Tag Archives: education

Run your code aboard the International Space Station with Astro Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/run-your-code-aboard-the-international-space-station-with-astro-pi/

Each year, the European Astro Pi Challenge allows students and young people in ESA Member States (or Slovenia, Canada, or Malta) to write code for their own experiments, which could run on two Raspberry Pi units aboard the International Space Station.

The Astro Pi Challenge is a lot of fun, it’s about space, and so that we in the Raspberry Pi team don’t have to miss out despite being adults, many of us mentor their own Astro Pi teams — and you should too!

So, gather your team, stock up on freeze-dried ice cream, and let’s do it again: the European Astro Pi Challenge 2019/2020 launches today!

Luca Parmitano launches the 2019-20 European Astro Pi Challenge

ESA astronaut Luca Parmitano is this year’s ambassador of the European Astro Pi Challenge. In this video, he welcomes students to the challenge and gives an overview of the project. Learn more about Astro Pi: http://bit.ly/AstroPiESA ★ Subscribe: http://bit.ly/ESAsubscribe and click twice on the bell button to receive our notifications.

The European Astro Pi Challenge 2019/2020 is made up of two missions: Mission Zero and Mission Space Lab.

Astro Pi Mission Zero

Mission Zero has been designed for beginners/younger participants up to 14 years old and can be completed in a single session. It’s great for coding clubs or any groups of students don’t have coding experience but still want to do something cool — because having confirmation that code you wrote has run aboard the International Space Station is really, really cool! Teams write a simple Python program to display a message and temperature reading on an Astro Pi computer, for the astronauts to see as they go about their daily tasks on the ISS. No special hardware or prior coding skills are needed, and all teams that follow the challenge rules are guaranteed to have their programs run in space!

Astro Pi Mission Zero logo

Mission Zero eligibility

  • Participants must be no older than 14 years
  • 2 to 4 people per team
  • Participants must be supervised by a teacher, mentor, or educator, who will be the point of contact with the Astro Pi team
  • Teams must be made up of at least 50% team members who are citizens of an ESA Member* State, or Slovenia, Canada, or Malta

Astro Pi Mission Space Lab

Mission Space Lab is aimed at more experienced/older participants up to 19 years old, and it takes place in 4 phases over the course of 8 months. The challenge is to design and write a program for a scientific experiment to be run on an Astro Pi computer. The best experiments will be deployed to the ISS, and teams will have the opportunity to analyse and report on their results.

Astro Pi Mission Space Lab logo

Mission Space Lab eligibility

  • Participants must be no older than 19 years
  • 2 to 6 people per team
  • Participants must be supervised by a teacher, mentor, or educator, who will be the point of contact with the Astro Pi team
  • Teams must be made up of at least 50% team members who are citizens of an ESA Member State*, or Slovenia, Canada, or Malta

How to plan your Astro Pi Mission Space Lab experiment

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

For both missions, each member of the team has to be at least one of the following:

  • Enrolled full-time in a primary or secondary school in an ESA Member State, or Slovenia, Canada, or Malta
  • Homeschooled (certified by the National Ministry of Education or delegated authority in an ESA Member State or Slovenia, Canada, or Malta)
  • A member of a club or after-school group (such as Code Club, CoderDojo, or Scouts) located in an ESA Member State*, or Slovenia, Canada, or Malta

Take part

To take part in the European Astro Pi Challenge, head over to the Astro Pi website, where you’ll find more information on how to get started getting your team’s code into SPACE!

Obligatory photo of Raspberry Pis floating in space!

*ESA Member States: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom

The post Run your code aboard the International Space Station with Astro Pi appeared first on Raspberry Pi.

Say hello to Isaac Computer Science

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/say-hello-to-isaac-computer-science/

We are delighted to co-launch Isaac Computer Science, a new online platform for teachers and students of A level Computer Science.

Introducing Isaac Computer Science

Introducing the new Isaac Computer Science online learning platform and calendar of free events for students and teachers. Be the first to know about new features and content on the platform: Twitter – ncce.io/ytqstw Instagram – ncce.io/ytqsig Facebook – ncce.io/ytqsfb If you are a teacher, you may also be interested in our free online training courses for GCSE Computer Science teachers.

The project is a collaboration between the Raspberry Pi Foundation and the University of Cambridge, and is funded by the Department for Education’s National Centre for Computing Education programme.

Isaac Computer Science

Isaac Computer Science gives you access to a huge range of online learning materials for the classroom, homework, and revision — all for free.

The platform’s resources are mapped to the A level specifications in England (including the AQA and OCR exam boards). You’ll be able to set assignments for your students, have the platform mark it for you, and be confident that the content is relevant and high quality. We are confident that this will save you time in planning lessons and setting homework.

“Computer Science is a relatively small subject area and teachers across the country often work alone without the support of colleagues. Isaac Computer Science will build a teaching and learning community to support teachers at all levels and will offer invaluable support to A level students in their learning journey. As an experienced teacher, I am very excited to have the opportunity to work on this project.”
– Diane Dowling, Isaac Computer Science Learning Manager and former teacher

And that’s not all! To further support you, we are also running free student workshops and teacher CPD events at universities and schools around England. Tickets for the events are available to book through the Isaac Computer Science website.

“Isaac Computer Science helped equip me with the skills to teach A level, and ran a great workshop at one of their recent Discovery events using the micro:bit and the Kitronik :MOVE mini. This is a session that I’ll definitely be using again and again.”
 – James Spencer, Computer Science teacher at St Martin’s School

A teacher works with her students at our recent Discovery event in Cambridge.

Why sign up?

Isaac Computer Science provides:

  • High-quality materials written by experienced teachers
  • Resources mapped to the AQA and OCR specifications
  • CPD events for teachers
  • Workshops for students

Isaac Computer Science allows you to:

  • Plan lessons around high-quality content pages, thus saving time
  • Select and set self-marking homework questions
  • Pinpoint areas to work on with your students
  • Manage students’ progress in your personal markbook

Start using Isaac Computer Science today:

  • Sign up at isaaccomputerscience.org
  • Request a teacher account and register your students
  • Start using the platform in your classroom!

