Tag Archives: TensorFlow

New – Amazon EC2 Instances with Up to 8 NVIDIA Tesla V100 GPUs (P3)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-amazon-ec2-instances-with-up-to-8-nvidia-tesla-v100-gpus-p3/

Driven by customer demand and made possible by on-going advances in the state-of-the-art, we’ve come a long way since the original m1.small instance that we launched in 2006, with instances that are emphasize compute power, burstable performance, memory size, local storage, and accelerated computing.

The New P3
Today we are making the next generation of GPU-powered EC2 instances available in four AWS regions. Powered by up to eight NVIDIA Tesla V100 GPUs, the P3 instances are designed to handle compute-intensive machine learning, deep learning, computational fluid dynamics, computational finance, seismic analysis, molecular modeling, and genomics workloads.

P3 instances use customized Intel Xeon E5-2686v4 processors running at up to 2.7 GHz. They are available in three sizes (all VPC-only and EBS-only):

Model NVIDIA Tesla V100 GPUs GPU Memory NVIDIA NVLink vCPUs Main Memory Network Bandwidth EBS Bandwidth
p3.2xlarge 1 16 GiB n/a 8 61 GiB Up to 10 Gbps 1.5 Gbps
p3.8xlarge 4 64 GiB 200 GBps 32 244 GiB 10 Gbps 7 Gbps
p3.16xlarge 8 128 GiB 300 GBps 64 488 GiB 25 Gbps 14 Gbps

Each of the NVIDIA GPUs is packed with 5,120 CUDA cores and another 640 Tensor cores and can deliver up to 125 TFLOPS of mixed-precision floating point, 15.7 TFLOPS of single-precision floating point, and 7.8 TFLOPS of double-precision floating point. On the two larger sizes, the GPUs are connected together via NVIDIA NVLink 2.0 running at a total data rate of up to 300 GBps. This allows the GPUs to exchange intermediate results and other data at high speed, without having to move it through the CPU or the PCI-Express fabric.

What’s a Tensor Core?
I had not heard the term Tensor core before starting to write this post. According to this very helpful post on the NVIDIA Blog, Tensor cores are designed to speed up the training and inference of large, deep neural networks. Each core is able to quickly and efficiently multiply a pair of 4×4 half-precision (also known as FP16) matrices together, add the resulting 4×4 matrix to another half or single-precision (FP32) matrix, and store the resulting 4×4 matrix in either half or single-precision form. Here’s a diagram from NVIDIA’s blog post:

This operation is in the innermost loop of the training process for a deep neural network, and is an excellent example of how today’s NVIDIA GPU hardware is purpose-built to address a very specific market need. By the way, the mixed-precision qualifier on the Tensor core performance means that it is flexible enough to work with with a combination of 16-bit and 32-bit floating point values.

Performance in Perspective
I always like to put raw performance numbers into a real-world perspective so that they are easier to relate to and (hopefully) more meaningful. This turned out to be surprisingly difficult, given that the eight NVIDIA Tesla V100 GPUs on a single p3.16xlarge can do 125 trillion single-precision floating point multiplications per second.

Let’s go back to the dawn of the microprocessor era, and consider the Intel 8080A chip that powered the MITS Altair that I bought in the summer of 1977. With a 2 MHz clock, it was able to do about 832 multiplications per second (I used this data and corrected it for the faster clock speed). The p3.16xlarge is roughly 150 billion times faster. However, just 1.2 billion seconds have gone by since that summer. In other words, I can do 100x more calculations today in one second than my Altair could have done in the last 40 years!

What about the innovative 8087 math coprocessor that was an optional accessory for the IBM PC that was announced in the summer of 1981? With a 5 MHz clock and purpose-built hardware, it was able to do about 52,632 multiplications per second. 1.14 billion seconds have elapsed since then, p3.16xlarge is 2.37 billion times faster, so the poor little PC would be barely halfway through a calculation that would run for 1 second today.

Ok, how about a Cray-1? First delivered in 1976, this supercomputer was able to perform vector operations at 160 MFLOPS, making the p3.x16xlarge 781,000 times faster. It could have iterated on some interesting problem 1500 times over the years since it was introduced.

Comparisons between the P3 and today’s scale-out supercomputers are harder to make, given that you can think of the P3 as a step-and-repeat component of a supercomputer that you can launch on as as-needed basis.

Run One Today
In order to take full advantage of the NVIDIA Tesla V100 GPUs and the Tensor cores, you will need to use CUDA 9 and cuDNN7. These drivers and libraries have already been added to the newest versions of the Windows AMIs and will be included in an updated Amazon Linux AMI that is scheduled for release on November 7th. New packages are already available in our repos if you want to to install them on your existing Amazon Linux AMI.

The newest AWS Deep Learning AMIs come preinstalled with the latest releases of Apache MxNet, Caffe2, and Tensorflow (each with support for the NVIDIA Tesla V100 GPUs), and will be updated to support P3 instances with other machine learning frameworks such as Microsoft Cognitive Toolkit and PyTorch as soon as these frameworks release support for the NVIDIA Tesla V100 GPUs. You can also use the NVIDIA Volta Deep Learning AMI for NGC.

P3 instances are available in the US East (Northern Virginia), US West (Oregon), EU (Ireland), and Asia Pacific (Tokyo) Regions in On-Demand, Spot, Reserved Instance, and Dedicated Host form.

Jeff;

 

Introducing Gluon: a new library for machine learning from AWS and Microsoft

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-learning-from-aws-and-microsoft/

Post by Dr. Matt Wood

Today, AWS and Microsoft announced Gluon, a new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance.

Gluon Logo

Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components. Developers who are new to machine learning will find this interface more familiar to traditional code, since machine learning models can be defined and manipulated just like any other data structure. More seasoned data scientists and researchers will value the ability to build prototypes quickly and utilize dynamic neural network graphs for entirely new model architectures, all without sacrificing training speed.

Gluon is available in Apache MXNet today, a forthcoming Microsoft Cognitive Toolkit release, and in more frameworks over time.

Neural Networks vs Developers
Machine learning with neural networks (including ‘deep learning’) has three main components: data for training; a neural network model, and an algorithm which trains the neural network. You can think of the neural network in a similar way to a directed graph; it has a series of inputs (which represent the data), which connect to a series of outputs (the prediction), through a series of connected layers and weights. During training, the algorithm adjusts the weights in the network based on the error in the network output. This is the process by which the network learns; it is a memory and compute intensive process which can take days.

