Tag Archives: digital making

Celebrating the community: Selin

Post Syndicated from Rosa Brown original https://www.raspberrypi.org/blog/celebrating-the-community-selin/

We are so excited to share another story from the community! Our series of community stories takes you across the world to hear from young people and educators who are engaging with creating digital technologies in their own personal ways. 

Selin and a robot she has built.
Selin and her robot guide dog IC4U.

In this story we introduce you to Selin, a digital maker from Istanbul, Turkey, who is passionate about robotics and AI. Watch the video to hear how Selin’s childhood pet inspired her to build tech projects that aim to help others live well.  

Meet Selin 

Selin (16) started her digital making journey because she wanted to solve a problem: after her family’s beloved dog Korsan passed away, she wanted to bring him back to life. Selin thought a robotic dog could be the answer, and so she started to design her project on paper. When she found out that learning to code would mean she could actually make a robotic dog, Selin began to teach herself about coding and digital making. Selin has since built seven robots, and her enthusiasm for creating digital technologies shows no sign of stopping.    

Selin is on one knee, next to her robot.
Selin and her robot guide dog IC4U.

One of Selin’s big motivations to explore digital making was having an event to work towards. When she discovered Coolest Projects, our global technology showcase for young people, Selin set herself the task of making a robot that she could present at the Coolest Projects event in 2018. 

When thinking about ideas for what to make for Coolest Projects, Selin remembered how it felt to lose her dog. She wondered what it must be like when a blind person’s guide dog passes away, as that person loses their friend as well as their support. So Selin decided to make a robotic guide dog called IC4U. She contacted several guide dog organisations to find out how guide dogs are trained and what they need to be able to do so she could replicate their behaviour in her robot. The robot is voice-controlled so that people with impaired sight can interact with it easily. 

Selin and the judges at Coolest Projects.
Selin at Coolest Projects International in 2018.

Selin and her parents travelled to Coolest Projects International in Dublin with Selin’s robotic guide dog, and Selin and IC4U became a judges’ favourite in the Hardware category. Selin enjoyed participating in Coolest Projects so much that she started designing her project for next year’s event straight away:    

“When I returned back I immediately started working for next year’s Coolest Projects.”  

Selin

Many of Selin’s tech projects share a theme: to help make the world a better place. For example, another robot made by Selin is the BB4All — a school assistant robot to tackle bullying. And last year, while she attended the Stanford AI4ALL summer camp, Selin worked with a group of young people to design a tech project to increase the speed and accuracy of lung cancer diagnoses.

Through her digital making projects, Selin wants to show how people can use robotics and AI technology to support people and their well-being. In 2021, Selin’s commitment to making these projects was recognised when she was awarded the Aspiring Teen Award by Women in Tech.           

Selin stands next to an photograph of herself. In the photograph she has a dog on one side and a robot dog on the other.

Listening to Selin, it is inspiring to hear how a person can use technology to express themselves as well as create projects that have the potential to do so much good. Selin acknowledges that sometimes the first steps can be the hardest, especially for girls  interested in tech: “I know it’s hard to start at first, but interests are gender-free.”

“Be curious and courageous, and never let setbacks stop you so you can actually accomplish your dream.”    

Selin

We have loved seeing all the wonderful projects that Selin has made in the years since she first designed a robot dog on paper. And it’s especially cool to see that Selin has also continued to work on her robot IC4U, the original project that led her to coding, Coolest Projects, and more. Selin’s robot has developed with its maker, and we can’t wait to see what they both go on to do next.

Help us celebrate Selin and inspire other young people to discover coding and digital making as a passion, by sharing her story on Twitter, LinkedIn, and Facebook.

The post Celebrating the community: Selin appeared first on Raspberry Pi.

Take part in the Hour of Code

Post Syndicated from Liz Smart original https://www.raspberrypi.org/blog/hour-of-code-activities/

Launched in 2013, Hour of Code is an initiative to introduce young people to computer science using fun one-hour tutorials. To date, over 100 million young people have completed an hour of code with it. 

A girl doing a physical computing project.

Although the Hour of Code website is accessible all year round, every December for Computer Science Education Week people worldwide run their own Hour of Code events. Each year we love seeing many Code Clubs, CoderDojos, and young people at home across the community complete their Hour of Code. You can register your 2022 Hour of Code event now to run between 5 and 11 December. 

To support your event, we have pulled together a bumper set of our free coding projects, which can each be completed in just one hour. You will find these activities on the Hour of Code website.

Two young digital makers using Raspberry Pi

There’s something for all ages and levels of experience, so put an hour aside and help young people make something fabulous with code:

Ages 7–11

Beginner

For younger creators new to coding, a Scratch project is a great place to start. 

alt=""

With our Space talk project, they can create a space scene with characters that ‘emote’ to share their thoughts or feelings using sounds, colours, and actions. Creators program the character emotes using Scratch blocks to control graphic effects, costume animation, and sound effects. 

Alternatively, our Stress ball project lets them code an onscreen stress ball that reacts to user clicks. Creators use the Paint and Sound editors in Scratch to personalise a clickable stress ball, and they add Scratch blocks to control graphic effects, costume animation, and sound effects. 

We love this fun stress ball example sent to us recently by young creator April from the United States:

Another great option is to use Code Club World, which is a free tool to help children who are new to coding.  

Creators can develop a character avatar, design a T-shirt, make some music, and more.

Comfortable

For 7- to 11-year-olds who are more comfortable with block-based coding, our project Broadcasting spells is ideal to choose. With the project, they connect Scratch blocks to code a wand that casts spells turning sprites into toads, and growing and shrinking them. Creators use broadcast blocks to transform multiple sprites at once, and they create sound effects with the Sound editor in Scratch. 

alt=""

Ages 11–14

Beginner

We have three exciting projects for trying text-based coding during Hour of Code in this category. The first, Anime expressions, is one of our brand-new ‘Introduction to web development’ projects. With this project, young people create a responsive webpage with text and images for an anime drawing tutorial. They write HTML to structure the webpage and CSS styles to apply layout, colour palettes, and fonts. 

For a great introduction to coding with Python, we have the project Hello world from our ‘Introduction to Python’ path. With this project, creators write Python text-based code to create an interactive program that shows text and emojis based on user input. They learn about variables as they use them to store text and numbers, and they learn about writing functions to organise code and do calculations, retrieve the current date and time, and make a customisable dice. 

alt=""

LED firefly is a fantastic physical making project in which young people use a Raspberry Pi Pico microcontroller and basic electronic components to create a blinking LED firefly. They program the LED’s light patterns with MicroPython code and activate it via a switch they make themselves using jumper wires.

A blinking LED with paper wings.

Comfortable

For 11- to 14-year-olds who are already comfortable with HTML, the Flip treat webcards project is a fun option. With this, they create a webpage showing a set of cards that flip when a visitor’s mouse pointer hovers over them. Creators use CSS styling and animations to add interactivity, then they customise the cards with fancy fonts and colour gradients.

Young people who have already done some Python coding can try out our project Target practice. With this project they create a game, using the p5 graphics library to draw a colourful target, and writing code so that the player scores points by hitting the target’s rings with arrows. While they create the project, they learn about RGB colours, shape positioning with x and y coordinates, and decisions using if, else-if, and else code statements. 

Ages 14+

Beginner

Our project Charting champions is a great introduction to data visualisation and analysis for coders aged 15 and older. With the project, they will discover the power of the Python programming language as they store Olympic medal data in lists and use the pygal library to create an interactive chart.

alt=""

Comfortable

Teenage coders who feel comfortable with Python programming can use our project Solar system simulator to code an animated, interactive solar system model using the Python p5 graphics library. Their model will be interactive, as they’ll use dictionaries to store planet facts that display when a user clicks on an orbiting planet.

Coding for Hour of Code and beyond

Now is the time to register your Hour of Code event, then decide which project you’d like to support young people to create. You can download certificates for each of the creators from the Hour of Code certificates page.

And make sure to check out our project paths so you know what projects you can help the young people you support to code beyond this one hour of code. 

We don’t just create activities so that other people can experience coding and digital making — we also get involved ourselves!

Two members of the Code Club working at computers.

Recently, our teams who support the Code Club and CoderDojo networks got together to make LED fireflies. We are excited to get coding again as part of Hour of Code and Computer Science Education Week.

The post Take part in the Hour of Code appeared first on Raspberry Pi.

Young people’s projects for a sustainable future

Post Syndicated from Rosa Brown original https://www.raspberrypi.org/blog/young-peoples-projects-for-a-sustainable-future/

This post has been adapted from issue 19 of Hello World magazine, which explored the interaction between technology and sustainability.

We may have had the Coolest Projects livestream, but we are still in awe of the 2092 projects that young people sent in for this year’s online technology showcase! To continue the Coolest Projects Global 2022 celebrations, we’re shining a light on some of the participants and the topics that inspired their projects.    

Coolest Projects team and participants at an in-person event.

In this year’s showcase, the themes of sustainability and the environment were extremely popular. We received over 300 projects related to the environment from young people all over the world. Games, apps, websites, hardware — we’ve seen so many creative projects that demonstrate how important the environment is to young people. 

Here are some of these projects and a glimpse into how kids and teens across the world are using technology to look after their environment.      

Using tech to make one simple change 

Has anyone ever told you that a small change can lead to a big impact? Check out these two Coolest Projects entries that put this idea into practice with clever inventions to make positive changes to the environment.

Arik (15) from the UK wanted to make something to reduce the waste he noticed at home. Whenever lots of people visited Arik’s house, getting the right drink for everyone was a challenge and often resulted in wasted, spilled drinks. This problem was the inspiration behind Arik’s ‘Liquid Dispenser’ project, which can hold two litres of any desired liquid and has an outer body made from reused cardboard. As Arik says, “You don’t need a plastic bottle, you just need a cup!”

A young person's home-made project to help people get a drink at the press of a button.
Arik’s project helps you easily select a drink with the press of a button

Amrit (13), Kingston (12), and Henry (12) from Canada were also inspired to make a project to reduce waste. ‘Eco Light’ is a light that automatically turns off when someone leaves their house to avoid wasted electricity. For the project, the team used a micro:bit to detect the signal strength and decide whether the LED should be on (if someone is in the house) or off (if the house is empty).

“We wanted to create something that hopefully would create a meaningful impact on the world.”

Amrit, Kingston, and Henry

Projects for local and global positive change 

We love to see young people invent things to have positive changes in the community, on a local and global level.

This year, Sashrika (11) from the US shared her ‘Gas Leak Detector’ project, which she designed to help people who heat their homes with diesel. On the east coast of America, many people store their gas tanks in the basement. This means they may not realise if the gas is leaking. To solve this problem, Sashrika has combined programming with physical computing to make a device that can detect if there is a gas leak and send a notification to your phone. 

A young person and their home-made gas leak detector.
Sashrika and her gas leak detector

Sashrika’s project has the power to help lots of people and she has even thought about how she would make more changes to her project in the name of sustainability: 

“I would probably add a solar panel because there are lots of houses that have outdoor oil tanks. Solar panel[s] will reduce electricity consumption and reduce CO2 emission[s].”

