Tag Archives: education

Architecting a Data Lake for Higher Education Student Analytics

Post Syndicated from Craig Jordan original https://aws.amazon.com/blogs/architecture/architecting-data-lake-for-higher-education-student-analytics/

One of the keys to identifying timely and impactful actions is having enough raw material to work with. However, this up-to-date information typically lives in the databases that sit behind several different applications. One of the first steps to finding data-driven insights is gathering that information into a single store that an analyst can use without interfering with those applications.

For years, reporting environments have relied on a data warehouse stored in a single, separate relational database management system (RDBMS). But now, due to the growing use of Software as a service (SaaS) applications and NoSQL database options, data may be stored outside the data center and in formats other than tables of rows and columns. It’s increasingly difficult to access the data these applications maintain, and a data warehouse may not be flexible enough to house the gathered information.

For these reasons, reporting teams are building data lakes, and those responsible for using data analytics at universities and colleges are no different. However, it can be challenging to know exactly how to start building this expanded data repository so it can be ready to use quickly and still expandable as future requirements are uncovered. Helping higher education institutions address these challenges is the topic of this post.

About Maryville University

Maryville University is a nationally recognized private institution located in St. Louis, Missouri, and was recently named the second fastest growing private university by The Chronicle of Higher Education. Even with its enrollment growth, the university is committed to a highly personalized education for each student, which requires reliable data that is readily available to multiple departments. University leaders want to offer the right help at the right time to students who may be having difficulty completing the first semester of their course of study. To get started, the data experts in the Office of Strategic Information and members of the IT Department needed to create a data environment to identify students needing assistance.

Critical data sources

Like most universities, Maryville’s student-related data centers around two significant sources: the student information system (SIS), which houses student profiles, course completion, and financial aid information; and the learning management system (LMS) in which students review course materials, complete assignments, and engage in online discussions with faculty and fellow students.

The first of these, the SIS, stores its data in an on-premises relational database, and for several years, a significant subset of its contents had been incorporated into the university’s data warehouse. The LMS, however, contains data that the team had not tried to bring into their data warehouse. Moreover, that data is managed by a SaaS application from Instructure, called “Canvas,” and is not directly accessible for traditional extract, transform, and load (ETL) processing. The team recognized they needed a new approach and began down the path of creating a data lake in AWS to support their analysis goals.

Getting started on the data lake

The first step the team took in building their data lake made use of an open source solution that Harvard’s IT department developed. The solution, comprised of AWS Lambda functions and Amazon Simple Storage Service (S3) buckets, is deployed using AWS CloudFormation. It enables any university that uses Canvas for their LMS to implement a solution that moves LMS data into an S3 data lake on a daily basis. The following diagram illustrates this portion of Maryville’s data lake architecture:

The data lake for the Learning Management System data

Diagram 1: The data lake for the Learning Management System data

The AWS Lambda functions invoke the LMS REST API on a daily schedule resulting in Maryville’s data, which has been previously unloaded and compressed by Canvas, to be securely stored into S3 objects. AWS Glue tables are defined to provide access to these S3 objects. Amazon Simple Notification Service (SNS) informs stakeholders the status of the data loads.

Expanding the data lake

The next step was deciding how to copy the SIS data into S3. The team decided to use the AWS Database Migration Service (DMS) to create daily snapshots of more than 2,500 tables from this database. DMS uses a source endpoint for secure access to the on-premises database instance over VPN. A target endpoint determines the specific S3 bucket into which the data should be written. A migration task defines which tables to copy from the source database along with other migration options. Finally, a replication instance, a fully managed virtual machine, runs the migration task to copy the data. With this configuration in place, the data lake architecture for SIS data looks like this:

Diagram 2: Migrating data from the Student Information System

Diagram 2: Migrating data from the Student Information System

Handling sensitive data

In building a data lake you have several options for handling sensitive data including:

  • Leaving it behind in the source system and avoid copying it through the data replication process
  • Copying it into the data lake, but taking precautions to ensure that access to it is limited to authorized staff
  • Copying it into the data lake, but applying processes to eliminate, mask, or otherwise obfuscate the data before it is made accessible to analysts and data scientists

The Maryville team decided to take the first of these approaches. Building the data lake gave them a natural opportunity to assess where this data was stored in the source system and then make changes to the source database itself to limit the number of highly sensitive data fields.

Validating the data lake

With these steps completed, the team turned to the final task, which was to validate the data lake. For this process they chose to make use of Amazon Athena, AWS Glue, and Amazon Redshift. AWS Glue provided multiple capabilities including metadata extraction, ETL, and data orchestration. Metadata extraction, completed by Glue crawlers, quickly converted the information that DMS wrote to S3 into metadata defined in the Glue data catalog. This enabled the data in S3 to be accessed using standard SQL statements interactively in Athena. Without the added cost and complexity of a database, Maryville’s data analyst was able to confirm that the data loads were completing successfully. He was also able to resolve specific issues encountered on particular tables. The SQL queries, written in Athena, could later be converted to ETL jobs in AWS Glue, where they could be triggered on a schedule to create additional data in S3. Athena and Glue enabled the ETL that was needed to transform the raw data delivered to S3 into prepared datasets necessary for existing dashboards.

Once curated datasets were created and stored in S3, the data was loaded into an AWS Redshift data warehouse, which supported direct access by tools outside of AWS using ODBC/JDBC drivers. This capability enabled Maryville’s team to further validate the data by attaching the data in Redshift to existing dashboards that were running in Maryville’s own data center. Redshift’s stored procedure language allowed the team to port some key ETL logic so that the engineering of these datasets could follow a process similar to approaches used in Maryville’s on-premises data warehouse environment.

Conclusion

The overall data lake/data warehouse architecture that the Maryville team constructed currently looks like this:

The complete architecture

Diagram 3: The complete architecture

Through this approach, Maryville’s two-person team has moved key data into position for use in a variety of workloads. The data in S3 is now readily accessible for ad hoc interactive SQL workloads in Athena, ETL jobs in Glue, and ultimately for machine learning workloads running in EC2, Lambda or Amazon Sagemaker. In addition, the S3 storage layer is easy to expand without interrupting prior workloads. At the time of this writing, the Maryville team is both beginning to use this environment for machine learning models described earlier as well as adding other data sources into the S3 layer.

Acknowledgements

The solution described in this post resulted from the collaborative effort of Christine McQuie, Data Engineer, and Josh Tepen, Cloud Engineer, at Maryville University, with guidance from Travis Berkley and Craig Jordan, AWS Solutions Architects.

Join the UK Bebras Challenge 2020 for schools!

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/join-uk-bebras-challenge-2020/

The annual UK Bebras Computational Thinking Challenge for schools, brought to you by the Raspberry Pi Foundation and Oxford University, is taking place this November!

UK Bebras Challenge logo

The Bebras Challenge is a great way for your students to practise their computational thinking skills while solving exciting, accessible, and puzzling questions. Usually this 40-minute challenge would take place in the classroom. However, this year for the first time, your students can participate from home too!

If your students haven’t entered before, now is a great opportunity for them to get involved: they don’t need any prior knowledge. 

Do you have any students who are up for tackling the Bebras Challenge? Then register your school today!

School pupils in a computing classroom

What you need to know about the Bebras Challenge

  • It’s a great whole-school activity open to students aged 6 to 18, in different age group categories.
  • It’s completely free!
  • The closing date for registering your school is 30 October.
  • Let your students complete the challenge between 2 and 13 November 2020.
  • The challenge is made of a set of short tasks, and completing it takes 40 minutes.
  • The challenge tasks focus on logical thinking and do not require any prior knowledge of computer science.
  • There are practice questions to help your students prepare for the challenge.
  • This year, students can take part at home (please note they must still be entered through their school).
  • All the marking is done for you! The results will be sent to you the week after the challenge ends, along with the answers, so that you can go through them with your students.

“Thank you for another super challenge. It’s one of the highlights of my year as a teacher. Really, really appreciate the high-quality materials, website, challenge, and communication. Thank you again!”

– A UK-based teacher

Support your students to develop their computational thinking skills with Bebras materials

Bebras is an international challenge that started in Lithuania in 2004 and has grown into an international event. The UK became involved in Bebras for the first time in 2013, and the number of participating students has increased from 21,000 in the first year to more than 260,000 last year! Internationally, nearly 3 million learners took part in 2019. 

Bebras is a great way to engage your students of all ages in problem-solving and give them a taste of what computing is all about. In the challenge results, computing principles are highlighted, so Bebras can be educational for you as a teacher too.

The annual Bebras Challenge is only one part of the equation: questions from previous years are available as a resource that you can use to create self-marking quizzes for your classes. You can use these materials throughout the year to help you to deliver the computational thinking part of your curriculum!

The post Join the UK Bebras Challenge 2020 for schools! appeared first on Raspberry Pi.

How teachers train in Computing with our free online courses

Post Syndicated from Michael Conterio original https://www.raspberrypi.org/blog/how-teachers-train-computing-free-online-courses/

Since 2017 we’ve been training Computing educators in England and around the world through our suite of free online courses on FutureLearn. Thanks to support from Google and the National Centre for Computing Education (NCCE), all of these courses are free for anyone to take, whether you are a teacher or not!

An illustration of a bootcamp for computing teachers

We’re excited that Computer Science educators at all stages in their computing journey have embraced our courses — from teachers just moving into the field to experienced educators looking for a refresher so that they can better support their colleagues.

Hear from two teachers about their experience of training with our courses and how they are benefitting!

Moving from Languages to IT to Computing

Rebecca Connell started out as a Modern Foreign Languages teacher, but now she is Head of Computing at The Cowplain School, a 11–16 secondary school in Hampshire.

Computing teacher Rebecca Connell
Computing teacher Rebecca finds our courses “really useful in building confidence and taking [her] skills further”.

Although she had plenty of experience with Microsoft Office and was happy teaching IT, at first she was daunted by the technical nature of Computing:

“The biggest challenge for me has been the move away from an IT to a Computing curriculum. To say this has been a steep learning curve is an understatement!”

However, Rebecca has worked with our courses to improve her coding knowledge, especially in Python:

“Initially, I undertook some one-day programming courses in Python. Recently, I have found the Raspberry Pi courses to be really useful in building confidence and taking my skills further. So far, I have completed Programming 101 — great for revision and teaching ideas — and am now into Programming 102.”

GCSE Computing is more than just programming, and our courses are helping Rebecca develop the rest of her Computing knowledge too:

“I am now taking some online Raspberry Pi courses on computer systems and networks to firm up my knowledge — my greatest fear is saying something that’s not strictly accurate! These courses have some good ideas to help explain complex concepts to students.”

She also highly rates the new free Teach Computing Curriculum resources we have developed for the NCCE:

“I really like the new resources and supporting materials from Raspberry Pi — these have really helped me to look again at our curriculum. They are easy to follow and include everything you need to take students forward, including lesson plans.”