Deep learning frameworks such as Caffe2, Cognitive Toolkit, TensorFlow, and Apache MXNet are, in part, an answer to the question ‘how can we speed this process up? Just like query optimizers in databases, the more a training engine knows about the network and the algorithm, the more optimizations it can make to the training process (for example, it can infer what needs to be re-computed on the graph based on what else has changed, and skip the unaffected weights to speed things up). These frameworks also provide parallelization to distribute the computation process, and reduce the overall training time.

However, in order to achieve these optimizations, most frameworks require the developer to do some extra work: specifically, by providing a formal definition of the network graph, up-front, and then ‘freezing’ the graph, and just adjusting the weights.

The network definition, which can be large and complex with millions of connections, usually has to be constructed by hand. Not only are deep learning networks unwieldy, but they can be difficult to debug and it’s hard to re-use the code between projects.

The result of this complexity can be difficult for beginners and is a time-consuming task for more experienced researchers. At AWS, we’ve been experimenting with some ideas in MXNet around new, flexible, more approachable ways to define and train neural networks. Microsoft is also a contributor to the open source MXNet project, and were interested in some of these same ideas. Based on this, we got talking, and found we had a similar vision: to use these techniques to reduce the complexity of machine learning, making it accessible to more developers.

Enter Gluon: dynamic graphs, rapid iteration, scalable training
Gluon introduces four key innovations.

  1. Friendly API: Gluon networks can be defined using a simple, clear, concise code – this is easier for developers to learn, and much easier to understand than some of the more arcane and formal ways of defining networks and their associated weighted scoring functions.
  2. Dynamic networks: the network definition in Gluon is dynamic: it can bend and flex just like any other data structure. This is in contrast to the more common, formal, symbolic definition of a network which the deep learning framework has to effectively carve into stone in order to be able to effectively optimizing computation during training. Dynamic networks are easier to manage, and with Gluon, developers can easily ‘hybridize’ between these fast symbolic representations and the more friendly, dynamic ‘imperative’ definitions of the network and algorithms.
  3. The algorithm can define the network: the model and the training algorithm are brought much closer together. Instead of separate definitions, the algorithm can adjust the network dynamically during definition and training. Not only does this mean that developers can use standard programming loops, and conditionals to create these networks, but researchers can now define even more sophisticated algorithms and models which were not possible before. They are all easier to create, change, and debug.
  4. High performance operators for training: which makes it possible to have a friendly, concise API and dynamic graphs, without sacrificing training speed. This is a huge step forward in machine learning. Some frameworks bring a friendly API or dynamic graphs to deep learning, but these previous methods all incur a cost in terms of training speed. As with other areas of software, abstraction can slow down computation since it needs to be negotiated and interpreted at run time. Gluon can efficiently blend together a concise API with the formal definition under the hood, without the developer having to know about the specific details or to accommodate the compiler optimizations manually.

The team here at AWS, and our collaborators at Microsoft, couldn’t be more excited to bring these improvements to developers through Gluon. We’re already seeing quite a bit of excitement from developers and researchers alike.

Getting started with Gluon
Gluon is available today in Apache MXNet, with support coming for the Microsoft Cognitive Toolkit in a future release. We’re also publishing the front-end interface and the low-level API specifications so it can be included in other frameworks in the fullness of time.

You can get started with Gluon today. Fire up the AWS Deep Learning AMI with a single click and jump into one of 50 fully worked, notebook examples. If you’re a contributor to a machine learning framework, check out the interface specs on GitHub.

-Dr. Matt Wood

Journey into Deep Learning with AWS

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/journey-into-deep-learning-with-aws/

If you are anything like me, Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning are completely fascinating and exciting topics. As AI, ML, and Deep Learning become more widely used, for me it means that the science fiction written by Dr. Issac Asimov, the robotics and medical advancements in Star Wars, and the technologies that enabled Captain Kirk and his Star Trek crew “to boldly go where no man has gone before” can become achievable realities.

 

Most people interested in the aforementioned topics are familiar with the AI and ML solutions enabled by Deep Learning, such as Convolutional Neural Networks for Image and Video Classification, Speech Recognition, Natural Language interfaces, and Recommendation Engines. However, it is not always an easy task setting up the infrastructure, environment, and tools to enable data scientists, machine learning practitioners, research scientists, and deep learning hobbyists/advocates to dive into these technologies. Most developers desire to go quickly from getting started with deep learning to training models and developing solutions using deep learning technologies.

For these reasons, I would like to share some resources that will help to quickly build deep learning solutions whether you are an experienced data scientist or a curious developer wanting to get started.

Deep Learning Resources

The Apache MXNet is Amazon’s deep learning framework of choice. With the power of Apache MXNet framework and NVIDIA GPU computing, you can launch your scalable deep learning projects and solutions easily on the AWS Cloud. As you get started on your MxNet deep learning quest, there are a variety of self-service tutorials and datasets available to you:

  • Launch an AWS Deep Learning AMI: This guide walks you through the steps to launch the AWS Deep Learning AMI with Ubuntu
  • MXNet – Create a computer vision application: This hands-on tutorial uses a pre-built notebook to walk you through using neural networks to build a computer vision application to identify handwritten digits
  • AWS Machine Learning Datasets: AWS hosts datasets for Machine Learning on the AWS Marketplace that you can access for free. These large datasets are available for anyone to analyze the data without requiring the data to be downloaded or stored.
  • Predict and Extract – Learn to use pre-trained models for predictions: This hands-on tutorial will walk you through how to use pre-trained model for predicting and feature extraction using the full Imagenet dataset.

 

AWS Deep Learning AMIs

AWS offers Amazon Machine Images (AMIs) for use on Amazon EC2 for quick deployment of an infrastructure needed to start your deep learning journey. The AWS Deep Learning AMIs are pre-configured with popular deep learning frameworks built using Amazon EC2 instances on Amazon Linux, and Ubuntu that can be launched for AI targeted solutions and models. The deep learning frameworks supported and pre-configured on the deep learning AMI are:

  • Apache MXNet
  • TensorFlow
  • Microsoft Cognitive Toolkit (CNTK)
  • Caffe
  • Caffe2
  • Theano
  • Torch
  • Keras

Additionally, the AWS Deep Learning AMIs install preconfigured libraries for Jupyter notebooks with Python 2.7/3.4, AWS SDK for Python, and other data science related python packages and dependencies. The AMIs also come with NVIDIA CUDA and NVIDIA CUDA Deep Neural Network (cuDNN) libraries preinstalled with all the supported deep learning frameworks and the Intel Math Kernel Library is installed for Apache MXNet framework. You can launch any of the Deep Learning AMIs by visiting the AWS Marketplace using the Try the Deep Learning AMIs link.