The post Say hello to Isaac Computer Science appeared first on Raspberry Pi.

Picademy Bytes: free physical computing training for teachers

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/picademy-bytes-free-physical-computing-training-for-teachers/

Five years ago, the Raspberry Pi Foundation recognised a need for free, high-quality CPD for educators. In response, we started running Picademy, a two-day training event that provides educators all over the UK and North America with the knowledge and skills they need to teach computing with confidence, creativity, and excitement.

We are delighted to now bring you a new free training programme called Picademy Bytes for teachers in the UK who are unable to attend the two-day Picademy events. Picademy Bytes training sessions are 60- to 90-minute community-led events taking place at various UK locations, led by Community Trainers who we ourselves have inducted.

The aim of Picademy Bytes is to highlight the value of delivering curriculum objectives through physical computing activities: the programme provides teachers with the opportunity to experiment with physical computing in a short, face-to-face training session. Teachers can then take what they’ve learned back to their schools, to use or adapt for their own Computing lessons.

Introducing our Community Trainers

In June this year, we invited our first four Community Trainers to attend an induction session, where we introduced them to the resources for their Picademy Bytes sessions, and they gave us feedback on our plans and the session content.


All four Community Trainers are teachers and Raspberry Pi Certified Educators, having attended Picademy in the past. They volunteered to become Community Trainers because they are enthusiastic to help other teachers in their local areas to deliver exciting learning experiences for their students.

The first Picademy Bytes session took place in July at the Computer Science in Schools Conference 2019 at Staffordshire University in Stoke-on-Trent, and most attendees were secondary school teachers. Attendees described the session as “well-balanced [between] theory and practical” and said that it was “very informative and provided ideas for the classroom”.

Look out for Picademy Bytes sessions in a city near you!

Upcoming Picademy Bytes sessions will soon be listed on the Computing at School website and on the Raspberry Pi Foundation website. If you are based in or near Belfast, Bradford, South Wales, Hull, London, North Devon, or Plymouth, look out for events near you from this month! And there will be plenty more events in locations across the UK after that. We look forward to seeing you there!

The post Picademy Bytes: free physical computing training for teachers appeared first on Raspberry Pi.

Bill Aims to Deter Piracy by Teaching Copyright in Philippine Schools

Post Syndicated from Ernesto original https://torrentfreak.com/bill-aims-to-deter-piracy-by-teaching-copyright-in-philippine-schools-190823/

Like many other countries in the world, the Philippines are struggling with a relatively high piracy rate.

To counter this threat, lawmakers have started to propose new legislation.

For example, earlier this year we reported that a new bill proposes to strip the licenses of ISPs which fail to bar ‘pirate’ sites. While that goes quite far, it doesn’t address the root of the problem.

According to local Congressman Rufus Rodriguez, the law already makes it clear that piracy is illegal. However, many people simply ignore this position. Among other things, this has previously resulted in the United States adding the country to its annual ‘piracy’ watch list.

“In spite and despite of various laws and regulations in the Philippines on Intellectual Property, intellectual infringement and piracy of intellectual rights are rampant in the country,” Rodriguez writes.

“Due to these situations, the Philippines is under the watch list as one of the countries where intellectual property rights are ignored and piracy of intellectual creations is widespread,” he adds.

Interestingly, the Philippines were removed from the US watch list in 2014, but Rodriguez nonetheless believes that more has to be done. He’s therefore proposing to add ‘intellectual property’ to the country’s mandatory school curriculum. Not just for the older children, but starting at primary school.

According to the representative, it is crucial that the importance of copyright is taught at an early age as well as later in life. By doing so, the Philippine people may gain more respect for rightsholders as well as the law.

“With proper education, it is hoped that piracy will be curtailed and our laws will be strictly implemented,” Rodriguez writes.

The bill, which also proposes several other changes to the national curriculum, was adopted after the first reading in the House of Representatives and is now with the Committee on Basic Education and Culture.

The relevant copyright part of the proposal, which is included in House Bill 3749, reads as follows:

“The teaching of intellectual property ownership, particularly copyright law, is hereby required to be a part of the curriculum of all primary, secondary and tertiary schools in the country.”

While the bill is progressing through the legislative process, it still has a long way to go before being adopted. Rodriguez previously proposed similar copyright-related changes to the curriculum, but these didn’t pass, despite support form the International Intellectual Property Alliance (IIPA).

While copyright classes are not something most people associate with a mandatory curriculum, this type of education is not new. A few years ago several California schools voluntarily added copyright lessons to the curriculum, starting at kindergarten.

This effort, which was backed by major copyright holder groups, was initially criticized for being one-sided and was later upgraded to include more examples of fair use.

A copy of the bill and the associated exemplary note, received by the House of Representatives on August 8, is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

It’s GCSE results day!

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/its-gcse-results-day/

Today is GCSE results day, and with it comes the usual amount of excitement and trepidation as thousands of young people in the UK find out whether they got the grades they wanted. So here’s a massive CONGRATULATIONS from everyone at the Raspberry Pi Foundation to all the students out there who have worked so hard to get their GCSEs, A levels, BTECs, IBs, and a host of other qualifications.

We also want to highlight the efforts of the amazing teachers who have spent countless hours thinking up new ways to bring their subjects to life and inspire the next generation.

Looking at the initial data from the Department for Education, it’s clear that:

  • The number of students entering the Computer Science GCSE has gone up by 7.6%, so this is the sixth year running that the subject has gained popularity — great news!
  • The number of girls entering the Computer Science GCSE has grown by 14.5% compared to last year!
  • The proportion of Computer Science GCSE students achieving top grades (9 to 7) has gone up, and there’s been an even bigger increase in the proportion achieving a good pass (9 to 4) — amazing!

