

4    You Can Use FedEx to Get Your Data into B2

If you have over 20TB of data, you can use Backblaze’s Fireball hard disk array to load large volumes of data directly into your B2 account. We ship a Fireball to you and you ship it back.

Backblaze logo

5    You Have Command-Line Control of All B2 Functions

You have complete control over B2 using our command line tool that is available for Macintosh, Windows, and Linux.

Backblaze logo

6    You Can Use Your Own Domain Name To Front a Public B2 Bucket

You can create a vanity URL for your B2 account.

Backblaze logo

7    See What’s Happening in Your Account with Graphical Reports

You can view graphical reports summarizing your B2 usage — transactions, downloads, averages, data stored — in your B2 account dashboard.

Backblaze logo

8    Create a B2 SDK

You can build your own B2 SDK for JVM-based or JVM-compatible languages using our B2 Java SDK on Github.

Backblaze logo

9    B2’s API is Easy to Use

B2’s API is similar to, but simpler than Amazon’s S3 API, making it super easy for developers to integrate with B2 Cloud Storage.

Backblaze logo

10    View Code Examples To Get Your B2 Project Started

The B2 API is well documented and has code examples for cURL, Java, Python, Swift, Ruby, C#, and PHP. For example, here’s how to create a B2 Bucket.

Backblaze logo

11    Developers can set the B2 part size as low as 5 MB

When working with large files, the minimum file part size can be set as low as 5MB or as high as 5GB. This gives developers the ability to maximize the throughput of B2 data uploads and downloads. See Large Files and Downloading for more developer tips.

Backblaze logo

12    Your App or Device Can Work with B2, as well

Your B2 integration can be listed on Backblaze’s website. Visit Submit an Integration to get started.

Want to Learn More About B2?

You can find more information on B2 on our website and in our help pages.

The post 12 B2 Power Tips for Experts and Developers appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Instrumenting Web Apps Using AWS X-Ray

Post Syndicated from Bharath Kumar original https://aws.amazon.com/blogs/devops/instrumenting-web-apps-using-aws-x-ray/

This post was written by James Bowman, Software Development Engineer, AWS X-Ray

AWS X-Ray helps developers analyze and debug distributed applications and underlying services in production. You can identify and analyze root-causes of performance issues and errors, understand customer impact, and extract statistical aggregations (such as histograms) for optimization.

In this blog post, I will provide a step-by-step walkthrough for enabling X-Ray tracing in the Go programming language. You can use these steps to add X-Ray tracing to any distributed application.

Revel: A web framework for the Go language

This section will assist you with designing a guestbook application. Skip to “Instrumenting with AWS X-Ray” section below if you already have a Go language application.

Revel is a web framework for the Go language. It facilitates the rapid development of web applications by providing a predefined framework for controllers, views, routes, filters, and more.

To get started with Revel, run revel new github.com/jamesdbowman/guestbook. A project base is then copied to $GOPATH/src/github.com/jamesdbowman/guestbook.

$ tree -L 2
├── README.md
├── app
│ ├── controllers
│ ├── init.go
│ ├── routes
│ ├── tmp
│ └── views
├── conf
│ ├── app.conf
│ └── routes
├── messages
│ └── sample.en
├── public
│ ├── css
│ ├── fonts
│ ├── img
│ └── js
└── tests
└── apptest.go

Writing a guestbook application

A basic guestbook application can consist of just two routes: one to sign the guestbook and another to list all entries.
Let’s set up these routes by adding a Book controller, which can be routed to by modifying ./conf/routes.

package controllers

import (


const TABLE_NAME = "guestbook"
const SUCCESS = "Success.\n"
const DAY = 86400


func init() {

// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(n int) string {
    b := make([]rune, n)
    for i := range b {
        b[i] = letters[rand.Intn(len(letters))]
    return string(b)

// Book controls interactions with the guestbook.
type Book struct {
    ddbClient *dynamodb.DynamoDB

// Signature represents a user's signature.
type Signature struct {
    Message string
    Epoch   int64
    ID      string

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        c.ddbClient = dynamodb.New(sess)
    return c.ddbClient