Summary

It is a great time to dive into Deep Learning. You can accelerate your work in deep learning by using the AWS Deep Learning AMIs running on the AWS cloud to get your deep learning environment running quickly or get started learning more about Deep Learning on AWS with MXNet using the AWS self-service resources.  Of course, you can learn even more information about Deep Learning, Machine Learning, and Artificial Intelligence on AWS by reviewing the AWS Deep Learning page, the Amazon AI product page, and the AWS AI Blog.

May the Deep Learning Force be with you all.

Tara

Join Us at the 10th Annual Hadoop Summit / DataWorks Summit, San Jose (Jun 13-15)

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/160966148886

yahoohadoop:

image

We’re excited to co-host the 10th Annual Hadoop Summit, the leading conference for the Apache Hadoop community, taking place on June 13 – 15 at the San Jose Convention Center. In the last few years, the Hadoop Summit has expanded to cover all things data beyond just Apache Hadoop – such as data science, cloud and operations, IoT and applications – and has been aptly renamed the DataWorks Summit. The three-day program is bursting at the seams! Here are just a few of the reasons why you cannot miss this must-attend event:

  • Familiarize yourself with the cutting edge in Apache project developments from the committers
  • Learn from your peers and industry experts about innovative and real-world use cases, development and administration tips and tricks, success stories and best practices to leverage all your data – on-premise and in the cloud – to drive predictive analytics, distributed deep-learning and artificial intelligence initiatives
  • Attend one of our more than 170 technical deep dive breakout sessions from nearly 200 speakers across eight tracks
  • Check out our keynotes, meetups, trainings, technical crash courses, birds-of-a-feather sessions, Women in Big Data and more
  • Attend the community showcase where you can network with sponsors and industry experts, including a host of startups and large companies like Microsoft, IBM, Oracle, HP, Dell EMC and Teradata

Similar to previous years, we look forward to continuing Yahoo’s decade-long tradition of thought leadership at this year’s summit. Join us for an in-depth look at Yahoo’s Hadoop culture and for the latest in technologies such as Apache Tez, HBase, Hive, Data Highway Rainbow, Mail Data Warehouse and Distributed Deep Learning at the breakout sessions below. Or, stop by Yahoo kiosk #700 at the community showcase.

Also, as a co-host of the event, Yahoo is pleased to offer a 20% discount for the summit with the code MSPO20. Register here for Hadoop Summit, San Jose, California!


DAY 1. TUESDAY June 13, 2017


12:20 – 1:00 P.M. TensorFlowOnSpark – Scalable TensorFlow Learning On Spark Clusters

Andy Feng – VP Architecture, Big Data and Machine Learning

Lee Yang – Sr. Principal Engineer

In this talk, we will introduce a new framework, TensorFlowOnSpark, for scalable TensorFlow learning, that was open sourced in Q1 2017. This new framework enables easy experimentation for algorithm designs, and supports scalable training & inferencing on Spark clusters. It supports all TensorFlow functionalities including synchronous & asynchronous learning, model & data parallelism, and TensorBoard. It provides architectural flexibility for data ingestion to TensorFlow and network protocols for server-to-server communication. With a few lines of code changes, an existing TensorFlow algorithm can be transformed into a scalable application.

2:10 – 2:50 P.M. Handling Kernel Upgrades at Scale – The Dirty Cow Story

Samy Gawande – Sr. Operations Engineer

Savitha Ravikrishnan – Site Reliability Engineer

Apache Hadoop at Yahoo is a massive platform with 36 different clusters spread across YARN, Apache HBase, and Apache Storm deployments, totaling 60,000 servers made up of 100s of different hardware configurations accumulated over generations, presenting unique operational challenges and a variety of unforeseen corner cases. In this talk, we will share methods, tips and tricks to deal with large scale kernel upgrade on heterogeneous platforms within tight timeframes with 100% uptime and no service or data loss through the Dirty COW use case (privilege escalation vulnerability found in the Linux Kernel in late 2016).

5:00 – 5:40 P.M. Data Highway Rainbow –  Petabyte Scale Event Collection, Transport, and Delivery at Yahoo

Nilam Sharma – Sr. Software Engineer

Huibing Yin – Sr. Software Engineer

This talk presents the architecture and features of Data Highway Rainbow, Yahoo’s hosted multi-tenant infrastructure which offers event collection, transport and aggregated delivery as a service. Data Highway supports collection from multiple data centers & aggregated delivery in primary Yahoo data centers which provide a big data computing cluster. From a delivery perspective, Data Highway supports endpoints/sinks such as HDFS, Storm and Kafka; with Storm & Kafka endpoints tailored towards latency sensitive consumers.


DAY 2. WEDNESDAY June 14, 2017


9:05 – 9:15 A.M. Yahoo General Session – Shaping Data Platform for Lasting Value

Sumeet Singh  – Sr. Director, Products

With a long history of open innovation with Hadoop, Yahoo continues to invest in and expand the platform capabilities by pushing the boundaries of what the platform can accomplish for the entire organization. In the last 11 years (yes, it is that old!), the Hadoop platform has shown no signs of giving up or giving in. In this talk, we explore what makes the shared multi-tenant Hadoop platform so special at Yahoo.

12:20 – 1:00 P.M. CaffeOnSpark Update – Recent Enhancements and Use Cases

Mridul Jain – Sr. Principal Engineer

Jun Shi – Principal Engineer

By combining salient features from deep learning framework Caffe and big-data frameworks Apache Spark and Apache Hadoop, CaffeOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. We released CaffeOnSpark as an open source project in early 2016, and shared its architecture design and basic usage at Hadoop Summit 2016. In this talk, we will update audiences about the recent development of CaffeOnSpark. We will highlight new features and capabilities: unified data layer which multi-label datasets, distributed LSTM training, interleave testing with training, monitoring/profiling framework, and docker deployment.