And Rebecca’s not the only one in her department who is benefitting from our courses and resources:

“Our department is supported by an excellent PE teacher who delivers lessons in Years 7, 8, and 9. She has enjoyed completing some of the Raspberry Pi courses to help her to deliver the new curriculum and is also enjoying her learning journey.”

Refreshing and sharing your knowledge

Julie Price, a CAS Master Teacher and NCCE Computer Science Champion, has been “engaging with the NCCE’s Computer Science Accelerator programme, [to] be in a better position to appreciate and help to resolve any issues raised by fellow participants.”

Computing teacher Julie Price
Computer science teacher Julie Price says she is “becoming addicted” to our online courses!

“I have encountered new learning for myself and also expressions of very familiar content which I have found to be seriously impressive and, in some cases, just amazing. I must say that I am becoming addicted to the Raspberry Pi Foundation’s online courses!”

She’s been appreciating the open nature of the courses, as we make all of the materials free to use under the Open Government Licence:

“Already I have made very good use of a wide range of the videos, animations, images, and ideas from the Foundation’s courses.”

Julie particularly recommends the Programming Pedagogy in Secondary Schools: Inspiring Computing Teaching course, describing it as “a ‘must’ for anyone wishing to strengthen their key stage 3 programming curriculum.”

Join in and train with us

Rebecca and Julie are just 2 of more than 140,000 active participants we have had on our online courses so far!

With 29 courses to choose from (and more on the way!), from Introduction to Web Development to Robotics with Raspberry Pi, we have something for everyone — whether you’re a complete beginner or an experienced computer science teacher. All of our courses are free to take, so find one that inspires you, and let us support you on your computing journey, along with Google and the NCCE.

If you’re a teacher in England, you are eligible for free course certification from FutureLearn via the NCCE.

The post How teachers train in Computing with our free online courses appeared first on Raspberry Pi.

“Tinkering is an equity issue” | Hello World #14

Post Syndicated from Sian Williams Page original https://www.raspberrypi.org/blog/tinkering-is-an-equity-issue-shuchi-grover-hello-world-14/

In the brand-new issue of Hello World magazine, Shuchi Grover tells us about the limits of constructionism, the value of formative assessment, and why programming can be a source of both joy and angst.

How much open-ended exploration should there be in computing lessons?

This is a question at the heart of computer science education and one which Shuchi Grover is delicately diplomatic about in the preface to her new book, Computer Science in K-12: An A-to-Z Handbook on Teaching Programming. The book’s chapters are written by 40 teachers and researchers in computing pedagogy, and Grover openly acknowledges the varying views around discovery-based learning among her diverse range of international authors.

“I wonder if I want to wade there,” she laughs. “The act of creating a program is in itself an act of creation. So there is hands-on learning quite naturally in the computer science classroom, and mistakes are made quite naturally. There are some things that are so great about computer science education. It lends itself so easily to being hands-on and to celebrating mistakes; debugging is par for the course, and that’s not the way it is in other subjects. The kids can actually develop some very nice mindsets that they can take to other classrooms.”

Shuchi Grover showing children something on a laptop screen

Grover is a software engineer by training, turned researcher in computer science education. She holds a PhD in learning sciences and technology design from Stanford University, where she remains a visiting scholar. She explains how the beginning of her research career coincided with the advent of the block-based programming language Scratch, now widely used as an introductory programming language for children.

“Almost two decades ago, I went to Harvard to study for a master’s called technology innovation and education, and it was around that time that I volunteered for robotics workshops at the MIT Media Lab and MIT Museum. Those were pretty transformative for me: I started after-school clubs and facilitated robotics and digital storytelling clubs. In the early 2000s, I was an educational technology consultant, working with teachers on integrating technology. Then Scratch came out, and I started working with teachers on integrating Scratch into languages, arts, and science, all the things that we are doing today.”

A girl with her Scratch project
Student Joyce codes in Scratch at her Code Club in Nunavut

Do her formative experiences at MIT, the birthplace of constructionist theory of student-centred, discovery-based learning, lead her to lean one way or another in the tinkering versus direct instruction debate? “The learning in informal spaces is, of course, very interest-driven. There is no measurement. Children are invited to a space to spend some time after school and do whatever they feel like. There would be kids who would be chatting away while a couple of them designed a robot, and then they would hand over the robot to some others and say, ‘OK, now you go ahead and program it,’ and there were some kids who would just like to hang about.

“When it comes to formal education, there needs to be more accountability, you want to do right by every child. You have to be more intentional. I do feel that while tinkering and constructionism was a great way to introduce interest-driven projects for informal learning, and there’s a lot to learn from there and bring to the formal learning context, I don’t think it can only be tinkering.”

“There needs to be more accountability to do right by every child.”

“Everybody knows that engagement is very important for learning — and this is something that we are learning more about: it’s not just interest, it’s also culture, communities, and backgrounds — but all of this is to say that there is a personal element to the learning process and so engagement is necessary, but it’s not a sufficient condition. You have to go beyond engagement, to also make sure that they are also engaging with the concepts. You want at some point for students to engage with the concept in a way that reveals what their misconceptions might be, and then they end up learning and understanding these things more deeply.

“You want a robust foundation — after all, our goal for teaching children anything at school is to build a foundation on which they build their college education and career and anything beyond that. If we take programming as a skill, you want them to have a good understanding of it, and so the personal connections are important, but so is the scaffolding.

“How much scaffolding needs to be done varies from context to context. Even in the same classroom, children may need different levels of scaffolding. It’s a sweet spot; within a classroom a teacher has to juggle so much. And therein lies the challenge of teaching: 30 kids at a time, and every child is different and every child is unique.

“It’s an equity issue. Some children don’t have the prior experience that sets them up to tinker constructively. After all, tinkering is meant to be purposeful exploration. And so it becomes an issue of who are you privileging with the pedagogy.”

She points out that each chapter in her book that comes from a more constructionist viewpoint clearly speaks of the need for scaffolding. And conversely, the chapters that take a more structured approach to computing education include elements of student engagement and children creating their own programs. “Frameworks such as Use-Modify-Create and PRIMM just push that open-ended creation a little farther down, making sure that the initial experiences have more guide rails.”

Approaches to assessment

Grover is a senior research scientist at Looking Glass Ventures, which in 2018 received a National Science Foundation grant to create Edfinity, a tool to enable affordable access to high-quality assessments for schools and universities.

In her book, she argues that asking students to write programs as a means of formative assessment has several pitfalls. It is time-consuming for both students and teachers, scoring is subjective, and it’s difficult to get a picture of how much understanding a student has of their code. Did they get their program to work through trial and error? Did they lift code from another student?

“Formative assessments that give quick feedback are much better. They focus on aspects of the conceptual learning that you want children to have. Multiple-choice questions on code force both the teachers and the children to experience code reading and code comprehension, which are just so important. Just giving children a snippet of code and saying: ‘What does this do? What will be the value of the variable? How many times will this be executed?’ — it goes down to the idea of code tracing and program comprehension.

“Research has also shown that anything you do in a classroom, the children take as a signal. Going back to the constructionist thing, when you foreground personal interest, there’s a different kind of environment in the classroom, where they’re able to have a voice, they have agency. That’s one of the good things about constructionism.

“Formative assessment signals to the student what it is that you’re valuing in the learning process. They don’t always understand what it is that they’re expected to learn in programming. Is the goal creating a program that runs? Or is it something else? And so when you administer these little check-ins, they bring more alignment between a teacher’s goals for the learners and the learners’ understanding of those goals. That alignment is important and it can get lost.”

Grover will present her latest research into assessment at our research seminar series next Tuesday 6 October — sign up to attend and join the discussion.

The joy and angst of programming

The title of Grover’s book, which could be thought to imply that computer science education consists solely of teaching students to program, may cause some raised eyebrows.

What about building robots or devices that interact with the world, computing topics like binary, or the societal impacts of technology? “I completely agree with the statement and the belief that computer science is not just about programming. I myself have been a proponent of this. But in this book I wanted to focus on programming for a couple of reasons. Programming is a central part of the computer science curriculum, at least here in the US, and it is also the part that teachers struggle with the most.

“I want to show where children struggle and how to help them.”

“As topics go, programming carries a lot of joy and angst. There is joy in computing, joy when you get it. But when a teacher is encountering this topic for the first time there is a lot of angst, because they themselves may not be understanding things, and they don’t know what it is that the children are not understanding. And there is this entire body of research on novice programming. There are the concepts, the practices, the pedagogies, and the issues of assessment. So I wanted to give the teachers all of that: everything we know about children and programming, the topics to be learnt, where they struggle, how to help them.”

Computer Science in K-12: An A-to-Z Handbook on Teaching Programming (reviewed in this issue of Hello World) is edited by Shuchi Grover and available now.

Hear more from Shuchi Grover, and subscribe to Hello World

We will host Grover at our next research seminar, Tuesday 6 October at 17:00–18:30 BST, where she will present her work on formative assessment.

Hello World is our magazine about all things computing education. It is free to download in PDF format, or you can subscribe and we will send you each new issue straight to your home.

In issue 14 of Hello World, we have gathered some inspiring stories to help your learners connect with nature. From counting penguins in Antarctica to orienteering with a GPS twist, great things can happen when young people get creative with technology outdoors. You’ll find all this and more in the new issue!

Educators based in the UK can subscribe to receive print copies for free!

The post “Tinkering is an equity issue” | Hello World #14 appeared first on Raspberry Pi.

17000ft| The MagPi 98

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/17000ft-the-magpi-98/

How do you get internet over three miles up the Himalayas? That’s what the 17000 ft Foundation and Sujata Sahu had to figure out. Rob Zwetsloot reports in the latest issue of the MagPi magazine, out now.

Living in more urban areas of the UK, it can be easy to take for granted decent internet and mobile phone signal. In more remote areas of the country, internet can be a bit spotty but it’s nothing compared with living up in a mountain.

Tablet computers are provided that connect to a Raspberry Pi-powered network

“17000 ft Foundation is a not-for-profit organisation in India, set up to improve the lives of people settled in very remote mountainous hamlets, in areas that are inaccessible and isolated due to reasons of harsh mountainous terrain,” explains its founder, Sujata Sahu. “17000 ft has its roots in high-altitude Ladakh, a region in the desolate cold desert of the Himalayan mountain region of India. Situated in altitudes upwards of 9300 ft and with temperatures dropping to -50°C in inhabited areas, this area is home to indigenous tribal communities settled across hundreds of tiny, scattered hamlets. These villages are remote, isolated, and suffer from bare minimum infrastructure and a centuries-old civilisation unwilling but driven to migrate to faraway cities in search of a better life. Ladakh has a population of just under 300,000 people living across 60,000 km2 of harsh mountain terrain, whose sustenance and growth depends on the infrastructure, resources, and support provided by the government.”