Views from teachers

From L to R: Rebecca Franks, Allen Heard, Ben Garside, Carrie Anne Philbin

I caught up with four former teachers on our team to reflect on these findings and their own experiences of results days…

What thoughts and emotions are going through your head as a teacher on results day?

Ben: It’s certainly a nerve-wracking time! You hope that your students have reached the potential that you know that they are capable of. You log onto the computer the second you wake up to see if you’ve got access to the exam boards results page yet. It was always great being there to see their faces, to give them a high five, and to support them with working out their options going forward.

Rebecca: I think that head teachers want you to be worried about targets and whether you’ve met them, but as a teacher, when you look at each individual students’ results, you see their journey, and you know how much effort they’ve put in. You are just really proud of how well they have done, and it’s lovely to have those post-results conversations and celebrate with them. It makes it all worth it.

Allen: I liken the feeling to that of an expectant father! You have done as much as you can to make sure things run smoothly, you’ve tried to keep all those involved calm, and now the moment is here and you just want everything to be OK.

Carrie Anne: As a teacher, I always felt both nerves and excitement for results day, probably more so than my students did. Sleepless nights in the run-up to the big day were common! But I always enjoyed seeing my students, who I’d worked with since they were youngsters, see the culmination of their hard work into something useful. I always felt proud of them for how far they’d come.

There has been an increased uptake of students taking computing-related subjects at GCSE since last year. What do you think about this?

Ben: It’s great news and shows that schools are realising how important the subject is to prepare our young people for the future workplace.

Carrie Anne: It’s a sign that our message — that all students should have access to a Computing qualification of rigour, and that there is a willing and ready audience hungry for the opportunity to study Computing at a deeper level — is making traction. My hope is to see this number increase as teachers take part in the free National Centre for Computing Education professional development and certification over the coming years.

Rebecca: I think it’s a step in the right direction, but we definitely have a long way to go. We must make sure that computing is at the forefront of any curriculum model in our secondary schools, which is why the National Centre for Computing Education is so important. In particular, we must support schools in ensuring that KS3 computing is given the time it needs to give students the grounding for GCSE.

Allen: I agree with Rebecca: more needs to be done about teacher training and helping schools see the overall benefit to students in undertaking such subjects. Schools that are investing time in nurturing these subjects in their curriculum provision are seeing them become more popular and enjoying success. Patience is the key for senior leadership teams, and teachers need support and to have confidence in their ability to continue to deliver the subject.

Why is it important that more students learn about computing?

Rebecca: Computing feeds into so much of our everyday lives, and we must prepare our young people for a world that doesn’t exist yet. Computing teaches you logical thinking and problem-solving. These skills are transferable and can be used in all sorts of situations. Computing also teaches you essential digital literacy skills that can help you keep safe whilst using online tools.

Ben: For me, it’s really important that young people pick this subject to help them understand the world around them. They’ll hopefully then be able to see the potential of computing as a power for good and harness it, rather than becoming passive consumers of technology.

Carrie Anne: Following on from what Ben said, I also think it’s important that technology developed in the future reflects the people and industries using it. The tech industry needs to become more diverse in its workforce, and non-technical fields will begin to use more technology in the coming years. If we equip young people with a grounding in computing, they will be equipped to enter these fields and find solutions to technical solutions without relying on a small technical elite.

Imagine I’m a GCSE student who has just passed my Computer Science exams. What resources should I look at if I want to learn more about computing with the Raspberry Pi Foundation for free?

Rebecca: Isaac Computer Science would be the best place to start, because it supports students through their A level Computer Science. If you wanted to experiment and try some physical computing, then you could take a look at the Projects page of the Raspberry Pi Foundation website. You can filter this page by ‘Software type: Python’ and find some ideas to keep you occupied!

Allen: First and foremost, I would advise you to keep your hard-earned coding skills on point, as moving on to the next level of complexity can be a shock. Now is the time to start building on your already sound knowledge and get prepared for A level Computer Science in September. Isaac Computer Science would be a great place to start to undertake some further learning over the summer and prime yourself for further study.

Ben: Same as Rebecca and Allen, I’d be telling you to get started with Isaac Computer Science too. The resources that are being provided for free are second to none, and will really help you get a good feel for what A level Computer Science is all about.

Carrie Anne: Beyond the Raspberry Pi projects site and Isaac Computer Science, I’d recommend getting some face-to-face experience. Every year the Python community holds a conference that’s open to everyone. It’s a great opportunity to meet new people and learn new skills. PyConUK 2019 is taking place in September and has bursaries to support people in full-time education to attend.

We’ve been working on providing support for secondary and GCSE teachers as part of the National Centre for Computing Education this year. Could you talk about the support we’ve got available?

Allen: We’re producing resources to cover the whole range of topics that appear in all the Computing/Computer Science specifications. The aim of these resources is to provide teachers — both experienced and new to the subject — with the support they need to deliver quality, engaging lessons. Founded on sound pedagogical principles and created by a number of well-established teachers, these resources will help reduce workload and increase productivity for teachers, and increase engagement of students. This will ultimately result in some fantastic out-turns for schools, as well as developing confident computing teachers along the way.

Rebecca: As Allen explained, we are busy creating new, free teaching resources for KS3 and GCSE. The units will cover the national curriculum and beyond, and the lessons will be fully resourced. They will be accessible to teachers with varying levels of experience, and there will be lots of support along the way through online courses and face-to-face training if teachers want to know more. Teachers can already take our ‘CS Accelerator’ programme, which is extremely popular and has excellent reviews.

Thanks for your time, everyone!

How was your GCSE results day? Are your students, or young people you know, receiving their results today? Tell us about it in the comments below.

The post It’s GCSE results day! appeared first on Raspberry Pi.

Scratch 3 Desktop for Raspbian on Raspberry Pi

Post Syndicated from Martin O'Hanlon original https://www.raspberrypi.org/blog/scratch-3-desktop-for-raspbian-on-raspberry-pi/

You can now install and use Scratch 3 Desktop for Raspbian on your Raspberry Pi!