// Sign allows users to sign the book.
// The message is to be passed as application/json typed content, listed under the "message" top level key.
func (c Book) Sign() revel.Result {
    var s Signature

    err := c.Params.BindJSON(&s)
    if err != nil {
        return c.RenderError(err)
    now := time.Now()
    s.Epoch = now.Unix()
    s.ID = randString(20)

    item, err := dynamodbattribute.MarshalMap(s)
    if err != nil {
        return c.RenderError(err)

    putItemInput := &dynamodb.PutItemInput{
        TableName: aws.String(TABLE_NAME),
        Item:      item,
    _, err = c.ddb().PutItem(putItemInput)
    if err != nil {
        return c.RenderError(err)

    return c.RenderText(SUCCESS)

// List allows users to list all signatures in the book.
func (c Book) List() revel.Result {
    scanInput := &dynamodb.ScanInput{
        TableName: aws.String(TABLE_NAME),
        Limit:     aws.Int64(100),
    res, err := c.ddb().Scan(scanInput)
    if err != nil {
        return c.RenderError(err)

    messages := make([]string, 0)
    for _, v := range res.Items {
        messages = append(messages, *(v["Message"].S))
    return c.RenderJSON(messages)

POST /sign Book.Sign
GET /list Book.List

Creating the resources and testing

For the purposes of this blog post, the application will be run and tested locally. We will store and retrieve messages from an Amazon DynamoDB table. Use the following AWS CLI command to create the guestbook table:

aws dynamodb create-table --region us-west-2 --table-name "guestbook" --attribute-definitions AttributeName=ID,AttributeType=S AttributeName=Epoch,AttributeType=N --key-schema AttributeName=ID,KeyType=HASH AttributeName=Epoch,KeyType=RANGE --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Now, let’s test our sign and list routes. If everything is working correctly, the following result appears:

$ curl -d '{"message":"Hello from cURL!"}' -H "Content-Type: application/json" http://localhost:9000/book/sign
$ curl http://localhost:9000/book/list
  "Hello from cURL!"

Integrating with AWS X-Ray

Download and run the AWS X-Ray daemon

The AWS SDKs emit trace segments over UDP on port 2000. (This port can be configured.) In order for the trace segments to make it to the X-Ray service, the daemon must listen on this port and batch the segments in calls to the PutTraceSegments API.
For information about downloading and running the X-Ray daemon, see the AWS X-Ray Developer Guide.

Installing the AWS X-Ray SDK for Go

To download the SDK from GitHub, run go get -u github.com/aws/aws-xray-sdk-go/... The SDK will appear in the $GOPATH.

Enabling the incoming request filter

The first step to instrumenting an application with AWS X-Ray is to enable the generation of trace segments on incoming requests. The SDK conveniently provides an implementation of http.Handler which does exactly that. To ensure incoming web requests travel through this handler, we can modify app/init.go, adding a custom function to be run on application start.

import (


func init() {

func installXRayHandler() {
    revel.Server.Handler = xray.Handler(xray.NewFixedSegmentNamer("GuestbookApp"), revel.Server.Handler)

The application will now emit a segment for each incoming web request. The service graph appears:

You can customize the name of the segment to make it more descriptive by providing an alternate implementation of SegmentNamer to xray.Handler. For example, you can use xray.NewDynamicSegmentNamer(fallback, pattern) in place of the fixed namer. This namer will use the host name from the incoming web request (if it matches pattern) as the segment name. This is often useful when you are trying to separate different instances of the same application.

In addition, HTTP-centric information such as method and URL is collected in the segment’s http subsection:

"http": {
    "request": {
        "url": "/book/list",
        "method": "GET",
        "user_agent": "curl/7.54.0",
        "client_ip": "::1"
    "response": {
        "status": 200

Instrumenting outbound calls

To provide detailed performance metrics for distributed applications, the AWS X-Ray SDK needs to measure the time it takes to make outbound requests. Trace context is passed to downstream services using the X-Amzn-Trace-Id header. To draw a detailed and accurate representation of a distributed application, outbound call instrumentation is required.

AWS SDK calls

The AWS X-Ray SDK for Go provides a one-line AWS client wrapper that enables the collection of detailed per-call metrics for any AWS client. We can modify the DynamoDB client instantiation to include this line:

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        c.ddbClient = dynamodb.New(sess)
        xray.AWS(c.ddbClient.Client) // add subsegment-generating X-Ray handlers to this client
    return c.ddbClient

We also need to ensure that the segment generated by our xray.Handler is passed to these AWS calls so that the X-Ray SDK knows to which segment these generated subsegments belong. In Go, the context.Context object is passed throughout the call path to achieve this goal. (In most other languages, some variant of ThreadLocal is used.) AWS clients provide a *WithContext method variant for each AWS operation, which we need to switch to:

_, err = c.ddb().PutItemWithContext(c.Request.Context(), putItemInput)
    res, err := c.ddb().ScanWithContext(c.Request.Context(), scanInput)

We now see much more detail in the Timeline view of the trace for the sign and list operations:

We can use this detail to help diagnose throttling on our DynamoDB table. In the following screenshot, the purple in the DynamoDB service graph node indicates that our table is underprovisioned. The red in the GuestbookApp node indicates that the application is throwing faults due to this throttling.