Sashrika

Amr in Syria was also thinking about renewable energy sources when he created his own ‘Smart Wind Turbine’.  

The ‘Smart Wind Turbine’ is connected to a micro:bit to measure the electricity generated by a fan. Amr conducted tests that recorded that more electricity was generated when the turbine faced in the direction of the wind. So Amr made a wind vane to determine the wind’s direction and added another micro:bit to communicate the results to the turbine. 

Creating projects for the future  

We’ve also seen projects created by young people to make the world a better place for future generations. 

Naira and Rhythm from India have designed houses that are suited for people and the planet. They carried out a survey and from their results they created the ‘Net Zero Home’. Naira and Rhythm’s project offers an idea for homes that are comfortable for people of all abilities and ages, while also being sustainable.

“Our future cities will require a lot of homes, this means we will require a lot of materials, energy, water and we will also produce a lot of waste. So we have designed this net zero home as a solution.”

Naira and Rhythm

Andrea (9) and Yuliana (10) from the US have also made something to benefit future generations. The ‘Bee Counter’ project uses sensors and a micro:bit to record bees’ activity around a hive. Through monitoring the bees, the team hope they can see (and then fix) any problems with the hive. Andrea and Yuliana want to maintain the bees’ home to help them continue to have a positive influence on our environment.

Knowledge is power: projects to educate and inspire 

Some young creators use Coolest Projects as an opportunity to educate and inspire people to make environmental changes in their own lives.

Sabrina (13) from the UK created her own website, ‘A Guide to Climate Change’. It includes images, text, graphics of the Earth’s temperature change, and suggestions for people to minimise their waste.  Sabrina also received the Broadcom Coding with Commitment award for using her skills to provide vital information about the effects of climate change.

alt=""
Sabrina’s project

Kushal (12) from India wanted to use tech to encourage people to help save the environment. Kushal had no experience of app development before making his ‘Green Steps’ app. He says, “I have created a mobile app to connect like-minded people who want to do something about [the] environment.” 

A young person's app to help people connect over a shared interest in the environment.
Kushal’s app helps people to upload and save pictures, like content from other users, and access helpful resources

These projects are just some of the incredible ideas we’ve seen young people enter for Coolest Projects this year. It’s clear from the projects submitted that the context of the environment and protecting our planet resonates with so many students, summarised by Sabrina, “Some of us don’t understand how important the earth is to us. And I hope we don’t have to wait until it is gone to realise.” 

Check out the Coolest Projects showcase for even more projects about the environment, alongside other topics that have inspired young creators.

The post Young people’s projects for a sustainable future appeared first on Raspberry Pi.

Coolest Projects Global 2022: Celebrating young tech creators & creative ideas

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/coolest-projects-2022-celebration-favourites/

Congratulations to the thousands of creators from 46 countries who participated in Coolest Projects Global 2022. Their projects awed and inspired us. Yesterday STEM advocate and television host Fig O’Reilly helped us celebrate each and every one of these creators in our online event. Check out the gallery to see all the amazing projects.

During the celebration, Fig also revealed which projects were picked by the special judges as their favourites from among the 2092 projects in this year’s showcase gallery. Let’s meet the special judges and check out their picks!

Ruth Amos’s favourites

Ruth Amos is an inventor, entrepreneur, and EduTuber. She co-founded the #GirlsWithDrills movement and ‘Kids Invent Stuff’, a YouTube channel where 5- to 11-year-olds see their invention ideas become reality with the help of engineers.

Here are Ruth’s favourites:

  • The Hardware project Oura, made by Angelina and Catherine in the United States. Oura is an indoor air quality monitoring device that is tailorable, portable, and inexpensive. Ruth especially liked this project because she saw “[s]ome great prototyping and use of data.”
  • The Games project Egg Dog, made by Oakley and Alex from a Code Club in Australia. In the game, players explore for collectibles and fight off enemies as they try to find the exit for the next level. Ruth said that Egg Dog was a “[r]eally fun game, they obviously learnt a lot in the process of making the game.”
  • The Web project AllerG, made by Noah from a CoderDojo in the United States. AllerG is an accessible and crowdsourced database of menu allergens for people with food allergies. Ruth said, “The whole project was very well thought out”.
  • The Mobile Apps project EcoSnap, made by Uma and Bella in the United States. EcoSnap serves as an all-in-one toolkit for anyone hoping to help the environment. Ruth said, “You really thought about the user and changing perceptions.”
  • The Scratch project Trash-Collector, made by Rajan in the United Kingdom. In Rajan’s game, players take on the role of a scuba diver who needs to collect trash in the ocean. Ruth said, “I can’t wait to see more levels; it’s quite addictive!”
  • The Advanced Programming project Climate Change Detector, made by Arnav from a CoderDojo in India. The project is a data dashboard and platform to track pollution. Ruth said, “I love that you can change parameters and see the effect that would have.”

Shawn Brown’s favourites

Shawn Brown is an award-winning engineer, designer, and YouTuber. He’s also a practical pioneer for neurodiversity and innovation — raising awareness of learning differences and promoting science, engineering, and invention to young people. Together with Ruth, Shawn co-runs the YouTube channel ‘Kids Invent Stuff.’

Here are Shawn’s favourites:

  • The Hardware project Flow On the Go, made by Donal from a Code Club in the United Kingdom. Flow On the Go is a COVID-19 lateral flow test holder with a built-in camera that takes a picture of the test results after 15 minutes and sends a photo of the results via email. Shawn said, “I’ve absolutely been late for things before because I forgot to leave time to do a lateral flow test and your invention totally solves that problem in a really clever and effective way.”
  • The Games project Iron Defence, made by James in the United Kingdom. Iron Defence is a tower defence game where players defend against waves of enemies in a steampunk-themed assault. Shawn said, “Amazing work on seizing the opportunity to learn a new coding language”.
  • The Web project School Management System, made by Nebyu Daniel in Ethiopia. The project is a system used to store centralised data for a school. Shawn said, “The level of detail and the amount of different areas you’ve considered is really impressive!”
  • The Mobile Apps project RecyBuddy, made by Ryan in the United States. RecyBuddy is designed to assist and teach recycling to all ages. Shawn said, “I love how you’ve considered and implemented three distinct input options, giving the application a really high level of accessibility for users of a wide range of abilities and ages.”
  • The Scratch project Learning Is Fun, made by Mihir Ram in India. Mihir’s project is about making learning about science and the environment more enjoyable. Shawn said, “I got pretty addicted to playing Garbage Mania, and the timing was perfect to make it just stressful enough to have to think and grab the item in the right bin in time before you miss it!”
  • The Advanced Programming project Dog Smell Training Device, made by Roland in the United Kingdom. Roland’s project is designed to train dogs to identify different smells. Shawn said, “Well done on starting with achievable bitesize parts and then building it up from there”.

Richa Shrivastava’s favourites

Richa Shrivastava is the Director of Maker’s Asylum. It is India’s first community makerspace that fosters innovation through purpose-based learning, based on the United Nations Sustainable Development Goals.

Here are Richa’s favourites:

  • The Hardware project EleVoc, made by Chinmayi in India. Chinmayi’s device determines the proximity and behaviour of elephants by classifying their vocalisations. Richa said, “I personally loved the project because it addressed a problem statement that you do not see in cities but is common in villages and forest areas where humans and animals inhabit together.”
  • The Games project Runaway Nose, made by Harshit from a CoderDojo in Ireland. Harshit’s game uses facial recognition and players have to think (and act!) fast to score points. Richa said, “I have never played anything like this before and I can see that it can be really addictive.”
  • The Web project Our Planet, Our Impact, made by Amaury from a CoderDojo in Belgium. This multilingual website calculates the user’s environmental footprint. Richa chose this project because “the calculators were a really cool way to really bring out the impact of plastic waste that we create!”
  • The Mobile Apps project Watey, made by Yuuka, Akari, Otowa, and Lila from a CoderDojo in Japan. Watey helps families to save water easily and enjoyably. Richa said, “I loved the element of family bonding and competition that could motivate people to use water with scarcity.”
  • The Scratch project Nature’s Savior Bilgin, made by Çağatay and Mert from a Code Club in Turkey. It’s a game to teach players about the environment. Richa said, “I personally really loved the fact that the project was focussed on the environment and also problems that we see in real life almost every other day.”
  • The Advanced Programming project Jarvis, made by Siddhant in India. Jarvis is a personal assistant. Richa said, “I always wanted a personal Jarvis and this was so cool to see!” 

Elaine Atherton’s favourites

Elaine Atherton is Director of Scratch Education Collaborative. Elaine was first introduced to Scratch as an instructional coach while working with teachers in North Carolina. “It was amazing to see the kids so excited about what they were creating. I wanted to help them transfer that same energy to designing, making, and sharing other things, too — I wanted them to stretch their creativity.”

Here are Elaine’s favourites:

  • The Hardware project CubeSpeedee Timer, made by Tom from a CoderDojo in the United Kingdom. Tom’s project is a DIY timing device for solving puzzle cubes. Elaine said the project was “fun, playful, creative, and challenging!”
  • The Games project Ninjas, made by Jaiden and Eli from a Code Club in Australia. Ninjas is an open-world action-adventure game. Elaine said, “The transitions between the different worlds are really cool”.
  • The Web project Ubex Site Creator, made by Menagi from a Code Club in Romania. Ubex makes it easy for anyone to create their own website. Elaine said, “It is clear to see how you thought about how to use your passion for coding to create something for your peers.”
  • The Mobile Apps project Green Nature For You, made by Iana and Cristina in Moldova. The app lets users report when trash cans are full. Elaine said, “[Y]ou thoughtfully consider accessibility and access needs of those who may use it”.
  • The Scratch project Fun Relaxing Project, made by Konstantin from a CoderDojo in Bulgaria. Konstantin’s game is to help players relax while watching beautiful geometric shapes and colours. Elaine said, “The colors and patterns are truly relaxing”. 
  • The Advanced Programming project DeepFusion, made by Justin in the United States. DeepFusion is a web app that provides a graphical method for creating, training, and testing neural networks. Elaine said, “Your presentation is funny, thoughtful, and clever.”

Broadcom Coding with Commitment recognition

Broadcom Foundation has partnered with us for Coolest Projects Global to encourage young people who are solving problems that impact their communities. Their projects could relate to health, sanitation, energy, climate change, or other challenges set out in the United Nations Sustainable Development Goals. Broadcom Coding with Commitment illuminates how coding is a language, skill set, and invaluable tool for college and careers.

The Broadcom Coding with Commitment recognition goes to A Guide to Climate Change, a website created by Sabrina in the United Kingdom. Sabrina’s site not only provides vital information about the effects of climate change, but also gives users a visual to show how important it is to lower our carbon footprint. Congratulations to Sabrina for using her coding skills to give people a guide to understanding climate change in an easily digestible and stylish project webpage.

Sabrina’s project, A Guide to Climate Change

And there’s so much more to celebrate!