A huge number of students have already benefited from the program

The local governments have built schools. However, they don’t have enough resources or qualified teachers to be truly effective, resulting in a problem with students dropping out or having to be sent off to cities. 17000 ft’s mission is to transform the education in these communities.

High-altitude Raspberry Pi

“The Foundation today works in over 200 remote government schools to upgrade school infrastructure, build the capacity of teachers, provide better resources for learning, thereby improving the quality of education for its children,” says Sujata. “17000 ft Foundation has designed and implemented a unique solar-powered offline digital learning solution called the DigiLab, using Raspberry Pi, which brings the power of digital learning to areas which are truly off-grid and have neither electricity nor mobile connectivity, helping children to learn better, while also enabling the local administration to monitor performance remotely.”

Each school is provided with solar power, Raspberry Pi computers to act as a local internet for the school, and tablets to connect to it. It serves as a ‘last mile connectivity’ from a remote school in the cloud, with an app on a teacher’s phone that will download data when it can and then update the installed Raspberry Pi in their school.

Remote success

“The solution has now been implemented in 120 remote schools of Ladakh and is being considered to be implemented at scale to cover the entire region,” adds Sujata. “It has now run successfully across three winters of Ladakh, withstanding even the harshest of -50°C temperatures with no failure. In the first year of its implementation alone, 5000 students were enrolled, with over 93% being active. The system has now delivered over 60,000 hours of learning to students in remote villages and improved learning outcomes.”

Not all children stay in the villages year round

It’s already helping to change education in the area during the winter. Many villages (and schools) can shut down for up to six months, and families who can’t move away are usually left without a functioning school. 17000 ft has changed this.

“In the winter of 2018 and 2019, for the first time in a few decades, parents and community members from many of these hamlets decided to take advantage of their DigiLabs and opened them up for their children to learn despite the harsh winters and lack of teachers,” Sujata explains. “Parents pooled in to provide basic heating facilities (a Bukhari – a wood- or dung-based stove with a long pipe chimney) to bring in some warmth and scheduled classes for the senior children, allowing them to learn at their own pace, with student data continuing to be recorded in Raspberry Pi and available for the teachers to assess when they got back. The DigiLab Program, which has been made possible due to the presence of the Raspberry Pi Server, has solved a major problem that the Ladakhis have been facing for years!”

Some of the village schools go unused in the winter

How can people help?

Sujata says, “17000 ft Foundation is a non-profit organisation and is dependent on donations and support from individuals and companies alike. This solution was developed by the organisation in a limited budget and was implemented successfully across over a hundred hamlets. Raspberry Pi has been a boon for this project, with its low cost and its computing capabilities which helped create this solution for such a remote area. However, the potential of Raspberry Pi is as yet untapped and the solution still needs upgrades to be able to scale to cover more schools and deliver enhanced functionality within the school. 17000 ft is very eager to help take this to other similar regions and cover more schools in Ladakh that still remain ignored. What we really need is funds and technical support to be able to reach the good of this solution to more children who are still out of the reach of Ed Tech and learning. We welcome contributions of any size to help us in this project.”

For donations from outside India, write to [email protected] Indian citizens can donate through 17000ft.org/donate.

The MagPi magazine is out now, available in print from the Raspberry Pi Press onlinestore, your local newsagents, and the Raspberry Pi Store, Cambridge.

You can also download the PDF directly from the MagPi magazine website.

Subscribers to the MagPi for 12 months get a free Adafruit Circuit Playground, or can choose from one of our other subscription offers, including this amazing limited-time offer of three issues and a book for only £10!

The post 17000ft| The MagPi 98 appeared first on Raspberry Pi.

Embedding computational thinking skills in our learning resources

Post Syndicated from Oliver Quinlan original https://www.raspberrypi.org/blog/computational-thinking-skills-in-our-free-learning-resources/

Learning computing is fun, creative, and exploratory. It also involves understanding some powerful ideas about how computers work and gaining key skills for solving problems using computers. These ideas and skills are collected under the umbrella term ‘computational thinking’.

When we create our online learning projects for young people, we think as much about how to get across these powerful computational thinking concepts as we do about making the projects fun and engaging. To help us do this, we have put together a computational thinking framework, which you can read right now.

What is computational thinking? A brief summary

Computational thinking is a set of ideas and skills that people can use to design systems that can be run on a computer. In our view, computational thinking comprises:

  • Decomposition
  • Algorithms
  • Patterns and generalisations
  • Abstraction
  • Evaluation
  • Data

All of these aspects are underpinned by logical thinking, the foundation of computational thinking.

What does computational thinking look like in practice?

In principle, the processes a computer performs can also be carried out by people. (To demonstrate this, computing educators have created a lot of ‘unplugged’ activities in which learners enact processes like computers do.) However, when we implement processes so that they can be run on a computer, we benefit from the huge processing power that computers can marshall to do certain types of activities.

A group of young people and educators smiling while engaging with a computer

Computers need instructions that are designed in very particular ways. Computational thinking includes the set of skills we use to design instructions computers can carry out. This skill set represents the ways we can logically approach problem solving; as computers can only solve problems using logical processes, to write programs that run on a computer, we need to use logical thinking approaches. For example, writing a computer program often requires the task the program revolves around to be broken down into smaller tasks that a computer can work through sequentially or in parallel. This approach, called decomposition, can also help people to think more clearly about computing problems: breaking down a problem into its constituent parts helps us understand the problem better.

Male teacher and male students at a computer

Understanding computational thinking supports people to take advantage of the way computers work to solve problems. Computers can run processes repeatedly and at amazing speeds. They can perform repetitive tasks that take a long time, or they can monitor states until conditions are met before performing a task. While computers sometimes appear to make decisions, they can only select from a range of pre-defined options. Designing systems that involve repetition and selection is another way of using computational thinking in practice.

Our computational thinking framework

Our team has been thinking about our approach to computational thinking for some time, and we have just published the framework we have developed to help us with this. It sets out the key areas of computational thinking, and then breaks these down into themes and learning objectives, which we build into our online projects and learning resources.

To develop this computational thinking framework, we worked with a group of academics and educators to make sure it is robust and useful for teaching and learning. The framework was also influenced by work from organisations such as Computing At School (CAS) in the UK, and the Computer Science Teachers’ Association (CSTA) in the USA.

We’ve been using the computational thinking framework to help us make sure we are building opportunities to learn about computational thinking into our learning resources. This framework is a first iteration, which we will review and revise based on experience and feedback.

We’re always keen to hear feedback from you in the community about how we shape our learning resources, so do let us know what you think about them and the framework in the comments.

The post Embedding computational thinking skills in our learning resources appeared first on Raspberry Pi.

Testing young children’s computational thinking

Post Syndicated from Oliver Quinlan original https://www.raspberrypi.org/blog/research-seminar-computational-thinking-test/

Computational thinking (CT) comprises a set of skills that are fundamental to computing and being taught in more and more schools across the world. There has been much debate about the details of what CT is and how it should be approached in education, particularly for younger students. 

A girl doing digital making on a tablet

In our research seminar this week, we were joined by María Zapata Cáceres from the Universidad Rey Juan Carlos in Madrid. María shared research she and her colleagues have done around CT. Specifically, she presented work on how we can understand what CT skills young children are developing. Building on existing work on assessing CT, she and her colleagues have developed a reliable test for CT skills that can be used with children as young as 5.

María Zapata Cáceres

Why do we need to test computational thinking?

Until we can assess something, María argues, we don’t know what children have or haven’t learned or what they are capable of. While testing is often associated with the final stages in learning, in order to teach something well, educators need to understand where their students’ skills are to know what they are aiming for them to learn. With CT being taught in increasing numbers of schools and in many different ways, María argues that it is imperative to be able to test learners on it.

Screenshot from an online research seminar about computational thinking with María Zapata Cáceres

How was the test developed?

One of the key challenges for assessing learning is knowing whether the activities or questions you present to learners are actually testing what you intend them to. To make sure this is the case, assessments go through a process of validation: they are tried out with large groups to ensure that the results they give are valid. María’s and her colleagues’ CT test for beginners is based on a CT test developed by researcher Marcos Román González. That test had been validated, but since it is aimed at 10- to 16-year-olds, María and her colleagues needed to adapt it for younger children and then validate the adapted rest.

Developing the first version

The new test for beginners consists of 25 questions, each of which has four possible responses, which are to be answered within 40 minutes. The questions are of two types: one that involves using instructions to draw on a canvas, and one that involves moving characters through mazes. Since the test is for younger children, María and her colleagues designed it so it involves as little text as possible to reduce the need for reading; instead the test includes self-explanatory symbols.

Screenshot from an online research seminar about computational thinking with María Zapata Cáceres

Developing a second version based on feedback

To refine the test, the researchers consulted with a group of 45 experts about the difficulty of the questions and the test’s length of the test. The general feedback was very positive.

Drawing on the experts’ feedback, María and her colleagues made some very specific improvements to the test to make it more appropriate for younger children:

  • The improve test mandates that an verbal explanation be given to children at the start, to make sure they clearly understand how to take the test and don’t have to rely on reading the instructions.
  • In some areas, the researchers added written explanations where experts had identified that questions contained ambiguity that could cause the children to misinterpret them.
  • A key improvement was to adapt the grids in the original test to include pathways between each box of the maze. It was found that children could misinterpret the maze, for example as allowing diagonal moves between squares; the added pathways are visual cues that it clear that this is not possible.
Screenshot from an online research seminar about computational thinking with María Zapata Cáceres

Validating the test

After these improvements, the test was validated with 299 primary school students aged 5-12. To assess the differences the improvements might make, the students were given different version of the test. María and her colleagues found that the younger students benefited from the improvements, and the improvements made the test more reliable for testing students’ computational thinking: students made fewer errors due to ambiguity and misinterpretation.

Statistical analysis of the test results showed that the improved version of the test is reliable and can be used with confidence to assess the skills of younger children.

What can you use this test for?

Firstly, the test is a tool for educators who want to assess the skills young people have and develop over time. Secondly, the test is also valuable for researchers. It can be used to perform projects that evaluate the outcomes of different approaches to teaching computational thinking, as well as projects investigating the effectiveness of specific learning resources, because the test can be given to children before and again after they engage with the resources.

Assessment is one of the many tools educators use to shape their teaching and promote the learning of their students, and tools like this CT test developed by María and her colleagues allow us to better understand what children are learning.

Find out more & join our next seminar

The video and slides of María’s presentation are available on our seminars page. To find out more about this test, and the process used to create and validate it, read the paper by María and her colleagues.

Our final seminar of this series takes place Tuesday 28 July before we take a break for the summer. In the session, we will explore gender balance in computing, led by Katharine Childs, who works on the Gender Balance in Computing research project at the Raspberry Pi Foundation. You can find out more and sign up to attend for free on our Computing Education Research Seminars page.

The post Testing young children’s computational thinking appeared first on Raspberry Pi.

