Tag Archives: machine learning

Take a photo of yourself as an unreliable cartoon

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/take-a-photo-of-yourself-unreliable-cartoon/

Take a selfie, wait for the image to appear, and behold a cartoon version of yourself. Or, at least, behold a cartoon version of whatever the camera thought it saw. Welcome to Draw This by maker Dan Macnish.

Dan has made code, instructions, and wiring diagrams available to help you bring this beguiling weirdery into your own life.

raspberry pi cartoon polaroid camera

Neural networks, object recognition, and cartoons

One of the fun things about this re-imagined polaroid is that you never get to see the original image. You point, and shoot – and out pops a cartoon; the camera’s best interpretation of what it saw. The result is always a surprise. A food selfie of a healthy salad might turn into an enormous hot dog, or a photo with friends might be photobombed by a goat.

OK. Let’s take this one step at a time.

Pi + camera + button + LED

Draw This uses a Raspberry Pi 3 and a Camera Module, with a button and a useful status LED connected to the GPIO pins via a breadboard. You press the button, and the camera captures a still image while the LED comes on and stays lit for a couple of seconds while the Pi processes the image. So far, so standard Pi camera build.

Interpreting and re-interpreting the camera image

Dan uses Python to process the captured photograph, employing a pre-trained machine learning model from Google to recognise multiple objects in the image. Now he brings the strangeness. The Pi matches the things it sees in the photo with doodles from Google’s huge open-source Quick, Draw! dataset, and generates a new image that represents the objects in the original image as doodles. Then a thermal printer connected to the Pi’s GPIO pins prints the results.

A 28 x 14 grid of kangaroo doodles in dark grey on a white background

Kangaroos from the Quick, Draw! dataset (I got distracted)

Potential for peculiar

Reading about this build leaves me yearning to see its oddest interpretation of a scene, so if you make this and you find it really does turn you or your friend into a goat, please do share that with us.

And as you can see from my kangaroo digression above, there is a ton of potential for bizarro makes that use the Quick, Draw! dataset, object recognition models, or both; it’s not just the marsupials that are inexplicably compelling (I dare you to go and look and see how long it takes you to get back to whatever you were in the middle of). If you’re planning to make this, or something inspired by this, check out Dan’s cartoonify GitHub repo. And tell us all about it in the comments.

The post Take a photo of yourself as an unreliable cartoon appeared first on Raspberry Pi.

HackSpace magazine 8: Raspberry Pi <3 Arduino

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace-magazine-8/

Arduino is officially brilliant. It’s the perfect companion for your Raspberry Pi, opening up new possibilities for robotics, drones and all sorts of physical computing projects. In HackSpace magazine issue 8  we’re taking a look at what’s going on on planet Arduino, and how it can make our world better.

HackSpace magazine

This little board and its ecosystem are hugely important to the world of digital making. It’s affordable, it’s powerful, and it’s open hardware so you know that if you embed one of these in a project and the company goes bust tomorrow, the hardware will always be viable.

Arduino has helped power a new generation of digital makers, and now with a new team in charge, new boards and new software, it’s ready for the next generation.

Noisy toys

We get to speak to loads of fascinating people, but this month marks the first time we’ve ever met a science busker. Meet Stephen Summers, a former teacher who makes a mess with cornflour, water, and sound waves, all in the name of sharing the joy of physics.

HackSpace magazine

Glass-blowing

While we love messing about with digital technologies, we’re also a big fan of good old-fashioned craft skills. And you can’t get much more old-fashioned than traditional glass-blowing. Join us as we attempt to turn red hot molten glass into a multicoloured object without burning ourselves or setting anything on fire.

Guitar synth

People are endlessly clever, inventive, and all-round brilliant. A fantastic example is Björk, the Icelandic musician whose work defies categorisation. Another is Matt Bradshaw, who has made a synthesiser that you play by strumming six metal strings with a plectrum to complete a circuit. Oh, and named it after Björk. Read all about it and get inspired to do something equally bonkers.

HackSpace magazine

Machine learning

Do you have children? Do they leave the lights on all the time, causing you to shout, “THIS ISN’T BLACKPOOL FLAMING ILLUMINATIONS, YOU KNOW!” Well, now you can replace those children with an Arduino. With a bit of machine learning, the Arduino can train itself to turn the lights on and off at the right time, all the time. Plus they don’t cost as much as human children, so it’s a double win!

Dry ice cream

When the sun comes out in Blighty, it doesn’t hang around for long. So why wait for your domestic fridge to freeze your tasty dairy-based desserts, when you can add some solid carbon dioxide and freeze it in a flash? Follow our tutorial and you too can have tasty treats with the ironically warm glow that comes from using chemicals at -78°C.

HackSpace magazine

And there’s more

We’ve filled the rest of the magazine with a robot orchestra, watch restoration, audio boards for Raspberry Pi, magical colour-changing wearables, and more. Get stuck in!



Get your copy of HackSpace magazine

If you like the sound of this month’s content, you can find HackSpace magazine in WHSmith, Tesco, Sainsbury’s, and independent newsagents in the UK. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium, and Brazil, so be sure to ask your local newsagent whether they’ll be getting HackSpace magazine.

And if you can’t get to the shops, fear not: you can subscribe from £4 an issue from our online shop. And if you’d rather try before you buy, you can always download the free PDF. Happy reading, and happy making!

The post HackSpace magazine 8: Raspberry Pi <3 Arduino appeared first on Raspberry Pi.

AWS Online Tech Talks – June 2018

Post Syndicated from Devin Watson original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-june-2018/

AWS Online Tech Talks – June 2018

Join us this month to learn about AWS services and solutions. New this month, we have a fireside chat with the GM of Amazon WorkSpaces and our 2nd episode of the “How to re:Invent” series. We’ll also cover best practices, deep dives, use cases and more! Join us and register today!

Note – All sessions are free and in Pacific Time.

Tech talks featured this month:

 

Analytics & Big Data

June 18, 2018 | 11:00 AM – 11:45 AM PTGet Started with Real-Time Streaming Data in Under 5 Minutes – Learn how to use Amazon Kinesis to capture, store, and analyze streaming data in real-time including IoT device data, VPC flow logs, and clickstream data.
June 20, 2018 | 11:00 AM – 11:45 AM PT – Insights For Everyone – Deploying Data across your Organization – Learn how to deploy data at scale using AWS Analytics and QuickSight’s new reader role and usage based pricing.

 

AWS re:Invent
June 13, 2018 | 05:00 PM – 05:30 PM PTEpisode 2: AWS re:Invent Breakout Content Secret Sauce – Hear from one of our own AWS content experts as we dive deep into the re:Invent content strategy and how we maintain a high bar.
Compute

June 25, 2018 | 01:00 PM – 01:45 PM PTAccelerating Containerized Workloads with Amazon EC2 Spot Instances – Learn how to efficiently deploy containerized workloads and easily manage clusters at any scale at a fraction of the cost with Spot Instances.

June 26, 2018 | 01:00 PM – 01:45 PM PTEnsuring Your Windows Server Workloads Are Well-Architected – Get the benefits, best practices and tools on running your Microsoft Workloads on AWS leveraging a well-architected approach.

 

Containers
June 25, 2018 | 09:00 AM – 09:45 AM PTRunning Kubernetes on AWS – Learn about the basics of running Kubernetes on AWS including how setup masters, networking, security, and add auto-scaling to your cluster.

 

Databases

June 18, 2018 | 01:00 PM – 01:45 PM PTOracle to Amazon Aurora Migration, Step by Step – Learn how to migrate your Oracle database to Amazon Aurora.
DevOps

June 20, 2018 | 09:00 AM – 09:45 AM PTSet Up a CI/CD Pipeline for Deploying Containers Using the AWS Developer Tools – Learn how to set up a CI/CD pipeline for deploying containers using the AWS Developer Tools.

 

Enterprise & Hybrid
June 18, 2018 | 09:00 AM – 09:45 AM PTDe-risking Enterprise Migration with AWS Managed Services – Learn how enterprise customers are de-risking cloud adoption with AWS Managed Services.

June 19, 2018 | 11:00 AM – 11:45 AM PTLaunch AWS Faster using Automated Landing Zones – Learn how the AWS Landing Zone can automate the set up of best practice baselines when setting up new

 

AWS Environments

June 21, 2018 | 11:00 AM – 11:45 AM PTLeading Your Team Through a Cloud Transformation – Learn how you can help lead your organization through a cloud transformation.

June 21, 2018 | 01:00 PM – 01:45 PM PTEnabling New Retail Customer Experiences with Big Data – Learn how AWS can help retailers realize actual value from their big data and deliver on differentiated retail customer experiences.