You can explore all the young tech creators’ projects — games, hardware builds, Scratch projects, mobile apps, websites, and more — in our showcase gallery now.

All creators who are taking part this year can now log into their Coolest Projects accounts to:

  1. Find personalised feedback on their project
  2. Request their limited-edition Coolest Projects swag

The support of our Coolest Projects Global sponsors has enabled us to make this year’s online showcase the inspiring experience it is for the young people taking part. We want to say a big thank you to all of them!

The post Coolest Projects Global 2022: Celebrating young tech creators & creative ideas appeared first on Raspberry Pi.

Why we translate our free online projects for young people to learn coding

Post Syndicated from Nina Szymor original https://www.raspberrypi.org/blog/translating-free-coding-computing-resources-improved-educational-social-outcomes/

All young people deserve meaningful opportunities to learn how to create with digital technologies. But according to UNESCO, as much as 40% of people around the world don’t have access to education in a language they speak or understand. At the Raspberry Pi Foundation, we offer more than 200 free online projects that people all over the world use to learn about computing, coding, and creating things with digital technologies. To make these projects more accessible, we’ve published over 1700 translated versions so far, in 32 different languages. You can check out these translated resources by visiting projects.raspberrypi.org and choosing your language from the drop-down menu.

Two young children code in Scratch on a laptop.
Two young children in Uganda code on a laptop at a CoderDojo session.

Most of this translation work was completed by an amazing community of volunteer translators. In 2021 alone, learners engaged in more than 570,000 learning experiences in languages other than English using our projects.

So how do we know it’s important to put in the effort to make our projects available in many different languages? Various studies show that learning in one’s first language leads to better educational and social outcomes. 

Improved access and attainment for girls

Education policy specialists Chloe O’Gara and Nancy Kendall describe in a USAID-funded guide document (1996, p. 100) that girls living in multilingual communities are less likely to know the official language of school instruction than boys, because girls’ lives tend to be more restricted to home and family, where they have fewer opportunities to become proficient in a second language. These restrictions limit their access to education, and if they go to school, they are more likely to have a limited understanding of the dominant language, and therefore learn less. Observations in research studies (Hovens, 2002; Benson 2002a, 2002b) suggest that making education available in a local language greatly increases female students’ opportunities for educational access and attainment.

In rural India, a group of girls cluster around a computer.
In rural India, a group of girls cluster around a computer.

Improved self-efficacy

Research studies conducted in Guinea and Senegal (Clemons & Yerende, 2009) suggest that education in a local language, which is more likely to focus on the learner’s circumstances, community, and learning and development needs, increases the learner’s belief in their abilities and skills, compared to education in a dominant language.

young people programming in Scratch on a Raspberry Pi, Co-creation Hub, Nigeria.
Young people program in Scratch on a Raspberry Pi, at Co-creation Hub, Nigeria.

Improved test scores

Learning in a language other than one’s own has a negative effect on learning outcomes, especially for learners living in poverty. For example, a UNESCO-funded case study in Honduras showed that 94% of pupils learned reading skills if their home language was the same as the language of assessment. In contrast, among pupils who spoke a different language at home, this proportion dropped to 62%. Similarly, a UNESCO-funded case study in Guatemala showed that when students were able to learn in a bilingual environment, attendance and promotion rates increased, while rates of repetition and dropout rates decreased. Moreover, students attained higher scores in all subjects and skills, including the mastery of the dominant language (UNESCO Global Education Monitoring Report, Policy Paper 24, February 2016).

Three teenage girls at a laptop.
Three girls in Brazil code on a laptop in a Code Club session.

Improved acquisition of programming concepts

A survey conducted by a researcher from the University of California San Diego showed that non-native English speakers found it challenging to learn programming languages when the majority of instructional materials and technical communications were only available in English (Guo, 2018). Moreover, a computing education research study of the association between local language use and the rate at which young people learn to program showed that beginners who learned to program in a programming language with keywords and environment localised into their primary language demonstrated new programming concepts at a faster rate, compared with beginners from the same language group who learned using a programming interface in English (Dasgupta & Hill, 2017).

A group of Coolest Projects participants from all over the world wave their flags.

You can help with translations and empower young people

It is clear from these studies that in order to achieve the most impact and to benefit disadvantaged and underserved communities, educational initiatives must work to make learning resources available in the language that learners are most familiar with.

By translating our learning resources, we not only support people who have English as a second language, we also make the resources useful for people who don’t speak any English — estimated as four out of every five people on Earth.

If you’re interested in helping us translate our learning resources, which are completely free, you can find out more at rpf.io/translate.

The post Why we translate our free online projects for young people to learn coding appeared first on Raspberry Pi.

Celebrate Scratch Week with us

Post Syndicated from Joanne Vincent original https://www.raspberrypi.org/blog/scratch-week/

Scratch Week is a global celebration of Scratch that takes place from 15 to 21 May this year. Below, we’ve put together some free resources to help get kids coding with this easy-to-use, block-based programming language. If you’re not sure what Scratch is, check out our introduction video for parents.

""

Visit Scratch Island on Code Club World

Code Club World is a great place to start coding for children who have never done any coding or programming before. The Code Club World online platform lets them begin their coding journey with fun activities, starting by creating their own personal avatar.

The islands on Code Club World.

Then on Scratch Island, kids can code a game to find a hidden bug, design a fun ‘silly eyes’ app, or animate a story. No experience necessary! We’ve just added a parents’ guide to explain how Code Club World works.

Explore Scratch projects 

For kids who feel ready to move beyond the basics of Scratch this Scratch Week, our Projects site offers a catalogue of projects that further enhance kids’ coding skills as they earn badges and explore, design, and invent.

A platform game your kids can code in Scratch with our project path.

With the More Scratch path, they will create six projects to make apps, games, and simulations using message broadcasting, if..then and if..then..else decisions, and variables. Then with the Further Scratch path, they can explore the advanced features of Scratch in another six projects to use boolean logic, functions, and clones while creating apps, games, computer-generated art, and simulations.

Discover young people’s Scratch creations

Be inspired by the amazing things young tech creators worldwide code in Scratch by visiting the Coolest Projects Global 2022 showcase. Young people are showing off Scratch games, stories, art, and more. In our Coolest Projects online gallery, these creations are displayed amongst hundreds of others from around the world — it’s the ideal place to get inspired.

A young coder shows off her tech project for Coolest Projects to two other young tech creators.

Learn something new with our Introduction to Scratch course 

Are you curious about coding too? If you would like to start learning so you can better help young people with their creative projects, our online course Introduction to Programming with Scratch is perfect for you. It’s available on-demand, so you can join at any time and receive four weeks’ free access (select the ‘limited access’ option when you register). This course is a fun, inspiring, and colourful starting point if you have never tried coding before. 

If you’re a parent looking for more coding activities to share with your kids, you can sign up to our parent-focused newsletter.

We hope you enjoy exploring these resources during Scratch Week. 

The post Celebrate Scratch Week with us appeared first on Raspberry Pi.

Teaching with Raspberry Pi Pico in the computing classroom

Post Syndicated from Dan Elwick original https://www.raspberrypi.org/blog/raspberry-pi-pico-classroom-physical-computing/

Raspberry Pi Pico is a low-cost microcontroller that can be connected to another computer to be programmed using MicroPython. We think it’s a great tool for exploring physical computing in classrooms and coding clubs. Pico has been available since last year, amid school closures, reopenings, isolation periods, and restrictions for students and teachers. Recently, I spoke to some teachers in England about how their reception of Raspberry Pi Pico, and how they have found using it to teach physical computing to their learners.

A student uses a Raspberry Pi Pico in the computing classroom.

This blog post is adapted from issue 18 of Hello World, our free magazine written by computing educators for computing educators.

Extra-curricular engagement

At secondary schools, a key use of Raspberry Pi Pico was in teacher-led lunchtime or after-school clubs. One teacher from a girls’ secondary school in Liverpool described how he introduced it to his Women in Tech club, which he runs for 11- to 12-year-old students for half an hour per week at lunchtime. As this teacher has free reign over the club content and a personal passion for Raspberry Pi, his eventual aim for the club participants was to build a line-following car using Pico.

On a wooden desktop, electronic components, a Raspberry Pi Pico, and a motor next to a keyboard.

The group started by covering the basics of Pico, such as connecting it with a breadboard and making LEDs flash, using our ‘Getting started with Raspberry Pi Pico’ project guide. The teacher described how walking into a room with Picos and physical computing kits grabs students’ attention: “It’s massively more engaging than programming Python on a screen… They love the idea of building something physical, like a car.” He has to remind them that phones aren’t allowed at school, as they’re keen to take photos of the flashing lights to show their parents. His overall verdict? “Once the software had been installed, [Picos are] just plug and play. As a tool in school, it gives you something physical, enthuses interest in the subject. If it gets just one person choosing the subject, who wouldn’t have done otherwise, then job done.”

“If it gets just one person choosing the subject, who wouldn’t have done otherwise, then job done.”

Teacher at a Liverpool girls’ secondary school

Another teacher from a school in Hampshire used Picos at an after-school club with students aged 13 to 15. After about six sessions of less than 50 minutes last term, the students have almost finished building motorised buggies. The first two sessions were spent familiarising students with the Picos, making LEDs flash, and using sensors. In the next four sessions, the students made their way through the Pico-focused physical computing unit from our Teach Computing Curriculum. The students worked in pairs, and initially some learners had trouble getting the motors to turn the wheels on their buggies. Rather than giving them the correct code, the teacher gave them duplicate sets of the hardware and suggested that they test each piece in turn to ‘debug’ the hardware. Thus the students quickly worked out what they needed to do to make the wheels turn.

A soldered Raspberry Pi Pico on a breadboard.

For non-formal learning settings such as computing and coding clubs, we’ve just released a six-project learning path called ‘Introduction to Raspberry Pi Pico’ for beginner digital makers. You can check out the path directly, or learn more about how we’ve designed it to encourage learners’ independence.

Reinforcing existing computing skills

Another key theme that came through in my conversations with teachers was how Raspberry Pi Pico can be used to reinforce learners’ existing computing skills. One teacher I interviewed, from a school in Essex, has been using Picos to teach computing to 12- to 14-year-olds in class, and talked about the potential for physical computing as a pedagogical tool for recapping topics that have been covered before. “If [physical computing] is taught well, it enhances students’ understanding of programming. If they just copy code from the board, it becomes about the kit and not how you solve a problem, it’s not as effective at helping them develop their computational thinking. Teaching Python on Pico really can strengthen existing understanding of using Python libraries and subroutines, as well as passing subroutine arguments.”

“If [physical computing] is taught well, it enhances students’ understanding of programming.”

Teacher at an Essex secondary school

Another teacher I spoke to, working at a Waterlooville school and relatively new to teaching, talked about the benefits of using Pico to teach Python: “It takes some of the anxiety away from computing for some of the younger students and makes them more resilient. They can be wary of making mistakes, and see them as a hurdle, but working towards a tangible output can help some students to see the value of learning through their mistakes.”