Distributing Raspberry Pi computers to help families access education

Post Syndicated from Olympia Brown original https://www.raspberrypi.org/blog/distributing-raspberry-pis-to-help-families-access-education/

The closure of schools has called attention to the digital divide, which sees poorer families struggling or unable to access education*. The coronavirus pandemic didn’t cause this divide, but it has highlighted it and its impact on many people in our society.

As our Foundation CEO Philip outlined back in April, part of our response to the pandemic and social distancing measures is to send free Raspberry Pi computers to students who currently lack the technology to complete their school work at home. Generously funded by the Bloomfield Trust, we have started to distribute Raspberry Pis in the UK.

Who is receiving Raspberry Pis?

Our approach for this initiative is to work with partner charities that help us identify the right recipients for the computers; we want them to go to young people who don’t have a suitable device for completing their schoolwork in their home.

The first partner charity we’ve been working with, whose team has been so patient as we’ve learned together how to do this, are the incredible School Home Support, a youth organisation working to improve school attendance, behaviour, and engagement in learning. With their help, we’ve so far distributed more than 120 Raspberry Pi 4 computers (with 2GB RAM), together with all the peripherals including a screen. School Home Support were also able to secure funding to provide high-speed internet access to the recipients’ home so students can reliably connect to their schools.

Families receive a Raspberry Pi Desktop Kit and a screen. Our partner charity funds reliable internet access.

How are we helping them set up?

The young people set up their Raspberry Pis themselves, and we have provide detailed instructions to guide them through this process. Most of the families have never used a computer like Raspberry Pi, so they need encouragement and support to get up and running. This is being provided both by the excellent School Home Support practitioners, and by Raspberry Pi team members, who answer questions when recipients get stuck.

“My mum was confused by the setup at first, but having a call to explain it really helped, and now we see how easy it is to set up and use.”

Raspberry Pi recipient

Recipients are already benefiting

Before receiving these computers, many of the young people only had occasional access to their parents’ phone to find out what school work had been set for them, and to complete it.

“It’s much easier to do my schoolwork now on the bigger screen. I feel like I’m learning more.”

Raspberry Pi recipient

A young girl sitting at a desk using a Raspberry Pi computer

We’re getting feedback that the Raspberry Pis help recipients focus on their work; they now have their own space to work in and more time to complete schoolwork, as they’re no longer rushing to share a device with other family members.

“I don’t always enjoy doing homework, but it’s better now that I have my own computer to do my work.”

Raspberry Pi recipient

Having a Raspberry Pi has increased the students’ motivation, and it has reduced stress — for parents as well as children:

“The Raspberry Pi kit came at a time when I really needed it. Up until that point, T had to do his homework and access the school’s home learning using my phone, which was not very practical at all. This was made worse by the fact that he had to share my phone with his sister, which ended up causing a lot of arguments. He was so pleased to receive a computer he could use. At first he had a lot of fun playing different games on it, and I was surprised about how well he was able to understand and help me set it up. The only negative was that he enjoyed playing games on it a bit too much! I feel relieved that he has his own computer which he can use. It was very stressful and frustrating having to use my mobile phone. There were times when T would be using my phone to do his work and he would be interrupted if I got a phone call, which meant that he would have to log in again, and sometimes would lose his work.”

Parent of a Raspberry Pi recipient

What are we doing next?

It’s wonderful to hear stories like this of how our computers make a difference in people’s lives. We’re still learning lots: while many families have been able to get up and running easily and quickly, others are still overwhelmed because they are unfamiliar with the device. We know we need to do more to build their confidence.

As we’re learning, we’re also talking to our next charity partners in the UK to help us identify more recipients, and to help the recipients get set up on their new Raspberry Pi devices.

If you are part of an organisation that could partner with us to support families in need of access to technology, please email us at [email protected]. Be aware that your organisation would need to fund the families’ internet access.


* The impact of the digital divide on students has for example been reported on by BCS, the Chartered Institute for IT and by the Institute for Fiscal Studies.

The post Distributing Raspberry Pi computers to help families access education appeared first on Raspberry Pi.

Learn at home #4: All about Scratch

Post Syndicated from Katie Gouskos original https://www.raspberrypi.org/blog/learn-at-home-scratch-beyond-basics-community/

There’s no question that families have faced disruptions and tough challenges over the last few months. For the parents and carers who’ve been supporting their children with learning at home, it can feel overwhelming, stressful, rewarding — or all three! As many children are still carrying on with learning at home, we are supporting them with extra resources, and parents with support tutorials.

In our last blog post for parents, we talked to you about debugging — finding and fixing errors in code. This week we’re covering the amazing things young people can do and learn with Scratch — it’s not just for beginners!

Getting the most out of Scratch

Scratch is a block-based programming tool that lets you create lots of different projects. It’s often one of the first programming tools children use in primary school. We’ve made a video introduction to Scratch in case you’re less familiar with it.

If your child at home is ready to try more challenging coding tasks, Scratch is still a great tool for them, as they can use it to build some truly epic projects.

Joel Bayubasire CoderDojo

In this video, Mark shows you examples from the Scratch community and signposts useful resources that will support you and your children as they develop their confidence in Scratch.

Scratch is a great tool for building complex, unique, and challenging projects. For example, the Scratch game Fortnite Z involves 13,500 Scratch blocks and took more than four months to develop. People have also built astounding 3D graphic projects in Scratch!

3D model of a glycine molecule
A 3D model of a molecule, built in Scratch

You can find other amazing examples if you explore the Coolest Projects online showcase. Our free annual tech showcase for young people has lots of great Scratch projects: plenty of inspiration for you and your young people at home.

Exploring and learning in the Scratch community 

The Scratch community is a great place for young people to safely share their projects with each other all year round, and to like and comment on them. It’s a real treasure trove they can explore to find inspiration and learning opportunities, and for young people who are spending more time at home, it offers a way to connect to peers around the world.

In this video, Katharine shows you how the team behind Scratch keeps the community safe, where you as a parent can find the information you need, and how your child will engage with the community.

Code along with us! 

To keep young people entertained and learning, we’re running a Digital Making at Home series. You’ll find new, free code-along videos every Monday, with different themes and projects for all levels of experience. We have lots of Scratch code-alongs on offer! We also live-stream a code-along session every Wednesday at 14:00 BST at rpf.io/home.

Digital Making at Home from the Raspberry Pi Foundation V1

We want your feedback

We’ve been asking parents what they’d like to see as part of our initiative to support them and the young people they care for. They’ve sent us some great suggestions so far! If you’d like to share your thoughts too, email us at [email protected].

Sign up for our bi-weekly emails, tailored to your needs

Sign up now to start receiving free activities suitable to your child’s age and experience level straight to your inbox. And let us know what you as a parent or guardian need help with, and what you’d like more or less of from us.


PS All of our resources are completely free. This is made possible thanks to the generous donations of individuals and organisations. Learn how you can help too!

The post Learn at home #4: All about Scratch appeared first on Raspberry Pi.

How we are helping you with computing teaching methods

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/how-we-are-helping-you-with-computing-teaching-methods/

One aspect of our work as part of the National Centre for Computing Education (NCCE) is producing free materials for teachers about teaching methods and pedagogy in computing. I am excited to introduce these materials to you here!

Teachers are asking us about teaching methods

Computing was included in the national curriculum in England in 2014, and after this, continued professional development (CPD) initiatives became available to support teachers to feel confident in topics they had not previously studied. Much of the CPD focussed on learning about programming, algorithms, networking, and how computers work.

Instructor explaining corporate software specific to trainees in computer class. Man and women sitting at table, using desktop, pointing at monitor and talking. Training concept

More recently however, I’ve found that increasing numbers of teachers are asking for support around teaching methods, particularly for how to support students who find programming and other aspects of computing difficult. Computing is a relatively new subject, but more and more research results are showing how to best teach it.

We offer CPD with our online courses

As part of the NCCE, we produce lots of free resources to support teachers with developing knowledge and skills in all aspects of computing. The NCCE’s Computing Hubs offer remotely delivered sessions, and we produce interactive, in-depth, free online courses for teachers to take over 3 or 4 weeks. Some of these online courses are about subject knowledge, while others focus on how to teach computing, the area referred to as pedagogical content knowledge*. For example, two of our courses are Programming Pedagogy in Primary Schools and Programming Pedagogy in Secondary Schools. Our pedagogy courses draw on the expertise and experience of many computing teachers working with students right now.

We share best practices in computing pedagogy

But that’s not all! We continually share tried and tested strategies for use in the computing classroom to help teachers, and those training to teach, support students more effectively. We believe that computing is for everyone and as such, we need a variety of possible approaches to teaching each topic up our collective sleeves, to ensure accessibility for all our students.

We develop all of this material in collaboration with in-the-classroom-now, experienced teachers and other experts, also drawing upon the latest computing education research. Our aim is to give you great, practical ideas for how to engage students who may be unmotivated or switched off, and new strategies to help you support students’ understanding of more complex computing concepts.

We support you to do classroom action research

One of the findings from decades of educational research is that teacher action research in the classroom is an extremely effective form of CPD! Teacher action research means reflecting on what the barriers to learning are in your classroom, planning an intervention (often in the form of a specific change to your teaching practice), and then evaluating whether it engenders improvement. Doing this has positive impacts both on your expertise as a teacher and on your students’ learning!

To support you with action research, we’re launching a special programme for classroom action research in computing. This takes the form of an online course, facilitated by experts in the field, lasting over a six-month period. Find out more about this opportunity.

Share your experiences with us

Right now we’re in unusual times, and surviving various combinations of home learning and remote delivery with your classes may be your greatest concern. However you’re getting on, we’d love to hear from you about your classroom practice in computing. Your experience with different ways of teaching computing in the classroom will add to our collective understanding about what works for teaching students. You can share your feedback with us, or get in touch with our pedagogy team at [email protected].

Other ways to learn and stay in touch:

 

*Back in 1987, Lee Shulman wrote: “Pedagogical content knowledge represents the blending of content and pedagogy into an understanding of how particular topics, problems or issues are organised, represented, and adapted to the diverse interests and abilities of learners, and presented for instruction.”

The post How we are helping you with computing teaching methods appeared first on Raspberry Pi.

Learning with Raspberry Pi — robotics, a Master’s degree, and beyond

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/learning-with-raspberry-pi-robotics-a-masters-degree-and-beyond/

Meet Callum Fawcett, who shares his journey from tinkering with the first Raspberry Pi while he was at school, to a Master’s degree in computer science and a real-life job in programming. We also get to see some of the awesome projects he’s made along the way.

I first decided to get a Raspberry Pi at the age of 14. I had already started programming a little bit before and found that I really enjoyed the language Python. At the time the first Raspberry Pi came out, my History teacher told us about them and how they would be a great device to use to learn programming. I decided to ask for one to help me learn more. I didn’t really know what I would use it for or how it would even work, but after a little bit of help at the start, I quickly began making small programs in Python. I remember some of my first programs being very simple dictionary-type programs in which I would match English words to German to help with my German homework.