12:20 – 1:00 P.M. Tez Shuffle Handler – Shuffling at Scale with Apache Hadoop

Jon Eagles – Principal Engineer  

Kuhu Shukla – Software Engineer

In this talk we introduce a new Shuffle Handler for Tez, a YARN Auxiliary Service, that addresses the shortcomings and performance bottlenecks of the legacy MapReduce Shuffle Handler, the default shuffle service in Apache Tez. The Apache Tez Shuffle Handler adds composite fetch which has support for multi-partition fetch to mitigate performance slow down and provides deletion APIs to reduce disk usage for long running Tez sessions. As an emerging technology we will outline future roadmap for the Apache Tez Shuffle Handler and provide performance evaluation results from real world jobs at scale.

2:10 – 2:50 P.M. Achieving HBase Multi-Tenancy with RegionServer Groups and Favored Nodes

Thiruvel Thirumoolan – Principal Engineer

Francis Liu – Sr. Principal Engineer

At Yahoo! HBase has been running as a hosted multi-tenant service since 2013. In a single HBase cluster we have around 30 tenants running various types of workloads (ie batch, near real-time, ad-hoc, etc). We will walk through multi-tenancy features explaining our motivation, how they work as well as our experiences running these multi-tenant clusters. These features will be available in Apache HBase 2.0.

2:10 – 2:50 P.M. Data Driving Yahoo Mail Growth and Evolution with a 50 PB Hadoop Warehouse

Nick Huang – Director, Data Engineering, Yahoo Mail  

Saurabh Dixit – Sr. Principal Engineer, Yahoo Mail

Since 2014, the Yahoo Mail Data Engineering team took on the task of revamping the Mail data warehouse and analytics infrastructure in order to drive the continued growth and evolution of Yahoo Mail. Along the way we have built a 50 PB Hadoop warehouse, and surrounding analytics and machine learning programs that have transformed the way data plays in Yahoo Mail. In this session we will share our experience from this 3 year journey, from the system architecture, analytics systems built, to the learnings from development and drive for adoption.

DAY3. THURSDAY June 15, 2017


2:10 – 2:50 P.M. OracleStore – A Highly Performant RawStore Implementation for Hive Metastore

Chris Drome – Sr. Principal Engineer  

Jin Sun – Principal Engineer

Today, Yahoo uses Hive in many different spaces, from ETL pipelines to adhoc user queries. Increasingly, we are investigating the practicality of applying Hive to real-time queries, such as those generated by interactive BI reporting systems. In order for Hive to succeed in this space, it must be performant in all aspects of query execution, from query compilation to job execution. One such component is the interaction with the underlying database at the core of the Metastore. As an alternative to ObjectStore, we created OracleStore as a proof-of-concept. Freed of the restrictions imposed by DataNucleus, we were able to design a more performant database schema that better met our needs. Then, we implemented OracleStore with specific goals built-in from the start, such as ensuring the deduplication of data. In this talk we will discuss the details behind OracleStore and the gains that were realized with this alternative implementation. These include a reduction of 97%+ in the storage footprint of multiple tables, as well as query performance that is 13x faster than ObjectStore with DirectSQL and 46x faster than ObjectStore without DirectSQL.

3:00 P.M. – 3:40 P.M. Bullet – A Real Time Data Query Engine

Akshai Sarma – Sr. Software Engineer

Michael Natkovich – Director, Engineering

Bullet is an open sourced, lightweight, pluggable querying system for streaming data without a persistence layer implemented on top of Storm. It allows you to filter, project, and aggregate on data in transit. It includes a UI and WS. Instead of running queries on a finite set of data that arrived and was persisted or running a static query defined at the startup of the stream, our queries can be executed against an arbitrary set of data arriving after the query is submitted. In other words, it is a look-forward system. Bullet is a multi-tenant system that scales independently of the data consumed and the number of simultaneous queries. Bullet is pluggable into any streaming data source. It can be configured to read from systems such as Storm, Kafka, Spark, Flume, etc. Bullet leverages Sketches to perform its aggregate operations such as distinct, count distinct, sum, count, min, max, and average.

3:00 P.M. – 3:40 P.M. Yahoo – Moving Beyond Running 100% of Apache Pig Jobs on Apache Tez

Rohini Palaniswamy – Sr. Principal Engineer

Last year at Yahoo, we spent great effort in scaling, stabilizing and making Pig on Tez production ready and by the end of the year retired running Pig jobs on Mapreduce. This talk will detail the performance and resource utilization improvements Yahoo achieved after migrating all Pig jobs to run on Tez. After successful migration and the improved performance we shifted our focus to addressing some of the bottlenecks we identified and new optimization ideas that we came up with to make it go even faster. We will go over the new features and work done in Tez to make that happen like custom YARN ShuffleHandler, reworking DAG scheduling order, serialization changes, etc. We will also cover exciting new features that were added to Pig for performance such as bloom join and byte code generation.

4:10 P.M. – 4:50 P.M. Leveraging Docker for Hadoop Build Automation and Big Data Stack Provisioning

Evans Ye,  Software Engineer

Apache Bigtop as an open source Hadoop distribution, focuses on developing packaging, testing and deployment solutions that help infrastructure engineers to build up their own customized big data platform as easy as possible. However, packages deployed in production require a solid CI testing framework to ensure its quality. Numbers of Hadoop component must be ensured to work perfectly together as well. In this presentation, we’ll talk about how Bigtop deliver its containerized CI framework which can be directly replicated by Bigtop users. The core revolution here are the newly developed Docker Provisioner that leveraged Docker for Hadoop deployment and Docker Sandbox for developer to quickly start a big data stack. The content of this talk includes the containerized CI framework, technical detail of Docker Provisioner and Docker Sandbox, a hierarchy of docker images we designed, and several components we developed such as Bigtop Toolchain to achieve build automation.

Register here for Hadoop Summit, San Jose, California with a 20% discount code MSPO20

Questions? Feel free to reach out to us at [email protected] Hope to see you there!

AWS Enables Consortium Science to Accelerate Discovery

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-enables-consortium-science-to-accelerate-discovery/

My colleague Mia Champion is a scientist (check out her publications), an AWS Certified Solutions Architect, and an AWS Certified Developer. The time that she spent doing research on large-data datasets gave her an appreciation for the value of cloud computing in the bioinformatics space, which she summarizes and explains in the guest post below!

