Tag Archives: digital divide

Bringing digital skills to disadvantaged children across India

Post Syndicated from Divya Joseph original https://www.raspberrypi.org/blog/digital-skills-disadvantaged-children-india-digital-divde/

India’s rapidly digitising economy needs people with IT and programming skills, as well as skills such as creativity, unstructured problem solving, teamwork, and communication. Unfortunately, too many children in India currently do not have access to digital technologies, or to opportunities to learn these technical skills.

A girl and boy in India learning at a computer

Roadblocks to accessing digital skills

Before children and young people in India can even get a chance to learn digital skills, many of them have to overcome numerous roadblocks. India’s digital divide is entrenched due to a lack of access to electricity, to the internet, and to digital devices. In 2017–18, only 47% of Indian households received electricity for more than 12 hours a day. Moreover, only 24% of households have internet access, with the figure dropping as low as 15% in rural regions. 

In rural India, a group of children cluster around a computer.

During the coronavirus pandemic, when children in India had to plunge head-first into adapting to restrictions, 29 million students around the country did not have access to a digital device. In addition, only 38% of households in India are digitally literate. At the Raspberry Pi Foundation, we define digital literacy as the skills and knowledge required to be an effective, safe, and discerning user of various computer systems. Digital literacy in rural regions stands far lower at 25%.

We partner with organisations in India

We are conscious that we cannot solve these massive access issues. Regardless, we are committed to moving the needle for those young people that need access to digital skills and digital literacy the most.

We partner with organisations around the country that are committed to bringing access to coding and digital skills to the most disadvantaged and digitally excluded young people. Our partnership model includes:

  • Co-designing learning experiences 
  • Providing free, open-source learning resources 
  • Designing bespoke training programmes 
  • Supporting with technology solutions 

The Pratham–Code Club programme for digital skills

Pratham means ‘first’ in Hindi, and rightly so: Pratham Education Foundation, a non-profit established in 1994, has been at the forefront of addressing gaps in the education system in India. In 2018, we joined hands with Pratham Education Foundation to introduce coding to children in hard-to-reach, disadvantaged communities around the country. We co-designed a Pratham–Code Club programme to provide youth in underserved communities with training and access to devices and learning resources. The goal of the training was to build the youth’s programming confidence so that they could go on to teach children in their communities.

Two boys use a PraDigi computer at a desk.

To be effective, it was crucial that the programme be localised. We made adaptations to our learning resources and training content to make them more relevant to the context of the learners, and we worked with volunteer translators to translate the material into Hindi, Kannada, and Marathi.

We also provided the youth with training to use the PraDigi kit — an innovative, lightweight device, developed by Pratham Education Foundation and based on the Raspberry Pi computer — for teaching children to code.

Adapting the programme during the pandemic

In 2020, when we could no longer implement the programme the same way due to the pandemic and the ensuing disruptions, we made several adaptations: 

Firstly, instead of the three-hour in-person training we had previously conducted, we hosted multiple 30-minute online sessions over a week, using cloud-based platforms like Zoom. Secondly, we used familiar apps such as WhatsApp and Facebook Workplace to share the training content.

A screenshot from a training webinar about HTML coding.

Finally, since the Pratham staff in the communities could not bring the PraDigi kits to the remote locations during lockdowns, we adapted the training content for smartphones and tablets, using the online Scratch editor and a phone-friendly online code editor called Repl.it. 

Over the course of the pandemic, we trained 300 youth from Pratham’s communities in the basics of programming and digital skills. The impact was:

  • 300 youth trained
  • 432 hours of virtual sessions
  • 350 projects with Scratch and HTML
  • 62% of youth said they were now interested in jobs that included coding skills

We also surveyed the youth for what non-technical skills they had learned during the training:

  • 66% of youth reported that they had improved their problem-solving skills
  • 60% of youth reported that they improved their communication skills

Where we are taking the programme next

Using a train-the-trainer model, we are now scaling our programme with Pratham Education Foundation to train 3000 youth from underserved communities. Once they have completed the training, we will help these 3000 youth pave the way to programming and digital skills for 15,000 young learners around the country.

In rural India, a group of adults and children pose for the photographer.

We look forward to continuing our partnership with Pratham Education Foundation to make digital skills and coding education accessible to children all over India.

The post Bringing digital skills to disadvantaged children across India appeared first on Raspberry Pi.