Learning Linux, C++, and Python

Most of my learning was done through two sources. I learnt Linux and how the terminal worked using online resources such as Stack Overflow. I would have a problem that I needed to solve, look up solutions online, and try out commands that I found. This was perhaps the hardest part of learning how to use a Raspberry Pi, as it was something I had never done before, but it really helped me in later years when I would use Linux more than Windows. For learning programming, I preferred to use books. I had a book for C++ and a book for Python that I would work through. These were game-based books, so many of the fun projects that I did were simple text-based games where you typed in responses to questions.

A family robotics project

The first robot Callum made using a Raspberry Pi

By far the coolest project I did with the Raspberry Pi was to build a small robot (shown above). This was a joint project between myself and my dad. He sorted out the electronics and I programmed the robot. It was a great opportunity to learn about robotics and refine my programming skills. By the end, the robot was capable of moving around by itself, driving into objects, and then reversing and trying a new direction. It was almost like an unintelligent Roomba that couldn’t hoover, but I spent many hours improving small bits and pieces to make it as easy to use as possible. My one wish that I never managed to achieve with my robot was allowing it to map out its surroundings. This was a very ambitious project at the time, since I was still quite inexperienced in programming. The biggest problem with this was calibrating the robot’s turning circle, which was never consistent so it was very hard to have the robot know where in the room it was.

Sense HAT maze game

Another fun project that I worked on used the Sense HAT developed for the Astro Pi computers for use on the International Space Station. Using this, I was able to make a memory maze game (shown below), in which a player is shown a maze for several seconds and then has to navigate that maze from memory by shaking the device. This was my first introduction to using more interactive types of input, and this eventually led to my final-year project, which used these interesting interactions to develop another way of teaching.

Learning programming without formal lessons

I have now just finished my Master’s degree in computer science at the University of Bristol. Before going to university, I had no experience of being taught programming in a formal environment. It was not a taught subject at my secondary school or sixth form. I wanted to get more people at my school interested in this area of study though, which I did by running a coding club for people. I would help others debug their code and discuss interesting problems with them. The reason that I chose to study computer science is largely because of my experiences with Raspberry Pi and other programming I did in my own time during my teenage years. I likely would have studied history if it weren’t for the programming I had done by myself making robots and other games.

Raspberry Pi has continued to play a part in my degree and extra-curricular activities; I used them in two large projects during my time at university and used a similar device in my final project. My robot experience also helped me to enter my university’s ‘Robot Wars’ competition which, though we never won, was a lot of fun.

A tool for learning and a device for industry

Having a Raspberry Pi is always useful during a hackathon, because it’s such a versatile component. Tech like Raspberry Pi will always be useful for beginners to learn the basics of programming and electronics, but these computers are also becoming more and more useful for people with more experience to make fun and useful projects. I could see tech like Raspberry Pi being used in the future to help quickly prototype many types of electronic devices and, as they become more powerful, even being used as an affordable way of controlling many types of robots, which will become more common in the future.

Our guest blogger Callum

Now I am going on to work on programming robot control systems at Ocado Technology. My experiences of robot building during my years before university played a large part in this decision. Already, robots are becoming a huge part of society, and I think they are only going to become more prominent in the future. Automation through robots and artificial intelligence will become one of the most important tools for humanity during the 21st century, and I look forward to being a part of that process. If it weren’t for learning through Raspberry Pi, I certainly wouldn’t be in this position.

Cheers for your story, Callum! Has tinkering with our tiny computer inspired your educational or professional choices? Let us know in the comments below. 

The post Learning with Raspberry Pi — robotics, a Master’s degree, and beyond appeared first on Raspberry Pi.

Mathematics and programming: exploring the links

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/research-seminar-mathematics-programming-links/

“In my vision, the child programs the computer and, in doing so, both acquires a sense of mastery over a piece of the most modern and powerful technology and establishes an intimate contact with some of the deepest ideas from science, from mathematics, and from the art of intellectual model building.” – Seymour Papert, Mindstorms: Children, Computers, And Powerful Ideas, 1980

We owe much of what we have learned about children learning to program to Seymour Papert (1928–2016), who not only was a great mathematician and computer scientist, but also an inspirational educationalist. He developed the theoretical approach to learning we now know as constructionism, which purports that learning takes place through building artefacts that have meaning and can be shared with others. Papert, together with others, developed the Logo programming language in 1967 to help children develop concepts in both mathematics and in programming. He believed that programming could give children tangible and concrete experiences to support their acquisition of mathematical concepts. Educational programming languages such as Logo were widely used in both primary and secondary education settings during the 1980s and 90s. Thus for many years the links between mathematics and programming have been evident, and we were very fortunate to be able to explore this topic with our research seminar guest speaker, Professor Dame Celia Hoyles of University College London.

Dame Celia Hoyles

Professor Dame Celia Hoyles

Dame Celia Hoyles is a huge celebrity in the world of mathematical education and programming. As well as authoring literally hundreds of academic papers on mathematics education, including on Logo programming, she has received a number of prestigious awards and honours, and has served as the Chief Advisor to the UK government on mathematics in school. For all these reasons, we were delighted to hear her present at a Raspberry Pi Foundation computing education research seminar.

Mathematics is a subject we all need to understand the basics of — it underpins much of our other learning and empowers us in daily life. Yet some mathematical concepts can seem abstract and teachers have struggled over the years to help children to understand them. Since programming includes the design, building, and debugging of artefacts, it is a great approach for make such abstract concepts come to life. It also enables the development of both computational and mathematical thinking, as Celia described in her talk.

Learning mathematics through Scratch programming

Celia and a team* at University College London developed a curriculum initiative called ScratchMaths to teach carefully selected mathematical concepts through programming (funded by the Education Endowment Foundation in 2014–2018). ScratchMaths is for use in upper primary school (age 9–11) over a two-year period.

In the first year, pupils take three computational thinking modules, and in the second year, they move to three more mathematical thinking modules. All the ScratchMaths materials were designed around a pedagogical framework called the 5Es: explore, envisage, explain, exchange, and bridge. This enables teachers to understand the structure and sequencing of the materials as they use them in the classroom:

  • Explore: Investigate, try things out yourself, debug in reaction to feedback
  • Envisage: Have a goal in mind, predict outcome of program before trying
  • Explain: Explain what you have done, articulate reasons behind your approach to others
  • Exchange: Collaborate & share, try to see a problem from another’s perspective as well as defend your own approach and compare with others
  • bridgE: Make explicit links to the mathematics curriculum

Teachers in the ScratchMaths project participated in professional development (two days per module) to enable them to understand the materials and the pedagogical approach.

At the end of the project, external evaluators measured the childrens’ learning and found a statistically significant increase in computational thinking skills after the first year, but no difference between an intervention group and a control group in the mathematical thinking outcomes in the second year (as measured by the national mathematics tests at that age).

Celia discussed a number of reasons for these findings. She also drew out the positive perspective that children in the trial learned two subjects at the same time without any detriment to their learning of mathematics. Covering two subjects and drawing the links between them without detriment to the core learning is potentially a benefit to schools who need to fit many subjects into their teaching day.

Much more information about the programme and the materials, which are freely available for use, can be found on the ScratchMaths project’s website, and you can also read a research paper describing the project.

As at all our research seminars, participants had many questions for our speaker. Although the project was designed for primary education, where it’s more common to learn subjects together across the curriculum, several questions revolved around the project’s suitability for secondary school. It’s interesting to reflect on how a programme like ScratchMaths might work at secondary level.

Should computing be taught in conjunction or separately?

Teaching programming through mathematics, or vice versa, is established practice in some countries. One example comes from Sweden, where computing and programming is taught across different subject areas, including mathematics: “through teaching pupils should be given opportunities to develop knowledge in using digital tools and programming to explore problems and mathematical concepts, make calculations and to present and interpret data”. In England, conversely, we have a discrete computing curriculum, and an educational system that separates subjects out so that it is often difficult for children to see overlap and contiguity. However, having the focus on computing as a discrete subject gives enormous benefits too, as Celia outlined at the beginning of her talk, and it opens up the potential to give children an in-depth understanding of the whole subject area over their school careers. In an ideal world, perhaps we would teach programming in conjunction with a range of subjects, thus providing the concrete realisation of abstract concepts, while also having discrete computing and computer science in the curriculum.

Woman teacher and female students at a computer

In our current context of a global pandemic, we are continually seeing the importance of computing applications, for example computer modelling and simulation used in the analysis of data. This talk highlighted the importance of learning computing per se, as well as the mathematics one can learn through integrating these two subjects.

Celia is a member of the National Centre of Computing Education (NCCE) Academic Board, made up of academics and experts who support the teaching and learning elements of the NCCE, and we enjoy our continued work with her in this capacity. Through the NCCE, the Raspberry Pi Foundation is reaching thousands of children and educators with free computing resources, online courses, and advanced-level computer science materials. Our networks of Code Clubs and CoderDojos also give children the space and freedom to experiment and play with programming and digital making in a way that is concordant with a constructionist approach.

Next up in our seminar series

If you missed the seminar, you can find Celia’s presentation slides and a recording of her talk on our research seminars page.

In our next seminar on Tuesday 16 June at 17:00–18:00 BST / 12:00–13:00 EDT / 9:00–10:00 PDT / 18:00–19:00 CEST, we’ll welcome Jane Waite, Teaching Fellow at Queen Mary University of London. Jane will be sharing insights about Semantic Waves and unplugged computing. To join the seminar, simply sign up with your name and email address and we’ll email you the link and instructions. If you attended Celia’s seminar, the link remains the same.

 

*The ScratchMaths team are :

  • Professor Dame Celia Hoyles (Mathematics) & Professor Richard Noss (Mathematics) UCL Knowledge Lab
  • Professor Ivan Kalas, (Computing) Comenius University, Bratislava, Slovakia
  • Dr Laura Benton (Computing) & Piers Saunders, (Mathematics) UCL Knowledge Lab
  • Professor Dave Pratt (Mathematics) UCL Institute of Education

The post Mathematics and programming: exploring the links appeared first on Raspberry Pi.

What are the effects of the pandemic on education? | Hello World #13

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/education-coronavirus-hello-world-13/

How has computing education changed over the last few months? And how will the coronavirus pandemic affect education in the long term? In the introduction to our newest issue of Hello World, our CEO Philip Colligan reflects on the incredible work of front-line educators, and on the challenges educators and students will face.

Hello World issue 13 front cover

In just a few short weeks, the coronavirus pandemic has had a profound impact on every aspect of life, not least education. With 1.2 billion young people affected by the closure of schools, teachers have joined health and care workers, and the many others, who are on the front line of the fight against the virus.