HTTP calls

Although the guestbook application does not make any non-AWS outbound HTTP calls in its current state, there is a similar one-liner to wrap HTTP clients that make outbound requests. xray.Client(c *http.Client) wraps an existing http.Client (or nil if you want to use a default HTTP client). For example:

resp, err := ctxhttp.Get(ctx, xray.Client(nil), "https://aws.amazon.com/")

Instrumenting local operations

X-Ray can also assist in measuring the performance of local compute operations. To see this in action, let’s create a custom subsegment inside the randString method:

// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(ctx context.Context, n int) string {
    xray.Capture(ctx, "randString", func(innerCtx context.Context) {
        b := make([]rune, n)
        for i := range b {
            b[i] = letters[rand.Intn(len(letters))]
        s := string(b)
    return s

// we'll also need to change the callsite

s.ID = randString(c.Request.Context(), 20)


By now, you are an expert on how to instrument X-Ray for your Go applications. Instrumenting X-Ray with your applications is an easy way to analyze and debug performance issues and understand customer impact. Please feel free to give any feedback or comments below.

For more information about advanced configuration of the AWS X-Ray SDK for Go, see the AWS X-Ray SDK for Go in the AWS X-Ray Developer Guide and the aws/aws-xray-sdk-go GitHub repository.

For more information about some of the advanced X-Ray features such as histograms, annotations, and filter expressions, see the Analyzing Performance for Amazon Rekognition Apps Written on AWS Lambda Using AWS X-Ray blog post.

How to Encrypt Amazon S3 Objects with the AWS SDK for Ruby

Post Syndicated from Doug Schwartz original https://aws.amazon.com/blogs/security/how-to-encrypt-amazon-s3-objects-with-the-aws-sdk-for-ruby/

AWS KMS image

Recently, Amazon announced some new Amazon S3 encryption and security features. The AWS Blog post showed how to use the Amazon S3 console to take advantage of these new features. However, if you have a large number of Amazon S3 buckets, using the console to implement these features could take hours, if not days. As an alternative, I created documentation topics in the AWS SDK for Ruby Developer Guide that include code examples showing you how to use the new Amazon S3 encryption features using the AWS SDK for Ruby.

What are my encryption options?

You can encrypt Amazon S3 bucket objects on a server or on a client:

  • When you encrypt objects on a server, you request that Amazon S3 encrypt the objects before saving them to disk in data centers and decrypt the objects when you download them. The main advantage of this approach is that Amazon S3 manages the entire encryption process.
  • When you encrypt objects on a client, you encrypt the objects before you upload them to Amazon S3. In this case, you manage the encryption process, the encryption keys, and related tools. Use this option when:
    • Company policy and standards require it.
    • You already have a development process in place that meets your needs.

    Encrypting on the client has always been available, but you should know the following points:

    • You must be diligent about protecting your encryption keys, which is analogous to having a burglar-proof lock on your front door. If you leave a key under the mat, your security is compromised.
    • If you lose your encryption keys, you won’t be able to decrypt your data.

    If you encrypt objects on the client, we strongly recommend that you use an AWS Key Management Service (AWS KMS) managed customer master key (CMK)

How to use encryption on a server

You can specify that Amazon S3 automatically encrypts objects as you upload them to a bucket or require that objects uploaded to an Amazon S3 bucket include encryption on a server before they are uploaded to an Amazon S3 bucket.

The advantage of these settings is that when you specify them, you ensure that objects uploaded to Amazon S3 are encrypted. Alternatively, you can have Amazon S3 encrypt individual objects on the server as you upload them to a bucket or encrypt them on the server with your own key as you upload them to a bucket.

The AWS SDK for Ruby Developer Guide now contains the following topics that explain your encryption options on a server:

How to use encryption on a client

You can encrypt objects on a client before you upload them to a bucket and decrypt them after you download them from a bucket by using the Amazon S3 encryption client.