Perspectives on supporting young people in low-income areas to access and engage with computing

Post Syndicated from Hayley Leonard original https://www.raspberrypi.org/blog/young-people-low-income-areas-computing-uk-usa-guyana/

The Raspberry Pi Foundation’s mission is to make computing and digital making accessible to all. To support young people at risk of educational disadvantage because they don’t have access to computing devices outside of school, we’ve set up the Learn at Home campaign. But access is only one part of the story. To learn more about what support these young people need across organisations and countries, we set up a panel discussion at the Tapia Celebration of Diversity in Computing conference.

Two young African women work at desktop computers.

The three panelists provided a stimulating discussion of some key issues in supporting young people in low-income areas in the UK, USA, and Guyana to engage with computing, and we hope their insights are of use to educators, youth workers, and organisations around the world.

The panellists and their perspectives

Our panellists represent three different countries, and all have experience of teaching in schools and/or working with young people outside of the formal education system. Because of the differences between countries in terms of access to computing, having this spread of expertise and contexts allowed the panelists to compare lessons learned in different sectors and locations.

Lenlandlar Singh

Panelist Lenandlar Singh is a Senior Lecturer in the Department of Computer Science at the University of Guyana. In Guyana, there is a range of computing-related courses for high school students, and access to optional qualifications in computer science at A level (age 17–18).

Yolanda Payne.

Panelist Yolanda Payne is a Research Associate at the Constellations Center at Georgia Tech, USA. In the US, computing curricula differ across states, although there is some national leadership through associations, centres, and corporations.

Christina Watson.

Christina Watson is Assistant Director of Design at UK Youth*, UK. The UK has a mandatory computing curriculum for learners aged 5–18, although curricula vary across the four home nations (England, Scotland, Wales, Northern Ireland).

As the moderator, I posed the following three questions, which the panelists answered from their own perspectives and experiences:

  • What are the key challenges for young people to engage with computing in or out of school, and what have you done to overcome these challenges?
  • What do you see as the role of formal and non-formal learning opportunities in computing for these young people?
  • What have you learned that could help other people working with these young people and their communities in the future?

Similarities across contexts

One of the aspects of the discussion that really stood out was the number of similarities across the panellists’ different contexts. 

The first of these similarities was the lack of access to computing amongst young people from low-income families, particularly in more rural areas, across all three countries. These access issues concerned devices and digital infrastructure, but also the types of opportunities in and out of school that young people were able to engage with.

Two girls code at a desktop computer while a female mentor observes them.

Christina (UK) shared results from a survey conducted with Aik Saath, a youth organisation in the UK Youth network (see graphs below). The results highlighted that very few young people in low-income areas had access to their own device for online learning, and mostly their access was to a smartphone or tablet rather than a computer. She pointed out that youth organisations can struggle to provide access to computing not only due to lack of funding, but also because they don’t have secure spaces in which to store equipment.

Lenandlar (Guyana) and Christina (UK) also discussed the need to improve the digital skills and confidence of teachers and youth workers so they can support young people with their computing education. While Lenandlar spoke about recruitment and training of qualified computing teachers in Guyana, Christina suggested that it was less important for youth workers in the UK to become experts in the field and more important for them to feel empowered and confident in supporting young people to explore computing and understand different career paths. UK Youth found that partnering with organisations that provided technical expertise (such as us at the Raspberry Pi Foundation) allowed youth workers to focus on the broader support that the young people needed.

Both Yolanda (US) and Lenandlar (Guyana) discussed the restrictive nature of the computing curriculum in schools, agreeing with Christina (UK) that outside of the classroom, there was more freedom for young people to explore different aspects of computing. All three agreed that introducing more fun and relevant activities into the curriculum made young people excited about computing and reduced stereotypes and misconceptions about the discipline and career. Yolanda explained that using modern, real-life examples and role models was a key part of connecting with young people and engaging them in computing.

What can teachers do to support young people and their families?

Yolanda (US) advocated strongly for listening to students and their communities to help understand what is meaningful and relevant to them. One example of this approach is to help young people and their families understand the economics of technology, and how computing can be used to support, develop, and sustain businesses and employment in their community. As society has become more reliant on computing and technology, this can translate into real economic impact.

A CoderDojo coding session for young people.

Both Yolanda (US) and Lenandlar (Guyana) emphasised the importance of providing opportunities for digital making, allowing students opportunities to become creators rather than just consumers of technology. They also highly recommended providing relevant contexts for computing and identifying links with different careers.

The panellists also discussed the importance of partnering with other education settings, with tech companies, and with non-profit organisations to provide access to equipment and opportunities for students in schools that have limited budgets and capacity for computing. These links can also highlight key role models and help to build strong relationships in the community between businesses and schools.