As chair of governors at a state school here in Cambridge, I’ve seen first-hand the immense pressure that schools and teachers are under. The abrupt transition to emergency remote teaching, caring for the most vulnerable students, supporting families who are experiencing the health and economic devastation wrought by the virus, and doing all of this while looking after themselves and their loved ones. The word ‘heroic’ doesn’t feel nearly sufficient to describe the efforts of teachers all over the world.

At the Raspberry Pi Foundation, we wanted to learn about how different schools have responded, what’s working, what the challenges are, and crucially, what is happening to computing education. We spoke to teachers at primary schools, secondary schools, and further education colleges. Most were based in the UK, with a few in India and the US.

Even from this small collection of interviews, we saw incredible innovation and resilience, coupled with a determination to ensure that all young people could continue learning during the lockdown.

Most of the teachers that we spoke to were specialists in computing. Their expertise with technology has put them centre-stage, with many stepping into leadership roles, supporting the rapid roll-out of online learning, and providing invaluable support to colleagues and students alike. We hope that this leads to schools giving greater priority to computing education. Digital technologies are keeping the world connected and working. Equipping all young people with the ability to harness the power of computing has never been more vital.

We’ve also seen profound challenges. The digital divide has never been more apparent. Far too many young people lack access to a computer for learning at home. This is a problem that can be fixed at a cost that is trivial compared to the long-term economic impact of the educational disadvantage that it causes.

But we’re also hearing first-hand how educational disadvantage isn’t just about access to technology. Many families are struggling to support home learning, whether because of the condition of their housing, their work or caring responsibilities, or the struggle to put food on the table. Teachers have responded compassionately, offering practical support where it’s needed most, and planning now for how they will help students catch up when schools reopen.

We know that school closures disproportionately impact the most disadvantaged students. If we are going to reduce the long-term economic and social impact of the virus, there needs to be a huge global effort to invest in addressing the educational impact that it has caused.

As we start to figure out what a post-lockdown world might look like, the only thing that feels certain is we are facing a long period of disruption to formal education. We need to find new ways to combine online learning, classroom and remote teaching, mentoring, and non-formal learning experiences, to ensure that all young people, whatever their backgrounds, are able to thrive and fulfil their potential. The stories we’ve heard from these educators give me hope that we can, but they will need the support of government, industry, and nonprofits. The Raspberry Pi Foundation is committed to playing our part.

Get your free copy today!

Besides the Learning in lockdown feature, issue 13 of Hello World contains articles and opinion pieces on managing screen time, safeguarding in online lessons, and how the education landscape is shifting at an unprecedented rate.

We’ve also collected together some of the best free resources for online learning, and we share fantastic activities in our resources section.

Download your free copy to read about all this and more!

And if you’re an educator in the UK, you can take out a free subscription to receive print copies of Hello World.

The post What are the effects of the pandemic on education? | Hello World #13 appeared first on Raspberry Pi.

Learn at home #3: building resilience and problem solving skills

Post Syndicated from Katie Gouskos original https://www.raspberrypi.org/blog/learn-at-home-resilience-problem-solving-debugging/

With changes to school and work around the world, many parents and carers still aren’t sure what to expect over the next few weeks. While some children have returned to school, we know that many young people and families are still learning and working at home. We’re providing lots of free extra resources for young people, and we’re offering free support tutorials for parents who want to help their children understand more about the tools they’ll be using on their coding journey.

a kid doing digital making at home

In our last blog post for parents, we talked to you about Python, which is a widely used text-based programming language, and about Trinket, a free online platform that lets you write and run your code in any web browser.

This week we talk about the importance of resilience and problem solving as we cover debugging — finding and fixing errors in your code.

Debugging explained

When your child embarks on a coding project, expect to hear the phrase “It’s not working!” often. It’s really important to recognise that their code might not work on the first (or fourth) go, and that that’s completely OK. Debugging is a key process for young people who are learning how to code, and it helps them to develop resilience and problem solving skills.

Learning Manager Mac shows you tips and tricks for fixing Python code errors to help you build more confidence while you support your children at home.

Fixing errors in Python code

In this video, Learning Manager Mac will show you some tips and tricks for fixing Python code errors (also known as ‘debugging’) to help you build more confi…

Mac’s top tips for debugging

1. Check the instructions

If your child is following one of our online coding projects, the instructions are usually very detailed and precise. Encourage your child to read through the instructions thoroughly and see if they can spot a difference between their code and what’s in the instructions. You should find that many errors can be fixed by doing this!

2. Try, try and try again

Coding is iterative: programs are written in stages, with debugging during every stage. Errors in code are normal and very common, so mistakes in your child’s programs are to be expected. As a young person begins to develop coding skills, they start learning to problem-solve and persevere despite the errors, which will help them both on and off the computer. And the more they code, the quicker they’ll become at spotting and fixing errors.

Two kids doing digital making at home

3. Small changes make a big difference

Most of the coding problems your child will come across will be due to tiny mistakes, e.g. one letter or a piece of punctuation that needs changing. So during debugging, it’s helpful for both you and your child to frame the problem in this way: “It’s just one small thing, you are so close.” This helps them build resilience and perseverance, because finding one small error is much more achievable than thinking that the whole program is broken and they need to start over.

4. Say it out loud

When your child encounters a problem with their code, encourage them to talk you through their whole problem, without interrupting them or making suggestions. Programmers call this technique ‘rubber duck debugging’: when they encounter a problem with their code, they explain everything their code does to an inanimate object — such as a rubber duck! — to find the detail that’s causing the problem. For your child, you can play the part of the rubber duck and provide a supportive, listening ear!

Join in with Digital Making at Home

To keep young people entertained and learning, we’re running a Digital Making at Home series, which is free and accessible to everyone. New code-along videos are released every Monday, with different themes and projects for all levels of experience. We also stream live code-along sessions on Wednesdays at 14:00 BST at rpf.io/home!

a teenager doing digital making at home

Parent diary: Adapting to life online

Ben Garside is a Learning Manager at the Raspberry Pi Foundation and also a dad to three children aged between 6 and 8. Ben is currently homeschooling and working (and still smiling lots!). In this video, Ben shares his personal experience of trying to find the best way of making this work for his family, with a bit of trial and error and lots of flexibility.

Parent diary: Adapting to life online

Ben Garside is a Learning Manager at the Raspberry Pi Foundation and also a dad to three children aged between 6 and 8. Ben is currently homeschooling and wo…

Free online course: Getting Started with Your Raspberry Pi

You’ve got a Raspberry Pi computer at home and aren’t sure how to use it? Then why not sign up to our new free online course to find out all about how to set up your Raspberry Pi, and how to use it for everyday tasks or for learning to code!

Do you have feedback for us?

We’ve been asking parents what they’d like to see as part of our initiative to support young people and parents. We’ve had some great suggestions so far! If you’d like to share your thoughts, email us at [email protected].

Sign up for our bi-weekly emails, tailored to your needs

Sign up now to start receiving free activities suitable to your child’s age and experience level straight to your inbox. And let us know what you as a parent or guardian need help with, and what you’d like more or less of from us.

 

PS All of our resources are completely free. This is made possible thanks to the generous donations of individuals and organisations. Learn how you can help too!

The post Learn at home #3: building resilience and problem solving skills appeared first on Raspberry Pi.

Learning AI at school — a peek into the black box

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/research-seminar-learning-ai-at-school/

“In the near future, perhaps sooner than we think, virtually everyone will need a basic understanding of the technologies that underpin machine learning and artificial intelligence.” — from the 2018 Informatics Europe & EUACM report about machine learning

As the quote above highlights, AI and machine learning (ML) are increasingly affecting society and will continue to change the landscape of work and leisure — with a huge impact on young people in the early stages of their education.

But how are we preparing our young people for this future? What skills do they need, and how do we teach them these skills? This was the topic of last week’s online research seminar at the Raspberry Pi Foundation, with our guest speaker Juan David Rodríguez Garcia. Juan’s doctoral studies around AI in school complement his work at the Ministry of Education and Vocational Training in Spain.

Juan David Rodríguez Garcia

Juan’s LearningML tool for young people

Juan started his presentation by sharing numerous current examples of AI and machine learning, which young people can easily relate to and be excited to engage with, and which will bring up ethical questions that we need to be discussing with them.

Of course, it’s not enough for learners to be aware of AI applications. While machine learning is a complex field of study, we need to consider what aspects of it we can make accessible to young people to enable them to learn about the concepts, practices, and skills underlying it. During his talk Juan demonstrated a tool called LearningML, which he has developed as a practical introduction to AI for young people.

Screenshot of a demo of Juan David Rodríguez Garcia's LearningML tool

Juan demonstrates image recognition with his LearningML tool

LearningML takes inspiration from some of the other in-development tools around machine learning for children, such as Machine Learning for Kids, and it is available in one integrated platform. Juan gave an enticing demo of the tool, showing how to use visual image data (lots of pictures of Juan with hats, glasses on, etc.) to train and test a model. He then demonstrated how to use Scratch programming to also test the model and apply it to new data. The seminar audience was very positive about the LearningML, and of course we’d like it translated into English!

Juan’s talk generated many questions from the audience, from technical questions to the key question of the way we use the tool to introduce children to bias in AI. Seminar participants also highlighted opportunities to bring machine learning to other school subjects such as science.

AI in schools — what and how to teach

Machine learning demonstrates that computers can learn from data. This is just one of the five big ideas in AI that the AI4K12 group has identified for teaching AI in school in order to frame this broad domain:

  1. Perception: Computers perceive the world using sensors
  2. Representation & reasoning: Agents maintain models/representations of the world and use them for reasoning
  3. Learning: Computers can learn from data
  4. Natural interaction: Making agents interact comfortably with humans is a substantial challenge for AI developers
  5. Societal impact: AI applications can impact society in both positive and negative ways

One general concern I have is that in our teaching of computing in school (if we touch on AI at all), we may only focus on the fifth of the ‘big AI ideas’: the implications of AI for society. Being able to understand the ethical, economic, and societal implications of AI as this technology advances is indeed crucial. However, the principles and skills underpinning AI are also important, and how we introduce these at an age-appropriate level remains a significant question.

Illustration of AI, Image by Seanbatty from Pixabay

There are some great resources for developing a general understanding of AI principles, including unplugged activities from Computer Science For Fun. Yet there’s a large gap between understanding what AI is and has the potential to do, and actually developing the highly mathematical skills to program models. It’s not an easy issue to solve, but Juan’s tool goes a little way towards this. At the Raspberry Pi Foundation, we’re also developing resources to bridge this educational gap, including new online projects building on our existing machine learning projects, and an online course. Watch this space!

AI in the school curriculum and workforce

All in all, we seem to be a long way off introducing AI into the school curriculum. Looking around the world, in the USA, Hong Kong, and Australia there have been moves to introduce AI into K-12 education through pilot initiatives, and hopefully more will follow. In England, with a computing curriculum that was written in 2013, there is no requirement to teach any AI or machine learning, or even to focus much on data.