Scratch 3

Scratch 3 was released in January this year, and since then we and the Scratch team have put lots of work into creating an offline version for Raspberry Pi.

The new version of Scratch has a significantly improved interface and better functionality compared to previous versions. These improvements come at the cost of needing more processing power to run. Luckily, Raspberry Pi 4 has delivered just that, and with the software improvements in the newest version of Raspbian, Buster, we can now deliver a reliable Scratch 3 experience on our computer.

Which Raspberry Pi can I use?

Scratch 3 needs at least 1GB of RAM to run, and we recommend a Raspberry Pi 4 with 2GB+ RAM. While you can run Scratch 3 on a Raspberry Pi 2, 3, 3B+, or a Raspberry 4 with 1GB RAM, performance on these models is reduced, and depending on what other software you run at the same time, Scratch 3 may fail to start due to lack of memory.

The Scratch team is working to reduce the memory requirements of Scratch 3, so we will hopefully see improvements to this soon.

How to install Scratch 3

You can only install Scratch 3 on Raspbian Buster.

First, update Raspbian!

  • If you’ve yet to upgrade to Raspbian Buster, we recommend installing a fresh version of Buster onto your SD card instead of upgrading from your current version of Raspbian.
  • If you’re already using Raspbian Buster, but you’re not sure your running the latest version, update Buster by following this tutorial:

How to update Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi.

Once you’re running the latest version of Buster, you can install Scratch 3 either using the Recommended Software application or apt on the terminal.

How to install Scratch 3 using the Recommended Software app

Open up the menu, click on Preferences > Recommended Software, and then select Scratch 3 and click on OK.

How to install Scratch 3 using the terminal

Open a terminal window, and type in and run the following commands:

sudo apt-get update
sudo apt-get install scratch3

What can I do with Scratch 3 and Raspberry Pi?

Scratch 3 Desktop for Raspbian comes with new extensions to allow you to control the GPIO pins and Sense HAT with Scratch code!

GPIO extension

GPIO extension is a replacement for the existing extension in Scratch 2. Its layout and functionality is very similar, so you can use it as a drop-in replacement.

The GPIO extension gives you the flexibility to connect and control a whole host of electronic devices.

Simple Electronics extension

If you are looking to add something simple, like an LED or button controller for a game, you should find the new Simple Electronics extension easier to use than the GPIO extension. The Simple Electronics extension is the first version of a beginner-friendly extension for interacting with Raspberry Pi’s GPIO pins. Taking lessons from the implementation of gpiozero for Python, this new extension provides a simpler way of using electronic components: currently buttons and LEDs.

In this example, an LED connected to GPIO pin 17 is controlled by a button connected between pin 2 and GND.

Sense HAT extension

We’ve improved the Sense HAT extension to take advantage of new features in Scratch 3, and the updated version of the extension also introduces a number of new blocks to allow you to:

  • Sense tilting, shaking, and orientation
  • Use the joystick
  • Measure temperature, pressure, and humidity
  • Display text, characters, and patterns on the LED matrix

micro:bit and LEGO extensions

The micro:bit and LEGO extensions will become available later on Scratch 3 Desktop. This is because Scratch Link, the software which allows Scratch to talk to Bluetooth devices, is not yet available for Linux-type operating systems like Raspbian. A version of Scratch Link for Raspbian is part of our plans but, as yet, we don’t have a release date.

A round of thanks

It has been a long ambition of both the Scratch and Raspberry Pi teams to have Scratch 3 running on Raspberry Pi, and it’s amazing to see it released!

A big thank you to Raspberry Pi engineer Simon Long for building and packaging Scratch 3, and to the Scratch team for their support in getting over some of the problems we faced along the way.

The post Scratch 3 Desktop for Raspbian on Raspberry Pi appeared first on Raspberry Pi.

Build a Raspberry Pi music box with Sally Le Page

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-a-raspberry-pi-music-box-with-sally-le-page/

Connecting buttons to the GPIO pins of your Raspberry Pi instantly opens up your digital making to the world of clicky funtimes.

Sally Le Page

Our Music Box project teaches you how to connect several buttons to your Raspberry Pi and write code to make them trigger cool sound effects.

It’s fun. It’s easy. And we roped Sally Le Page into helping us show you how you can do it yourself, in your own home!

Here Sally is, and here’s the link to the updated online project for you to get stuck into.

Build a Raspberry Pi music box ft. Dr Sally Le Page

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

The post Build a Raspberry Pi music box with Sally Le Page appeared first on Raspberry Pi.

How to build databases using Python and text files | Hello World #9

Post Syndicated from Mac Bowley original https://www.raspberrypi.org/blog/how-to-build-databases-using-python-and-text-files-hello-world-9/

In Hello World issue 9, Raspberry Pi’s own Mac Bowley shares a lesson that introduces students to databases using Python and text files.

In this lesson, students create a library app for their books. This will store information about their book collection and allow them to display, manipulate, and search their collection. You will show students how to use text files in their programs that act as a database.

The project will give your students practical examples of database terminology and hands-on experience working with persistent data. It gives opportunities for students to define and gain concrete experience with key database concepts using a language they are familiar with. The script that accompanies this activity can be adapted to suit your students’ experience and competency.

This ready-to-go software project can be used alongside approaches such as PRIMM or pair programming, or as a worked example to engage your students in programming with persistent data.

What makes a database?

Start by asking the students why we need databases and what they are: do they ever feel unorganised? Life can get complicated, and there is so much to keep track of, the raw data required can be overwhelming. How can we use computing to solve this problem? If only there was a way of organising and accessing data that would let us get it out of our head. Databases are a way of organising the data we care about, so that we can easily access it and use it to make our lives easier.

Then explain that in this lesson the students will create a database, using Python and a text file. The example I show students is a personal library app that keeps track of which books I own and where I keep them. I have also run this lesson and allowed the students pick their own items to keep track of — it just involves a little more planning time at the end. Split the class up into pairs; have each of them discuss and select five pieces of data about a book (or their own item) they would like to track in a database. They should also consider which type of data each of them is. Give them five minutes to discuss and select some data to track.