June 28, 2018 | 01:00 PM – 01:45 PM PTFireside Chat: End User Collaboration on AWS – Learn how End User Compute services can help you deliver access to desktops and applications anywhere, anytime, using any device.
IoT

June 27, 2018 | 11:00 AM – 11:45 AM PTAWS IoT in the Connected Home – Learn how to use AWS IoT to build innovative Connected Home products.

 

Machine Learning

June 19, 2018 | 09:00 AM – 09:45 AM PTIntegrating Amazon SageMaker into your Enterprise – Learn how to integrate Amazon SageMaker and other AWS Services within an Enterprise environment.

June 21, 2018 | 09:00 AM – 09:45 AM PTBuilding Text Analytics Applications on AWS using Amazon Comprehend – Learn how you can unlock the value of your unstructured data with NLP-based text analytics.

 

Management Tools

June 20, 2018 | 01:00 PM – 01:45 PM PTOptimizing Application Performance and Costs with Auto Scaling – Learn how selecting the right scaling option can help optimize application performance and costs.

 

Mobile
June 25, 2018 | 11:00 AM – 11:45 AM PTDrive User Engagement with Amazon Pinpoint – Learn how Amazon Pinpoint simplifies and streamlines effective user engagement.

 

Security, Identity & Compliance

June 26, 2018 | 09:00 AM – 09:45 AM PTUnderstanding AWS Secrets Manager – Learn how AWS Secrets Manager helps you rotate and manage access to secrets centrally.
June 28, 2018 | 09:00 AM – 09:45 AM PTUsing Amazon Inspector to Discover Potential Security Issues – See how Amazon Inspector can be used to discover security issues of your instances.

 

Serverless

June 19, 2018 | 01:00 PM – 01:45 PM PTProductionize Serverless Application Building and Deployments with AWS SAM – Learn expert tips and techniques for building and deploying serverless applications at scale with AWS SAM.

 

Storage

June 26, 2018 | 11:00 AM – 11:45 AM PTDeep Dive: Hybrid Cloud Storage with AWS Storage Gateway – Learn how you can reduce your on-premises infrastructure by using the AWS Storage Gateway to connecting your applications to the scalable and reliable AWS storage services.
June 27, 2018 | 01:00 PM – 01:45 PM PTChanging the Game: Extending Compute Capabilities to the Edge – Discover how to change the game for IIoT and edge analytics applications with AWS Snowball Edge plus enhanced Compute instances.
June 28, 2018 | 11:00 AM – 11:45 AM PTBig Data and Analytics Workloads on Amazon EFS – Get best practices and deployment advice for running big data and analytics workloads on Amazon EFS.

Amazon SageMaker Updates – Tokyo Region, CloudFormation, Chainer, and GreenGrass ML

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/sagemaker-tokyo-summit-2018/

Today, at the AWS Summit in Tokyo we announced a number of updates and new features for Amazon SageMaker. Starting today, SageMaker is available in Asia Pacific (Tokyo)! SageMaker also now supports CloudFormation. A new machine learning framework, Chainer, is now available in the SageMaker Python SDK, in addition to MXNet and Tensorflow. Finally, support for running Chainer models on several devices was added to AWS Greengrass Machine Learning.

Amazon SageMaker Chainer Estimator


Chainer is a popular, flexible, and intuitive deep learning framework. Chainer networks work on a “Define-by-Run” scheme, where the network topology is defined dynamically via forward computation. This is in contrast to many other frameworks which work on a “Define-and-Run” scheme where the topology of the network is defined separately from the data. A lot of developers enjoy the Chainer scheme since it allows them to write their networks with native python constructs and tools.

Luckily, using Chainer with SageMaker is just as easy as using a TensorFlow or MXNet estimator. In fact, it might even be a bit easier since it’s likely you can take your existing scripts and use them to train on SageMaker with very few modifications. With TensorFlow or MXNet users have to implement a train function with a particular signature. With Chainer your scripts can be a little bit more portable as you can simply read from a few environment variables like SM_MODEL_DIR, SM_NUM_GPUS, and others. We can wrap our existing script in a if __name__ == '__main__': guard and invoke it locally or on sagemaker.


import argparse
import os

if __name__ =='__main__':

    parser = argparse.ArgumentParser()

    # hyperparameters sent by the client are passed as command-line arguments to the script.
    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--batch-size', type=int, default=64)
    parser.add_argument('--learning-rate', type=float, default=0.05)

    # Data, model, and output directories
    parser.add_argument('--output-data-dir', type=str, default=os.environ['SM_OUTPUT_DATA_DIR'])
    parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
    parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN'])
    parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST'])

    args, _ = parser.parse_known_args()

    # ... load from args.train and args.test, train a model, write model to args.model_dir.

Then, we can run that script locally or use the SageMaker Python SDK to launch it on some GPU instances in SageMaker. The hyperparameters will get passed in to the script as CLI commands and the environment variables above will be autopopulated. When we call fit the input channels we pass will be populated in the SM_CHANNEL_* environment variables.


from sagemaker.chainer.estimator import Chainer
# Create my estimator
chainer_estimator = Chainer(
    entry_point='example.py',
    train_instance_count=1,
    train_instance_type='ml.p3.2xlarge',
    hyperparameters={'epochs': 10, 'batch-size': 64}
)
# Train my estimator
chainer_estimator.fit({'train': train_input, 'test': test_input})

# Deploy my estimator to a SageMaker Endpoint and get a Predictor
predictor = chainer_estimator.deploy(
    instance_type="ml.m4.xlarge",
    initial_instance_count=1
)

Now, instead of bringing your own docker container for training and hosting with Chainer, you can just maintain your script. You can see the full sagemaker-chainer-containers on github. One of my favorite features of the new container is built-in chainermn for easy multi-node distribution of your chainer training jobs.

There’s a lot more documentation and information available in both the README and the example notebooks.

AWS GreenGrass ML with Chainer

AWS GreenGrass ML now includes a pre-built Chainer package for all devices powered by Intel Atom, NVIDIA Jetson, TX2, and Raspberry Pi. So, now GreenGrass ML provides pre-built packages for TensorFlow, Apache MXNet, and Chainer! You can train your models on SageMaker then easily deploy it to any GreenGrass-enabled device using GreenGrass ML.

JAWS UG

I want to give a quick shout out to all of our wonderful and inspirational friends in the JAWS UG who attended the AWS Summit in Tokyo today. I’ve very much enjoyed seeing your pictures of the summit. Thanks for making Japan an amazing place for AWS developers! I can’t wait to visit again and meet with all of you.

Randall

Detecting Lies through Mouse Movements

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/detecting_lies_.html

Interesting research: “The detection of faked identity using unexpected questions and mouse dynamics,” by Merulin Monaro, Luciano Gamberini, and Guiseppe Sartori.

Abstract: The detection of faked identities is a major problem in security. Current memory-detection techniques cannot be used as they require prior knowledge of the respondent’s true identity. Here, we report a novel technique for detecting faked identities based on the use of unexpected questions that may be used to check the respondent identity without any prior autobiographical information. While truth-tellers respond automatically to unexpected questions, liars have to “build” and verify their responses. This lack of automaticity is reflected in the mouse movements used to record the responses as well as in the number of errors. Responses to unexpected questions are compared to responses to expected and control questions (i.e., questions to which a liar also must respond truthfully). Parameters that encode mouse movement were analyzed using machine learning classifiers and the results indicate that the mouse trajectories and errors on unexpected questions efficiently distinguish liars from truth-tellers. Furthermore, we showed that liars may be identified also when they are responding truthfully. Unexpected questions combined with the analysis of mouse movement may efficiently spot participants with faked identities without the need for any prior information on the examinee.

Boing Boing post.

AWS IoT 1-Click – Use Simple Devices to Trigger Lambda Functions

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-iot-1-click-use-simple-devices-to-trigger-lambda-functions/

We announced a preview of AWS IoT 1-Click at AWS re:Invent 2017 and have been refining it ever since, focusing on simplicity and a clean out-of-box experience. Designed to make IoT available and accessible to a broad audience, AWS IoT 1-Click is now generally available, along with new IoT buttons from AWS and AT&T.

I sat down with the dev team a month or two ago to learn about the service so that I could start thinking about my blog post. During the meeting they gave me a pair of IoT buttons and I started to think about some creative ways to put them to use. Here are a few that I came up with:

Help Request – Earlier this month I spent a very pleasant weekend at the HackTillDawn hackathon in Los Angeles. As the participants were hacking away, they occasionally had questions about AWS, machine learning, Amazon SageMaker, and AWS DeepLens. While we had plenty of AWS Solution Architects on hand (decked out in fashionable & distinctive AWS shirts for easy identification), I imagined an IoT button for each team. Pressing the button would alert the SA crew via SMS and direct them to the proper table.