Let’s hope England doesn’t get left too far behind, as there is a massive AI skills shortage, with millions of workers needing to be retrained in the next few years. Moreover, a recent House of Lords report outlines that introducing all young people to this area of computing also has the potential to improve diversity in the workforce — something we should all be striving towards.

We look forward to hearing more from Juan and his colleagues as this important work continues.

Next up in our seminar series

If you missed the seminar, you can find Juan’s presentation slides and a recording of his talk on our seminars page.

In our next seminar on Tuesday 2 June at 17:00–18:00 BST / 12:00–13:00 EDT / 9:00–10:00 PDT / 18:00–19:00 CEST, we’ll welcome Dame Celia Hoyles, Professor of Mathematics Education at University College London. Celia will be sharing insights from her research into programming and mathematics. To join the seminar, simply sign up with your name and email address and we’ll email the link and instructions. If you attended Juan’s seminar, the link remains the same.

The post Learning AI at school — a peek into the black box appeared first on Raspberry Pi.

Meet your new robotic best friend: the MiRo-E dog

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/meet-your-new-robotic-best-friend-the-miro-e-dog/

When you’re learning a new language, it’s easier the younger you are. But how can we show very young students that learning to speak code is fun? Consequential Robotics has an answer…

The MiRo-E is an ’emotionally engaging’ robot platform that was created on a custom PCB  and has since moved onto Raspberry Pi. The creators made the change because they saw that schools were more familiar with Raspberry Pi and realised the potential in being able to upgrade the robotic learning tools with new Raspberry Pi boards.

The MiRo-E was born from a collaboration between Sheffield Robotics, London-based SCA design studio, and Bristol Robotics Lab. The cute robo-doggo has been shipping with Raspberry Pi 3B+ (they work well with the Raspberry Pi 4 too) for over a year now.

While the robot started as a developers’ tool (MiRo-B), the creators completely re-engineered MiRo’s mechatronics and software to turn it into an educational tool purely for the classroom environment.

Three school children in uniforms stroke the robot dog's chin

MiRo-E with students at a School in North London, UK

MiRo-E can see, hear, and interact with its environment, providing endless programming possibilities. It responds to human interaction, making it a fun, engaging way for students to learn coding skills. If you stroke it, it purrs, lights up, move its ears, and wags its tail. Making a sound or clapping makes MiRo move towards you, or away if it is alarmed. And it especially likes movement, following you around like a real, loyal canine friend. These functionalities are just the basic starting point, however: students can make MiRo do much more once they start tinkering with their programmable pet.

These opportunities are provided on MiRoCode, a user-friendly web-based coding interface, where students can run through lesson plans and experiment with new ideas. They can test code on a virtual MiRo-E to create new skills that can be applied to a real-life MiRo-E.

What’s inside?

Here are the full technical specs. But basically, MiRo-E comprises a Raspberry Pi 3B+ as its core, light sensors, cliff sensors, an HD camera, and a variety of connectivity options.

How does it interact?

MiRo reacts to sound, touch, and movement in a variety of ways. 28 capacitive touch sensors tell it when it is being petted or stroked. Six independent RGB LEDs allow it to show emotion, along with DOF to move its eyes, tail, and ears. Its ears also house four 16-bit microphones and a loudspeaker. And two differential drive wheels with opto-sensors help MiRo move around.

What else can it do?

The ‘E’ bit of MiRo-E means it’s emotionally engaging, and the intelligent pet’s potential in healthcare have already been explored. Interaction with animals has been proved to be positive for patients of all ages, but sometimes it’s not possible for ‘real’ animals to comfort people. MiRo-E can fill the gap for young children who would benefit from animal comfort, but where healthcare or animal welfare risks are barriers.

The same researchers who created this emotionally engaging robo-dog for young people are also working with project partners in Japan to develop ‘telepresence robots’ for older patients to interact with their families over video calls.

The post Meet your new robotic best friend: the MiRo-E dog appeared first on Raspberry Pi.

AWS Architecture Monthly Magazine: Education

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/aws-architecture-monthly-magazine-education/

Young man sitting on a stack of books with his laptopOne of the missions of the education industry is to educate the next generation of the industry-ready workforce. Whether K-12, higher education, or continuing education, enabling teachers and professors to effectively deliver curriculum and improve student performance is a goal of Education Technology (EdTech) and learning companies. Two trends for AWS use cases in education are: 1) accessible remote learning; and 2) remote collaboration. For brevity, there are other innovation trend areas in education that we didn’t focus on in our “Ask an Expert” interview despite their importance. Use cases around learning accessibility, student performance, and campus experience have taken advantage of Amazon Alexa, Amazon Lex, and a variety of AWS technology areas including artificial intelligence (AI) and machine learning, data lakes, analytics, and mobile development. To dive deep into a wider range of education use cases, we invite everyone to look at our AWS Education blog.

In this month’s issue

For May’s Education issue, we asked our expert, Yuriko Horvath, about general architecture patterns in the education space as well as what education customers need to think about and ask themselves before considering AWS.

  • Ask an Expert: Yuriko Horvath, AWS Manager of Education for Solutions Architecture
  • Blog: How to Build a Chatbot for Your School in Less Than an Hour (with step-by-step video instructions)
  • Case Study: Virginia Tech: Building Modern Analytics on Amazon Web Services
  • Solution: Video on Demand on AWS
  • Whitepaper: Teaching Big Data Skills with Amazon EMR

How to access the magazine

We hope you’re enjoying Architecture Monthly, and we’d like to hear from you—leave us star rating and comment on the Amazon Kindle Newsstand page or contact us anytime at [email protected].

Making the best of it: online learning and remote teaching

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/research-seminar-online-learning-remote-teaching/

As many educators across the world are currently faced with implementing some form of remote teaching during school closures, we thought this topic was ideal for the very first of our seminar series about computing education research.

Image by Mudassar Iqbal from Pixabay

Research into online learning and remote teaching

At the Raspberry Pi Foundation, we are hosting a free online seminar every second Tuesday to explore a wide variety of topics in the area of digital and computing education. Last Tuesday we were delighted to welcome Dr Lauren Margulieux, Assistant Professor of Learning Sciences at Georgia State University, USA. She shared her findings about different remote teaching approaches and practical tips for educators in the current crisis.

Lauren’s research interests are in educational technology and online learning, particularly for computing education. She focuses on designing instructions in a way that supports online students who do not necessarily have immediate access to a teacher or instructor to ask questions or overcome problem-solving impasses.

A vocabulary for online and blended learning

In non-pandemic situations, online instruction comes in many forms to serve many purposes, both in higher education and in K-12 (primary and secondary school). Much research has been carried out in how online learning can be used for successful learning outcomes, and in particular, how it can be blended with face-to-face (hybrid learning) to maximise the impact of both contexts.

In her seminar talk, Lauren helped us to understand the different ways in which online learning can take place, by sharing with us vocabulary to better describe different ways of learning with and through technology.

Lauren presented a taxonomy for classifying types of online and blended teaching and learning in two dimensions (shown in the image below). These are delivery type (technology or instructor), and whether content is received by learners, or actually being applied in the learning experience.

Lauren Margulieux seminar slide showing her taxonomy for different types of mixed student instruction

In Lauren’s words: “The taxonomy represents the four things that we control as instructors. We can’t control whether our students talk to each other or email each other, or ask each other questions […], therefore this taxonomy gives us a tool for defining how we design our classes.”

This taxonomy illustrates that there are a number of different ways in which the four types of instruction — instructor-transmitted, instructor-mediated, technology-transmitted, and technology-mediated — can be combined in a learning experience that uses both online and face-to-face elements.

Using her taxonomy in an examination (meta-analysis) of 49 studies relating to computer science teaching in higher education, Lauren found a range of different ways of mixing instruction, which are shown in the graph below.

  • Lecture hybrid means that the teaching is all delivered by the teacher, partly face-to-face and partly online.
  • Practice hybrid means that the learning is done through application of content and receiving feedback, which happens partly face-to-face or synchronously and partly online or asynchronously.
  • Replacement blend refers to instruction where lecture and practice takes place in a classroom and part of both is replaced with an online element.
  • Flipped blend instruction is where the content is transmitted through the use of technology, and the application of the learning is supported through an instructor. Again, the latter element can also take place online, but it is synchronous rather than asynchronous — as is the case in our current context.
  • Supplemental blend learning refers to instruction where content is delivered face-to-face, and then practice and application of content, together with feedback, takes place online — basically the opposite of the flipped blend approach.

Lauren Margulieux seminar slide showing learning outcomes of different types of mixed student instruction

Lauren’s examination found that the flipped blend approach was most likely to demonstrate improved learning outcomes. This is a useful finding for the many schools (and universities) that are experimenting with a range of different approaches to remote teaching.

Another finding of Lauren’s study was that approaches that involve the giving of feedback promoted improved learning. This has also been found in studies of assessment for learning, most notably by Black and Wiliam. As Lauren pointed out, the implication is that the reason blended and flipped learning approaches are the most impactful is that they include face-to-face or synchronous time for the educator to discuss learning with the students, including giving feedback.

Lauren’s tips for remote teaching

Of course we currently find ourselves in the midst of school closures across the world, so our only option in these circumstances is to teach online. In her seminar talk, Lauren also included some tips from her own experience to help educators trying to support their students during the current crisis:

  • Align learning objectives, instruction, activities, assignments, and assessments.
  • Use good equipment: headphones to avoid echo and a good microphone to improve clarity and reduce background noise.
  • Be consistent in disseminating information, as there is a higher barrier to asking questions.
  • Highlight important points verbally and visually.
  • Create ways for students to talk with each other, through discussions, breakout rooms, opportunities to talk when you aren’t present, etc.
  • Use video when possible while talking with your students.
    Give feedback frequently, even if only very brief.

Although Lauren’s experience is primarily from higher education (post-18), this advice is also useful for K-12 educators.

What about digital equity and inclusion?

All our seminars include an opportunity to break out into small discussion groups, followed by an opportunity to ask questions of the speaker. We had an animated follow-up discussion with Lauren, with many questions focused on issues of representation and inclusion. Some questions related to the digital divide and how we could support learners who didn’t have access to the technology they need. There were also questions from breakout groups about the participation of groups that are typically under-represented in computing education in online learning experiences, and accessibility for those with special educational needs and disabilities (SEND). While there is more work needed in this area, there’s also no one-size-fits-all approach to working with students with special needs, whether that’s due to SEND or to material resources (e.g. access to technology). What works for one student based on their needs might be entirely ineffective for others. Overall, the group concluded that there was a need for much more research in these areas, particularly at K-12 level.

Much anxiety has been expressed in the media, and more formally through bodies such as the World Economic Forum and UNESCO, about the potential long-lasting educational impact of the current period of school closures on disadvantaged students and communities. Research into the most inclusive way of supporting students through remote teaching will help here, as will the efforts of governments, charities, and philanthropists to provide access to technology to learners in need.

