Tag Archives: Alertmanager

Minimizing on-call burnout through alerts observability

Post Syndicated from Monika Singh original https://blog.cloudflare.com/alerts-observability


Many people have probably come across the ‘this is fine’ meme or the original comic. This is what a typical day for a lot of on-call personnel looks like. On-calls get a lot of alerts, and dealing with too many alerts can result in alert fatigue – a feeling of exhaustion caused by responding to alerts that lack priority or clear actions. Ensuring the alerts are actionable and accurate, not false positives, is crucial because repeated false alarms can desensitize on-call personnel. To this end, within Cloudflare, numerous teams conduct periodic alert analysis, with each team developing its own dashboards for reporting. As members of the Observability team, we’ve encountered situations where teams reported inaccuracies in alerts or instances where alerts failed to trigger, as well as provided assistance in dealing with noisy/flapping alerts.

Observability aims to enhance insight into the technology stack by gathering and analyzing a broader spectrum of data. In this blog post, we delve into alert observability, discussing its importance and Cloudflare’s approach to achieving it. We’ll also explore how we overcome shortcomings in alert reporting within our architecture to simplify troubleshooting using open-source tools and best practices. Join us to understand how we use alerts effectively and use simple tools and practices to enhance our alerts observability, resilience, and on-call personnel health.

Being on-call can disrupt sleep patterns, impact social life, and hinder leisure activities, potentially leading to burnout. While burnout can be caused by several factors, one contributing factor can be excessively noisy alerts or receiving alerts that are neither important nor actionable. Analyzing alerts can help mitigate the risk of such burnout by reducing unnecessary interruptions and improving the overall efficiency of the on-call process. It involves periodic review and feedback to the system for improving alert quality. Unfortunately, only some companies or teams do alert analysis, even though it is essential information that every on-call or manager should have access to.

Alert analysis is useful for on-call personnel, enabling them to easily see which alerts have fired during their shift to help draft handover notes and not miss anything important. In addition, managers can generate reports from these stats to see the improvements over time, as well as helping assess on-call vulnerability to burnout. Alert analysis also helps with writing incident reports, to see if alerts were fired, or to determine when an incident started.

Let’s first understand the alerting stack and how we used open-source tools to gain greater visibility into it, which allowed us to analyze and optimize its effectiveness.

Prometheus architecture at Cloudflare

At Cloudflare, we rely heavily on Prometheus for monitoring. We have data centers in more than 310 cities, and each has several Prometheis. In total, we have over 1100 Prometheus servers. All alerts are sent to a central Alertmanager, where we have various integrations to route them. Additionally, using an alertmanager webhook, we store all alerts in a datastore for analysis.

Lifecycle of an alert

Prometheus collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts when the alerting conditions are met. Once an alert goes into firing state, it will be sent to the alertmanager.

Depending on the configuration, once Alertmanager receives an alert, it can inhibit, group, silence, or route the alerts to the correct receiver integration, such as chat, PagerDuty, or ticketing system. When configured properly, Alertmanager can mitigate a lot of alert noise. Unfortunately, that is not the case all the time, as not all alerts are optimally configured.

In Alertmanager, alerts initially enter the firing state, where they may be inhibited or silenced. They return to the firing state when the silence expires or the inhibiting alert resolves, and eventually transition to the resolved state.

Alertmanager sends notifications for firing and resolved alert events via webhook integration. We were using alertmanager2es, which receives webhook alert notifications from Alertmanager and inserts them into an Elasticsearch index for searching and analysis. Alertmanager2es has been a reliable tool for us over the years, offering ways to monitor alerting volume, noisy alerts and do some kind of alert reporting. However, it had its limitations. The absence of silenced and inhibited alert states made troubleshooting issues challenging. We often found ourselves guessing why an alert didn’t trigger – was it silenced by another alert or perhaps inhibited by one? Without concrete data, we lacked the means to confirm what was truly happening.

Since the Alertmanager doesn’t provide notifications for silenced or inhibited alert events via webhook integration, the alert reporting we were doing was somewhat lacking or incomplete. However, the Alertmanager API provides querying capabilities and by querying the /api/alerts alertmanager endpoint, we can get the silenced and inhibited alert states. Having all four states in a datastore will enhance our ability to improve alert reporting and troubleshoot Alertmanager issues.