Databases are organised collections of data, and this allows them to be displayed, maintained, and searched easily. Our database will have one table — effectively just like a spreadsheet table. The headings on each of the columns are the fields: the individual pieces of data we want to store about the books in our collection. The information about a single book are called its attributes and are stored together in one record, which would be a single row in our database table. To make it easier to search and sort our database, we should also select a primary key: one field that will be unique for each book. Sometimes one of the fields we are already storing works for this purpose; if not, then the database will create an ID number that it uses to uniquely identify each record.

Create a library application

Pull the class back together and ask a few groups about the data they selected to track. Make sure they have chosen appropriate data types. Ask some if they can find any of the fields that would be a primary key; the answer will most likely be no. The ISBN could work, but for our simple application, having to type in a 10- or 13-digit number just to use for an ID would be overkill. In our database, we are going to generate our own IDs.

The requirements for our database are that it can do the following things: save data to a file, read data from that file, create new books, display our full database, allow the user to enter a search term, and display a list of relevant results based on that term. We can decompose the problem into the following steps:

  • Set up our structures
  • Create a record
  • Save the data to the database file
  • Read from the database file
  • Display the database to the user
  • Allow the user to search the database
  • Display the results

Have the class log in and power up Python. If they are doing this locally, have them create a new folder to hold this project. We will be interacting with external files and so having them in the same folder avoids confusion with file locations and paths. They should then load up a new Python file. To start, download the starter file from the link provided. Each student should make a copy of this file. At first, I have them examine the code, and then get them to run it. Using concepts from PRIMM, I get them to print certain messages when a menu option is selected. This can be a great exemplar for making a menu in any application they are developing. This will be the skeleton of our database app: giving them a starter file can help ease some cognitive load from students.

Have them examine the variables and make guesses about what they are used for.

  • current_ID – a variable to count up as we create records, this will be our primary key
  • new_additions – a list to hold any new records we make while our code is running, before we save them to the file
  • filename – the name of the database file we will be using
  • fields – a list of our fields, so that our dictionaries can be aligned with our text file
  • data – a list that will hold all of the data from the database, so that we can search and display it without having to read the file every time

Create the first record

We are going to use dictionaries to store our records. They reference their elements using keys instead of indices, which fit our database fields nicely. We are going to generate our own IDs. Each of these must be unique, so a variable is needed that we can add to as we make our records. This is a user-focused application, so let’s make it so our user can input the data for the first book. The strings, in quotes, on the left of the colon, are the keys (the names of our fields) and the data on the right is the stored value, in our case whatever the user inputs in response to our appropriate prompts. We finish this part of by adding the record to the file, incrementing the current ID, and then displaying a useful feedback message to the user to say their record has been created successfully. Your students should now save their code and run it to make sure there aren’t any syntax errors.

You could make use of pair programming, with carefully selected pairs taking it in turns in the driver and navigator roles. You could also offer differing levels of scaffolding: providing some of the code and asking them to modify it based on given requirements.

How to use the code in your class

To complete the project, your students can add functionality to save their data to a CSV file, read from a database file, and allow users to search the database. The code for the whole project is available at helloworld.cc/database.

An example of the code

You may want to give your students the entire piece of code. They can investigate and modify it to their own purpose. You can also lead them through it, having them follow you as you demonstrate how an expert constructs a piece of software. I have done both to great effect. Let me know how your classes get on! Get in touch at [email protected]

Hello World issue 9

The brand-new issue of Hello World is out today, and available right now as a free PDF download from the Hello World website.



UK-based educators can also sign up to receive Hello World as printed magazine FOR FREE, direct to their door. And those outside the UK, educator or not, can subscribe to receive new digital issues of Hello World in their inbox on the day of release.

The post How to build databases using Python and text files | Hello World #9 appeared first on Raspberry Pi.

Your Back-to-School Bootcamp with our free online training

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/back-to-school-bootcamp-online-training/

Are you ready FEEL THE BURN…of your heating laptop? And MAX THOSE REPS…using forever loops? Then get your programming muscles into the best shape possible with our free online training courses.

Pump up your programming skills for free

Today we are excited to announce our new online training course Programming with GUIs — now open for sign-ups on FutureLearn. To celebrate, we’ve also curated a set of courses as your personal Back-to-school Bootcamp. Sign up now to start training from Monday 29 July and throughout August!

Scratch Cat and a Python supervising teachers at an outdoor bootcamp

Your Back-to-school Bootcamp has something for beginner, intermediate, and advanced learners, and all the courses are free, thanks to support from Google.

Also keep in mind that all the courses count towards becoming certified through the National Centre for Computing Education.

Couch to 5k…lines of code

If you’re just beginning to learn about coding, the perfect place to start is Programming 101: An Introduction to Python for Educators. You’ll first get to grips with basic programming concepts by learning about the basics of Python syntax and how to interpret error messages. Then you’ll use your new coding skills to create a chatbot that asks and answers questions!

Scratch Cat and a Python doing a relay race

For Primary teachers, our course Scratch to Python: Moving from Block- to Text-based Programming is ideal. Take this course if you’ve been using Scratch and are wondering how to introduce Python to your older students.

If you’ve been programming for a while, sign up for our brand-new course Programming with GUIs — an intermediate-level course that shows you how to build your own graphical user interface (GUI) in Python. You will learn how to incorporate interactivity in your programs, discover different types of GUI features, and build your confidence to design more complex GUI-based apps in the future.

Or maybe you’d like to try Programming 101’s follow-on course Programming 102: Think Like a Computer Scientist? Take your Python skills further by learning to break down problems into smaller tasks and designing algorithms you can apply to data.

Finally, if you’re an experienced computing educator, dig into Object-oriented Programming in Python, a really fun and challenging course that helps you get to grips with OOP principles by creating a text-based adventure game in Python.