Raspberry Pi Pico attached with jumper wires to a purple LED.

This teacher was keen for his students to get a sense of the variety of jobs that are available in the computing sector, and not just in software. He explained how physical computing can demonstrate to students how you can make inputs, outputs, and processing very real: “Give students a Pico and make them thirsty about what they could do with it — the device allows them to interact with it and work out how to bend it to what they want to do. You can be creative in computing without just writing code, you can capture information and output it again in a more useful way.”

“Working towards a tangible output can help some students to see the value of learning through their mistakes.”

Teacher at a Waterlooville school

One of the teachers we spoke to was initially a bit cynical about Pico, but had a much better experience of using it in the classroom than expected: “It’s not such a big progression from block-based microcontrollers to Pico — it could be a good stepping stone between, for example, a micro:bit and a Raspberry Pi computer.”

Why not try out Raspberry Pi Pico in your classroom or club? It might be the engagement booster you’ve been looking for!  

Top teacher tips for activities with Raspberry Pi Pico

  • Prepare to install Thonny (the software we recommend to program Pico) on your school’s or venue’s IT systems, and ask your IT technician for support.
  • It takes time to unpack devices, connect them, and pack them back up again. Build this time into your plan!

Free learning resources for using Raspberry Pi Pico in your classroom or club

Teachers at state schools in England can borrow physical computing kits with class sets of Raspberry Pi Picos from their local Computing Hub. We’ve made these kits available through our work as part of the National Centre for Computing Education. The Pico kit is perfect for teaching the Pico-focused physical computing unit from our Teach Computing Curriculum.

Qualified US-based educators can still get their hands on 1 of 1000 free Raspberry Pi Pico hardware kits if they sign up to our free course Design, build, and code a rover with Raspberry Pi Pico. This course shows you how to introduce Pico in your classroom. We’ve designed the course on the Pathfinders Online Institute platform, specifically for US-based educators, thanks to our partners at Infosys Foundation USA. These Raspberry Pi Pico kits are also available at PiShop.us.

For non-formal learning settings, such as Code Clubs and CoderDojos, we’ve created a six-project learning path: ‘Introduction to Raspberry Pi Pico’. This path is for beginner digital makers to follow and create Pico projects, all the while learning the skills to independently design, code, and build their own projects. All of the components for the path are available as a kit from Pimoroni.

The post Teaching with Raspberry Pi Pico in the computing classroom appeared first on Raspberry Pi.

Get kids coding and learning electronics with Raspberry Pi Pico

Post Syndicated from Rebecca Franks original https://www.raspberrypi.org/blog/kids-coding-electronics-raspberry-pi-pico-free-learning-resource/

Since the release of the Raspberry Pi Pico microcontroller in 2021, we have seen people all over the world come up with creative Pico-based inventions.

Raspberry Pi Pico with its inbuilt LED blinking.
The Raspberry Pi Pico microcontroller.

Now, thanks to our brand-new and free ‘Introduction to Raspberry Pi Pico’ learning path, young coders can easily join in and make their own cool Pico projects! This free learning path has six guided projects to help kids to independently develop their coding skills, and their skills in physical computing and electronics.

A girl creates a physical computing project.
Physical computing is a great way to help young people get creative with coding.

In this post, I’ll tell you about Raspberry Pi Pico, what kids can make by following our free ‘Intro to Pico’ path, and what skills they will be learning.

Meet Raspberry Pi Pico

Raspberry Pi Pico is a physical computing device that is low-cost and easy to use. It’s much smaller than any Raspberry Pi computer, and it needs much less power. That’s because it’s not a full computer but instead a microcontroller. That means Pico is a device that you program by writing code on any computer, and then sending that code to Pico via a USB cable.

Raspberry Pi Pico has GPIO pins (like Raspberry Pi computers do). These pins mean it can interact with different types of physical computing components, such as buttons, buzzers, and LEDs.

In the ‘Intro to Raspberry Pi Pico’ path, we’ve designed new digital making projects specifically using Pico. By following the projects in the path, young people learn to make things with different electronic components. They’ll bring to life their own LED fireflies; they’ll make music with a sound machine and dial (a potentiometer); they’ll look after themselves and people around them by making a mood indicator and a heart rate visualiser. To find out more, visit the path, or scroll to the bottom of this post and click on ‘Details about the projects’.

The specially designed structure of our learning paths helps kids become confident and independent coders and digital makers. Through this project path, we want to show young people what is possible with Raspberry Pi Pico and inspire them to continue their digital making journey beyond the six projects. Seeing tech creations from our amazing community is super special to us, and we would love to hear about what your young coders have made with Pico. Kids can share their projects in the path gallery, or you can tag us on social media if you post photos!   

alt=""

Learning skills and independence with our project paths 

While young people make all these Raspberry Pi Pico projects, they will learn the skills and independence to make and code their very own, unique creations with a Pico. We have designed our new project paths to help kids become independent digital makers. As they progress through a path, kids gain new skills, practise what they have learnt, and finally write and follow their own project brief. 

Our learning paths help kids develop many of the skills that are important to all coders and digital makers, no matter how much experience they have: 

  • How to turn an idea on paper into a tech creation
  • How to debug a project
  • How to combine new information with what they already know about digital making 

The learning paths also encourage kids to make projects about the things that matter to them.  

Key questions answered

Who is this path for?

We have written the projects in this path with young people around the age of 9 to 13 in mind. 

Programs for Raspberry Pi Pico are written in a text-based language called MicroPython. That means a young person who wants to start the ‘Intro to Pico’ path needs to be familiar with typing on a keyboard.

A young person codes at a Raspberry Pi computer.

If your kid has never coded in a text-based language before, they could complete our free ‘Introduction to Python‘ project path first, but this is not a prerequisite.

What will young people learn?

To help with the programming aspects of the projects, the instructions in the path tell young people about:  

  • Displaying output
  • Arithmetic expressions
  • Importing from a library
  • While loops
  • Nested if statements
  • Defining and calling functions
  • Events
Raspberry Pi Pico attached with jumper wires to a purple LED.
We still get excited by a flashing LED.

One of the great things about this project path is that it helps young people explore physical computing and electronics. In the ‘Intro to Pico’ path, they’ll use:

  • Single-colour LEDs
  • Multi-colour LEDs (so-called RGB LEDs)
  • Buzzers
  • Switches (including switches the kids will make out of craft materials!)
  • Buttons
  • Potentiometers (dials)

How much time is needed to complete the path?

We’ve designed the path to be completed in around six one-hour sessions, with one hour per project. However, the project instructions encourage kids to upgrade their projects and go further if they wish. This means that they might want to spend a little more time getting their projects exactly as they imagine. 

What software is needed for the projects?

Young people need a web browser so they can follow the project instructions. The first two projects in the path provide detailed instructions for how to install the free software needed for the projects. 

alt=""
The projects in the path show you how to program Raspberry Pi Pico using MicroPython in the Thonny software.

What hardware is needed for these projects?

The first step of each project lists what components are needed to create the project. You can purchase a kit from Kitronik or from Pimoroni that includes all of the components used in the path:

‘Intro to Raspberry Pi Pico’ kit list (click here)

  • 1 × soldered Raspberry Pi Pico
  • 1 × USB cable
  • 1 × red LED
  • 1 × blue LED
  • 2 × yellow LEDs
  • 6 × single-colour LEDs (random)
  • 3 × RGB LEDs
  • 15 × 75 ohm resistors (max 220 ohm)
  • 2 × potentiometers
  • 8 × push buttons (optional, these can be made from crafting materials)
  • 15 × pin–socket jumper wires
  • 38 × socket–socket jumper wires
  • 4 × pin–pin jumper wires

What can young people do next?

Explore Python coding with us 

If your young coders enjoy MicroPython, they’ll also love our Python learning paths: ‘Introduction to Python‘ and More Python‘. Both are structured in the same way as our Pico path, and will help young people learn Python while creating their own visual designs.

A girl points happily at a project on the Raspberry Pi Foundation's projects site.
Details about the projects in ‘Intro to Raspberry Pi Pico’

The ‘Intro to Raspberry Pi Pico’ path is structured according to our Digital Making Framework, with three Explore projects, two Design projects, and a final Invent project. You can also check out our learning graph to see the progression of skills and knowledge throughout the path.

Explore project 1: LED firefly



The ‘LED firefly’ project introduces creators to Raspberry Pi Pico while they make their first project with a blinking LED. They program the LED with a blink pattern that is common to fireflies in the wild. To upgrade their projects, creators can place their LED firefly into a glass jar to create a twinkling effect.  

Explore project 2: Party popper



‘Party popper’ introduces creators to the RGB LED and a buzzer. To form the popper, they craft a pull switch out of kitchen foil and cardboard. When the popper is activated, the RGB LED flashes in their chosen colour, and a ‘tada’ sound plays on the buzzer. 

Explore project 3: Beating heart



‘Beating heart’ uses a potentiometer (dial) to control the pulsing speed of an LED. Creators craft their own hearts using red paper and origami before placing the pulsing LED inside. In this way, they create a model of a heart they can use to learn about medicine or to bring to life a favourite toy. 

Design project 1: Mood indicator



In the ‘Mood indicator’ project, kids use switches and an RGB LED to create a device that can communicate a need or a mood to another person. This Design project gives young creators lots of opportunities to use their new skills to create something personal to them.

Design project 2: Sound machine

 




‘Sound machine’ is a project for kids to work with the different tones that a buzzer can make. They can use the buzzer to create sound effects, or to recreate their favourite songs. Once they have decided on their sounds, they can think about how a user of their project might choose to play them. 

Invent project: Sensory gadget

 




This project gives creators that chance to pick their favourite elements of the path to create something totally unique to them. They could make all sorts of sensory gadgets, from a Picosaber to a candle that can be blown out. Creators are encouraged to showcase their creations in the path gallery to give other young makers inspiration. 

The post Get kids coding and learning electronics with Raspberry Pi Pico appeared first on Raspberry Pi.

Python coding for kids: Moving beyond the basics

Post Syndicated from Rebecca Franks original https://www.raspberrypi.org/blog/python-coding-for-kids-beyond-the-basics/

We are excited to announce our second new Python learning path, ‘More Python’, which shows young coders how to add real data to their programs while creating projects from a chart of Olympic medals to an interactive world map. The six guided Python projects in this free learning path are designed to enable young people to independently create their own Python projects about the topics that matter to them.

A girl points excitedly at a project on the Raspberry Pi Foundation's projects site.
Two kids are at a laptop with one of our coding projects.

In this post, we’ll show you how kids use the projects in the ‘More Python’ path, what they can make by following the path, and how the path structure helps them become confident and independent digital makers.

Python coding for kids: Our learning paths

Our ‘Introduction to Python’ learning path is the perfect place to start learning how to use Python, a text-based programming language. When we launched the Intro path in February, we explained why Python is such a popular, useful, and accessible programming language for young people.

Because Python has so much to offer, we have created a second Python path for young people who have learned the basics in the first path. In this new set of six projects, learners will discover new concepts and see how to add different types of real data to their programs.