Camera ControlTim Bray and I were in the AWS video studio, prepping for the first episode of Tim’s series on AWS Messaging. Minutes before we opened the Twitch stream I realized that we did not have a clean, unobtrusive way to ask the camera operator to switch to a closeup view. Again, I imagined that a couple of IoT buttons would allow us to make the request.

Remote Dog Treat Dispenser – My dog barks every time a stranger opens the gate in front of our house. While it is great to have confirmation that my Ring doorbell is working, I would like to be able to press a button and dispense a treat so that Luna stops barking!

Homes, offices, factories, schools, vehicles, and health care facilities can all benefit from IoT buttons and other simple IoT devices, all managed using AWS IoT 1-Click.

All About AWS IoT 1-Click
As I said earlier, we have been focusing on simplicity and a clean out-of-box experience. Here’s what that means:

Architects can dream up applications for inexpensive, low-powered devices.

Developers don’t need to write any device-level code. They can make use of pre-built actions, which send email or SMS messages, or write their own custom actions using AWS Lambda functions.

Installers don’t have to install certificates or configure cloud endpoints on newly acquired devices, and don’t have to worry about firmware updates.

Administrators can monitor the overall status and health of each device, and can arrange to receive alerts when a device nears the end of its useful life and needs to be replaced, using a single interface that spans device types and manufacturers.

I’ll show you how easy this is in just a moment. But first, let’s talk about the current set of devices that are supported by AWS IoT 1-Click.

Who’s Got the Button?
We’re launching with support for two types of buttons (both pictured above). Both types of buttons are pre-configured with X.509 certificates, communicate to the cloud over secure connections, and are ready to use.

The AWS IoT Enterprise Button communicates via Wi-Fi. It has a 2000-click lifetime, encrypts outbound data using TLS, and can be configured using BLE and our mobile app. It retails for $19.99 (shipping and handling not included) and can be used in the United States, Europe, and Japan.

The AT&T LTE-M Button communicates via the LTE-M cellular network. It has a 1500-click lifetime, and also encrypts outbound data using TLS. The device and the bundled data plan is available an an introductory price of $29.99 (shipping and handling not included), and can be used in the United States.

We are very interested in working with device manufacturers in order to make even more shapes, sizes, and types of devices (badge readers, asset trackers, motion detectors, and industrial sensors, to name a few) available to our customers. Our team will be happy to tell you about our provisioning tools and our facility for pushing OTA (over the air) updates to large fleets of devices; you can contact them at [email protected].

AWS IoT 1-Click Concepts
I’m eager to show you how to use AWS IoT 1-Click and the buttons, but need to introduce a few concepts first.

Device – A button or other item that can send messages. Each device is uniquely identified by a serial number.

Placement Template – Describes a like-minded collection of devices to be deployed. Specifies the action to be performed and lists the names of custom attributes for each device.

Placement – A device that has been deployed. Referring to placements instead of devices gives you the freedom to replace and upgrade devices with minimal disruption. Each placement can include values for custom attributes such as a location (“Building 8, 3rd Floor, Room 1337”) or a purpose (“Coffee Request Button”).

Action – The AWS Lambda function to invoke when the button is pressed. You can write a function from scratch, or you can make use of a pair of predefined functions that send an email or an SMS message. The actions have access to the attributes; you can, for example, send an SMS message with the text “Urgent need for coffee in Building 8, 3rd Floor, Room 1337.”

Getting Started with AWS IoT 1-Click
Let’s set up an IoT button using the AWS IoT 1-Click Console:

If I didn’t have any buttons I could click Buy devices to get some. But, I do have some, so I click Claim devices to move ahead. I enter the device ID or claim code for my AT&T button and click Claim (I can enter multiple claim codes or device IDs if I want):

The AWS buttons can be claimed using the console or the mobile app; the first step is to use the mobile app to configure the button to use my Wi-Fi:

Then I scan the barcode on the box and click the button to complete the process of claiming the device. Both of my buttons are now visible in the console:

I am now ready to put them to use. I click on Projects, and then Create a project:

I name and describe my project, and click Next to proceed:

Now I define a device template, along with names and default values for the placement attributes. Here’s how I set up a device template (projects can contain several, but I just need one):

The action has two mandatory parameters (phone number and SMS message) built in; I add three more (Building, Room, and Floor) and click Create project:

I’m almost ready to ask for some coffee! The next step is to associate my buttons with this project by creating a placement for each one. I click Create placements to proceed. I name each placement, select the device to associate with it, and then enter values for the attributes that I established for the project. I can also add additional attributes that are peculiar to this placement:

I can inspect my project and see that everything looks good:

I click on the buttons and the SMS messages appear:

I can monitor device activity in the AWS IoT 1-Click Console:

And also in the Lambda Console:

The Lambda function itself is also accessible, and can be used as-is or customized:

As you can see, this is the code that lets me use {{*}}include all of the placement attributes in the message and {{Building}} (for example) to include a specific placement attribute.

Now Available
I’ve barely scratched the surface of this cool new service and I encourage you to give it a try (or a click) yourself. Buy a button or two, build something cool, and let me know all about it!

Pricing is based on the number of enabled devices in your account, measured monthly and pro-rated for partial months. Devices can be enabled or disabled at any time. See the AWS IoT 1-Click Pricing page for more info.

To learn more, visit the AWS IoT 1-Click home page or read the AWS IoT 1-Click documentation.

Jeff;

 

Introducing the AWS Machine Learning Competency for Consulting Partners

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/introducing-the-aws-machine-learning-competency-for-consulting-partners/

Today I’m excited to announce a new Machine Learning Competency for Consulting Partners in the Amazon Partner Network (APN). This AWS Competency program allows APN Consulting Partners to demonstrate a deep expertise in machine learning on AWS by providing solutions that enable machine learning and data science workflows for their customers. This new AWS Competency is in addition to the Machine Learning comptency for our APN Technology Partners, that we launched at the re:Invent 2017 partner summit.

These APN Consulting Partners help organizations solve their machine learning and data challenges through:

  • Providing data services that help data scientists and machine learning practitioners prepare their enterprise data for training.
  • Platform solutions that provide data scientists and machine learning practitioners with tools to take their data, train models, and make predictions on new data.
  • SaaS and API solutions to enable predictive capabilities within customer applications.

Why work with an AWS Machine Learning Competency Partner?

The AWS Competency Program helps customers find the most qualified partners with deep expertise. AWS Machine Learning Competency Partners undergo a strict validation of their capabilities to demonstrate technical proficiency and proven customer success with AWS machine learning tools.

If you’re an AWS customer interested in machine learning workloads on AWS, check out our AWS Machine Learning launch partners below:

 

Interested in becoming an AWS Machine Learning Competency Partner?

APN Partners with experience in Machine Learning can learn more about becoming an AWS Machine Learning Competency Partner here. To learn more about the benefits of joining the AWS Partner Network, see our APN Partner website.

Thanks to the AWS Partner Team for their help with this post!
Randall

AWS Online Tech Talks – May and Early June 2018

Post Syndicated from Devin Watson original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-may-and-early-june-2018/

AWS Online Tech Talks – May and Early June 2018  

Join us this month to learn about some of the exciting new services and solution best practices at AWS. We also have our first re:Invent 2018 webinar series, “How to re:Invent”. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

Tech talks featured this month:

Analytics & Big Data

May 21, 2018 | 11:00 AM – 11:45 AM PT Integrating Amazon Elasticsearch with your DevOps Tooling – Learn how you can easily integrate Amazon Elasticsearch Service into your DevOps tooling and gain valuable insight from your log data.

May 23, 2018 | 11:00 AM – 11:45 AM PTData Warehousing and Data Lake Analytics, Together – Learn how to query data across your data warehouse and data lake without moving data.

May 24, 2018 | 11:00 AM – 11:45 AM PTData Transformation Patterns in AWS – Discover how to perform common data transformations on the AWS Data Lake.

Compute

May 29, 2018 | 01:00 PM – 01:45 PM PT – Creating and Managing a WordPress Website with Amazon Lightsail – Learn about Amazon Lightsail and how you can create, run and manage your WordPress websites with Amazon’s simple compute platform.

May 30, 2018 | 01:00 PM – 01:45 PM PTAccelerating Life Sciences with HPC on AWS – Learn how you can accelerate your Life Sciences research workloads by harnessing the power of high performance computing on AWS.

Containers

May 24, 2018 | 01:00 PM – 01:45 PM PT – Building Microservices with the 12 Factor App Pattern on AWS – Learn best practices for building containerized microservices on AWS, and how traditional software design patterns evolve in the context of containers.