Scratch Cat and a Python supervising an outdoors sports activity

Sign-ups are open until the end of August. Now go get those gains!

Tell us about your workout routine

What will your personal coding regime look like this summer? What online courses have you enjoyed taking this year? (They don’t have to be ours!) Tell us in the comments below.

No Title

No Description

The post Your Back-to-School Bootcamp with our free online training appeared first on Raspberry Pi.

The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4

Post Syndicated from Phil King original https://www.raspberrypi.org/blog/the-new-official-raspberry-pi-beginners-guide-updated-for-raspberry-pi-4/

To coincide with the launch of Raspberry Pi 4, Raspberry Pi Press has created a new edition of The Official Raspberry Pi Beginner’s Guide book — as if this week wasn’t exciting enough! Weighing in at 252 pages, the book is even bigger than before, and it’s fully updated for Raspberry Pi 4 and the latest version of the Raspbian operating system, Buster.A picture of the front cover of the Raspberry Pi Beginner's Guide version two

The Official Raspberry Pi Beginner’s Guide

We’ve roped in Gareth Halfacree, full-time technology journalist and technical author, and the wonderful Sam Alder, illustrator of our incredible cartoons and animations, to put together the only guide you’ll ever need to get started with Raspberry Pi.



From setting up your Raspberry Pi on day one to taking your first steps into writing coding, digital making, and computing, The Official Raspberry Beginner’s Guide – 2nd Edition is great for users from age 7 to 107! It’s available now online from the Raspberry Pi Press store, with free international delivery, or from the real-life Raspberry Pi Store in Cambridge, UK.

As always, we have also released the guide as a free PDF, and you’ll soon be seeing physical copies on the shelves of Waterstones, Foyles, and other good bookshops.

The post The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4 appeared first on Raspberry Pi.

European Astro Pi Challenge: Mission Space Lab winners 2018–2019!

Post Syndicated from Olympia Brown original https://www.raspberrypi.org/blog/european-astro-pi-challenge-mission-space-lab-winners-2018-2019/

This is your periodic reminder that there are two Raspberry Pi computers in space! That’s right — our Astro Pi units Ed and Izzy have called the International Space Station home since 2016, and we are proud to work with ESA Education to run the European Astro Pi Challenge, which allows students to conduct scientific investigations in space, by writing computer programs.

Astro PI IR on ISS

An Astro Pi takes photos of the earth from the window of the International Space Station

The Challenge has two missions: Mission Zero and Mission Space Lab. The more advanced one, Mission Space Lab, invites teams of students and young people under 19 years of age to enter by submitting an idea for a scientific experiment to be run on the Astro Pi units.

ESA and the Raspberry Pi Foundation would like to congratulate all the teams that participated in the European Astro Pi Challenge this year. A record-breaking number of more than 15000 people, from all 22 ESA Member States as well as Canada, Slovenia, and Malta, took part in this year’s challenge across both Mission Space Lab and Mission Zero!

Eleven teams have won Mission Space Lab 2018–2019

After designing their own scientific investigations and having their programs run aboard the International Space Station, the Mission Space Lab teams spent their time analysed the data they received back from the ISS. To complete the challenge, they had to submit a short scientific report discuss their results and highlight the conclusions of their experiments. We were very impressed by the quality of the reports, which showed a high level of scientific merit.

We are delighted to announce that, while it was a difficult task, the Astro Pi jury has now selected eleven winning teams, as well as highly commending four additional teams. The eleven winning teams won the chance to join an exclusive video call with ESA astronaut Frank De Winne. He is the head of the European Astronaut Centre in Germany, where astronauts train for their missions. Each team had the once-in-a-lifetime chance to ask Frank about his life as an astronaut.

And the winners are…

Firewatchers from Post CERN HSSIP Group, Portugal, used a machine learning method on their images to identify areas that had recently suffered from wildfires.

Go, 3.141592…, Go! from IES Tomás Navarro Tomás, Spain, took pictures of the Yosemite and Lost River forests and analysed them to study the effects of global drought stress. They did this by using indexes of vegetation and moisture to assess whether forests are healthy and well-preserved.

Les Robotiseurs from Ecole Primaire Publique de Saint-André d’Embrun, France, investigated variations in Earth’s magnetic field between the North and South hemispheres, and between day and night.

TheHappy.Pi from I Liceum Ogólnokształcące im. Bolesława Krzywoustego w Słupsku, Poland, successfully processed their images to measure the relative chlorophyll concentrations of vegetation on Earth.

AstroRussell from Liceo Bertrand Russell, Italy, developed a clever image processing algorithm to classify images into sea, cloud, ice, and land categories.

Les Puissants 2.0 from Lycee International de Londres Winston Churchill, United Kingdom, used the Astro Pi’s accelerometer to study the motion of the ISS itself under conditions of normal flight and course correction/reboost maneuvers.

Torricelli from ITIS “E.Torricelli”, Italy, recorded images and took sensor measurements to calculate the orbital period and flight speed of the ISS followed by the mass of the Earth using Newton’s universal law of gravitation.

ApplePi from I Liceum Ogólnokształcące im. Króla Stanisława Leszczyńskiego w Jaśle, Poland, compared their images from Astro Pi Izzy to historical images from 35 years ago and could show that coastlines have changed slightly due to erosion or human impact.

Spacethon from Saint Joseph La Salle Pruillé Le Chétif, France, tested their image-processing algorithm to identify solid, liquid, and gaseous features of exoplanets.

Stithians Rocket Code Club from Stithians CP School, United Kingdom, performed an experiment comparing the temperature aboard the ISS to the average temperature of the nearest country the space station was flying over.

Vytina Aerospace from Primary School of Vytina, Greece, recorded images of reservoirs and lakes on Earth to compare them with historical images from the last 30 years in order to investigate climate change.

Highly commended teams

We also selected four teams to be highly commended, and they will receive a selection of goodies from ESA Education and the Raspberry Pi Foundation:

Aguere Team from IES Marina Cebrián, Spain, investigated variations in the Earth’s magnetic field due to solar activity and a particular disturbance due to a solar coronal hole.