The AWS SDK for Ruby Developer Guide now contains the following topics that explain your encryption options on the client:

Note: The Amazon S3 encryption client in the AWS SDK for Ruby is compatible with other Amazon S3 encryption clients, but it is not compatible with other AWS client-side encryption libraries, including the AWS Encryption SDK and the Amazon DynamoDB encryption client for Java. Each library returns a different ciphertext (“encrypted message”) format, so you can’t use one library to encrypt objects and a different library to decrypt them. For more information, see Protecting Data Using Client-Side Encryption.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions about encrypting objects on servers and clients, start a new thread on the Amazon S3 forum or contact AWS Support.

– Doug

Serverless @ re:Invent 2017

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/serverless-reinvent-2017/

At re:Invent 2014, we announced AWS Lambda, what is now the center of the serverless platform at AWS, and helped ignite the trend of companies building serverless applications.

This year, at re:Invent 2017, the topic of serverless was everywhere. We were incredibly excited to see the energy from everyone attending 7 workshops, 15 chalk talks, 20 skills sessions and 27 breakout sessions. Many of these sessions were repeated due to high demand, so we are happy to summarize and provide links to the recordings and slides of these sessions.

Over the course of the week leading up to and then the week of re:Invent, we also had over 15 new features and capabilities across a number of serverless services, including AWS Lambda, Amazon API Gateway, AWS [email protected], AWS SAM, and the newly announced AWS Serverless Application Repository!

AWS Lambda

Amazon API Gateway

  • Amazon API Gateway Supports Endpoint Integrations with Private VPCs – You can now provide access to HTTP(S) resources within your VPC without exposing them directly to the public internet. This includes resources available over a VPN or Direct Connect connection!
  • Amazon API Gateway Supports Canary Release Deployments – You can now use canary release deployments to gradually roll out new APIs. This helps you more safely roll out API changes and limit the blast radius of new deployments.
  • Amazon API Gateway Supports Access Logging – The access logging feature lets you generate access logs in different formats such as CLF (Common Log Format), JSON, XML, and CSV. The access logs can be fed into your existing analytics or log processing tools so you can perform more in-depth analysis or take action in response to the log data.
  • Amazon API Gateway Customize Integration Timeouts – You can now set a custom timeout for your API calls as low as 50ms and as high as 29 seconds (the default is 30 seconds).
  • Amazon API Gateway Supports Generating SDK in Ruby – This is in addition to support for SDKs in Java, JavaScript, Android and iOS (Swift and Objective-C). The SDKs that Amazon API Gateway generates save you development time and come with a number of prebuilt capabilities, such as working with API keys, exponential back, and exception handling.

AWS Serverless Application Repository

Serverless Application Repository is a new service (currently in preview) that aids in the publication, discovery, and deployment of serverless applications. With it you’ll be able to find shared serverless applications that you can launch in your account, while also sharing ones that you’ve created for others to do the same.

AWS [email protected]

[email protected] now supports content-based dynamic origin selection, network calls from viewer events, and advanced response generation. This combination of capabilities greatly increases the use cases for [email protected], such as allowing you to send requests to different origins based on request information, showing selective content based on authentication, and dynamically watermarking images for each viewer.


Twitch Launchpad live announcements

Other service announcements

Here are some of the other highlights that you might have missed. We think these could help you make great applications:

AWS re:Invent 2017 sessions

Coming up with the right mix of talks for an event like this can be quite a challenge. The Product, Marketing, and Developer Advocacy teams for Serverless at AWS spent weeks reading through dozens of talk ideas to boil it down to the final list.

From feedback at other AWS events and webinars, we knew that customers were looking for talks that focused on concrete examples of solving problems with serverless, how to perform common tasks such as deployment, CI/CD, monitoring, and troubleshooting, and to see customer and partner examples solving real world problems. To that extent we tried to settle on a good mix based on attendee experience and provide a track full of rich content.

Below are the recordings and slides of breakout sessions from re:Invent 2017. We’ve organized them for those getting started, those who are already beginning to build serverless applications, and the experts out there already running them at scale. Some of the videos and slides haven’t been posted yet, and so we will update this list as they become available.

Find the entire Serverless Track playlist on YouTube.

Talks for people new to Serverless

Advanced topics

Expert mode

Talks for specific use cases

Talks from AWS customers & partners

Looking to get hands-on with Serverless?

At re:Invent, we delivered instructor-led skills sessions to help attendees new to serverless applications get started quickly. The content from these sessions is already online and you can do the hands-on labs yourself!
Build a Serverless web application

Still looking for more?