Databases

May 21, 2018 | 01:00 PM – 01:45 PM PTHow to Migrate from Cassandra to Amazon DynamoDB – Get the benefits, best practices and guides on how to migrate your Cassandra databases to Amazon DynamoDB.

May 23, 2018 | 01:00 PM – 01:45 PM PT5 Hacks for Optimizing MySQL in the Cloud – Learn how to optimize your MySQL databases for high availability, performance, and disaster resilience using RDS.

DevOps

May 23, 2018 | 09:00 AM – 09:45 AM PT.NET Serverless Development on AWS – Learn how to build a modern serverless application in .NET Core 2.0.

Enterprise & Hybrid

May 22, 2018 | 11:00 AM – 11:45 AM PTHybrid Cloud Customer Use Cases on AWS – Learn how customers are leveraging AWS hybrid cloud capabilities to easily extend their datacenter capacity, deliver new services and applications, and ensure business continuity and disaster recovery.

IoT

May 31, 2018 | 11:00 AM – 11:45 AM PTUsing AWS IoT for Industrial Applications – Discover how you can quickly onboard your fleet of connected devices, keep them secure, and build predictive analytics with AWS IoT.

Machine Learning

May 22, 2018 | 09:00 AM – 09:45 AM PTUsing Apache Spark with Amazon SageMaker – Discover how to use Apache Spark with Amazon SageMaker for training jobs and application integration.

May 24, 2018 | 09:00 AM – 09:45 AM PTIntroducing AWS DeepLens – Learn how AWS DeepLens provides a new way for developers to learn machine learning by pairing the physical device with a broad set of tutorials, examples, source code, and integration with familiar AWS services.

Management Tools

May 21, 2018 | 09:00 AM – 09:45 AM PTGaining Better Observability of Your VMs with Amazon CloudWatch – Learn how CloudWatch Agent makes it easy for customers like Rackspace to monitor their VMs.

Mobile

May 29, 2018 | 11:00 AM – 11:45 AM PT – Deep Dive on Amazon Pinpoint Segmentation and Endpoint Management – See how segmentation and endpoint management with Amazon Pinpoint can help you target the right audience.

Networking

May 31, 2018 | 09:00 AM – 09:45 AM PTMaking Private Connectivity the New Norm via AWS PrivateLink – See how PrivateLink enables service owners to offer private endpoints to customers outside their company.

Security, Identity, & Compliance

May 30, 2018 | 09:00 AM – 09:45 AM PT – Introducing AWS Certificate Manager Private Certificate Authority (CA) – Learn how AWS Certificate Manager (ACM) Private Certificate Authority (CA), a managed private CA service, helps you easily and securely manage the lifecycle of your private certificates.

June 1, 2018 | 09:00 AM – 09:45 AM PTIntroducing AWS Firewall Manager – Centrally configure and manage AWS WAF rules across your accounts and applications.

Serverless

May 22, 2018 | 01:00 PM – 01:45 PM PTBuilding API-Driven Microservices with Amazon API Gateway – Learn how to build a secure, scalable API for your application in our tech talk about API-driven microservices.

Storage

May 30, 2018 | 11:00 AM – 11:45 AM PTAccelerate Productivity by Computing at the Edge – Learn how AWS Snowball Edge support for compute instances helps accelerate data transfers, execute custom applications, and reduce overall storage costs.

June 1, 2018 | 11:00 AM – 11:45 AM PTLearn to Build a Cloud-Scale Website Powered by Amazon EFS – Technical deep dive where you’ll learn tips and tricks for integrating WordPress, Drupal and Magento with Amazon EFS.

 

 

 

 

The intersection of Customer Engagement and Data Science

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/messaging-and-targeting/the-intersection-of-customer-engagement-and-data-science/

On the Messaging and Targeting team, we’re constantly inspired by the new and novel ways that customers use our services. For example, last year we took an in-depth look at a customer who built a fully featured email marketing platform based on Amazon SES and other AWS Services.

This week, our friends on the AWS Machine Learning team published a blog post that brings together the worlds of data science and customer engagement. Their solution uses Amazon SageMaker (a platform for building and deploying machine learning models) to create a system that makes purchasing predictions based on customers’ past behaviors. It then uses Amazon Pinpoint to send campaigns to customers based on these predictions.

The blog post is an interesting read that includes a primer on the process of creating a useful Machine Learning solution. It then goes in-depth, discussing the real-world considerations that are involved in implementing the solution.

Take a look at their post, Amazon Pinpoint campaigns driven by machine learning on Amazon SageMaker, on the AWS Machine Learning Blog.

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

#!/bin/bash
hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
LOCATION '$1/';

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 campaign['n'],',',pdays['n'],',',previous['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

#!/bin/bash
## Define variable 
REGION=$2
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 


# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
    IMAGE="174872318107.dkr.ecr.us-west-2.amazonaws.com/linear-learner:latest"
    ;;
"us-east-1" )
    IMAGE="382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:latest" 
    ;;
"us-east-2" )
    IMAGE="404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:latest" 
    ;;
"eu-west-1" )
    IMAGE="438346466558.dkr.ecr.eu-west-1.amazonaws.com/linear-learner:latest" 
    ;;
 *)
    echo "Invalid Region Name"
    exit 1 ;  
esac

# Start training job and creating model artifact 
TRAINING_JOB_NAME=TRAIN-${DTTIME} 
S3OUTPUT="s3://<your bucket name>/model/" 
INSTANCETYPE="ml.m4.xlarge"
INSTANCECOUNT=1
VOLUMESIZE=5 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
MODELNAME=MODEL-${DTTIME}
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
CONFIGNAME=CONFIG-${DTTIME}
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
then
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
else
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}
fi

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:UpdateEndpoint",
 "iam:PassRole"
 ],
 "Resource": "*"
 }
 ]
}

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
    EndpointName='ServiceEndpoint',
    Body=new_customer_info, 
    ContentType='text/csv'
)
result = json.loads(response['Body'].read().decode())
print(result)
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
CREATE EXTERNAL TABLE datasource (
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
)
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n' 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;

Conclusion

In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.

 


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

Own your own working Pokémon Pokédex!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-pokedex/

Squeal with delight as your inner Pokémon trainer witnesses the wonder of Adrian Rosebrock’s deep learning Pokédex.

Creating a real-life Pokedex with a Raspberry Pi, Python, and Deep Learning

This video demos a real-like Pokedex, complete with visual recognition, that I created using a Raspberry Pi, Python, and Deep Learning. You can find the entire blog post, including code, using this link: https://www.pyimagesearch.com/2018/04/30/a-fun-hands-on-deep-learning-project-for-beginners-students-and-hobbyists/ Music credit to YouTube user “No Copyright” for providing royalty free music: https://www.youtube.com/watch?v=PXpjqURczn8

The history of Pokémon in 30 seconds

The Pokémon franchise was created by video game designer Satoshi Tajiri in 1995. In the fictional world of Pokémon, Pokémon Trainers explore the vast landscape, catching and training small creatures called Pokémon. To date, there are 802 different types of Pokémon. They range from the ever recognisable Pikachu, a bright yellow electric Pokémon, to the highly sought-after Shiny Charizard, a metallic, playing-card-shaped Pokémon that your mate Alex claims she has in mint condition, but refuses to show you.

Pokemon GIF

In the world of Pokémon, children as young as ten-year-old protagonist and all-round annoyance Ash Ketchum are allowed to leave home and wander the wilderness. There, they hunt vicious, deadly creatures in the hope of becoming a Pokémon Master.

Adrian’s deep learning Pokédex

Adrian is a bit of a deep learning pro, as demonstrated by his Santa/Not Santa detector, which we wrote about last year. For that project, he also provided a great explanation of what deep learning actually is. In a nutshell:

…a subfield of machine learning, which is, in turn, a subfield of artificial intelligence (AI).While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

As with his earlier Raspberry Pi project, Adrian uses the Keras deep learning model and the TensorFlow backend, plus a few other packages such as Adrian’s own imutils functions and OpenCV.

Adrian trained a Convolutional Neural Network using Keras on a dataset of 1191 Pokémon images, obtaining 96.84% accuracy. As Adrian explains, this model is able to identify Pokémon via still image and video. It’s perfect for creating a Pokédex – an interactive Pokémon catalogue that should, according to the franchise, be able to identify and read out information on any known Pokémon when captured by camera. More information on model training can be found on Adrian’s blog.

Adrian Rosebeck deep learning pokemon pokedex

For the physical build, a Raspberry Pi 3 with camera module is paired with the Raspberry Pi 7″ touch display to create a portable Pokédex. And while Adrian comments that the same result can be achieved using your home computer and a webcam, that’s not how Adrian rolls as a Raspberry Pi fan.