Astroraga from CoderDojo Trento, Italy, measured the magnetic field to investigate whether astronauts can still use a compass, just like on Earth, to orient themselves on the ISS.

Betlemites from Escoles Betlem, Spain, recorded the temperature on the ISS to find out if the pattern of a convection cell is different in microgravity.

Rovel In The Space from Scuola secondaria I grado A.Rosmini ROVELLO PORRO(Como), Italy, executed a program that monitored the pressure and would warn astronauts in case space debris or micrometeoroids collided with the ISS.

The next edition is not far off!

ESA and the Raspberry Pi Foundation would like to invite all school teachers, students, and young people to join the next edition of the challenge. Make sure to follow updates on the Astro Pi website and Astro Pi Twitter account to look out for the announcement of next year’s Astro Pi Challenge!

The post European Astro Pi Challenge: Mission Space Lab winners 2018–2019! appeared first on Raspberry Pi.

Ghost hunting in schools with Raspberry Pi | Hello World #9

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/digital-ghost-hunt-raspberry-pi-hello-world-9/

In Hello World issue 9, out today, Elliott Hall and Tom Bowtell discuss The Digital Ghost Hunt: an immersive theatre and augmented reality experience that takes a narrative-driven approach in order to make digital education accessible.The Digital Ghost Hunt - Raspberry Pi Hello World

The Digital Ghost Hunt combines coding education, augmented reality, and live performance to create an immersive storytelling experience. It begins when a normal school assembly is disrupted by the unscheduled arrival of Deputy Undersecretary Quill of the Ministry of Real Paranormal Hygiene, there to recruit students into the Department’s Ghost Removal Section. She explains that the Ministry needs the students’ help because children have the unique ability to see and interact with ghostly spirits.

The Digital Ghost Hunt - Raspberry Pi Hello World

Under the tutelage of Deputy Undersecretary Quill and Professor Bray (the Ministry’s chief scientist), the young ghost-hunters learn how to program and use their own paranormal detectors. These allow students to discover ghostly traces, translate Morse code using flickering lights, and find messages left in ultraviolet ectoplasm. Meanwhile, the ghost communicates through a mixture of traditional theatrical effects and the poltergeist potential of smart home technology. Together, students uncover the ghost’s identity, discover her reason for haunting the building, unmask a dastardly villain, find a stolen necklace, clear the ghost’s name, right an old wrong, and finally set the ghost free.

The Digital Ghost Hunt - Raspberry Pi Hello World

The project conducted two successful test performances at the Battersea Arts Centre in South London in November 2018, funded by a grant from AHRC’s New Immersive Experiences Programme, led by Mary Krell of Sussex University. Its next outing will be at York Theatre Royal in August.

Adventures in learning

The Digital Ghost Hunt arose out of a shared interest in putting experimentation and play at the centre for learners. We felt that the creative, tinkering spirit of earlier computing — learning how to program BASIC on an Atari 800XL to create a game, for example — was being supplanted by a didactic and prescriptive approach to digital learning. KIT Theatre’s practice — creating classroom adventures that cast pupils as heroes in missions — is also driven by a less trammelled, more experiment-led approach to learning.

We believe that the current Computer Science curriculum isn’t engaging enough for students. We wanted to shift the context of how computer science is perceived, from ‘something techy and boyish’ back to the tool of the imagination that it should be. We did this by de-emphasising the technology itself and, instead, placing it in the larger context of a ghost story. The technology becomes a tool to navigate the narrative world — a means to an end rather than an end in itself. This helps create a more welcoming space for students who are bored or intimidated by the computer lab: a space of performance, experiment, and play.

Ghosts and machines

The device we built for the students was the SEEK Ghost Detector, made from a Raspberry Pi and a micro:bit, which Elliot stapled together. The micro:bit was the device’s interface, which students programmed using the block-based language MakeCode. The Raspberry Pi handled the heavier technical requirements of the show, and communicated them to the micro:bit in a form students could use. The detector had no screen, only the micro:bit’s LEDs. This meant that students’ attention was focused on the environment and what the detector could tell them about it, rather than having their attention pulled to a screen to the exclusion of the ‘real’ world around them.

In addition to the detector, we used a Raspberry Pi to make ordinary smart home technology into our poltergeist. It communicated with the students using effects such as smart bulbs that flashed in Morse code, which the students could then decode on their devices.

To program their detectors, students took part in a series of four lessons at school, focused on thinking like a programmer and the logic of computing. Two of the lessons featured significant time spent programming the micro:bit. The first focused on reading code on paper, and students were asked to look out for any bugs. The second had students thinking about what the detector will do, and acting out the steps together, effectively ‘performing’ the algorithm.

We based the process on KIT Theatre’s Adventures in Learning model, and its Theory of Change:

  • Disruption: an unexpected event grabs attention, creating a new learning space
  • Mission: a character directly asks pupils for their help in completing a mission
  • Achievement: pupils receive training and are given agency to successfully complete the mission

The Ghost Hunt

During these lessons, Deputy Undersecretary Quill kept in touch with the students via email, and the chief scientist sent them instructional videos. Their work culminated in their first official assignment: a ghost haunting the Battersea Arts Centre — a 120-year-old former town hall. After arriving, students were split into four teams, working together. Two teams analysed evidence at headquarters, while the others went out into places in the building where we’d hidden ghostly traces that their detectors would discover. The students pooled their findings to learn the ghost’s story, and then the teams swapped roles. The detectors were therefore only one method of exploring the narrative world. But the fact that they’d learned some of the code gave students a confidence in using the detectors — a sense of ownership. During one performance, one of the students pointed to a detector and said: “I made that.”

Future of the project

The project is now adapting the experience into a family show, in partnership with Pilot Theatre, premiering in York in summer 2019. We aim for it to become the core of an ecosystem of lessons, ideas, and activities — to engage audiences in the imaginative possibilities of digital technology.