Illustration of different graph types
By following the ‘More Python’ path, young people learn the skills to independently create a data visualisation for a topic they are passionate about in the final project.

Key questions answered

Who is this path for?

We have written the projects in this path with young people around the age of 10 to 13 in mind. To code in a text-based language, a young person needs to be familiar with using a keyboard, due to the typing involved. Learners should have already completed the ‘Introduction to Python’ project path, as they will build on the learning from that path.

Three young tech creators show off their tech project at Coolest Projects.

How do young people learn with the projects? 

Young people need access to a web browser to complete our project paths. Each project contains step-by-step instructions for learners to follow, and tick boxes to mark when they complete each step. On top of that, the projects have steps for learners to:

  • Reflect on what they have covered in the project
  • Share their projects with others
  • See suggestions to upgrade their projects

Young people also have the option to sign up for an account with us so they can save their progress at any time and collect badges.

A young person codes at a Raspberry Pi computer.

While learners follow the project instructions in this project path, they write their code into Trinket, a free web-based coding platform accessible in a browser. Each project contains a link to a starter Trinket, which includes everything to get started writing Python code — no need to install any additional software.

Screenshot of Python code in the online IDE Trinket.
This is what Python code on Trinket looks like.

If they prefer, however, young people also have the option of instead writing their code in a desktop-based programming environment, such as Thonny, as they work through the projects.

What will young people learn?  

To use data in their Python programs, the project instructions show learners how to:

  • Create and use lists
  • Create and use dictionaries
  • Read data from a data file

The projects support learners as they explore new concepts of digital visual media and: 

  • Create charts using the Python library Pygal
  • Plot pins on a map
  • Create randomised artwork

In each project, learners reflect and answer questions about their work, which is important for connecting the project’s content to their pre-existing knowledge.

In a computing classroom, a girl laughs at what she sees on the screen.

As they work through the projects, learners see different ways to present data and then decide how they want to present their data in the final project in the path. You’ll find out what the projects are on the path page, or at the bottom of this blog post.

The project path helps learners become independent coders and digital makers, as each project contains slightly less support than the one before. You can read about how our project paths are designed to increase young people’s independence, and explore our other free learning paths for young coders

How long will the path take to complete?

We’ve designed the path to be completed in around six one-hour sessions, with one hour per project, at home, in school, or at a coding club. The project instructions encourage learners to add code to upgrade their projects and go further if they wish. This means that young people might want to spend a little more time getting their projects exactly as they imagine them.

In a classroom, a teacher and a student look at a computer screen while the student types on the keyboard.

What can young people do next?

Use Unity to create a 3D world

Unity is a free development environment for creating 3D virtual environments, including games, visual novels, and animations, all with the text-based programming language C#. Our ‘Introduction to Unity’ project path for keen coders shows how to make 3D worlds and games with collectibles, timers, and non-player characters.

Take part in Coolest Projects Global

At the end of the ‘More Python’ path, learners are encouraged to register a project they’ve made using their new coding skills for Coolest Projects Global, our free and world-leading online technology showcase for young tech creators. The project they register will become part of the online gallery, where members of the Coolest Projects community can celebrate each other’s creations.

A young coder shows off her tech project for Coolest Projects to two other young tech creators.

We welcome projects from all young people, whether they are beginners or experienced coders and digital makers. Coolest Projects Global is a unique opportunity for young people to share their ingenuity with the world and with other young people who love coding and creating with digital technology.

Details about the projects in ‘More Python’

The ‘More Python’ path is structured according to our Digital Making Framework, with three Explore project, two Design projects, and a final Invent project.

Explore project 1: Charting champions

Illustration of a fast-moving, smiling robot wearing a champion's rosette.

In this Explore project, learners discover the power of lists in Python by creating an interactive chart of Olympic medals. They learn how to read data from a text file and then present that data as a bar chart.

Explore project 2: Solar system

Illustration of our solar system.

In this Explore project, learners create a simulation of the solar system. They revisit the drawing and animation skills that they learned in the ‘Introduction to Python’ project path to produce animated planets orbiting the sun. The animation is based on real data taken from a data file to simulate the speed that the planets move at as they orbit. The simulation is also interactive, using dictionaries to display data about the planets that have been selected.

Explore project 3: Codebreaker

Illustration of a person thinking about codebreaking.

The final Explore project gets learners to build on their knowledge of lists and dictionaries by creating a program that encodes and decodes a message using an Atbash cipher. The Atbash cipher was originally developed in the Hebrew language. It takes the alphabet and matches it to its reverse order to create a secret message. They also create a script that checks how many times certain letters have been used in an encoded message, so that they can discover patterns.

Design project 1: Encoded art

Illustration of a robot painting a portrait of another robot.

The first Design project allows learners to create fun pieces of artwork by encoding the letters of their name into images, patterns, or drawings. Learners can choose the images that will be produced for each letter, and whether these appear at random or in a geometric pattern.

Learners are encouraged to share their encoded artwork in the community library, where there are lots of fun projects to discover already. In this project, learners apply all of the coding skills and knowledge covered in the Explore projects, including working with dictionaries and lists.

Design project 2: Mapping data

Illustration of a map and a hand of someone marking it with a large pin.

In the next Design project, learners access data from a data file and use it to create location pins on a world map. They have six datasets to choose from, so they can use one that interests them. They can also choose from a variety of maps and design their own pin to truly personalise their projects.

Invent project: Persuasive data presentation

Illustration of different graph types

This project is designed to use all of the skills and knowledge covered in this path, and most of the skills from the ‘Introduction to Python’ path. Learners can choose from eight datasets to create data visualisations. They are also given instructions on how to access and prepare other datasets if they want to visualise data about a different topic.

Once learners have chosen their dataset, they can decide how they want it to be displayed. This could be a chart, a map with pins, or a unique data visualisation. There are lots of example projects to provide inspiration for learners. One of our favourites is the ISS Expedition project, which places flags on the ISS depending on the expedition number you enter.

The post Python coding for kids: Moving beyond the basics appeared first on Raspberry Pi.

Three new reasons to register for Coolest Projects Global 2022

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/coolest-projects-global-2022-feedback-swag-medals/

Over the last ten years, thousands of young people from all over the world have shared their digital creations at a Coolest Projects event. This year, there are a few brand-new and exciting reasons why young people will want to get involved in Coolest Projects Global online tech showcase and share their tech creations in the online gallery, for the worldwide Coolest Projects community to discover them.

Two teenage girls participating in Coolest Projects shows off their tech project.

Not only will each Coolest Projects Global participant get unique feedback on their project, they’ll also receive a cool piece of limited-edition Coolest Projects swag. And young tech creators have a shot at winning a coveted Coolest Projects medal if their creation is selected as a judges’ favourite. We’ve added all of these new enhancements thanks to the thoughtful feedback we’ve received from participants in previous showcases.

White text on blue background saying New in 2022.

1. Personalised project feedback

Young people who’ve showcased at an in-person Coolest Projects event know how great it is to see how other people react to their project. This year, creators participating in our online showcase will automatically get reactions and feedback from our Coolest Projects staff and partners who are reviewing projects.

A Coolest Projects participant

That means each creator will find out what’s great about their project and how they might be able to improve it. All of this feedback will be shown in the creator’s online account on coolestprojects.org after the celebratory livestream in June.

2. Limited-edition Coolest Projects art

All young creators will also get limited-edition swag: a Coolest Projects poster designed by New York City-based artist Joey Rex. Creators can proudly display this memento of their participation in Coolest Projects Global 2022 on their bedroom wall, and as a digital phone or computer screen background.

An illustration of two young tech creators working on digital projects in a room filled with devices, gadgets, and tools.
The limited-edition Coolest Projects poster designed by Joey Rex.

The poster design was inspired by all the young makers who have participated in Coolest Projects over the last 10 years. It evokes themes of collaboration, invention, and creativity. Here’s what Joey, the artist, had to say about the design:

“This project was really exciting for me to work on, since I love geeking out over tech and building custom electronics, and I’m really grateful to the Coolest Projects team for trusting me with this vision. I hope my design can inspire the creators to keep up the great work and continue bringing their awesome ideas to reality!”

Artist Joey Rex

To claim their printed poster and backgrounds for their digital devices, creators will receive a link via email after the celebratory livestream in June.

3. Custom Coolest Projects medals

And behold, your first look at the Coolest Projects medal:

A Coolest Projects medal.

As you may already know, VIP judges select their favourite projects in each project category. Creators of projects that are selected as favourites will receive this custom die-cast medal to commemorate their unique accomplishment. The medal hangs on a full color Coolest Projects ribbon and would be the coolest addition to any wall or trophy shelf.

Three young tech creators show off their tech project at Coolest Projects.

Creators who want to aim for a medal should keep in mind that judges’ favourite projects are selected based on their complexity, presentation, design, and of course their coolness. See the Coolest Projects FAQs for more information.

White text on blue background saying Get involved.

With all these new enhancements to Coolest Projects Global, there is a multitude of reasons for young tech creators to register a project for the online showcase.

To help young people get involved in Coolest Projects, we have planned a few livestreamed codealong events on our YouTube channel:

  • 26 April at 7pm BST, a good time for creators in Europe
  • 27 April at 7pm EDT, a good time for creators in the Americas

During these livestreams, you’ll also learn about the new project topics we’ve introduced for the online gallery this year. We’ll especially explore the ‘environment’ topic, sponsored by our friends at EPAM and Liberty Global.

More details are coming soon, so be sure to sign up for email updates to be the first to hear them.

That’s all of the latest news about Coolest Projects. Until next time… be cool.

The post Three new reasons to register for Coolest Projects Global 2022 appeared first on Raspberry Pi.

Share your tech project with the world through Coolest Projects Global 2022

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/coolest-projects-global-2022-registration-open/

It’s time for young tech creators to share with the world what they’ve made! Coolest Projects Global 2022 registration is NOW OPEN. Starting today, young people can register their technology creation on the Coolest Projects Global website, where it will be featured in the online showcase gallery for the whole world to see.

Five young coders show off their robotic garden tech project for Coolest Projects.

By registering a tech project, you’ll represent your community, and you’ll get the coolest, limited-edition swag. You may even win a prize and earn the recognition of the special project judges.

What you need to know about Coolest Projects Global

Now in its 10th year, Coolest Projects is all about celebrating young people and what they create with code. Here’s what you need to know:

  • Coolest Projects Global is completely free for all participants around the world, and it’s entirely online.
  • Coolest Projects Global is open to tech creators up to 18 years old, working independently or in teams of up to 5.
  • We welcome creators of all skill levels: this world-leading technology showcase is for young people who are coding their very first project, or who are already experienced, or anything in between.
  • You’re invited to a live online celebration, which we will live-stream in early June — more details to follow.
  • Opening today, project registration stays open until 11 May.
A young coder shows off her tech project tech project for Coolest Projects to two other young tech creators.
  • Projects can be registered in the following categories: Scratch, games, web, mobile apps, hardware, and advanced programming.
  • Judges will evaluate projects based on their coolness, complexity, design, usability, and presentation.