Adrian Rosebeck deep learning pokemon pokedex

Plus, the smaller size of the Pi is perfect for one of you to incorporate this deep learning model into a 3D-printed Pokédex for ultimate Pokémon glory, pretty please, thank you.

Adrian Rosebeck deep learning pokemon pokedex

Adrian has gone into impressive detail about how the project works and how you can create your own on his blog, pyimagesearch. So if you’re interested in learning more about deep learning, and making your own Pokédex, be sure to visit.

The post Own your own working Pokémon Pokédex! appeared first on Raspberry Pi.

Continued: the answers to your questions for Eben Upton

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eben-q-a-2/

Last week, we shared the first half of our Q&A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. Today we follow up with all your other questions, including your expectations for a Raspberry Pi 4, Eben’s dream add-ons, and whether we really could go smaller than the Zero.

Live Q&A with Eben Upton, creator of the Raspberry Pi

Get your questions to us now using #AskRaspberryPi on Twitter

With internet security becoming more necessary, will there be automated versions of VPN on an SD card?

There are already third-party tools which turn your Raspberry Pi into a VPN endpoint. Would we do it ourselves? Like the power button, it’s one of those cases where there are a million things we could do and so it’s more efficient to let the community get on with it.

Just to give a counterexample, while we don’t generally invest in optimising for particular use cases, we did invest a bunch of money into optimising Kodi to run well on Raspberry Pi, because we found that very large numbers of people were using it. So, if we find that we get half a million people a year using a Raspberry Pi as a VPN endpoint, then we’ll probably invest money into optimising it and feature it on the website as we’ve done with Kodi. But I don’t think we’re there today.

Have you ever seen any Pis running and doing important jobs in the wild, and if so, how does it feel?

It’s amazing how often you see them driving displays, for example in radio and TV studios. Of course, it feels great. There’s something wonderful about the geographic spread as well. The Raspberry Pi desktop is quite distinctive, both in its previous incarnation with the grey background and logo, and the current one where we have Greg Annandale’s road picture.

The PIXEL desktop on Raspberry Pi

And so it’s funny when you see it in places. Somebody sent me a video of them teaching in a classroom in rural Pakistan and in the background was Greg’s picture.

Raspberry Pi 4!?!

There will be a Raspberry Pi 4, obviously. We get asked about it a lot. I’m sticking to the guidance that I gave people that they shouldn’t expect to see a Raspberry Pi 4 this year. To some extent, the opportunity to do the 3B+ was a surprise: we were surprised that we’ve been able to get 200MHz more clock speed, triple the wireless and wired throughput, and better thermals, and still stick to the $35 price point.

We’re up against the wall from a silicon perspective; we’re at the end of what you can do with the 40nm process. It’s not that you couldn’t clock the processor faster, or put a larger processor which can execute more instructions per clock in there, it’s simply about the energy consumption and the fact that you can’t dissipate the heat. So we’ve got to go to a smaller process node and that’s an order of magnitude more challenging from an engineering perspective. There’s more effort, more risk, more cost, and all of those things are challenging.

With 3B+ out of the way, we’re going to start looking at this now. For the first six months or so we’re going to be figuring out exactly what people want from a Raspberry Pi 4. We’re listening to people’s comments about what they’d like to see in a new Raspberry Pi, and I’m hoping by early autumn we should have an idea of what we want to put in it and a strategy for how we might achieve that.

Could you go smaller than the Zero?

The challenge with Zero as that we’re periphery-limited. If you run your hand around the unit, there is no edge of that board that doesn’t have something there. So the question is: “If you want to go smaller than Zero, what feature are you willing to throw out?”

It’s a single-sided board, so you could certainly halve the PCB area if you fold the circuitry and use both sides, though you’d have to lose something. You could give up some GPIO and go back to 26 pins like the first Raspberry Pi. You could give up the camera connector, you could go to micro HDMI from mini HDMI. You could remove the SD card and just do USB boot. I’m inventing a product live on air! But really, you could get down to two thirds and lose a bunch of GPIO – it’s hard to imagine you could get to half the size.

What’s the one feature that you wish you could outfit on the Raspberry Pi that isn’t cost effective at this time? Your dream feature.

Well, more memory. There are obviously technical reasons why we don’t have more memory on there, but there are also market reasons. People ask “why doesn’t the Raspberry Pi have more memory?”, and my response is typically “go and Google ‘DRAM price’”. We’re used to the price of memory going down. And currently, we’re going through a phase where this has turned around and memory is getting more expensive again.

Machine learning would be interesting. There are machine learning accelerators which would be interesting to put on a piece of hardware. But again, they are not going to be used by everyone, so according to our method of pricing what we might add to a board, machine learning gets treated like a $50 chip. But that would be lovely to do.

Which citizen science projects using the Pi have most caught your attention?

I like the wildlife camera projects. We live out in the countryside in a little village, and we’re conscious of being surrounded by nature but we don’t see a lot of it on a day-to-day basis. So I like the nature cam projects, though, to my everlasting shame, I haven’t set one up yet. There’s a range of them, from very professional products to people taking a Raspberry Pi and a camera and putting them in a plastic box. So those are good fun.

Raspberry Shake seismometer

The Raspberry Shake seismometer

And there’s Meteor Pi from the Cambridge Science Centre, that’s a lot of fun. And the seismometer Raspberry Shake – that sort of thing is really nice. We missed the recent South Wales earthquake; perhaps we should set one up at our Californian office.

How does it feel to go to bed every day knowing you’ve changed the world for the better in such a massive way?

What feels really good is that when we started this in 2006 nobody else was talking about it, but now we’re part of a very broad movement.

We were in a really bad way: we’d seen a collapse in the number of applicants applying to study Computer Science at Cambridge and elsewhere. In our view, this reflected a move away from seeing technology as ‘a thing you do’ to seeing it as a ‘thing that you have done to you’. It is problematic from the point of view of the economy, industry, and academia, but most importantly it damages the life prospects of individual children, particularly those from disadvantaged backgrounds. The great thing about STEM subjects is that you can’t fake being good at them. There are a lot of industries where your Dad can get you a job based on who he knows and then you can kind of muddle along. But if your dad gets you a job building bridges and you suck at it, after the first or second bridge falls down, then you probably aren’t going to be building bridges anymore. So access to STEM education can be a great driver of social mobility.

By the time we were launching the Raspberry Pi in 2012, there was this wonderful movement going on. Code Club, for example, and CoderDojo came along. Lots of different ways of trying to solve the same problem. What feels really, really good is that we’ve been able to do this as part of an enormous community. And some parts of that community became part of the Raspberry Pi Foundation – we merged with Code Club, we merged with CoderDojo, and we continue to work alongside a lot of these other organisations. So in the two seconds it takes me to fall asleep after my face hits the pillow, that’s what I think about.

We’re currently advertising a Programme Manager role in New Delhi, India. Did you ever think that Raspberry Pi would be advertising a role like this when you were bringing together the Foundation?

No, I didn’t.

But if you told me we were going to be hiring somewhere, India probably would have been top of my list because there’s a massive IT industry in India. When we think about our interaction with emerging markets, India, in a lot of ways, is the poster child for how we would like it to work. There have already been some wonderful deployments of Raspberry Pi, for example in Kerala, without our direct involvement. And we think we’ve got something that’s useful for the Indian market. We have a product, we have clubs, we have teacher training. And we have a body of experience in how to teach people, so we have a physical commercial product as well as a charitable offering that we think are a good fit.

It’s going to be massive.

What is your favourite BBC type-in listing?

There was a game called Codename: Druid. There is a famous game called Codename: Droid which was the sequel to Stryker’s Run, which was an awesome, awesome game. And there was a type-in game called Codename: Druid, which was at the bottom end of what you would consider a commercial game.

codename druid

And I remember typing that in. And what was really cool about it was that the next month, the guy who wrote it did another article that talks about the memory map and which operating system functions used which bits of memory. So if you weren’t going to do disc access, which bits of memory could you trample on and know the operating system would survive.

babbage versus bugs Raspberry Pi annual

See the full listing for Babbage versus Bugs in the Raspberry Pi 2018 Annual

I still like type-in listings. The Raspberry Pi 2018 Annual has a type-in listing that I wrote for a Babbage versus Bugs game. I will say that’s not the last type-in listing you will see from me in the next twelve months. And if you download the PDF, you could probably copy and paste it into your favourite text editor to save yourself some time.

The post Continued: the answers to your questions for Eben Upton appeared first on Raspberry Pi.

Invent new sounds with Google’s NSynth Super

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/google-nsynth-super/

Discover new sounds and explore the role of machine learning in music production and sound research with the NSynth Super, an ongoing project from Google’s Magenta research team that you can build at home.

Google Open NSynth Super Testing

Uploaded by AB Open on 2018-04-17.