Jeff;


Technological advances in scientific research continue to enable the collection of exponentially growing datasets that are also increasing in the complexity of their content. The global pace of innovation is now also fueled by the recent cloud-computing revolution, which provides researchers with a seemingly boundless scalable and agile infrastructure. Now, researchers can remove the hindrances of having to own and maintain their own sequencers, microscopes, compute clusters, and more. Using the cloud, scientists can easily store, manage, process and share datasets for millions of patient samples with gigabytes and more of data for each individual. As American physicist, John Bardeen once said: “Science is a collaborative effort. The combined results of several people working together is much more effective than could be that of an individual scientist working alone”.

Prioritizing Reproducible Innovation, Democratization, and Data Protection
Today, we have many individual researchers and organizations leveraging secure cloud enabled data sharing on an unprecedented scale and producing innovative, customized analytical solutions using the AWS cloud.  But, can secure data sharing and analytics be done on such a collaborative scale as to revolutionize the way science is done across a domain of interest or even across discipline/s of science? Can building a cloud-enabled consortium of resources remove the analytical variability that leads to diminished reproducibility, which has long plagued the interpretability and impact of research discoveries? The answers to these questions are ‘yes’ and initiatives such as the Neuro Cloud Consortium, The Global Alliance for Genomics and Health (GA4GH), and The Sage Bionetworks Synapse platform, which powers many research consortiums including the DREAM challenges, are starting to put into practice model cloud-initiatives that will not only provide impactful discoveries in the areas of neuroscience, infectious disease, and cancer, but are also revolutionizing the way in which scientific research is done.

Bringing Crowd Developed Models, Algorithms, and Functions to the Data
Collaborative projects have traditionally allowed investigators to download datasets such as those used for comparative sequence analysis or for training a deep learning algorithm on medical imaging data. Investigators were then able to develop and execute their analysis using institutional clusters, local workstations, or even laptops:

This method of collaboration is problematic for many reasons. The first concern is data security, since dataset download essentially permits “chain-data-sharing” with any number of recipients. Second, analytics done using compute environments that are not templated at some level introduces the risk of variable analytics that itself is not reproducible by a different investigator, or even the same investigator using a different compute environment. Third, the required data dump, processing, and then re-upload or distribution to the collaborative group is highly inefficient and dependent upon each individual’s networking and compute capabilities. Overall, traditional methods of scientific collaboration have introduced methods in which security is compromised and time to discovery is hampered.

Using the AWS cloud, collaborative researchers can share datasets easily and securely by taking advantage of Identity and Access Management (IAM) policy restrictions for user bucket access as well as S3 bucket policies or Access Control Lists (ACLs). To streamline analysis and ensure data security, many researchers are eliminating the necessity to download datasets entirely by leveraging resources that facilitate moving the analytics to the data source and/or taking advantage of remote API requests to access a shared database or data lake. One way our customers are accomplishing this is to leverage container based Docker technology to provide collaborators with a way to submit algorithms or models for execution on the system hosting the shared datasets:

Docker container images have all of the application’s dependencies bundled together, and therefore provide a high degree of versatility and portability, which is a significant advantage over using other executable-based approaches. In the case of collaborative machine learning projects, each docker container will contain applications, language runtime, packages and libraries, as well as any of the more popular deep learning frameworks commonly used by researchers including: MXNet, Caffe, TensorFlow, and Theano.

A common feature in these frameworks is the ability to leverage a host machine’s Graphical Processing Units (GPUs) for significant acceleration of the matrix and vector operations involved in the machine learning computations. As such, researchers with these objectives can leverage EC2’s new P2 instance types in order to power execution of submitted machine learning models. In addition, GPUs can be mounted directly to containers using the NVIDIA Docker tool and appear at the system level as additional devices. By leveraging Amazon EC2 Container Service and the EC2 Container Registry, collaborators are able to execute analytical solutions submitted to the project repository by their colleagues in a reproducible fashion as well as continue to build on their existing environment.  Researchers can also architect a continuous deployment pipeline to run their docker-enabled workflows.

In conclusion, emerging cloud-enabled consortium initiatives serve as models for the broader research community for how cloud-enabled community science can expedite discoveries in Precision Medicine while also providing a platform where data security and discovery reproducibility is inherent to the project execution.

Mia D. Champion, Ph.D.

 

TensorFlow 1.0 released

Post Syndicated from corbet original https://lwn.net/Articles/714639/rss

The TensorFlow
1.0 release
is available, bringing an API stability guarantee to this
machine-learning library from Google. “TensorFlow 1.0 introduces a
high-level API for TensorFlow, with tf.layers, tf.metrics, and tf.losses
modules. We’ve also announced the inclusion of a new tf.keras module that
provides full compatibility with Keras, another popular high-level neural
networks library.

Open Sourcing TensorFlowOnSpark: Distributed Deep Learning on Big-Data Clusters

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/157196488076

yahoohadoop:

By Lee Yang, Jun Shi, Bobbie Chern, and Andy Feng (@afeng76), Yahoo Big ML team

Introduction

Today, we are pleased to offer TensorFlowOnSpark to the community, our latest open source framework for distributed deep learning on big-data clusters.

Deep learning (DL) has evolved significantly in recent years. At Yahoo, we’ve found that in order to gain insight from massive amounts of data, we need to deploy distributed deep learning. Existing DL frameworks often require us to set up separate clusters for deep learning, forcing us to create multiple programs for a machine learning pipeline (see Figure 1 below). Having separate clusters requires us to transfer large datasets between them, introducing unwanted system complexity and end-to-end learning latency.

image

Last year we addressed scaleout issues by developing and publishing CaffeOnSpark, our open source framework that allows distributed deep learning and big-data processing on identical Spark and Hadoop clusters. We use CaffeOnSpark at Yahoo to improve our NSFW image detection, to automatically identify eSports game highlights from live-streamed videos, and more. With the community’s valuable feedback and contributions, CaffeOnSpark has been upgraded with LSTM support, a new data layer, training and test interleaving, a Python API, and deployment on docker containers. This has been great for our Caffe users, but what about those who use the deep learning framework TensorFlow? We’re taking a page from our own playbook and doing for TensorFlow for what we did for Caffe.  