Why Coolest Projects Global is so cool

Here are just a few of the reasons why young tech creators should register their project for the Coolest Projects Global showcase:

  • Share your project with the world. Coolest Projects Global is the world’s leading technology showcase for young people, and it’s your chance to shine on the global stage.
  • Get feedback on your project. A great team of judges will check out your project and give you feedback, which will land in your inbox after registration closes.
  • Earn some swag. Every creator who registers a project will be eligible to receive some limited-edition digital or physical swag. Pssst… Check out the sneak peek below.
  • Win a prize. Creators of projects that are selected as the judges’ favourites in the six showcase categories will receive a Coolest Projects medal to commemorate their accomplishment. The judges’ favourites will be announced at our live online celebration in June.
Two young coders work on their tech project on a laptop to control a sewing machine for Coolest Projects.

If you don’t have a tech project or an idea for one yet, you’ve got plenty of time to imagine and create, and we’re here to support you. Check out our guides to designing and building a tech creation — one that you’ll be proud to share with the Coolest Projects community in the online showcase gallery. And there’s no shortage of inspiration among the projects that young tech creators shared in last year’s showcase gallery.

Four young coders show off their tech project for Coolest Projects.

We have a lot more exciting stuff to share about Coolest Projects Global in the coming months, so be sure to subscribe for email updates. Until next time… be cool, creators!

""
A hint at the swag Coolest Projects Global participants will receive 👀

The post Share your tech project with the world through Coolest Projects Global 2022 appeared first on Raspberry Pi.

Coding for kids: Art, games, and animations with our new beginners’ Python path

Post Syndicated from Rebecca Franks original https://www.raspberrypi.org/blog/coding-for-kids-art-games-animations-beginners-python-programming/

Python is a programming language that’s popular with learners and educators in clubs and schools. It also is widely used by professional programmers, particularly in the data science field. Many educators and young people like how similar the Python syntax is to the English language.

Two girls code together at a computer.

That’s why Python is often the first text-based language that young people learn to program in. The familiar syntax can lower the barrier to taking the first steps away from a block-based programming environment, such as Scratch.

In 2021, Python ranked in first place in an industry-standard popularity index of a major software quality assessment company, confirming its favoured position in software engineering. Python is, for example, championed by Google and used in many of its applications.

Coding for kids in Python

Python’s popularity means there are many excellent resources for learning this language. These resources often focus on creating programs that produce text outputs. We wanted to do something different.

Two young people code at laptops.

Our new ‘Introduction to Python’ project path focuses on creating digital visuals using the Python p5 library. This library is like a set of tools that allows you to get creative by using Python code to draw shapes, edit images, and create frame-by-frame animations. That makes it the perfect choice for young learners: they can develop their knowledge and skills in Python programming while creating cool visuals that they’ll be proud of. 

What is in the ‘Introduction to Python’ path?

The ‘Introduction to Python’ project path is designed according to our Digital Making Framework, encouraging learners to become independent coders and digital makers by gently removing scaffolding as they progress along the projects in a path. Paths begin with three Explore projects, in which learners are guided through tasks that introduce them to new coding skills. Next, learners complete two Design projects. Here, they are encouraged to practise their skills and bring in their own interests to personalise their coding creations. Finally, learners complete one Invent project. This is where they put everything that they have learned together and create something unique that matters to them.

""
Emoji, archery, rockets, art, and movement are all part of this Python path.

The structure of our Digital Making Framework means that learners experience the structured development process of a coding project and learn how to turn their ideas into reality. The Framework also supports with finding errors in their code (debugging), showing them that errors are a part of computer programming and just temporary setbacks that you can overcome. 

What coding skills and knowledge will young people learn?

The Explore projects are where the initial learning takes place. The key programming concepts covered in this path are:

  • Variables
  • Performing calculations with variables
  • Using functions
  • Using selection (if, elif and else)
  • Using repetition (for loops)
  • Using randomisation
  • Importing from libraries

Learners also explore aspects of digital visual media concepts:

  • Coordinates
  • RGB colours
  • Screen size
  • Layers
  • Frames and animation

Learners then develop these skills and knowledge by putting them into practice in the Design and Invent projects, where they add in their own ideas and creativity. 

Explore project 1: Hello world emoji

In the first Explore project of this path, learners create an interactive program that uses emoji characters as the visual element.

""

This is the first step into Python and gets learners used to the syntax for printing text, using variables, and defining functions.

Explore project 2: Target practice

In this Explore project, learners create an archery game. They are introduced to the p5 library, which they use to draw an archery board and create the arrows.

""

The new programming concept covered in this project is selection, where learners use if, elif and else to allocate points for the game.

Explore project 3: Rocket launch

The final Explore project gets learners to animate a rocket launching into space. They create an interactive animation where the user is asked to enter an amount of fuel for the rocket launch. The animation then shows if the fuel is enough to get the rocket into orbit.

""

The new programming concept covered here is repetition. Learners use for loops to animate smoke coming from the exhaust of the rocket.

Design project 1: Make a face

The first Design project allows learners to unleash their creativity by drawing a face using the Python coding skills that they have built in the Explore projects. They have full control of the design for their face and can explore three examples for inspiration.

""

Learners are also encouraged to share their drawings in the community library, where there are lots of fun projects to discover already. In this project, learners apply all of the coding skills and knowledge covered in the Explore projects, including selection, repetition, and variables.

Design project 2: Don’t collide!

In the second Design project, learners code a scrolling game called ‘Don’t collide’, where a character or vehicle moves down the screen while having to avoid obstacles.

""

Learners can choose their own theme for the game, and decide what will move down the screen and what the obstacles will look like. In this project, they also get to practice everything they learned in the Explore projects. 

Invent project: Powerful patterns

This project is the ultimate chance for learners to put all of their skills and knowledge into practice and get creative. They design their own unique patterns and create frame-by-frame animations.

""

The Invent project offers ingredients, which are short reminders of all the key skills that learners have gained while completing the previous projects in the path. The ingredients encourage them to be independent whilst also supporting them with code snippets to help them along.

Key questions answered

Who is the Introduction to Python path for?

We have written the projects in the path with young people around the age of 9 to 13 in mind. To code in a text-based language, a young person needs to be familiar with using a keyboard, due to the typing involved. A learner may have completed one of our Scratch paths prior to this one, but this isn’t essential. and we encourage beginner coders to take this path first if that is their choice.

A young person codes at a Raspberry Pi computer.

What software do learners need to code these projects?

A web browser. In every project, starter code is provided in a free web-based development environment called Trinket, where learners add their own code. The starter Trinkets include everything that learners need to use Python and access the p5 library.

If preferred, the projects also include instructions for using a desktop-based programming environment, such as Thonny.

How long will the path take to complete?

We’ve designed the path to be completed in around six one-hour sessions, with one hour per project. However, the project instructions encourage learners to upgrade their projects and go further if they wish. This means that young people might want to spend a little more time getting their projects exactly as they imagine them. 

What can young people do next after completing this path?

Taking part in Coolest Projects Global

At the end of the path, learners are encouraged to register a project they’re making with their new coding skills for Coolest Projects Global, our world-leading online technology showcase for young people.

Three young tech creators show off their tech project at Coolest Projects.

Taking part is free, all online, and beginners as well as more experienced young tech creators are welcome and invited. This is their unique opportunity to share their ingenuity in an online gallery for the world and the Coolest Projects community to celebrate.

Coding more Python projects with us

Coming very soon is our ‘More Python’ path. In this path, learners will move beyond the basics they learned in Introduction to Python. They will learn how to use lists, dictionaries, and files to create charts, models, and artwork. Keep your eye on our blog and social media for the release of ‘More Python’.

The post Coding for kids: Art, games, and animations with our new beginners’ Python path appeared first on Raspberry Pi.

Get an easy start to coding with our new free online course

Post Syndicated from Michael Conterio original https://www.raspberrypi.org/blog/learn-to-code-new-free-online-course-scratch-programming/

Are you curious about coding and computer programming but don’t know how to begin? Do you want to help your children at home, or learners in your school, with their digital skills, but you’re not very confident yet? Then our new, free, and on-demand online course Introduction to Programming with Scratch course is a fun, creative, and colourful starting point for you.

An illustration of Scratch coding.

Being able to code can help you do lots of things — from expressing yourself to helping others practice their skills, and from highlighting real-world issues to controlling a robot. Whether you want to get a taste of what coding is about, or you want to learn so that you can support young people, our Introduction to Programming with Scratch course is the perfect place to start if you’ve never tried any coding before.

Scratch course presenters Vasu and Mark.
Your course presenters, Vasu and Mark.

On this on-demand course, Mark and Vasu from our team will help you take your very first steps on your programming journey. 

You can code — we’ll show you how

On the course, you’ll use the programming language Scratch, a beginner-friendly, visual programming language particularly suitable for creating animations and games. All you need is our course and a computer or tablet with a web browser and internet connection that can access the online Scratch editor.

You can code in Scratch without having to memorise and type in commands. Instead, by snapping blocks together, you’ll take control of ‘sprites’, which are characters and objects on the screen that you can move around with the code you create.

A video of what Scratch coding looks like.
This is how you build Scratch programs.

As well as learning what you can do with Scratch, you’ll be learning basic programming concepts that are the same for all programming languages. You’ll see how the order of commands is important (sequencing), you’ll make the computer repeat actions (repetition), and you’ll write programs that do different things in different circumstances, for example responding to your user’s actions (selection). Later on, you’ll also make your own reusable code blocks (abstraction).

You can create your own programs and share them

Throughout the course you’ll learn to make your own programs step by step. In the final week, Mark and Vasu will show you how you can create musical projects and interact with your program using a webcam.

A Scratch coding project.
By the end of the course, you will create a program to control a Scratch character using your live webcam video.

Vasu and Mark will encourage you to share your programs and join the Scratch online community. You will discover how you can explore other people’s Scratch programs for inspiration and support, and how to build on the code they’ve created.

A Scratch coding project.
Thousands of people share their projects in the Scratch online community — you could be one of them.

Sign up for the course now!

The course starts for the first time on Monday 14 February, but it is available on demand, so you can join it at any time. You’ll get four weeks’ access to the course no matter when you sign up.

For the first four weeks that the course is available, and every three months after that, people from our team will join in to support you and help answer your questions in the comments sections.

If you’re a teacher in England, get free extended access by signing up through Teach Computing here.

And if you want to do more Scratch coding…

You can find more free resources here! These are the newest Scratch pathways on our project site, which you can also share with the young people in your life:

The post Get an easy start to coding with our new free online course appeared first on Raspberry Pi.

Calling all young creators: Get ready for Coolest Projects Global 2022

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/coolest-projects-2022-tech-showcase-get-ready/

It’s time to start your countdown! Young people from all over the world will soon be invited to share their digital creations at Coolest Projects Global 2022, our world-leading online technology showcase event for young creators. In mid-February, project registration opens for a new and improved, online-only experience.