What is the role of non-formal settings in low-income areas?

All of the panellists agreed that non-formal settings provided opportunities for further exploration and skill development outside of a strict curriculum. Christina (UK) particularly highlighted that these settings helped support young people and families who feel left behind by the education system, allowing them to develop practical skills and knowledge that can help their whole family. She emphasised the strong relationships that can be developed in these settings and how these can provide relatable role models for young people in low-income areas.

A young girl uses a computer.

Tips and suggestions

After the presentation, the panelists responded to the audience’s questions with some practical tips and suggestions for engaging young people in low-income communities with computing:

How do you engage young people who are non-native English speakers with mainly English computing materials?

  • For curriculum materials, it’s possible to use Google Translate to allow students to access them. The software is not always totally accurate but goes some way to supporting these students. You can also try to use videos that have captioning and options for non-English subtitles.
  • We offer translated versions of our free online projects, thanks to a community of dedicated volunteer translators from around the world. Learners can choose from up to 30 languages (as shown in the picture below).
The Raspberry Pi Foundation's projects website, with the drop-down menu to choose a human language highlighted.
Young people can learn about computing in their first language by using the menu on our projects site.

How do you set up partnerships with other organisations?

  • Follow companies on social media and share how you are using their products or tools, and how you are aligned with their goals. This can form the basis of future partnerships.
  • When you are actively applying for partnerships, consider the following points:
    • What evidence do you have that you need support from the potential partner?
    • What support are you asking for? This may differ across potential partners, so make sure your pitch is relevant and tailored to a specific partner.
    • What evidence could you use to show the impact you are already having or previous successful projects or partnerships?

Make use of our free training resources and guides

For anyone wishing to learn computing knowledge and skills, and the skills you need to teach young people in and out of school about these topics, we provide a wide range of free online training courses to cover all your needs. Educators in England can also access the free CPD that we and our consortium partners offer through the National Centre for Computing Education.

To help you support your learners in and out of school to engage with computing in ways that are meaningful and relevant for them, we recently published a guide on culturally relevant teaching.

We also support a worldwide network of volunteers to run CoderDojos, which are coding clubs for young people in local community spaces. Head over to the CoderDojo website to discover more about the free materials and help we’ve got for you.

We would like to thank our panellists Lenandlar Singh, Yolanda Payne, and Christina Watson for sharing their time and expertise, and the Tapia conference organisers for providing a great platform to discuss issues of diversity, equality, and inclusion in computing.


*UK Youth is a leading charity working across the UK with an open network of over 8000 youth organisations. The charity has influence as a sector-supporting infrastructure body, a direct delivery partner, and a campaigner for social change.

The post Perspectives on supporting young people in low-income areas to access and engage with computing appeared first on Raspberry Pi.

The digital divide: interactions between socioeconomic disadvantage and computing education

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/digital-divide-socioeconomic-disadvantage-computing-education/

Digital technology is developing at pace, impacting us all. Most of us use screens and all kinds of computers much more than we did five years ago. The total number of apps downloaded globally each quarter has doubled since 2015, reflecting both increased smartphone penetration and the increasingly prominent role of apps in our lives. However, access to digital technology and the internet is not yet equal: there is still a ‘digital divide’, i.e. some people do not have as much access to digital technologies as others, if any at all.

This month we welcomed Dr Hayley Leonard and Thom Kunkeler at our research seminar series, to present findings on ‘Why the digital divide does not stop at access: understanding the complex interactions between socioeconomic disadvantage and computing education’. Both Hayley and Thom work as researchers at the Raspberry Pi Foundation, where we have a focus on increasing our understanding of computing education for all. They shared some results of a research project they’d carried out with a group of young people who benefitted from our Learn at Home campaign.

Digital inequality: beyond the dichotomy of access

Hayley introduced some of the existing research and thinking around digital inequality, and Thom presented the results of their research project. Setting the scene, Hayley explained that the term ‘digital divide’ can create a dichotomous have/have-not view of the world, as can the concept of a ‘gap’. However, the research presents a more nuanced picture. Rather than describing digital inequality as purely centred on access to technology, some researchers characterise three levels of the digital divide:

  • Level 1: Access
  • Level 2: Skills (digital skills, internet skills) and uses (what you do once you have access)
  • Level 3: Outcomes (what you achieve)

This characterisation is useful because it enables us to look beyond access and also towards what happens once people have access to technology. This is where our Learn At Home campaign came in.