After TensorFlow’s initial publication, Google released an enhanced TensorFlow with distributed deep learning capabilities in April 2016. In October 2016, TensorFlow introduced HDFS support. Outside of the Google cloud, however, users still needed a dedicated cluster for TensorFlow applications. TensorFlow programs could not be deployed on existing big-data clusters, thus increasing the cost and latency for those who wanted to take advantage of this technology at scale.

To address this limitation, several community projects wired TensorFlow onto Spark clusters. SparkNet added the ability to launch TensorFlow networks in Spark executors. DataBricks proposed TensorFrame to manipulate Apache Spark’s DataFrames with TensorFlow programs. While these approaches are a step in the right direction, after examining their code, we learned we would be unable to get the TensorFlow processes to communicate with each other directly, we would not be able to implement asynchronous distributed learning, and we would have to expend significant effort to migrate existing TensorFlow programs.

TensorFlowOnSpark

image

Our new framework, TensorFlowOnSpark (TFoS), enables distributed
TensorFlow execution on Spark and Hadoop clusters. As illustrated in
Figure 2 above, TensorFlowOnSpark is designed to work along with
SparkSQL, MLlib, and other Spark libraries in a single pipeline or
program (e.g. Python notebook).

TensorFlowOnSpark supports all types of TensorFlow programs, enabling both asynchronous and synchronous training and inferencing. It supports model parallelism and data parallelism, as well as TensorFlow tools such as TensorBoard on Spark clusters.

Any TensorFlow program can be easily modified to work with TensorFlowOnSpark. Typically, changing fewer than 10 lines of Python code are needed. Many developers at Yahoo who use TensorFlow have easily migrated TensorFlow programs for execution with TensorFlowOnSpark.

TensorFlowOnSpark supports direct tensor communication among TensorFlow processes (workers and parameter servers). Process-to-process direct communication enables TensorFlowOnSpark programs to scale easily by adding machines. As illustrated in Figure 3, TensorFlowOnSpark doesn’t involve Spark drivers in tensor communication, and thus achieves similar scalability as stand-alone TensorFlow clusters.

image

TensorFlowOnSpark provides two different modes to ingest data for training and inference:

  1. TensorFlow QueueRunners: TensorFlowOnSpark leverages TensorFlow’s file readers and QueueRunners to read data directly from HDFS files. Spark is not involved in accessing data.
  2. Spark Feeding: Spark RDD data is fed to each Spark executor, which subsequently feeds the data into the TensorFlow graph via feed_dict.

Figure 4 illustrates how the synchronous distributed training of Inception image classification network scales in TFoS using QueueRunners with a simple setting: 1 GPU, 1 reader, and batch size 32 for each worker. Four TFoS jobs were launched to train 100,000 steps. When these jobs completed after 2+ days, the top-5 accuracy of these jobs were 0.730, 0.814, 0.854, and 0.879. Reaching top-5 accuracy of 0.730 takes 46 hours for a 1-worker job, 22.5 hours for a 2-worker job, 13 hours for a 4-worker job, and 7.5 hours for an 8-worker job. TFoS thus achieves near linear scalability for Inception model training. This is very encouraging, although TFoS scalability will vary for different models and hyperparameters.

image

RDMA for Distributed TensorFlow

In Yahoo’s Hadoop clusters, GPU nodes are connected by both Ethernet and Infiniband. Infiniband provides faster connectivity and supports direct access to other servers’ memories over RDMA. Current TensorFlow releases, however, only support distributed learning using gRPC over Ethernet. To speed up distributed learning, we have enhanced the TensorFlow C++ layer to enable RDMA over Infiniband.

In conjunction with our TFoS release, we are introducing a new protocol for TensorFlow servers in addition to the default “grpc” protocol. Any distributed TensorFlow program can leverage our enhancement via specifying protocol=“grpc_rdma” in tf.train.ServerDef() or tf.train.Server().

With this new protocol, a RDMA rendezvous manager is created to ensure tensors are written directly into the memory of remote servers. We minimize the tensor buffer creation: Tensor buffers are allocated once at the beginning, and then reused across all training steps of a TensorFlow job. From our early experimentation with large models like the VGG-19 network, our RDMA implementation has demonstrated a significant speedup on training time compared with the existing gRPC implementation.

Since RDMA support is a highly requested capability (see TensorFlow issue #2916), we decided to make our current implementation available as an alpha release to the TensorFlow community. In the coming weeks, we will polish our RDMA implementation further, and share detailed benchmark results.

Simple CLI and API

TFoS programs are launched by the standard Apache Spark command, spark-submit. As illustrated below, users can specify the number of Spark executors, the number of GPUs per executor, and the number of parameter servers in the CLI. A user can also state whether they want to use TensorBoard (–tensorboard) and/or RDMA (–rdma).

      spark-submit –master ${MASTER} \
      ${TFoS_HOME}/examples/slim/train_image_classifier.py \
      –model_name inception_v3 \
      –train_dir hdfs://default/slim_train \
      –dataset_dir hdfs://default/data/imagenet \
      –dataset_name imagenet \
      –dataset_split_name train \
      –cluster_size ${NUM_EXEC} \
      –num_gpus ${NUM_GPU} \
      –num_ps_tasks ${NUM_PS} \
      –sync_replicas \
      –replicas_to_aggregate ${NUM_WORKERS} \
      –tensorboard \
      –rdma  

TFoS provides a high-level Python API (illustrated in our sample Python notebook):

  • TFCluster.reserve() … construct a TensorFlow cluster from Spark executors
  • TFCluster.start() … launch Tensorflow program on the executors
  • TFCluster.train() or TFCluster.inference() … feed RDD data to TensorFlow processes
  • TFCluster.shutdown() … shutdown Tensorflow execution on executors

Open Source

Yahoo is happy to release TensorFlowOnSpark at github.com/yahoo/TensorFlowOnSpark and a RDMA enhancement of TensorFlow at github.com/yahoo/tensorflow/tree/yahoo. Multiple example programs (including mnist, cifar10, inception, and VGG) are provided to illustrate the simple conversion process of TensorFlow programs to TensorFlowOnSpark, and leverage RDMA. An Amazon Machine Image is also available for applying TensorFlowOnSpark on AWS EC2.