A group of young women present a robot buggy they have built.

Through Coolest Projects Global, young creators can register their digital projects to share them with the world, represent their country, get some free swag, and maybe even win recognition from our special judges. And the best thing: Coolest Projects participants join a global community of awesome young tech creators who celebrate each other’s accomplishments.

A group of Coolest Projects participants from all over the world wave their flags.

Here’s what you should know about Coolest Projects Global

  • Coolest Projects Global is free and open to young creators up to 18 years old, working independently or in teams of up to 5 creators.
  • Creators of all skill levels are encouraged to participate. Coolest Projects is for young people who are beginners, or advanced, or anything in between.
  • Project registration opens on 14 February and stays open until 11 May.
A girl presenting a digital making project
  • Projects can be registered in the following categories: Scratch, games, web, mobile apps, hardware, and advanced programming.
  • Judges will evaluate projects based on their coolness, complexity, design, usability, and presentation.
  • Coolest Projects Global is a completely free event for all participants, and it’s entirely online.

What’s new in 2022?

Coolest Projects is celebrating its TENTH YEAR of shining a light on young creators, so we have an extra special showcase lined up in 2022. All of these enhancements are the result of incredibly helpful feedback that past creators have shared. Here’s a sneak peek at what you can look forward to:

  • Creators will receive project feedback from the judges after the celebration event in June. The celebration will be streamed live online in early June. Stay tuned for more details as the event gets closer.
  • Creators will be eligible to receive limited-edition digital and physical swag.
  • Creators will be able to categorise their project into topics such as health, environment, community, art, and more.
  • Creators who have projects selected as favourites by the special judges will receive a commemorative medal.
Two siblings presenting their digital making project at a Coolest Projects showcase

What do young people say is so cool about Coolest Projects?

We asked past creators what they think makes Coolest Projects so cool, and here’s what they had to say:

  • “The freedom we had to create whatever we want!”
  • “We can get inspiration from sharing our ideas about real-life situations.”
  • “Seeing all the different ideas people had and how they went about doing their projects.”
  • “The opportunity to let the creativity flow and participate at a global level.”

Last year, creators showcased all kinds of projects, such as an earthquake early warning device, a fun math game made with Scratch, a squirrel detection system, and a website about cybersecurity. Don’t forget, Coolest Projects is for creators who are beginners, advanced, and everything in between.

A boy participating in Coolest Projects shows off his tech project together with an adult.

Next steps

Project registration opens on 14 February, but creators can start making their projects now. For inspiration, check out last year’s project gallery and then sign up to receive email updates so that you don’t miss a thing about Coolest Projects. We have many more exciting details coming in the next weeks and months, so stay tuned.

Until next time… be cool, creators.

The post Calling all young creators: Get ready for Coolest Projects Global 2022 appeared first on Raspberry Pi.

New free resources for young people to create 3D worlds with code in Unity

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/free-resources-unity-game-development-3d-worlds/

Today we’re releasing an exciting new path of projects for young people who want to create 3D worlds, stories, and games. We’ve partnered with Unity to offer any young person, anywhere, the opportunity to take their first steps in creating virtual worlds using real-time 3D.

A teenage girl participating in Coolest Projects shows off her tech project.

The Unity Charitable Fund, a fund of the Tides Foundation, has awarded us a generous grant for $50,000 to help underrepresented youth learn to use Unity, upleveling their skills for future career success.

Create a world, don’t just explore it

Our new path of six projects for Unity is a learning journey for young people who have some experience of text-based programming and now want to try out building digital 3D creations.

Unity is the world’s leading platform for creating and operating real-time 3D and is hugely popular for creating 3D video games and virtual, interactive worlds and stories. The best thing about it for young people? While professional developers use Unity to create well-known games such as Pokémon Brilliant Diamond and Shining Pearl and Among Us, it is also free for anyone to use.

A boy participating in Coolest Projects shows off his tech project together with an adult.

Young people who learn to use Unity can do more and more complex things with it as they gain experience. Many successful indie games have been made in Unity — maybe a young person you know will create the next indie game sensation!

For young people, our new project path is the ideal introduction to Unity. The new project path:

  • Is for learners who have already coded some projects in Python or another text-based language.
  • Introduces the Unity software and how to write code for it in the programming language C# (pronounced ‘cee sharp’).
  • Guides learners to create a 3D role playing game or interactive story that they can tailor to suit their imaginations. Learners gain more and more independence with each project in the path.
  • Covers common elements such as non-playable characters, mini games, and bonuses.
A young person at a laptop

After young people have completed the path, they’ll have:

  • Created their very own 3D video game or interactive story they can share with their friends and family.
  • Gained familiarity with key functions of Unity.
  • Built the independence and confidence to explore Unity further and create more advanced games and 3D worlds.

Young people gain real-world skills while creating worlds in Unity

Since Unity is a platform used by professional digital creators, young people who follow our new Unity path gain real-world skills that are sought after in the tech sector. While they learn to express their creativity with Unity, young people improve their coding and problem-solving skills and feel empowered because they get to use their imagination to bring their ideas to life.

Two teenage girls participating in Coolest Projects shows off their tech project.

“Providing opportunities for underrepresented youth to learn critical tech skills is essential to Unity Social Impact’s mission,” said Jessica Lindl, Vice President, Social Impact at Unity. “We’re thrilled that the Raspberry Pi Foundation’s Unity path will allow thousands of student learners to take part in game design in an accessible way, setting them up for future career success.”

What you need to support young people with Unity Real-Time 3D

The project path includes instructions for how to download and install all the necessary software to start creating with Unity.

Before they can start, young people will need to:

  • Have access to a computer with enough processing power (find out more from Unity directly)
  • Have downloaded and installed Unity Hub, from where they need to install Unity Editor and Visual Studio Community Edition

For club volunteers who support young people attending Code Clubs and CoderDojos with the new path, we are going to run two free online workshops in February. During the workshops, volunteers will be introduced to the path and the software setup, and we’ll try out Unity together. Keep your eyes on the CoderDojo and Code Club blogs for details!

Three young people learn coding at laptops supported by a volunteer at a CoderDojo session.

Club volunteers, if your participants are creating Blender projects, they can import these into Unity too.

Young people can share their Unity creations with the world through Coolest Projects

It’s really exciting for us that we can bring this new project path to young people who dream about creating interactive 3D worlds. We hope to see many of their creations in this year’s Coolest Projects Global, our free online tech showcase for young creators all over the world!

The post New free resources for young people to create 3D worlds with code in Unity appeared first on Raspberry Pi.

5750 Scottish children code to raise awareness of climate change with Code Club

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/cop26-5750-school-children-scotland-coding-climate-change-code-club/

This month, the team behind our Code Club programme supported nearly 6000 children across Scotland to “code against climate change” during the United Nations Climate Change Conference (COP26) in Glasgow.

“The scale of what we have achieved is outstanding. We have supported over 5750 young learners to code projects that are both engaging and meaningful to their conversations on climate.”

Louise Foreman, Education Scotland (Digital Skills team)

Creative coding to raise awareness of environmental issues

Working with teams from Education Scotland, and with e-Sgoil, our Code Club team hosted two live online code-along events that saw learners from 235 schools across Scotland come together to code and learn about protecting the environment.

“This type of event at this scale would not have been possible before the pandemic. Now joining and learning through live online events is quite normal, thanks to platforms like e-Sgoil’s DYW Live. That said, the success of these code-alongs has been above even our wildest imaginations.”

Peter Murray, Education Scotland (Developing the Young Workforce team)

Classes of young people aged 8 to 14 across Scotland joined the live online code-along through the national GLOW platform and followed Lorna from our Code Club team through a step-by-step project guide to code creative projects with an environmental theme.

At our first session, for beginners, the coding newcomers explored the importance of pollinating insects for the environment. They first learned that a third of the food we eat depends on pollinators such as bees and butterflies, and that these insects are endangered by environmental crises.

Then the young coders celebrated pollinating insects by coding a garden scene filled with butterflies, based on our popular Butterfly garden project guide. This Scratch project introduces beginner coders to loops while they code their animations, and it allows them to get creative and customise the look of their projects. Above are still images of two example animations coded by the young learners.

The second Code Club code-along event was designed for more confident coders. First, learners were asked to consider the impact of plastic in our oceans and reflect on the recent news that around 26,000 tonnes of coronavirus-related plastic waste (such as masks and gloves) has already entered our oceans. To share this message, they then coded a game based on our Save the shark Scratch project guide. In this game, players help a shark swim through the ocean trying to avoid plastic waste, which is dangerous to its health.

Supporting young people’s future together

These two Scotland-wide code-along events for schools were made possible by the long-standing collaboration between Education Scotland and our Code Club team. Over the last five years, our shared mission to grow interest for coding and computer science among children across Scotland has helped Scottish teachers start hundreds of Code Clubs.

A school-age child's written feedback about Code Club: "it was really fun and I enjoyed learning about coding and all of the things i can do in Scratch. I will use Scratch more now."
The school children who participated in the code-along sessions enjoyed themselves a lot, as shown by this note from one of them.

“The code-alongs were the perfect celebration of all the brilliant work we have done together over the years. What better way to demonstrate the importance of computing science to young people than to show them that not only can they use those skills on something important like climate change, but they are also in great company with thousands of other children across Scotland. I am excited about the future.”

Kirsty McFaul, Education Scotland (Technologies team)

Join thousands of teachers around the world who run Code Clubs

We also want to give kudos to the teachers of the 235 schools who helped their learners participate in this Code Club code-along. Thanks to your skills in supporting your learners to participate in online sessions — skills hard-won during school closures — over 5000 young people have been inspired about coding and protecting the planet we all share.

Teachers around the world run Code Clubs for their learners, with the help of our free Code Club resources and support. Find out more about starting a Code Club at your school at www.codeclub.org.

The post 5750 Scottish children code to raise awareness of climate change with Code Club appeared first on Raspberry Pi.

Introducing Code Club World: a new way for young people to learn to code at home

Post Syndicated from Laura Kirsop original https://www.raspberrypi.org/blog/code-club-world-free-online-platform-young-people-children-learn-to-code-at-home/

Today we are introducing you to Code Club World — a free online platform where young people aged 9 to 13 can learn to make stuff with code.

Images from Code Club World, a free online platform for children who want to learn to code

In Code Club World, young people can:

  • Start out by creating their personal robot avatar
  • Make music, design a t-shirt, and teach their robot avatar to dance!
  • Learn to code on islands with structured activities
  • Discover block-based and text-based coding in Scratch and Python
  • Earn badges for their progress 
  • Share their coding creations with family, friends, and the Code Club World community

Learning to code at home with Code Club World: meaningful, fun, flexible

When we spoke to parents and children about learning at home during the pandemic, it became clear to us that they were looking for educational tools that the children can enjoy and master independently, and that are as fun and social as the computer games and other apps the children love.

A girl has fun learning to code at home, sitting with a laptop on a sofa, with a dog sleeping next to her and her father writing code too.
Code Club World is educational, and as fun as the games and apps young people love.