Interfaces for providing information about alert states

Solution

We opted to aggregate all states of the alerts (firing, silenced, inhibited, and resolved) into a datastore. Given that we’re gathering data from two distinct sources (the webhook and API) each in varying formats and potentially representing different events, we correlate alerts from both sources using the fingerprint field. The fingerprint is a unique hash of the alert’s label set which enables us to match alerts across responses from the Alertmanager webhook and API.

Alertmanager webhook and API response of same alert event

The Alertmanager API offers additional fields compared to the webhook (highlighted in pastel red on the right), such as silencedBy and inhibitedBy IDs, which aid in identifying silenced and inhibited alerts. We store both webhook and API responses in the datastore as separate rows. While querying, we match the alerts using the fingerprint field.

We decided to use a vector.dev instance to transform the data as necessary, and store it in a data store. Vector.dev (acquired by Datadog) is an open-source, high-performance, observability data pipeline that supports a vast range of sources to read data from and supports a lot of sinks for writing data to, as well as a variety of data transformation operations.

Here, we use one http_server vector instance to receive Alertmanager webhook notifications, two http_client sources to query alerts and silence API endpoints, and two sinks for writing all of the state logs in ClickHouse into alerts and silences tables

Although we use ClickHouse to store this data, any other database can be used here. ClickHouse was chosen as a data store because it provides various data manipulation options. It allows aggregating data during insertion using Materialized Views, reduces duplicates with the replacingMergeTree table engine, and supports JOIN statements.

If we were to create individual columns for all the alert labels, the number of columns would grow exponentially with the addition of new alerts and unique labels. Instead, we decided to create individual columns for a few common labels like alert priority, instance, dashboard, alert-ref, alertname, etc., which helps us analyze the data in general and keep all other labels in a column of type Map(String, String). This was done because we wanted to keep all the labels in the datastore with minimal resource usage and allow users to query specific labels or filter alerts based on particular labels. For example, we can select all Prometheus alerts using  labelsmap[‘service’’] = ‘Prometheus’.

Dashboards

We built multiple dashboards on top of this data:

  • Alerts overview: To get insights into all the alerts the Alertmanager receives.
  • Alertname overview: To drill down on a specific alert.
  • Alerts overview by receiver: This is similar to alerts overview but specific to a team or receiver.
  • Alerts state timeline: This dashboard shows a snapshot of alert volume at a glance.
  • Jiralerts overview: To get insights into the alerts the ticket system receives.
  • Silences overview: To get insights into the Alertmanager silences.

Alerts overview

The image is a screenshot of the collapsed alerts overview dashboard by receiver. This dashboard comprises general stats, components, services, and alertname breakdown. The dashboard also highlights the number of P1 / P2 alerts in the last one day / seven days / thirty days, top alerts for the current quarter, and quarter-to-quarter comparison.

Component breakdown

We route alerts to teams and a team can have multiple services or components. This panel shows firing alerts component counts over time for a receiver. For example, the alerts are sent to the observability team, which owns multiple components like logging, metrics, traces, and errors. This panel gives an alerting component count over time, and provides a good idea about which component is noisy and at what time at a glance.

Timeline of alerts

We created this swimlane view using Grafana’s state timeline panel for the receivers. The panel shows how busy the on-call was and at what point. Red here means the alert started firing, orange represents the alert is active and green means it has resolved. It displays the start time, active duration, and resolution of an alert. This highlighted alert is changing state too frequently from firing to resolved – this looks like a flapping alert. Flapping occurs when an alert changes state too frequently. This can happen when alerts are not configured properly and need tweaking, such as adjusting the alert threshold or increasing the for duration period in the alerting rule. The for duration field in the alerting rules adds time tolerance before an alert starts firing. In other words, the alert won’t fire unless the condition is met for ‘X’ minutes.

Findings

There were a few interesting findings within our analysis. We found a few alerts that were firing and did not have a notify label set, which means the alerts were firing but were not being sent or routed to any team, creating unnecessary load on the Alertmanager. We also found a few components generating a lot of alerts, and when we dug in, we found that they were for a cluster that was decommissioned where the alerts were not removed. These dashboards gave us excellent visibility and cleanup opportunities.

Alertmanager inhibitions

Alertmanager inhibition allows suppressing a set of alerts or notifications based on the presence of another set of alerts. We found that Alertmanager inhibitions were not working sometimes. Since there was no way to know about this, we only learned about it when a user reported getting alerted for inhibited alerts. Imagine a Venn diagram of firing and inhibited alerts to understand failed inhibitions. Ideally, there should be no overlap because the inhibited alerts shouldn’t be firing. But if there is an overlap, that means inhibited alerts are firing, and this overlap is considered a failed inhibition alert.