What is the NSynth Super?

Part of the ongoing Magenta research project within Google, NSynth Super explores the ways in which machine learning tools help artists and musicians be creative.

Google Nsynth Super Raspberry Pi

“Technology has always played a role in creating new types of sounds that inspire musicians — from the sounds of distortion to the electronic sounds of synths,” explains the team behind the NSynth Super. “Today, advances in machine learning and neural networks have opened up new possibilities for sound generation.”

Using TensorFlow, the Magenta team builds tools and interfaces that let  artists and musicians use machine learning in their work. The NSynth Super AI algorithm uses deep neural networking to investigate the character of sounds. It then builds new sounds based on these characteristics instead of simply mixing sounds together.

Using an autoencoder, it extracts 16 defining temporal features from each input. These features are then interpolated linearly to create new embeddings (mathematical representations of each sound). These new embeddings are then decoded into new sounds, which have the acoustic qualities of both inputs.

The team publishes all hardware designs and software that are part of their ongoing research under open-source licences, allowing you to build your own synth.

Build your own NSynth Super

Using these open-source tools, Andrew Black has produced his own NSynth Super, demoed in the video above. Andrew’s list of build materials includes a Raspberry Pi 3, potentiometers, rotary encoders, and the Adafruit 1.3″ OLED display. Magenta also provides Gerber files for you to fabricate your own PCB.

Google Nsynth Super Raspberry Pi

Once fabricated, the PCB includes a table of contents for adding components.

The build isn’t easy — it requires soldering skills or access to someone who can assemble PCBs. Take a look at Andrew’s blog post and the official NSynth GitHub repo to see whether you’re up to the challenge.

Google Nsynth Super Raspberry Pi
Google Nsynth Super Raspberry Pi
Google Nsynth Super Raspberry Pi

Music and Raspberry Pi

The Raspberry Pi has been widely used for music production and music builds. Be it retrofitting a boombox, distributing music atop Table Mountain, or coding tracks with Sonic Pi, the Pi offers endless opportunities for musicians and music lovers to expand their repertoire of builds and instruments.

If you’d like to try more music-based projects using the Raspberry Pi, you can check out our free resources. And if you’ve used a Raspberry Pi in your own musical project, please share it with us in the comments or via our social network accounts.

The post Invent new sounds with Google’s NSynth Super appeared first on Raspberry Pi.

Implement continuous integration and delivery of serverless AWS Glue ETL applications using AWS Developer Tools

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/

AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.

AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.

When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:

  • Iterative development with unit tests
  • Continuous integration and build
  • Pushing the ETL pipeline to a test environment
  • Pushing the ETL pipeline to a production environment
  • Testing ETL applications using real data (live test)
  • Exploring and validating data

In this post, I walk you through a solution that implements a CI/CD pipeline for serverless AWS Glue ETL applications supported by AWS Developer Tools (including AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild) and AWS CloudFormation.

Solution overview

The following diagram shows the pipeline workflow:

This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:

1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.

To get the ETL job source code and AWS CloudFormation template, download the gluedemoetl.zip file. This solution is developed based on a previous post, Build a Data Lake Foundation with AWS Glue and Amazon S3.

2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.

The LiveTest stage includes the following actions:

  • Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
  • AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
  • LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
  • LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval

3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.

Try it out

This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).

To get started with this solution, choose Launch Stack:

This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.

In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.

After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.

Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.

In the CodeCommit console, choose Code in the navigation pane to view the solution files.

Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.

At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.

At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.

Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:

Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.

SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";

The following shows the raw data:

The following shows the transformed data:

The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.

Add comments as needed, and choose Approve.

The LiveTestApproval stage now appears as Approved on the console.

After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.

Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.

After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.

Conclusion

In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.

If you have questions or suggestions, please comment below.

 


Additional Reading

If you found this post useful, be sure to check out Implement Continuous Integration and Delivery of Apache Spark Applications using AWS and Build a Data Lake Foundation with AWS Glue and Amazon S3.

 


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

AWS Online Tech Talks – April & Early May 2018

Post Syndicated from Betsy Chernoff original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-april-early-may-2018/

We have several upcoming tech talks in the month of April and early May. Come join us to learn about AWS services and solution offerings. We’ll have AWS experts online to help answer questions in real-time. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

April & early May — 2018 Schedule

Compute

April 30, 2018 | 01:00 PM – 01:45 PM PTBest Practices for Running Amazon EC2 Spot Instances with Amazon EMR (300) – Learn about the best practices for scaling big data workloads as well as process, store, and analyze big data securely and cost effectively with Amazon EMR and Amazon EC2 Spot Instances.

May 1, 2018 | 01:00 PM – 01:45 PM PTHow to Bring Microsoft Apps to AWS (300) – Learn more about how to save significant money by bringing your Microsoft workloads to AWS.

May 2, 2018 | 01:00 PM – 01:45 PM PTDeep Dive on Amazon EC2 Accelerated Computing (300) – Get a technical deep dive on how AWS’ GPU and FGPA-based compute services can help you to optimize and accelerate your ML/DL and HPC workloads in the cloud.

Containers

April 23, 2018 | 11:00 AM – 11:45 AM PTNew Features for Building Powerful Containerized Microservices on AWS (300) – Learn about how this new feature works and how you can start using it to build and run modern, containerized applications on AWS.

Databases

April 23, 2018 | 01:00 PM – 01:45 PM PTElastiCache: Deep Dive Best Practices and Usage Patterns (200) – Learn about Redis-compatible in-memory data store and cache with Amazon ElastiCache.

April 25, 2018 | 01:00 PM – 01:45 PM PTIntro to Open Source Databases on AWS (200) – Learn how to tap the benefits of open source databases on AWS without the administrative hassle.

DevOps

April 25, 2018 | 09:00 AM – 09:45 AM PTDebug your Container and Serverless Applications with AWS X-Ray in 5 Minutes (300) – Learn how AWS X-Ray makes debugging your Container and Serverless applications fun.

Enterprise & Hybrid

April 23, 2018 | 09:00 AM – 09:45 AM PTAn Overview of Best Practices of Large-Scale Migrations (300) – Learn about the tools and best practices on how to migrate to AWS at scale.

April 24, 2018 | 11:00 AM – 11:45 AM PTDeploy your Desktops and Apps on AWS (300) – Learn how to deploy your desktops and apps on AWS with Amazon WorkSpaces and Amazon AppStream 2.0

IoT

May 2, 2018 | 11:00 AM – 11:45 AM PTHow to Easily and Securely Connect Devices to AWS IoT (200) – Learn how to easily and securely connect devices to the cloud and reliably scale to billions of devices and trillions of messages with AWS IoT.

Machine Learning

April 24, 2018 | 09:00 AM – 09:45 AM PT Automate for Efficiency with Amazon Transcribe and Amazon Translate (200) – Learn how you can increase the efficiency and reach your operations with Amazon Translate and Amazon Transcribe.

April 26, 2018 | 09:00 AM – 09:45 AM PT Perform Machine Learning at the IoT Edge using AWS Greengrass and Amazon Sagemaker (200) – Learn more about developing machine learning applications for the IoT edge.

Mobile

April 30, 2018 | 11:00 AM – 11:45 AM PTOffline GraphQL Apps with AWS AppSync (300) – Come learn how to enable real-time and offline data in your applications with GraphQL using AWS AppSync.

Networking

May 2, 2018 | 09:00 AM – 09:45 AM PT Taking Serverless to the Edge (300) – Learn how to run your code closer to your end users in a serverless fashion. Also, David Von Lehman from Aerobatic will discuss how they used [email protected] to reduce latency and cloud costs for their customer’s websites.

Security, Identity & Compliance

April 30, 2018 | 09:00 AM – 09:45 AM PTAmazon GuardDuty – Let’s Attack My Account! (300) – Amazon GuardDuty Test Drive – Practical steps on generating test findings.

May 3, 2018 | 09:00 AM – 09:45 AM PTProtect Your Game Servers from DDoS Attacks (200) – Learn how to use the new AWS Shield Advanced for EC2 to protect your internet-facing game servers against network layer DDoS attacks and application layer attacks of all kinds.

Serverless

April 24, 2018 | 01:00 PM – 01:45 PM PTTips and Tricks for Building and Deploying Serverless Apps In Minutes (200) – Learn how to build and deploy apps in minutes.

Storage

May 1, 2018 | 11:00 AM – 11:45 AM PTBuilding Data Lakes That Cost Less and Deliver Results Faster (300) – Learn how Amazon S3 Select And Amazon Glacier Select increase application performance by up to 400% and reduce total cost of ownership by extending your data lake into cost-effective archive storage.