Going forward, we will advance TensorFlowOnSpark as we continue to do with CaffeOnSpark. We welcome the community’s continued feedback and contributions to CaffeOnSpark, and are interested in thoughts on ways TensorFlowOnSpark can be enhanced.

Fly AI

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/fly_ai/

Happy 2017, everybody! We’re back in the office (for values of “we” equal to me and a cup of coffee – the rest of your friendly Comms team is still on vacation). I hope your New Year’s resolutions are still unbroken. Mine involves that coffee, which doesn’t have any sugar in it and is making January feel much bleaker than necessary. I’ll be fascinated to see how long I can keep it up.

On to the Pi stuff.

I spotted this magnificently creepy art installation from David Bowen just before Christmas, and have been looking forward to showing it to you, because I like to know I’m not the only person having specific nightmares. In this project, a Raspberry Pi AI is mothering a colony of flies: whenever if spots and correctly identifies a fly, it releases a dose of nutrients and water.

flyAI

flyAI creates a situation where the fate of a colony of living houseflies is determined by the accuracy of artificial intelligence software. The installation uses the TensorFlow machine learning image recognition library to classify images of live houseflies. As the flies fly and land in front of a camera, their image is captured.

David says: “The system is setup to run indefinitely with an indeterminate outcome.”

Which means there’s potential for an awful lot of tiny corpses.

It all sounds simple enough, but there’s something about the build – the choice of AI voice, the achingly slow process of enunciating everything it believes it might have seen before it feeds its wards…the fact that the horrible space-helmet-bubble thing is full of flies – that makes for the most unsettling project we’ve seen in a long time.

Fly AI

If you are inspired by this arthropod chamber of horrors, you can read about more of David’s projects on his blog. You’ll be delighted to learn than this is not the only one employing house-fly labourers. More power to all six of your elbows, David.

The post Fly AI appeared first on Raspberry Pi.

Running Jupyter Notebook and JupyterHub on Amazon EMR

Post Syndicated from Tom Zeng original https://aws.amazon.com/blogs/big-data/running-jupyter-notebook-and-jupyterhub-on-amazon-emr/

Tom Zeng is a Solutions Architect for Amazon EMR

Jupyter Notebook (formerly IPython) is one of the most popular user interfaces for running Python, R, Julia, Scala, and other languages to process and visualize data, perform statistical analysis, and train and run machine learning models. Jupyter notebooks are self-contained documents that can include live code, charts, narrative text, and more. The notebooks can be easily converted to HTML, PDF, and other formats for sharing.

Amazon EMR is a popular hosted big data processing service that allows users to easily run Hadoop, Spark, Presto, and other Hadoop ecosystem applications, such as Hive and Pig.

Python, Scala, and R provide support for Spark and Hadoop, and running them in Jupyter on Amazon EMR makes it easy to take advantage of:

  • the big-data processing capabilities of Hadoop applications.
  • the large selection of Python and R packages for analytics and visualization.

JupyterHub is a multiple-user environment for Jupyter. You can use the following bootstrap action (BA) to install Jupyter and JupyterHub on Amazon EMR:

s3://aws-bigdata-blog/artifacts/aws-blog-emr-jupyter/install-jupyter-emr5.sh

These are the supported Jupyter kernels:

  • Python
  • R
  • Scala
  • Apache Toree (which provides the Spark, PySpark, SparkR, and SparkSQL kernels)
  • Julia
  • Ruby
  • JavaScript
  • CoffeeScript
  • Torch

The BA will install Jupyter, JupyterHub, and sample notebooks on the master node.

Commonly used Python and R data science and machine learning packages can be optionally installed on all nodes.

The following arguments can be passed to the BA:

--r Install the IRKernel for R.
--toree Install the Apache Toree kernel that supports Scala, PySpark, SQL, SparkR for Apache Spark.
--julia Install the IJulia kernel for Julia.
--torch Install the iTorch kernel for Torch (machine learning and visualization).
--ruby Install the iRuby kernel for Ruby.
--ds-packages Install the Python data science-related packages (scikit-learn pandas statsmodels).
--ml-packages Install the Python machine learning-related packages (theano keras tensorflow).
--python-packages Install specific Python packages (for example, ggplot and nilearn).
--port Set the port for Jupyter notebook. The default is 8888.
--password Set the password for the Jupyter notebook.
--localhost-only Restrict Jupyter to listen on localhost only. The default is to listen on all IP addresses.
--jupyterhub Install JupyterHub.
--jupyterhub-port Set the port for JuputerHub. The default is 8000.
--notebook-dir Specify the notebook folder. This could be a local directory or an S3 bucket.
--cached-install Use some cached dependency artifacts on S3 to speed up installation.
--ssl Enable SSL. For production, make sure to use your own certificate and key files.
--copy-samples Copy sample notebooks to the notebook folder.
--spark-opts User-supplied Spark options to override the default values.
--s3fs Use instead of s3nb (the default) for storing notebooks on Amazon S3. This argument can cause slowness if the S3 bucket has lots of files. The Upload file and Create folder menu options do not work with s3nb.

By default (with no --password and --port arguments), Jupyter will run on port 8888 with no password protection; JupyterHub will run on port 8000.  The --port and --jupyterhub-port arguments can be used to override the default ports to avoid conflicts with other applications.

The --r option installs the IRKernel for R. It also installs SparkR and sparklyr for R, so make sure Spark is one of the selected EMR applications to be installed. You’ll need the Spark application if you use the --toree argument.

If you used --jupyterhub, use Linux users to sign in to JupyterHub. (Be sure to create passwords for the Linux users first.)  hadoop, the default admin user for JupyterHub, can be used to set up other users. The –password option sets the password for Jupyter and for the hadoop user for JupyterHub.

Jupyter on EMR allows users to save their work on Amazon S3 rather than on local storage on the EMR cluster (master node).