The presenters gave a brief overview of the impact of the campaign, in which the Raspberry Pi Foundation has partnered with 80 youth and community organisations and to date, thanks to generous donors, has given 5100 Raspberry Pi desktop computer kits (including monitors, headphones, etc.) to young people in the UK who didn’t have the resources to buy their own computers.

Hayley Leonard presents an online slide describing the interview responses of recipients of Raspberry Pi desktop computer kits, which revolved around five themes: ease of homework completion; connecting with others; having their own device; new opportunities for learning; improved understanding of schoolwork.
Click on the image to enlarge it. Learn more in the first Learn at Home campaign impact report.

Computing, identity, and self-efficacy

As part of the Learn At Home campaign, Hayley and Thom conducted a pilot study of how young people from underserved communities feel about computing and their own digital skills. They interviewed and analysed responses of fifteen young people, who had received hardware through Learn At Home, about computing as a subject, their confidence with computing, stereotypes, and their future aspirations.

Thom Kunkeler presents an online slide describing the background and research question of the 'Learn at Home campaign' pilot study: underrepresentation, belonging, identity, archetypes, and the question "How do young people from underserved communities feel about computing and their own digital skills?".
Click on the image to enlarge it.

The notion of a ‘computer person’ was used in the interview questions, following work conducted by Billy Wong at the University of Reading, which found that young people experienced a difference between being a ‘computer person’ and ‘doing computing’. The study carried out by Hayley and Thom largely supports this finding. Thom described two major themes that emerged from their analysis: a mismatch between computing and interviewees’ own identities, and low self-indicated self-efficacy.

Showing that stereotypes still persist of what a ‘computer person’ is like, a 13-year-old female interviewee described them as “a bit smart. Very, very logical, because computers are very logical. Things like smart, clever, intelligent because computers are quite hard.” Four of the interviewees were also more likely to associate a ‘computer person’ with being male.

Thom Kunkeler presents an online slide of findings of the 'Learn at Home campaign' pilot study. The young people interviewed associated the term 'computing person' with the attributes smart, clever, intelligent, nerdy/geeky, problem-solving ability.
The young people interviewed associated a ‘computing person’ with the following characteristics: smart, clever, intelligent, nerdy/geeky, problem-solving ability. Click on the image to enlarge it.

The majority of the young people in the study said that they could be this ’computer person’. Even for those who did not see themselves working with computers in the future, being a ’computer person’ was still a possibility: One interviewee said, “I feel like maybe I’m quite good at using a computer. I know my way around. Yes, you never know. I could be, eventually.”

Five of the young people indicated relatively low self-efficacy in computing, and thought there were more barriers to becoming a computer person, for example needing to be better at mathematics. 

In terms of future career goals, only two (White male) participants in the study considered computing as a career, with one (White female) interviewee understanding that choosing computing as a qualification might be important for her future career. This aligns with research into computer science (CS) qualification choice at age 14 in England, explored in a previous seminar, which highlighted the interaction between income, gender, and ethnicity: White girls from lower-income families were more likely to choose a CS qualification than White girls more from more affluent families, while very few Asian, Black, and Chinese girls from low-income backgrounds chose a CS qualification.

Evaluating computing education opportunities using the CAPE framework

An interesting aspect of this seminar was how Hayley and Thom situated their work in the relatively new CAPE framework, which describes different levels at which to evaluate computer science education opportunities. The CAPE framework highlights that capacity and access to computing (C and A in the framework) are only part of the challenge of making computer science education equitable; students’ participation (P) in and experience (E) of computing are key factors in keeping them engaged longer-term.

A diagram illustrating the CAPE framework for assessing computing education opportunities according to four aspects. 1, capacity, which relates to availability of resources. 2, access, which relates to whether learners have the opportunity to engage in the subject. 3, participation, which relates to whether learners choose to engage with the subject. 4, experience, which relates to what the outcome of learners' participation is.
Socioeconomic status (SES) can affect learner engagement with computing education at four levels set out in the CAPE framework.

As we develop computing education in the curriculum, we can use the CAPE framework to evaluate our provision. For example, where I’m writing from in England, we have the capacity to teach computing through the availability of professional development training for teachers, fully developed curriculum materials such as the Teach Computing Curriculum, and community support for teachers through organisations such as Computing at School and the National Centre for Computing Education. In terms of access we have an established national curriculum in the subject, but access to it has been interrupted for many due to the coronavirus pandemic. In terms of participation we know that gender and economic status can impact whether young people choose computer science as an elective subject post-14, and taking an intersectional view reveals that the issue of participation is more complex than that. Finally, according to our seminar speakers, young people’s experience of computing education can be impacted by their digital or technological capital, by their self-efficacy, and by the relevance of the subject to their career aspirations and goals. This analysis really enhances our understanding of digital inequality, as it moves us away from the have/have-not language of the digital divide and starts to unpack the complexity of the impacting factors. 