May 3, 2018 | 11:00 AM – 11:45 AM PTIntegrating On-Premises Vendors with AWS for Backup (300) – Learn how to work with AWS and technology partners to build backup & restore solutions for your on-premises, hybrid, and cloud native environments.

Using AWS Lambda and Amazon Comprehend for sentiment analysis

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/using-aws-lambda-and-amazon-comprehend-for-sentiment-analysis/

This post courtesy of Giedrius Praspaliauskas, AWS Solutions Architect

Even with best IVR systems, customers get frustrated. What if you knew that 10 callers in your Amazon Connect contact flow were likely to say “Agent!” in frustration in the next 30 seconds? Would you like to get to them before that happens? What if your bot was smart enough to admit, “I’m sorry this isn’t helping. Let me find someone for you.”?

In this post, I show you how to use AWS Lambda and Amazon Comprehend for sentiment analysis to make your Amazon Lex bots in Amazon Connect more sympathetic.

Setting up a Lambda function for sentiment analysis

There are multiple natural language and text processing frameworks or services available to use with Lambda, including but not limited to Amazon Comprehend, TextBlob, Pattern, and NLTK. Pick one based on the nature of your system:  the type of interaction, languages supported, and so on. For this post, I picked Amazon Comprehend, which uses natural language processing (NLP) to extract insights and relationships in text.

The walkthrough in this post is just an example. In a full-scale implementation, you would likely implement a more nuanced approach. For example, you could keep the overall sentiment score through the conversation and act only when it reaches a certain threshold. It is worth noting that this Lambda function is not called for missed utterances, so there may be a gap between what is being analyzed and what was actually said.

The Lambda function is straightforward. It analyses the input transcript field of the Amazon Lex event. Based on the overall sentiment value, it generates a response message with next step instructions. When the sentiment is neutral, positive, or mixed, the response leaves it to Amazon Lex to decide what the next steps should be. It adds to the response overall sentiment value as an additional session attribute, along with slots’ values received as an input.

When the overall sentiment is negative, the function returns the dialog action, pointing to an escalation intent (specified in the environment variable ESCALATION_INTENT_NAME) or returns the fulfillment closure action with a failure state when the intent is not specified. In addition to actions or intents, the function returns a message, or prompt, to be provided to the customer before taking the next step. Based on the returned action, Amazon Connect can select the appropriate next step in a contact flow.

For this walkthrough, you create a Lambda function using the AWS Management Console:

  1. Open the Lambda console.
  2. Choose Create Function.
  3. Choose Author from scratch (no blueprint).
  4. For Runtime, choose Python 3.6.
  5. For Role, choose Create a custom role. The custom execution role allows the function to detect sentiments, create a log group, stream log events, and store the log events.
  6. Enter the following values:
    • For Role Description, enter Lambda execution role permissions.
    • For IAM Role, choose Create an IAM role.
    • For Role Name, enter LexSentimentAnalysisLambdaRole.
    • For Policy, use the following policy:
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": "arn:aws:logs:*:*:*"
        },
        {
            "Action": [
                "comprehend:DetectDominantLanguage",
                "comprehend:DetectSentiment"
            ],
            "Effect": "Allow",
            "Resource": "*"
        }
    ]
}
    1. Choose Create function.
    2. Copy/paste the following code to the editor window
import os, boto3

ESCALATION_INTENT_MESSAGE="Seems that you are having troubles with our service. Would you like to be transferred to the associate?"
FULFILMENT_CLOSURE_MESSAGE="Seems that you are having troubles with our service. Let me transfer you to the associate."

escalation_intent_name = os.getenv('ESACALATION_INTENT_NAME', None)

client = boto3.client('comprehend')

def lambda_handler(event, context):
    sentiment=client.detect_sentiment(Text=event['inputTranscript'],LanguageCode='en')['Sentiment']
    if sentiment=='NEGATIVE':
        if escalation_intent_name:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                    },
                    "dialogAction": {
                        "type": "ConfirmIntent", 
                        "message": {
                            "contentType": "PlainText", 
                            "content": ESCALATION_INTENT_MESSAGE
                        }, 
                    "intentName": escalation_intent_name
                    }
            }
        else:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                },
                "dialogAction": {
                    "type": "Close",
                    "fulfillmentState": "Failed",
                    "message": {
                            "contentType": "PlainText",
                            "content": FULFILMENT_CLOSURE_MESSAGE
                    }
                }
            }

    else:
        result ={
            "sessionAttributes": {
                "sentiment": sentiment
            },
            "dialogAction": {
                "type": "Delegate",
                "slots" : event["currentIntent"]["slots"]
            }
        }
    return result
  1. Below the code editor specify the environment variable ESCALATION_INTENT_NAME with a value of Escalate.

  1. Click on Save in the top right of the console.

Now you can test your function.

  1. Click Test at the top of the console.
  2. Configure a new test event using the following test event JSON:
{
  "messageVersion": "1.0",
  "invocationSource": "DialogCodeHook",
  "userId": "1234567890",
  "sessionAttributes": {},
  "bot": {
    "name": "BookSomething",
    "alias": "None",
    "version": "$LATEST"
  },
  "outputDialogMode": "Text",
  "currentIntent": {
    "name": "BookSomething",
    "slots": {
      "slot1": "None",
      "slot2": "None"
    },
    "confirmationStatus": "None"
  },
  "inputTranscript": "I want something"
}
  1. Click Create
  2. Click Test on the console

This message should return a response from Lambda with a sentiment session attribute of NEUTRAL.

However, if you change the input to “This is garbage!”, Lambda changes the dialog action to the escalation intent specified in the environment variable ESCALATION_INTENT_NAME.

Setting up Amazon Lex

Now that you have your Lambda function running, it is time to create the Amazon Lex bot. Use the BookTrip sample bot and call it BookSomething. The IAM role is automatically created on your behalf. Indicate that this bot is not subject to the COPPA, and choose Create. A few minutes later, the bot is ready.

Make the following changes to the default configuration of the bot:

  1. Add an intent with no associated slots. Name it Escalate.
  2. Specify the Lambda function for initialization and validation in the existing two intents (“BookCar” and “BookHotel”), at the same time giving Amazon Lex permission to invoke it.
  3. Leave the other configuration settings as they are and save the intents.

You are ready to build and publish this bot. Set a new alias, BookSomethingWithSentimentAnalysis. When the build finishes, test it.

As you see, sentiment analysis works!

Setting up Amazon Connect

Next, provision an Amazon Connect instance.

After the instance is created, you need to integrate the Amazon Lex bot created in the previous step. For more information, see the Amazon Lex section in the Configuring Your Amazon Connect Instance topic.  You may also want to look at the excellent post by Randall Hunt, New – Amazon Connect and Amazon Lex Integration.

Create a new contact flow, “Sentiment analysis walkthrough”:

  1. Log in into the Amazon Connect instance.
  2. Choose Create contact flow, Create transfer to agent flow.
  3. Add a Get customer input block, open the icon in the top left corner, and specify your Amazon Lex bot and its intents.
  4. Select the Text to speech audio prompt type and enter text for Amazon Connect to play at the beginning of the dialog.
  5. Choose Amazon Lex, enter your Amazon Lex bot name and the alias.
  6. Specify the intents to be used as dialog branches that a customer can choose: BookHotel, BookTrip, or Escalate.
  7. Add two Play prompt blocks and connect them to the customer input block.
    • If booking hotel or car intent is returned from the bot flow, play the corresponding prompt (“OK, will book it for you”) and initiate booking (in this walkthrough, just hang up after the prompt).
    • However, if escalation intent is returned (caused by the sentiment analysis results in the bot), play the prompt (“OK, transferring to an agent”) and initiate the transfer.
  8. Save and publish the contact flow.

As a result, you have a contact flow with a single customer input step and a text-to-speech prompt that uses the Amazon Lex bot. You expect one of the three intents returned:

Edit the phone number to associate the contact flow that you just created. It is now ready for testing. Call the phone number and check how your contact flow works.

Cleanup

Don’t forget to delete all the resources created during this walkthrough to avoid incurring any more costs:

  • Amazon Connect instance
  • Amazon Lex bot
  • Lambda function
  • IAM role LexSentimentAnalysisLambdaRole

Summary

In this walkthrough, you implemented sentiment analysis with a Lambda function. The function can be integrated into Amazon Lex and, as a result, into Amazon Connect. This approach gives you the flexibility to analyze user input and then act. You may find the following potential use cases of this approach to be of interest:

  • Extend the Lambda function to identify “hot” topics in the user input even if the sentiment is not negative and take action proactively. For example, switch to an escalation intent if a user mentioned “where is my order,” which may signal potential frustration.
  • Use Amazon Connect Streams to provide agent sentiment analysis results along with call transfer. Enable service tailored towards particular customer needs and sentiments.
  • Route calls to agents based on both skill set and sentiment.
  • Prioritize calls based on sentiment using multiple Amazon Connect queues instead of transferring directly to an agent.
  • Monitor quality and flag for review contact flows that result in high overall negative sentiment.
  • Implement sentiment and AI/ML based call analysis, such as a real-time recommendation engine. For more details, see Machine Learning on AWS.