Failed inhibition venn diagram

After storing alert notifications in ClickHouse, we were able to come up with a query to find the fingerprint of the `alertnames` where the inhibitions were failing using the following query:

SELECT $rollup(timestamp) as t, count() as count
FROM
(
    SELECT
        fingerprint, timestamp
    FROM alerts
    WHERE
        $timeFilter
        AND status.state = 'firing'
    GROUP BY
        fingerprint, timestamp
) AS firing
ANY INNER JOIN
(
    SELECT
        fingerprint, timestamp
    FROM alerts
    WHERE
        $timeFilter
        AND status.state = 'suppressed' AND notEmpty(status.inhibitedBy)
    GROUP BY
        fingerprint, timestamp
) AS suppressed USING (fingerprint)
GROUP BY t

The first panel in the image below is the total number of firing alerts, the second panel is the number of failed inhibitions.

We can also create breakdown for each failed inhibited alert

By looking up the fingerprint from the database, we could map the alert inhibitions and found that the failed inhibited alerts have an inhibition loop. For example, alert Service_XYZ_down is inhibited by alert server_OOR, alert server_OOR is inhibited by alert server_down, and server_down is inhibited by alert server_OOR.

Failed inhibitions can be avoided if alert inhibitions are configured carefully.

Silences

Alertmanager provides a mechanism to silence an alert while it is being worked on or during maintenance. Silence can mute the alerts for a given time and it can be configured based on matchers, which can be an exact match, a regex, an alert name, or any other label. The silence matcher doesn’t necessarily translate to the alertname. By doing alert analysis, we could map the alerts and the silence ID by doing a JOIN query on the alerts and silences tables. We also discovered a lot of stale silences, where silence was created for a long duration and is not relevant anymore.

DIY Alert analysis

The directory contains a basic demo for implementing alerts observability. Running `docker-compose up` spawns several containers, including Prometheus, Alertmanager, Vector, ClickHouse, and Grafana. The vector.dev container queries the Alertmanager alerts API and writes the data into ClickHouse after transforming it. The Grafana dashboard showcases a demo of Alerts and Silences overview.

Make sure you have docker installed and run docker compose up to get started.

Visit http://localhost:3000/dashboards to explore the prebuilt demo dashboards.

Conclusion

As part of the observability team, we manage the Alertmanager, which is a multi-tenant system. It’s crucial for us to have visibility to detect and address system misuse, ensuring proper alerting. The use of alert analysis tools has significantly enhanced the experience for on-call personnel and our team, offering swift access to the alert system. Alerts observability has facilitated the troubleshooting of events such as why an alert did not fire, why an inhibited alert fired, or which alert silenced / inhibited another alert, providing valuable insights for improving alert management.

Moreover, alerts overview dashboards facilitate rapid review and adjustment, streamlining operations. Teams use these dashboards in the weekly alert reviews to provide tangible evidence of how an on-call shift went, identify which alerts fire most frequently, becoming candidates for cleanup or aggregation thus curbing system misuse and bolstering overall alert management. Additionally, we can pinpoint services that may require particular attention. Alerts observability has also empowered some teams to make informed decisions about on-call configurations, such as transitioning to longer but less frequent shifts or integrating on-call and unplanned work shifts.

In conclusion, alert observability plays a crucial role in averting burnout by minimizing interruptions and enhancing on-call duties’ efficiency. Offering alerts observability as a service benefits all teams by obviating the need for individual dashboard development and fostering a proactive monitoring culture.
If you found this blog post interesting and want to work on observability, please check out our job openings – we’re hiring for Alerting and Logging!

Automatic Remediation of Kubernetes Nodes

Post Syndicated from Andrew DeMaria original https://blog.cloudflare.com/automatic-remediation-of-kubernetes-nodes/

Automatic Remediation of Kubernetes Nodes

Automatic Remediation of Kubernetes Nodes

We use Kubernetes to run many of the diverse services that help us control Cloudflare’s edge. We have five geographically diverse clusters, with hundreds of nodes in our largest cluster. These clusters are self-managed on bare-metal machines which gives us a good amount of power and flexibility in the software and integrations with Kubernetes. However, it also means we don’t have a cloud provider to rely on for virtualizing or managing the nodes. This distinction becomes even more prominent when considering all the different reasons that nodes degrade. With self-managed bare-metal machines, the list of reasons that cause a node to become unhealthy include:

  • Hardware failures
  • Kernel-level software failures
  • Kubernetes cluster-level software failures
  • Degraded network communication
  • Software updates are required
  • Resource exhaustion1

Automatic Remediation of Kubernetes Nodes

Unhappy Nodes

We have plenty of examples of failures in the aforementioned categories, but one example has been particularly tedious to deal with. It starts with the following log line from the kernel:

unregister_netdevice: waiting for lo to become free. Usage count = 1

The issue is further observed with the number of network interfaces on the node owned by the Container Network Interface (CNI) plugin getting out of proportion with the number of running pods:

$ ip link | grep cali | wc -l
1088

This is unexpected as it shouldn’t exceed the maximum number of pods allowed on a node (we use the default limit of 110). While this issue is interesting and perhaps worthy of a whole separate blog, the short of it is that the Linux network interfaces owned by the CNI are not getting cleaned up after a pod terminates.

Some history on this can be read in a Docker GitHub issue. We found this seems to plague nodes with a longer uptime, and after rebooting the node it would be fine for about a month. However, with a significant number of nodes, this was happening multiple times per day. Each instance would need rebooting, which means going through our worker reboot procedure which looked like this:

  1. Cordon off the affected node to prevent new workloads from scheduling on it.
  2. Collect any diagnostic information for later investigation.
  3. Drain the node of current workloads.
  4. Reboot and wait for the node to come back.
  5. Verify the node is healthy.
  6. Re-enable scheduling of new workloads to the node.

While solving the underlying issue would be ideal, we needed a mitigation to avoid toil in the meantime — an automated node remediation process.

Existing Detection and Remediation Solutions

While not complicated, the manual remediation process outlined previously became tedious and distracting, as we had to reboot nodes multiple times a day. Some manual intervention is unavoidable, but for cases matching the following, we wanted automation:

  • Generic worker nodes
  • Software issues confined to a given node
  • Already researched and diagnosed issues

Limiting automatic remediation to generic worker nodes is important as there are other node types in our clusters where more care is required. For example, for control-plane nodes the process has to be augmented to check etcd cluster health and ensure proper redundancy for components servicing the Kubernetes API. We are also going to limit the problem space to known software issues confined to a node where we expect automatic remediation to be the right answer (as in our ballooning network interface problem). With that in mind, we took a look at existing solutions that we could use.

Node Problem Detector

Node problem detector is a daemon that runs on each node that detects problems and reports them to the Kubernetes API. It has a pluggable problem daemon system such that one can add their own logic for detecting issues with a node. Node problems are distinguished between temporary and permanent problems, with the latter being persisted as status conditions on the Kubernetes node resources.2

Draino and Cluster-Autoscaler

Draino as its name implies, drains nodes but does so based on Kubernetes node conditions. It is meant to be used with cluster-autoscaler which then can add or remove nodes via the cluster plugins to scale node groups.

Kured

Kured is a daemon that looks at the presence of a file on the node to initiate a drain, reboot and uncordon of the given node. It uses a locking mechanism via the Kubernetes API to ensure only a single node is acted upon at a time.

Cluster-API

The Kubernetes cluster-lifecycle SIG has been working on the cluster-api project to enable declaratively defining clusters to simplify provisioning, upgrading, and operating multiple Kubernetes clusters. It has a concept of machine resources which back Kubernetes node resources and furthermore has a concept of machine health checks. Machine health checks use node conditions to determine unhealthy nodes and then the cluster-api provider is then delegated to replace that machine via create and delete operations.

Proof of Concept

Interestingly, with all the above except for Kured, there is a theme of pluggable components centered around Kubernetes node conditions. We wanted to see if we could build a proof of concept using the existing theme and solutions. For the existing solutions, draino with cluster-autoscaler didn’t make sense in a non-cloud environment like our bare-metal set up. The cluster-api health checks are interesting, however they require a more complete investment into the cluster-api project to really make sense. That left us with node-problem-detector and kured. Deploying node-problem-detector was simple, and we ended up testing a custom-plugin-monitor like the following:

apiVersion: v1
kind: ConfigMap
metadata:
  name: node-problem-detector-config
data:
  check_calico_interfaces.sh: |
    #!/bin/bash
    set -euo pipefail
    
    count=$(nsenter -n/proc/1/ns/net ip link | grep cali | wc -l)
    