At the Raspberry Pi Foundation, we offer lots of free resources for students, educators, and parents to help them engage with computing education during the current school closures and beyond.

How should the education community move forward?

Lauren’s seminar made it clear to me that she was able to draw on decades of research studies into online and hybrid learning, and that we should take lessons from these before jumping to conclusions about the future. In both higher education (tertiary, university) and K-12 (primary, secondary) education contexts, we do not yet know the educational impact of the teaching experiments we have found ourselves engaging in at short notice. As Charles Hodges and colleagues wrote recently in Educause, what we are currently engaging in can only really be described as emergency remote teaching, which stands in stark contrast to planned online learning that is designed much more carefully with pedagogy, assessment, and equity in mind. We should ensure we learn lessons from the online learning research community rather than making it up as we go along.

Today many writers are reflecting on the educational climate we find ourselves in and on how it will impact educational policy and decision-making in the future. For example, an article from the Brookings Institution suggests that the experiences of home teaching and learning that we’ve had in the last couple of months may lead to both an increased use of online tools at home, an increase in home schooling, and a move towards competency-based learning. An article by Jo Johnson (President’s Professorial Fellow at King’s College London) on the impact of the pandemic on higher education, suggests that traditional universities will suffer financially due to a loss of income from international students less likely to travel to universities in the UK, USA, and Australia, but that the crisis will accelerate take-up of online, distance-learning, and blended courses for far-sighted and well-organised institutions that are ready to embrace this opportunity, in sum broadening participation and reducing elitism. We all need to be ready and open to the ways in which online and hybrid learning may change the academic world as we know it.

Next up in our seminar series

If you missed this seminar, you can find Lauren’s presentation slides and a recording of her talk on our seminars page.

Next Tuesday, 19 May at 17:00–18:00 BST, we will welcome Juan David Rodríguez from the Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF) in Spain. His seminar talk will be about learning AI at school, and about a new tool called LearningML. To join the seminar, simply sign up with your name and email address and we’ll email the link and instructions. If you attended Lauren’s seminar, the link remains the same.

The post Making the best of it: online learning and remote teaching appeared first on Raspberry Pi.

Learn at home: a guide for parents #2

Post Syndicated from Katie Gouskos original https://www.raspberrypi.org/blog/digital-making-at-home-parents-guide-python/

With millions of schools still in lockdown, parents have been telling us that they need help to support their children with learning computing at home. As well as providing loads of great content for young people, we’ve been working on support tutorials specifically for parents who want to understand and learn about the programmes used in schools and our resources.

If you don’t know your Scratch from your Trinket and your Python, we’ve got you!

Glen, Web Developer at the Raspberry Pi Foundation, and Maddie, aged 8

 

What are Python and Trinket all about?

In our last blog post for parents, we talked to you about Scratch, the programming language used in most primary schools. This time Mark, Youth Programmes Manager at the Raspberry Pi Foundation, takes you through how to use Trinket. Trinket is a free online platform that lets you write and run your code in any web browser. This is super useful because it means you don’t have to install any new software.

A parents’ introduction to Trinket

Sign up to our regular parents’ newsletter to receive regular, FREE tutorials, tips & fun projects for young people of all levels of experience: http://rpf.i…

Trinket also lets you create public web pages and projects that can be viewed by anyone with the link to them. That means your child can easily share their coding creation with others, and for you that’s a good opportunity to talk to them about staying safe online and not sharing any personal information.

Lincoln, aged 10

Getting to know Python

We’ve also got an introduction to Python for you, from Mac, a Learning Manager on our team. He’ll guide you through what to expect from Python, which is a widely used text-based programming language. For many learners, Python is their first text-based language, because it’s very readable, and you can get things done with fewer lines of code than in many other programming languages. In addition, Python has support for ‘Turtle’ graphics and other features that make coding more fun and colourful for learners. Turtle is simply a Python feature that works like a drawing board, letting you control a turtle to draw anything you like using code.

A parents’ introduction to Python

Sign up to our regular parents’ newsletter to receive regular, FREE tutorials, tips & fun projects for young people of all levels of experience: http://rpf.i…

Why not try out Mac’s suggestions of Hello world, Countdown timer, and Outfit recommender for  yourself?

Python is used in lots of real-world software applications in industries such as aerospace, retail banking, insurance and healthcare, so it’s very useful for your children to learn it!

Parent diary: juggling homeschooling and work

Olympia is Head of Youth Programmes at the Raspberry Pi Foundation and also a mum to two girls aged 9 and 11. She is currently homeschooling them as well as working (and hopefully having the odd evening to herself!). Olympia shares her own experience of learning during lockdown and how her family are adapting to their new routine.

Parent diary: Juggling homeschooling and work

Olympia Brown, Head of Youth Partnerships at the Raspberry Pi Foundation shares her experience of homeschooling during the lockdown, and how her family are a…

Digital Making at Home

To keep young people entertained and learning, we launched our Digital Making at Home series, which is free and accessible to everyone. New code-along videos are released every Monday, with different themes and projects for all levels of experience.

Code along live with the team on Wednesday 6 May at 14:00 BST / 9:00 EDT for a special session of Digital Making at Home

Sarah and Ozzy, aged 13

We want your feedback

We’ve been asking parents what they’d like to see as part of our initiative to support young people and parents. We’ve had some great suggestions so far! If you’d like to share your thoughts, you can email us at [email protected].

Sign up for our bi-weekly emails, tailored to your needs

Sign up now to start receiving free activities suitable to your child’s age and experience level, straight to your inbox. And let us know what you as a parent or guardian need help with, and what you’d like more or less of from us. 

PS: All of our resources are completely free. This is made possible thanks to the generous donations of individuals and organisations. Learn how you can help too!

 

The post Learn at home: a guide for parents #2 appeared first on Raspberry Pi.

Digital making at home: a guide for parents

Post Syndicated from Katie Gouskos original https://www.raspberrypi.org/blog/digital-making-at-home-parents-guide/

This blog post is for parents. Specifically, it’s for parents who want to help their kids get into making things with technology but don’t know where to start.

Lots of us at the Raspberry Pi Foundation are parents too, and right now we’re also all trying to figure out how to keep our kids occupied, entertained, and learning useful things. So we recognise that families are currently facing lots of challenges, which is why we’re supporting parents and carers with learning for young people at home.

We already provide loads of resources and activities that are available for free, online, in up to 30 languages, and we’ll help you get your children set up and started.

A young person having fun with digital making at home

You don’t need any coding experience to get involved

All of our online projects for young people are completely free. They include step-by-step instructions and are easily filtered by level and topic. The projects are designed so that young people can complete them in no more than an hour.

You don’t need any coding experience yourself. The step-by-step instructions mean you can learn alongside your child, or, as long as they can read the instructions themselves, they can work independently on the projects.

A teenager having fun with digital making at home

Watch our support tutorials 

If you’re wondering where to start, or how digital making can work for your young people at home, take a look at our introduction video by Mark, our Youth Programmes Manager. He tells you about Scratch, a free graphical programming language developed by our friends at the Scratch Foundation (plus, it’s the language used to teach computing in most primary schools and a great place to start for beginners):

A parents’ introduction to the programming language Scratch

Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytc…

He also takes you through our project site, which is where all the fun stuff happens:

How to use the Raspberry Pi projects site

Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytc…

The Digital Making at Home initiative

We’re also offering a series of free weekly, instructor-led videos called Digital Making at Home, which have code-along instructions to help young people with fun projects they can do independently at home. Here’s more information about how you and your family can get involved.

Get involved in Digital Making at Home

Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytc…

Sign up for our free content tailored to your needs

Sign up now to start receiving free activities suitable to your child’s age and ability straight to your inbox. And let us know what you as a parent or carer need help with, and what you’d like more or less of.

A child having fun with digital making at home using a tablet

What parents and carers say

“I started to try coding activities with my kids a few years ago (now aged 8 and 11). They really like the clear instructions from the Raspberry Pi projects site, it has helped build their confidence particularly when getting started. Their interest in coding has gone up and down over that time, but when I sense that they are losing interest I try to step back and not push it. They like coding simple games particularly, and changing the rules to make it easier for them to win!” Olympia, parent and Head of Youth Partnerships at the Raspberry Pi Foundation 

A girl with her Scratch project

“Finding independent activities is really hard – especially good ones that are also educational. Once we were up and running, Dylan (age 9) was able to follow the step-by-step video and make a game in Scratch by himself!”  Dan, step-parent 

A child having fun with digital making at home using a Crumble controller

“My younger daughter is on the autistic spectrum and really enjoys creating projects which appeal to her particular interests. So we often modify Scratch projects so that she can use different images or add in different sounds. Shifting the focus to things she particularly enjoys means that when we hit a bug, she is more motivated to persevere, fix it, and celebrate her success. Taking a child-centred approach is important for lots of children who want to be in control of their own learning journey.” Katharine, parent and Programme Coordinator at the Raspberry Pi Foundation 

“I introduced my son to coding in Scratch when he was 6. At the start, it was important to sit with him as he worked through little projects. I kept my hands away from his mouse and keyboard and let him explore the interface, with a bit of gentle guidance. Within no time he was independently creating his own projects, and using Scratch for his school work and home life. He even created a random Karate moves generator to help him prepare for a Karate grading. Eventually he wanted to move on though, and when Scratch became too limited we explored some HTML and CSS, and then a little Python. He’s now fully independent, and coding 3D games using Unity. It’s got to the point where he’s using a language that I have no experience with, so debugging just involves me asking him to explain his code and helping him to find solutions online.” Marc Scott, Parent and Senior Learning Manager at the Raspberry Pi Foundation

Our simple top tips (from Marc, Senior Learning Manager)

  • If possible, sit with your child and have them explain to you what they are doing. You don’t have to understand the code, but you can listen and ask questions. If they talk through their thought process, they’re more likely to be successful.
  • Maintain a hands-off approach: offer them suggestions rather than instructions, and keep your hands off their keyboard and mouse.
  • Getting things wrong is one of the best ways to learn. When they encounter bugs in their programs (which they will!), ask questions before giving answers. Try “Why do you think that didn’t work? or “Have you tried changing this bit of code?”
  • Pick tools that are accessible or familiar to the young person. If they like Scratch, then stick with it until they’re trying to do things so complicated that they need more advanced software.
  • If a young person is going to share their project online, you should remind them not to include personal information in it. Tip: Your child has probably learned about e-safety at school, so why not ask them about the rules they’ve learned in class?
  • Always ask the young person to show you what they have made, and show enthusiasm for their work. You may not have a clue what it is, or you might think it’s super simple, but they’ll be proud of it and encouraged if you are too!

PS: All of our resources are completely free. This is made possible thanks to the generous donations of individuals and organisations. Learn how you can help too!

The post Digital making at home: a guide for parents appeared first on Raspberry Pi.