If you have questions or suggestions, please comment below.

New – Machine Learning Inference at the Edge Using AWS Greengrass

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-machine-learning-inference-at-the-edge-using-aws-greengrass/

What happens when you combine the Internet of Things, Machine Learning, and Edge Computing? Before I tell you, let’s review each one and discuss what AWS has to offer.

Internet of Things (IoT) – Devices that connect the physical world and the digital one. The devices, often equipped with one or more types of sensors, can be found in factories, vehicles, mines, fields, homes, and so forth. Important AWS services include AWS IoT Core, AWS IoT Analytics, AWS IoT Device Management, and Amazon FreeRTOS, along with others that you can find on the AWS IoT page.

Machine Learning (ML) – Systems that can be trained using an at-scale dataset and statistical algorithms, and used to make inferences from fresh data. At Amazon we use machine learning to drive the recommendations that you see when you shop, to optimize the paths in our fulfillment centers, fly drones, and much more. We support leading open source machine learning frameworks such as TensorFlow and MXNet, and make ML accessible and easy to use through Amazon SageMaker. We also provide Amazon Rekognition for images and for video, Amazon Lex for chatbots, and a wide array of language services for text analysis, translation, speech recognition, and text to speech.

Edge Computing – The power to have compute resources and decision-making capabilities in disparate locations, often with intermittent or no connectivity to the cloud. AWS Greengrass builds on AWS IoT, giving you the ability to run Lambda functions and keep device state in sync even when not connected to the Internet.

ML Inference at the Edge
Today I would like to toss all three of these important new technologies into a blender! You can now perform Machine Learning inference at the edge using AWS Greengrass. This allows you to use the power of the AWS cloud (including fast, powerful instances equipped with GPUs) to build, train, and test your ML models before deploying them to small, low-powered, intermittently-connected IoT devices running in those factories, vehicles, mines, fields, and homes that I mentioned.

Here are a few of the many ways that you can put Greengrass ML Inference to use:

Precision Farming – With an ever-growing world population and unpredictable weather that can affect crop yields, the opportunity to use technology to increase yields is immense. Intelligent devices that are literally in the field can process images of soil, plants, pests, and crops, taking local corrective action and sending status reports to the cloud.

Physical Security – Smart devices (including the AWS DeepLens) can process images and scenes locally, looking for objects, watching for changes, and even detecting faces. When something of interest or concern arises, the device can pass the image or the video to the cloud and use Amazon Rekognition to take a closer look.

Industrial Maintenance – Smart, local monitoring can increase operational efficiency and reduce unplanned downtime. The monitors can run inference operations on power consumption, noise levels, and vibration to flag anomalies, predict failures, detect faulty equipment.

Greengrass ML Inference Overview
There are several different aspects to this new AWS feature. Let’s take a look at each one:

Machine Learning ModelsPrecompiled TensorFlow and MXNet libraries, optimized for production use on the NVIDIA Jetson TX2 and Intel Atom devices, and development use on 32-bit Raspberry Pi devices. The optimized libraries can take advantage of GPU and FPGA hardware accelerators at the edge in order to provide fast, local inferences.

Model Building and Training – The ability to use Amazon SageMaker and other cloud-based ML tools to build, train, and test your models before deploying them to your IoT devices. To learn more about SageMaker, read Amazon SageMaker – Accelerated Machine Learning.

Model Deployment – SageMaker models can (if you give them the proper IAM permissions) be referenced directly from your Greengrass groups. You can also make use of models stored in S3 buckets. You can add a new machine learning resource to a group with a couple of clicks:

These new features are available now and you can start using them today! To learn more read Perform Machine Learning Inference.

Jeff;

 

Innovation Flywheels and the AWS Serverless Application Repository

Post Syndicated from Tim Wagner original https://aws.amazon.com/blogs/compute/innovation-flywheels-and-the-aws-serverless-application-repository/

At AWS, our customers have always been the motivation for our innovation. In turn, we’re committed to helping them accelerate the pace of their own innovation. It was in the spirit of helping our customers achieve their objectives faster that we launched AWS Lambda in 2014, eliminating the burden of server management and enabling AWS developers to focus on business logic instead of the challenges of provisioning and managing infrastructure.

 

In the years since, our customers have built amazing things using Lambda and other serverless offerings, such as Amazon API Gateway, Amazon Cognito, and Amazon DynamoDB. Together, these services make it easy to build entire applications without the need to provision, manage, monitor, or patch servers. By removing much of the operational drudgery of infrastructure management, we’ve helped our customers become more agile and achieve faster time-to-market for their applications and services. By eliminating cold servers and cold containers with request-based pricing, we’ve also eliminated the high cost of idle capacity and helped our customers achieve dramatically higher utilization and better economics.

After we launched Lambda, though, we quickly learned an important lesson: A single Lambda function rarely exists in isolation. Rather, many functions are part of serverless applications that collectively deliver customer value. Whether it’s the combination of event sources and event handlers, as serverless web apps that combine APIs with functions for dynamic content with static content repositories, or collections of functions that together provide a microservice architecture, our customers were building and delivering serverless architectures for every conceivable problem. Despite the economic and agility benefits that hundreds of thousands of AWS customers were enjoying with Lambda, we realized there was still more we could do.

How Customer Feedback Inspired Us to Innovate

We heard from our customers that getting started—either from scratch or when augmenting their implementation with new techniques or technologies—remained a challenge. When we looked for serverless assets to share, we found stellar examples built by serverless pioneers that represented a multitude of solutions across industries.

There were apps to facilitate monitoring and logging, to process image and audio files, to create Alexa skills, and to integrate with notification and location services. These apps ranged from “getting started” examples to complete, ready-to-run assets. What was missing, however, was a unified place for customers to discover this diversity of serverless applications and a step-by-step interface to help them configure and deploy them.

We also heard from customers and partners that building their own ecosystems—ecosystems increasingly composed of functions, APIs, and serverless applications—remained a challenge. They wanted a simple way to share samples, create extensibility, and grow consumer relationships on top of serverless approaches.

 

We built the AWS Serverless Application Repository to help solve both of these challenges by offering publishers and consumers of serverless apps a simple, fast, and effective way to share applications and grow user communities around them. Now, developers can easily learn how to apply serverless approaches to their implementation and business challenges by discovering, customizing, and deploying serverless applications directly from the Serverless Application Repository. They can also find libraries, components, patterns, and best practices that augment their existing knowledge, helping them bring services and applications to market faster than ever before.

How the AWS Serverless Application Repository Inspires Innovation for All Customers

Companies that want to create ecosystems, share samples, deliver extensibility and customization options, and complement their existing SaaS services use the Serverless Application Repository as a distribution channel, producing apps that can be easily discovered and consumed by their customers. AWS partners like HERE have introduced their location and transit services to thousands of companies and developers. Partners like Datadog, Splunk, and TensorIoT have showcased monitoring, logging, and IoT applications to the serverless community.

Individual developers are also publishing serverless applications that push the boundaries of innovation—some have published applications that leverage machine learning to predict the quality of wine while others have published applications that monitor crypto-currencies, instantly build beautiful image galleries, or create fast and simple surveys. All of these publishers are using serverless apps, and the Serverless Application Repository, as the easiest way to share what they’ve built. Best of all, their customers and fellow community members can find and deploy these applications with just a few clicks in the Lambda console. Apps in the Serverless Application Repository are free of charge, making it easy to explore new solutions or learn new technologies.

Finally, we at AWS continue to publish apps for the community to use. From apps that leverage Amazon Cognito to sync user data across applications to our latest collection of serverless apps that enable users to quickly execute common financial calculations, we’re constantly looking for opportunities to contribute to community growth and innovation.

At AWS, we’re more excited than ever by the growing adoption of serverless architectures and the innovation that services like AWS Lambda make possible. Helping our customers create and deliver new ideas drives us to keep inventing ways to make building and sharing serverless apps even easier. As the number of applications in the Serverless Application Repository grows, so too will the innovation that it fuels for both the owners and the consumers of those apps. With the general availability of the Serverless Application Repository, our customers become more than the engine of our innovation—they become the engine of innovation for one another.

To browse, discover, deploy, and publish serverless apps in minutes, visit the Serverless Application Repository. Go serverless—and go innovate!

Dr. Tim Wagner is the General Manager of AWS Lambda and Amazon API Gateway.