    if (( $count > 150 )); then
      echo "Too many calico interfaces ($count)"
      exit 1
    else
      exit 0
    fi
  cali-monitor.json: |
    {
      "plugin": "custom",
      "pluginConfig": {
        "invoke_interval": "30s",
        "timeout": "5s",
        "max_output_length": 80,
        "concurrency": 3,
        "enable_message_change_based_condition_update": false
      },
      "source": "calico-custom-plugin-monitor",
      "metricsReporting": false,
      "conditions": [
        {
          "type": "NPDCalicoUnhealthy",
          "reason": "CalicoInterfaceCountOkay",
          "message": "Normal amount of interfaces"
        }
      ],
      "rules": [
        {
          "type": "permanent",
          "condition": "NPDCalicoUnhealthy",
          "reason": "TooManyCalicoInterfaces",
          "path": "/bin/bash",
          "args": [
            "/config/check_calico_interfaces.sh"
          ],
          "timeout": "3s"
        }
      ]
    }

Testing showed that when the condition became true, a condition would be updated on the associated Kubernetes node like so:

kubectl get node -o json worker1a | jq '.status.conditions[] | select(.type | test("^NPD"))'
{
  "lastHeartbeatTime": "2020-03-20T17:05:17Z",
  "lastTransitionTime": "2020-03-20T17:05:16Z",
  "message": "Too many calico interfaces (154)",
  "reason": "TooManyCalicoInterfaces",
  "status": "True",
  "type": "NPDCalicoUnhealthy"
}

With that in place, the actual remediation needed to happen. Kured seemed to do most everything we needed, except that it was looking at a file instead of Kubernetes node conditions. We hacked together a patch to change that and tested it successfully end to end — we had a working proof of concept!

Revisiting Problem Detection

While the above worked, we found that node-problem-detector was unwieldy because we were replicating our existing monitoring into shell scripts and node-problem-detector configuration. A 2017 blog post describes Cloudflare’s monitoring stack, although some things have changed since then. What hasn’t changed is our extensive usage of Prometheus and Alertmanager.

For the network interface issue and other issues we wanted to address, we already had the necessary exported metrics and alerting to go with them. Here is what our already existing alert looked like3:

- alert: CalicoTooManyInterfaces
  expr: sum(node_network_info{device=~"cali.*"}) by (node) >= 200
  for: 1h
  labels:
    priority: "5"
    notify: chat-sre-core chat-k8s

Note that we use a “notify” label to drive the routing logic in Alertmanager. However, that got us asking, could we just route this to a Kubernetes node condition instead?

Introducing Sciuro

Automatic Remediation of Kubernetes Nodes

Sciuro is our open-source replacement of node-problem-detector that has one simple job: synchronize Kubernetes node conditions with currently firing alerts in Alertmanager. Node problems can be defined with a more holistic view and using already existing exporters such as node exporter, cadvisor or mtail. It also doesn’t run on affected nodes which allows us to rely on out-of-band remediation techniques. Here is a high level diagram of how Sciuro works:

Automatic Remediation of Kubernetes Nodes

Starting from the top, nodes are scraped by Prometheus, which collects those metrics and fires relevant alerts to Alertmanager. Sciuro polls Alertmanager for alerts with a matching receiver, matches them with a corresponding node resource in the Kubernetes API and updates that node’s conditions accordingly.

In more detail, we can start by defining an alert in Prometheus like the following:

- alert: CalicoTooManyInterfacesEarly
  expr: sum(node_network_info{device=~"cali.*"}) by (node) >= 150
  labels:
    priority: "6"
    notify: node-condition-k8s

Note the two differences from the previous alert. First, we use a new name with a more sensitive trigger. The idea is that we want automatic node remediation to try fixing the node first as soon as possible, but if the problem worsens or automatic remediation is failing, humans will still get notified to act. The second difference is that instead of notifying chat rooms, we route to a target called “node-condition-k8s”.

Sciuro then comes into play, polling the Altertmanager API for alerts matching the “node-condition-k8s” receiver. The following shows the equivalent using amtool:

$ amtool alert query -r node-condition-k8s
Alertname                 	Starts At            	Summary                                                               	 
CalicoTooManyInterfacesEarly  2021-05-11 03:25:21 UTC  Kubernetes node worker1a has too many Calico interfaces  

We can also check the labels for this alert:

$ amtool alert query -r node-condition-k8s -o json | jq '.[] | .labels'
{
  "alertname": "CalicoTooManyInterfacesEarly",
  "cluster": "a.k8s",
  "instance": "worker1a",
  "node": "worker1a",
  "notify": "node-condition-k8s",
  "priority": "6",
  "prometheus": "k8s-a"
}