To store notebooks on S3, use:

--notebook-dir <s3://your-bucket/folder/>

To store notebooks in a directory different from the user’s home directory, use:

--notebook-dir <local directory>

The following example CLI command is used to launch a five-node (c3.4xlarge) EMR 5.2.0 cluster with the bootstrap action. The BA will install all the available kernels. It will also install the ggplot and nilearn Python packages and set:

  • the Jupyter port to 8880
  • the password to jupyter
  • the JupyterHub port to 8001
aws emr create-cluster --release-label emr-5.2.0 \
  --name 'emr-5.2.0 sparklyr + jupyter cli example' \
  --applications Name=Hadoop Name=Hive Name=Spark Name=Pig Name=Tez Name=Ganglia Name=Presto \
  --ec2-attributes KeyName=<your-ec2-key>,InstanceProfile=EMR_EC2_DefaultRole \
  --service-role EMR_DefaultRole \
  --instance-groups \
    InstanceGroupType=MASTER,InstanceCount=1,InstanceType=c3.4xlarge \
    InstanceGroupType=CORE,InstanceCount=4,InstanceType=c3.4xlarge \
  --region us-east-1 \
  --log-uri s3://<your-s3-bucket>/emr-logs/ \
  --bootstrap-actions \
    Name='Install Jupyter notebook',Path="s3://aws-bigdata-blog/artifacts/aws-blog-emr-jupyter/install-jupyter-emr5.sh",Args=[--r,--julia,--toree,--torch,--ruby,--ds-packages,--ml-packages,--python-packages,'ggplot nilearn',--port,8880,--password,jupyter,--jupyterhub,--jupyterhub-port,8001,--cached-install,--notebook-dir,s3://<your-s3-bucket>/notebooks/,--copy-samples]

Replace <your-ec2-key> with your AWS access key and <your-s3-bucket> with the S3 bucket where you store notebooks. You can also change the instance types to suit your needs and budget.

If you are using the EMR console to launch a cluster, you can specify the bootstrap action as follows:

o_jupyter_1

When the cluster is available, set up the SSH tunnel and web proxy. The Jupyter notebook should be available at localhost:8880 (as specified in the example CLI command).

o_jupyter_2

After you have signed in, you will see the home page, which displays the notebook files:

o_jupyter_3

If JupyterHub is installed, the Sign in page should be available at port 8001 (as specified in the CLI example):

o_jupyter_4

After you are signed in, you’ll see the JupyterHub and Jupyter home pages are the same. The JupyterHub URL, however, is /user/<username>/tree instead of /tree.

o_jupyter_5

The JupyterHub Admin page is used for managing users:

o_jupyter_6

You can install Jupyter extensions from the Nbextensions tab:

o_jupyter_7

If you specified the --copy-samples option in the BA, you should see sample notebooks on the home page. To try the samples, first open and run the CopySampleDataToHDFS.ipynb notebook to copy some sample data files to HDFS. In the CLI example, --python-packages,'ggplot nilearn' is used to install the ggplot and nilearn packages. You can verify those packages were installed by running the Py-ggplot and PyNilearn notebooks.

The CreateUser.ipynb notebook contains examples for setting up JupyterHub users.

The PySpark.ipynb and ScalaSpark.ipynb notebooks contain the Python and Scala versions of some machine learning examples from the Spark distribution (Logistic Regression, Neural Networks, Random Forest, and Support Vector Machines):

o_jupyter_8

PyHivePrestoHDFS.ipynb shows how to access Hive, Presto, and HDFS in Python. (Be sure to run the CreateHivePrestoS3Tables.ipynb first to create tables.) The %%time and %%timeit cell magics can be used to benchmark Hive and Presto queries (and other executable code):

o_jupyter_9

Here are some other sample notebooks for you to try.

SparkSQLParquetJSON.ipynb:

o_SparkSQLParquetJSON

plot_separating_hyperplane.ipynb:

o_plot_separating_hyperplane

R-SVMLinearNonLinear.ipynb:

o_R-SVMLinearNonLinear

plot_iris.ipynb:

o_plot_iris

Julia-IrisPlot.ipynb:

o_Julia-IrisPlot

PyIrisPlot.ipynb:

o_PyIrisPlot

R-RandomForestVisualization.ipynb:

o_R-RandomForestVisualization

GrangerCausality.ipynb:

o_GrangerCausality

SQLite.ipynb:

o_SQLite

GraphvizDot.ipynb:

o_GraphvizDot

Conclusion

Data scientists who run Jupyter and JupyterHub on Amazon EMR can use Python, R, Julia, and Scala to process, analyze, and visualize big data stored in Amazon S3. Jupyter notebooks can be saved to S3 automatically, so users can shut down and launch new EMR clusters, as needed. EMR makes it easy to spin up clusters with different sizes and CPU/memory configurations to suit different workloads and budgets. This can greatly reduce the cost of data-science investigations.

If you have questions about using Jupyter and JupyterHub on EMR or would like share your use cases, please leave a comment below.


Related

Running sparklyr – RStudio’s R Interface to Spark on Amazon EMR

sparklyr_2

Meter Maid Monitor: parking protection with Pi

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/meter-maid-monitor-parking-protection-pi/

Parking can be a challenge in big cities like San Francisco. Spots are scarce, regulations are confusing, and the cost is often too darn high. At the TechCrunch Disrupt hackathon recently, John Naulty reached for a Raspberry Pi to help solve some of his parking problems.

The dreaded parking enforcement Interceptors! Source: Wikipedia

One of the dreaded parking enforcement Interceptors! Source: Wikipedia

John explained that the parking spots near his home only allow two hour parking. But he had figured out that you only get caught exceeding that if the parking enforcement officers see your car in the same spot for more than two hours. If he could somehow know when a meter maid’s Interceptor drives by, he would have a two hour heads-up before he had to move his vehicle.

Here’s how the Raspberry Pi comes into play:

“I used a Raspberry Pi with the Camera Module and OpenCV as a motion detector,” Naulty explains, rattling off the long list of tech that went into creating Meter Maid Monitor. “The camera monitors traffic and takes photos. The pictures are uploaded to AWS, where an EC2 instance running the TensorFlow supervised learning platform does the image recognition. I’ve trained it to recognise meter maid cars. Finally, if there’s more than a 75 percent chance of the car being a meter maid, it sends me a text message using Twilio, so I can move my car before I get a ticket”

If this all feels a bit nefarious and subversive to you, hopefully you can at the very least appreciate John’s clever use of technology. Either way, if you want to see his code for the Raspberry Pi and for the AWS instance, head on over to his GitHub repo for this project. If you have any other smart ideas for using Raspberry Pi to make city parking more bearable, let’s hear ’em!

The post Meter Maid Monitor: parking protection with Pi appeared first on Raspberry Pi.