We also recently completely overhauled the main Serverless landing page for AWS. This includes a new Resources page containing case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. Check it out!

MQTT 5: Is it time to upgrade to MQTT 5 yet?

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/mqtt-5-time-to-upgrade-yet/

MQTT 5 - Is it time to upgrade yet?

Is it time to upgrade to MQTT 5 yet?

Welcome to this week’s blog post! After last week’s Introduction to MQTT 5, many readers wondered when the successor to MQTT 3.1.1 is ready for prime time and can be used in future and existing projects.

Before we try to answer the question in more detail, we’d love to hear your thoughts about upgrading to MQTT 5. We prepared a small survey below. Let us know how your MQTT 5 upgrading plans are!

The MQTT 5 OASIS Standard

As of late December 2017, the MQTT 5 specification is not available as an official “Committee Specification” yet. In other words: MQTT 5 is not available yet officially. The foundation for every implementation of the standard is, that the Technical Committee at OASIS officially releases the standard.

The good news: Although no official version of the standard is available yet, fundamental changes to the current state of the specification are not expected.
The Public Review phase of the “Committee Specification Draft 2” finished without any major comments or issues. We at HiveMQ expect the MQTT 5 standard to be released in very late December 2017 or January 2018.

Current state of client libraries

To start using MQTT 5, you need two participants: An MQTT 5 client library implementation in your programming language(s) of choice and an MQTT 5 broker implementation (like HiveMQ). If both components support the new standard, you are good to go and can use the new version in your projects.

When it comes to MQTT libraries, Eclipse Paho is the one-stop shop for MQTT clients in most programming languages. A recent Paho mailing list entry stated that Paho plans to release MQTT 5 client libraries end of June 2018 for the following programming languages:

  • C (+ embedded C)
  • Java
  • Go
  • C++

If you’re feeling adventurous, at least the Java Paho client has preliminary MQTT 5 support available. You can play around with the API and get a feel about the upcoming Paho version. Just build the library from source and test it, but be aware that this is not safe for production use.

There is also a very basic test broker implementation available at Eclipse Paho which can be used for playing around. This is of course only for very basic tests and does not support all MQTT 5 features yet. If you’re planning to write your own library, this may be a good tool to test your implementation against.

There are of other individual MQTT library projects which may be worth to check out. As of December 2017 most of these libraries don’t have an MQTT 5 roadmap published yet.

HiveMQ and MQTT 5

You can’t use the new version of the MQTT protocol only by having a client that is ready for MQTT 5. The counterpart, the MQTT broker, also needs to fully support the new protocol version. At the time of writing, no broker is MQTT 5 ready yet.

HiveMQ was the first broker to fully support version 3.1.1 of MQTT and of course here at HiveMQ we are committed to give our customers the advantage of the new features of version 5 of the protocol as soon as possible and viable.

We are going to provide an Early Access version of the upcoming HiveMQ generation with MQTT 5 support by May/June 2018. If you’re a library developer or want to go live with the new protocol version as soon as possible: The Early Access version is for you. Add yourself to the Early Access Notification List and we’ll notify you when the Early Access version is available.

We expect to release the upcoming HiveMQ generation in the third quarter of 2018 with full support of ALL MQTT 5 features at scale in an interoperable way with previous MQTT versions.

When is MQTT 5 ready for prime time?

MQTT is typically used in mission critical environments where it’s not acceptable that parts of the infrastructure, broker or client, are unreliable or have some rough edges. So it’s typically not advisable to be the very first to try out new things in a critical production environment.

Here at HiveMQ we expect that the first users will go live to production in late Q3 (September) 2018 and in the subsequent months. After the releases of the Paho library in June and the HiveMQ Early Access version, the adoption of MQTT 5 is expected to increase rapidly.

So, is MQTT 5 ready for prime time yet (as of December 2017)? No.

Will the new version of the protocol be suitable for production environments in the second half of 2018: Yes, definitely.

Upcoming topics in this series

We will continue this blog post series in January after the European Christmas Holidays. To kick-off the technical part of the series, we will take a look at the foundational changes of the MQTT protocol. And after that, we will release one blog post per week that will thoroughly review and inspect one new feature in detail together with best practices and fun trivia.

If you want us to send the next and all upcoming articles directly into your inbox, just use the newsletter subscribe form below.

P.S. Don’t forget to let us know if MQTT 5 is of interest for you by participating in this quick poll.

Have an awesome week,
The HiveMQ Team