What’s more, a free tool for learning to code at home is particularly important for young people who are unable to attend coding clubs in person. We believe every child should have access to a high-quality coding and digital making education. And with this in mind, we set out to create Code Club World, an online environment as rich and engaging as a face-to-face extracurricular learning experience, where all young people can learn to code.

The Code Club World activities are mapped to our research-informed Digital Making Framework — a coding and digital making curriculum for non-formal settings. That means when children are in the Code Club World environment, they are learning to code and use digital making to independently create their ideas and address challenges that matter to them.

Islands in the Code Club World online platform for children who want to learn to code for free.
Welcome to Code Club World — so many islands to explore!

By providing a structured pathway through the coding activities, a reward system of badges to engage and motivate learners, and a broad range of projects covering different topics, Code Club World supports learners at every stage, while making the activities meaningful, fun, and flexible.

A girl has fun learning to code at home on a tablet sitting on a sofa.
Code Club World’s home island works as well on mobile phones and tablets as on computers.

We’ve also designed Code Club World to be mobile-friendly, so if a young person uses a phone or tablet to visit the platform, they can still code cool things they will be proud of.

Created with the community

Since we started developing Code Club World, we have been working with a community of more than 1000 parents, educators, and children who are giving us valuable input to shape the direction of the platform. We’ve had some fantastic feedback from them:

“I’ve not coded before, but found this really fun! … I LOVED making the dance. It was so much fun and made me laugh!”

Learner, aged 11

“I love the concept of having islands to explore in making the journey through learning coding, it is fabulous and eye-catching.”

Parent

The platform is still in beta status — this means we’d love you to share it with young people in your family, school, or community so they can give their feedback and help make Code Club World even better.

Together, we will ensure every child has an equal opportunity to learn to code and make things that change their world.

The post Introducing Code Club World: a new way for young people to learn to code at home appeared first on Raspberry Pi.

Inspiring learners about computing through health and well-being projects | Hello World #17

Post Syndicated from Gemma Coleman original https://www.raspberrypi.org/blog/inspiring-learners-computing-health-well-being-projects-hello-world-17/

Your brand-new issue of the free Hello World magazine for computing educators focuses on all things health and well-being, featuring useful tools for educators, great ideas for schools, and inspiring projects, ideas, and resources from teachers around the world!

Cover of issue 17 of Hello World.

One such project was created by the students of James Abela, Head of Computing at Garden International School in Kuala Lumpur, Raspberry Pi Certified Educator, founder of the South East Asian Computer Science Teachers Association, and author of The Gamified Classroom:

Protecting children from breathing hazardous air

In 2018, Indonesia burned approximately 529,000 hectares of land. That’s an area more than three times the size of Greater London, or almost the size of Brunei. With so much forest being burned, the whole region felt the effects of the pollution. Schools frequently had to ban outdoor play and PE lessons, and on some days schools were closed completely. Many schools in the region had an on-site CO2 detector to know when pollution was bad, but by the time the message could get out, children had already been breathing in the polluted air for several minutes.

A forest fire.
The air pollution from a forest fire gets dispersed by winds and can spread way beyond the area of the fire.

My Year 12 students (aged 16–17) followed the news and weather forecasts intently, and we all started to see how the winds from Singapore and Sumatra were sending pollution to us in Kuala Lumpur. We also realised that if we had measurements from around the city, we might have some visibility as to when pollution was likely to affect our school.

Making room for student-led projects

I’ve always encouraged my students to do their own projects, because it gives programming tasks meaning and creates something that they can be genuinely proud of. The other benefit is that it is something to talk about in university essays and interviews, especially as they often need to do extensive research to solve the problems central to their projects.

This project was […] a genuine passion project in every sense of the word.

James Abela

This project was much more than this: it was a genuine passion project in every sense of the word. Three of my students approached me with the idea of tracking CO2 to give schools a better idea of when there was pollution and which way it was going. They had had some experience of using Raspberry Pi computers, and knew that it was possible to use them to make weather stations, and that the latest versions had wireless LAN capability that they could use. I agreed to support them during allocated programming time, and to help them reach out to other schools.

Circuit design of the CO2 sensor using just Raspberry Pi, designed on circuito.io

I was able to offer students support with this project because I flip quite a lot of the theory in my class. Flipped learning is a teaching approach in which some direct instruction, for example reading articles or watching specific videos, is done at home. This enables more class time to be used to answer questions, work through higher-order tasks, or do group work, and it creates more supervised coding time.

I was able to offer students support with this project because I flip quite a lot of the theory in my class.

James Abela

I initially started doing this because when I set coding challenges for homework, I often had students who confessed they spent all night trying to solve it, only for me to glance at the code and notice a missing colon or indentation issue. I began flipping the less difficult theory for students to do as homework, to create more programming time in class where we could resolve issues more quickly. This then evolved into a system where students could work much more at their own pace and eventually led to a point at which older students could, in effect, learn through their own projects, such as the pollution monitor.

Building the pollution monitor

The students started by looking at existing weather station projects — for example, there is an excellent tutorial on the Raspberry Pi Foundation’s projects site. Students discovered that wind data is relatively easy to get over a larger area, but the key component would be something to measure CO2. […]

Check out issue 17 of Hello World to read the rest of James’s article and find out all the details about the hardware and software his students used for this passion project. He says:

This project really helped these students to decide whether they enjoyed the hardware side of computing, and solving real-world issues really encouraged them to see computing as a practical subject. This is a message that has really resonated with other students, and we’ve since doubled the number of students taking A level computer science.

James Abela

Download the new Hello World for free!

Issue 17 of Hello World is bursting with inspiring ideas for teaching your learners about computing in the context of health and well-being. And you’ll find lots more great content in its 100 pages!

James’s article is also a wonderful example of an educator empowering their students to build a tech project they care about. You’ll discover more insights and practical tips on making computing relevant to all your learners in the following articles of the new Hello World issue:

  • Inspiring Young People With Contexts They Care About
  • Computing for all: Designing a Culturally Relevant Curriculum
  • Going Back to Basics: Part 2 — a follow-on from issue 16 about how to take beginner digital makers through their first physical computing projects

Download the new issue of Hello World for free today:

If you’re an educator based in the UK, you can subscribe to receive each new issue in print completely free! And wherever you are in the world, don’t forget to listen to the Hello World podcast, where each episode we dive into a new topic from the magazine with some of the computing educators who’ve written for us.

The post Inspiring learners about computing through health and well-being projects | Hello World #17 appeared first on Raspberry Pi.

Community stories: Avye

Post Syndicated from Katie Gouskos original https://www.raspberrypi.org/blog/community-stories-avye-robotics-girls-tech/

We’re excited to share another incredible story from the community — the second in our new series of inspirational short films that celebrate young tech creators across the world.

A young teenager with glasses smiles
Avye discovered robotics at her local CoderDojo and is on a mission to get more girls like her into tech.

These stories showcase some of the wonderful things that young people are empowered to do when they learn how to create with technology. We hope that they will inspire many more young people to get creative with technology too!

Meet Avye

This time, you will meet an accomplished, young community member who is on a quest to encourage more girls to join her and get into digital making.

Help us celebrate Avye by liking and sharing her story on Twitter, Linkedin, or Facebook!

For as long as she can remember, Avye (13) has enjoyed creating things. It was at her local CoderDojo that seven-year-old Avye was introduced to the world of robotics. Avye’s second-ever robot, the Raspberry Pi–powered Voice O’Tronik Bot, went on to win the Hardware category at our Coolest Projects UK event in 2018.

A girl shows off a robot she has built
Avye showcased her Raspberry Pi–powered Voice O’Tronik Bot at Coolest Projects UK in 2018.

Coding and digital making have become an integral part of Avye’s life, and she wants to help other girls discover these skills too. She says, I believe that it’s important for girls and women to see and be aware of ordinary girls and women doing cool things in the STEM world.” Avye started running her own workshops for girls in their community and in 2018 founded Girls Into Coding. She has now teamed up with her mum Helene, who is committed to helping to drive the Girls Into Coding mission forwards.

I want to get other girls like me interested in tech.

Avye

Avye has received multiple awards to celebrate her achievements, including the Princess Diana Award and Legacy Award in 2019. Most recently, in 2020, Avye won the TechWomen100 Award, the Women in Tech’s Aspiring Teen Award, and the FDM Everywoman in Tech Award!

We cannot wait to see what the future has in store for her. Help us celebrate Avye and inspire others by liking and sharing her story on Twitter, Linkedin, or Facebook!

The post Community stories: Avye appeared first on Raspberry Pi.

Celebrating the community: Zaahra and Eesa

Post Syndicated from Katie Gouskos original https://www.raspberrypi.org/blog/community-stories-zaahra-eesa-coding-team/

Today we are launching an exciting series of impact stories from the community, to shine a spotlight on some of the young people who are learning and creating with technology through our educational initiatives.

A sister and brother smiling while doing digital making at a laptop
Zaahra and Eesa have been learning to create technology through attending Code Club and taking part in Coolest Projects!

These stories get to the heart of our mission: to put the power of computing and digital making into the hands of people all over the world.

Designed in close collaboration with families across the world, our new series of short inspirational films showcases some of the wonderful things that young people are empowered to do when they learn to use technology to address the issues that matter to them.

We are incredibly proud to be a part of these young people’s journeys — and to see the positive impact of engaging with our free programmes, coding clubs, and resources. We can’t wait to share their unique experiences and achievements with you as we roll out the series over the next few months.

And we invite you to celebrate these young people by liking and sharing their stories on social media!

Meet Zaahra and Eesa 

The first story takes you to a place not far from our home: London, UK.

Help us celebrate Zaahra and Eesa by liking and sharing their story on Twitter, Linkedin, or Facebook!

Zaahra (12) and Eesa (8) are a sister and brother coding team and live in East London. For the last four years they’ve been learning about computing and digital making by attending regular sessions at their local Code Club. Zaahra and Eesa love working as a team and using technology to solve problems around them. When they found it difficult to communicate with their grandparents in their first language, Sylheti, the siblings decided to code a language learning app called ‘Easy Sylheti’. Eesa says, “We wanted to create something that was helpful to us, but also to our family and the community.”

A girl and boy standing on the grass in a park

When Zaahra and Eesa decided to take part in the Coolest Projects online tech showcase with their app, they never expected that it would be picked as a favourite by Coolest Projects special judge Eben Upton, CEO and co-inventor of Raspberry Pi!

“I’ve discovered that I’m capable of a lot more than I thought.”

Zaahra

Describing the effect of learning to create with technology and seeing the success of their app, Zaahra declares, “I’ve discovered that I’m capable of a lot more than I thought.” And she’s using her new-found confidence to continue helping her community: Zaahra has recently taken up a role as youth member on the Newham Youth Empowerment Fund Panel.

Help us celebrate Zaahra and Eesa by liking and sharing their story on Twitter, Linkedin, or Facebook!

The post Celebrating the community: Zaahra and Eesa appeared first on Raspberry Pi.