Although this was not covered in this month’s seminar, I also want to draw out that the CAPE framework also supports our understanding of global computing education: we may need to focus on capacity building in order to create a foundation for the other levels. Lots to think about! 

If you’d like to find out more about this project, you can read the paper that relates to the research and the impact report of the early phases of the Learn At Home initiative

If you missed the seminar, you can find the presentation slides on our seminars page and watch the recording of the researchers’ talk:

Join our next seminar

The next seminar will be the final one in the current series focused diversity and inclusion, which we’re co-hosting with the Royal Academy of Engineering. It will take place on Tuesday 13 July at 17:00–18:30 BST / 12:00–13:30 EDT / 9:00–10:30 PDT / 18:00–19:30 CEST, and we’ll welcome Prof Ron Eglash, a prominent researcher in the area of ethnocomputing. The title of Ron’s seminar is Computing for generative justice: decolonizing the circular economy.

To join this free event, click below and sign up with your name and email address:

We’ll email you the link and instructions. See you there!

This was our 17th research seminar — you can find all the related blog posts here, and download the first volume of our seminar proceedings with contributions from previous guest speakers.

The post The digital divide: interactions between socioeconomic disadvantage and computing education appeared first on Raspberry Pi.

Closing the digital divide with Raspberry Pi computers

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/closing-the-digital-divide-with-raspberry-pi-computers/

One of the harsh lessons we learned last year was that far too many young people still don’t have a computer for learning at home. There has always been a digital divide; the pandemic has just put it centre-stage. The good news is that the cost of solving this problem is now trivial compared to the cost of allowing it to persist.

A young person receives a Raspberry Pi kit to learn at home

Removing price as a barrier to anyone owning a computer was part of the founding mission of Raspberry Pi, which is why we so work hard to make sure that Raspberry Pi computers are as low-cost as possible for everyone, all of the time. We saw an incredible rise in the numbers of people — particularly young people — using Raspberry Pi computers as their main desktop PC during the lockdown, helped by the timely arrival of the fabulous Raspberry Pi 400.

Supporting the most vulnerable young people

As part of our response to the pandemic, the Raspberry Pi Foundation teamed up with UK Youth and a network of grassroots youth and community organisations to get Raspberry Pi desktop kits (with monitors, webcams, and headphones) into the hands of disadvantaged young people across the UK. These were young people who didn’t qualify for the government laptop scheme and who otherwise didn’t have a computer to learn at home.

A young person receives a Raspberry Pi kit to learn at home

This wasn’t just about shipping hardware (that’s the easy bit). We trained youth workers and teachers, and we worked closely with families to make sure that they could set up and use the computers. We did a huge amount of work to make sure that the educational platforms and apps they needed worked out of the box, and we provided a customised operating system image with free educational resources and enhanced parental controls.

A screenshot of a video call gallery with 23 participants
One of our training calls for the adults who will be supporting young people and families to use the Raspberry Pi kits

The impact has been immediate: young people engaging with learning; parents who reported positive changes in their children’s attitude and behaviour; youth and social workers who have deepened their relationship with families, enabling them to provide better support.

You can read more about the impact we’re having in the evaluation report for the first phases of the programme, which we published last week.

Thank you to our supporters

After a successful pilot programme generously funded by the Bloomfield Trust, we launched the Learn at Home fundraising campaign in December, inviting businesses and individuals to donate money to enable us to expand the programme. I am absolutely thrilled that more than 70 organisations and individuals have so far donated an incredible £900,000 and we are on track to deliver our 5000th Raspberry Pi kit in March.

Two young girls unpack a computer display
Thanks to Gillas Lane Primary Academy for collecting some wonderful photos and quotes illustrating the impact our computers are having!

While the pandemic shone a bright spotlight onto the digital divide, this isn’t just a problem while we are in lockdown. We’ve known for a long time that having a computer to learn at home can be transformational for any young person.

If you would like to get involved in helping us make sure that every young person has access to a computer to learn at home, we’d love to hear from you. Find out more details on our website, or email us at [email protected].

The post Closing the digital divide with Raspberry Pi computers appeared first on Raspberry Pi.