Note the node and instance labels which Sciuro will use for matching with the corresponding Kubernetes node. Sciuro uses the excellent controller-runtime to keep track of and update node sources in the Kubernetes API. We can observe the updated node condition on the status field via kubectl:

$ kubectl get node worker1a -o json | jq '.status.conditions[] | select(.type | test("^AlertManager"))'
{
  "lastHeartbeatTime": "2021-05-11T03:31:20Z",
  "lastTransitionTime": "2021-05-11T03:26:53Z",
  "message": "[P6] Kubernetes node worker1a has too many Calico interfaces",
  "reason": "AlertIsFiring",
  "status": "True",
  "type": "AlertManager_CalicoTooManyInterfacesEarly"
}

One important note is Sciuro added the AlertManager_ prefix to the node condition type to prevent conflicts with other node condition types. For example, DiskPressure, a kubelet managed condition, could also be an alert name. Sciuro will also properly update heartbeat and transition times to reflect when it first saw the alert and its last update. With node conditions synchronized by Sciuro, remediation can take place via one of the existing tools. As mentioned previously we are using a modified version of Kured for now.

We’re happy to announce that we’ve open sourced Sciuro, and it can be found on GitHub where you can read the code, find the deployment instructions, or open a Pull Request for changes.

Managing Node Uptime

While we began using automatic node remediation for obvious problems, we’ve expanded its purpose to additionally keep node uptime low. Low node uptime is desirable to further reduce drift on nodes, keep the node initialization process well-oiled, and encourage the best deployment practices on the Kubernetes clusters. To expand on the last point, services that are deployed with best practices and in a high availability fashion should see negligible impact when a single node leaves the cluster. However, services that are not deployed with best practices will most likely have problems especially if they rely on singleton pods. By draining nodes more frequently, it introduces regular chaos that encourages best practices. To enable this with automatic node remediation the following alert was defined:

- alert: WorkerUptimeTooHigh
  expr: |
    (
      (
        (
              max by(node) (kube_node_role{role="worker"})
            - on(node) group_left()
              (max by(node) (kube_node_role{role!="worker"}))
          or on(node)
            max by(node) (kube_node_role{role="worker"})
        ) == 1
      )
    * on(node) group_left()
      (
        (time() - node_boot_time_seconds) > (60 * 60 * 24 * 7)
      )
    )
  labels:
    priority: "9"
    notify: node-condition-k8s

There is a bit of juggling with the kube_node_roles metric in the above to isolate the alert to generic worker nodes, but at a high level it looks at node_boot_time_seconds, a metric from prometheus node_exporter. Again the notify label is configured to send to node conditions which kicks off the automatic node remediation. One further detail is the priority here is set to “9” which is of lower precedence than our other alerts. Note that the message field of the node condition is prefixed with the alert priority in brackets. This allows the remediation process to take priority into account when choosing which node to remediate first, which is important because Kured uses a lock to act on a single node at a time.

Wrapping Up

In the past 30 days, we’ve used the above automatic node remediation process to action 571 nodes. That has saved our humans a considerable amount of time. We’ve also been able to reduce the time to repair for some issues as automatic remediation can act at all times of the day and with a faster response time.

As mentioned before, we’re open sourcing Sciuro and its code can be found on GitHub. We’re open to issues, suggestions, and pull requests. We do have some ideas for future improvements. For Sciuro, we may look to reduce latency which is mainly due to polling and potentially add a push model from Altermanager although this isn’t a need we’ve had yet.  For the larger node remediation story, we hope to do an overhaul of the remediating component. As mentioned previously, we are currently using a fork of kured, but a future replacement component should include the following:

  • Use out-of-band management interfaces to be able to shut down and power on nodes without a functional operating system.
  • Move from decentralized architecture to a centralized one that can integrate more complicated logic. This might include being able to act on entire failure domains in parallel.
  • Handle specialized nodes such as masters or storage nodes.

Finally, we’re looking for more people passionate about Kubernetes to join our team. Come help us push Kubernetes to the next level to serve Cloudflare’s many needs!


1Exhaustion can be applied to hardware resources, kernel resources, or logical resources like the amount of logging being produced.
2Nearly all Kubernetes objects have spec and status fields. The status field is used to describe the current state of an object. For node resources, typically the kubelet manages a conditions field under the status field for reporting things like if the node is ready for servicing pods.
3The format of the following alert is documented on Prometheus Alerting Rules.