You can find out more about the Digital Ghost Hunt on their website, which also includes rather lovely videos that Vimeo won’t let me embed here.

Hello World issue 9

The brand-new issue of Hello World is out today, and available right now as a free PDF download from the Hello World website.

Hello World issu 9

UK-based educators can also sign up to receive Hello World as printed magazine FOR FREE, direct to their door, by signing up here. And those outside the UK, educator or not, can subscribe to receive new issues of Hello World in their inbox on the day of release.

The post Ghost hunting in schools with Raspberry Pi | Hello World #9 appeared first on Raspberry Pi.

An opportunity to reach thousands with the Raspberry Pi

Post Syndicated from Dana Augustin original https://www.raspberrypi.org/blog/an-opportunity-to-reach-thousands-with-the-raspberry-pi/

Dr Bob Brown is a former professor who taught at Kennesaw State University and Southern Polytechnic State University. He holds a doctorate in computer information systems. Bob is also a Raspberry Pi Certified Educator, and continues to provide exceptional classroom experiences for K-12 students. The moment his students have that “Aha!” feeling is something he truly values, and he continues to enjoy that experience in his K-12 classroom visits.

After retiring from teaching computing in 2017, Bob continued his school visits, first on an informal basis, and later as an official representative of KSU’s College of Computing and Software Engineering (CCSE). Keen to learn more about K-12 Computing, Bob applied to the Raspberry Pi Foundation’s Picademy program, and attended Picademy Atlanta in 2018. Here’s his story of how he has since gone on to lead several Raspberry Pi Teachers’ Workshops, inspiring educators and students alike.

“I couldn’t have done this if I had not attended Picademy” — Bob Brown

“I was amazed at the excitement and creativity that Picademy and the Raspberry Pi created among the teachers who attended,” Bob says. “After reading about the number of applicants for limited Picademy positions, I realized there was unmet demand. I began to wonder whether we could do something similar at the CCSE.”

Bob spent over a hundred hours developing instructional material, and raised over $2,000 from Southern Polytechnic alumni. With the money he raised, Bob conducted a pilot workshop for half a dozen teachers in the autumn of 2018. The workshop was free for participants, and covered material similar to Picademy, but in a one-day format. Participants were also given a Raspberry Pi 3B+ and a parts pack. Bob says, “I couldn’t have done this if I had not attended Picademy and been able to start with the Picademy material from the Raspberry Pi Foundation.”

“[The CCSE] helps improve access, awareness, and sustainability to middle and high school students and teachers.” — Jon Preston

The Dean of CCSE at KSU, Dr Jon Preston, was so impressed with the results of the pilot workshop that he authorised a formal fundraising program and two additional workshops in the spring of 2019. Four more workshops have also been scheduled for the summer.

“The College of Computing and Software Engineering at KSU STEM+Computing project helps improve access, awareness, and sustainability to middle and high school students and teachers. CCSE faculty and undergraduate students build learning materials and deliver these materials on-site to schools in an effort to increase the number of students who are energized by computing and want to study computing to help improve their careers and the world. Given the price and power of the Raspberry Pi computers, these devices are a perfect match for our project in the local schools,” says Preston.

The teachers really enjoyed the workshop, and left incredibly inspired.

Teachers came from all over Georgia and from as far away as Mississippi to attend the workshops. For some of the teachers, it was their first time exploring the concept of physical computing, and the hands-on approach to the workshop helped them set their own pace. The teachers really enjoyed the workshop, and left incredibly inspired. “Teacher workshops have a multiplier effect,” says Brown. “If I teach 30 students, I’ve reached 30 students; if I teach 30 teachers, I potentially reach thousands of students over a period of years.”

Another great contribution to the program was the addition of college student facilitators, who provided individual support to the teachers throughout the day, making it easier for everyone to have the assistance they needed.

By the end of the summer, more than 150 K-12 teachers will have participated in a CCSE Raspberry Pi Teachers’ Workshop.

The Raspberry Pi Teachers’ Workshops have become a regular part of the outreach efforts of the CCSE. Grants from State Farm Insurance, 3M Corporation, and a few very generous individual gifts keep the workshops free for K-12 teachers, who also take home a Raspberry Pi and extra components and parts. Participants are also invited to join an online forum where they can exchange ideas and support each other. By the end of the summer, more than 150 K-12 teachers will have participated in a CCSE Raspberry Pi Teachers’ Workshop. You can find more information about the workshops here.

The post An opportunity to reach thousands with the Raspberry Pi appeared first on Raspberry Pi.

The NSFW Roomba that screams when it bumps into stuff

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/the-nsfw-roomba-that-screams-when-it-bumps-into-stuff/

Hide yo’ kids, hide yo’ wife — today’s project is NSF(some)W, or for your kids. LOTS OF SWEARS. You have been warned. We’re not embedding the video here so you can decide for yourself whether or not to watch it — click on the image below to watch a sweary robot on YouTube.

Sweary Roomba

Michael Reeves is best known for such… educational Raspberry Pi projects as:

He’s back, this time with yet another NSFW (depending on your W) project that triggers the sensors in a Roomba smart vacuum to scream in pain whenever it bumps into an object.

Because why not?

How it’s made

We have no clue. So very done with fans asking for the project to be made — “I hate every single one of you!” — Michael refuses to say how he did it. But we know this much is true: the build uses optical sensors, relays, a radio receiver, and a Raspberry Pi. How do I know this? Because he showed us:

Roomba innards

But as for the rest? We leave it up to you, our plucky community of tinkerers, to figure it out. Share your guesses in the comments.

More Michael Reeves

Michael is one of our Pi Towers guilty pleasures and if, like us, you want to watch more of his antics, you should subscribe to him on YouTube.

The post The NSFW Roomba that screams when it bumps into stuff appeared first on Raspberry Pi.

Possibilities of the Raspberry Pi — from Code Club to Coolest Projects USA

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/possibilities-of-the-raspberry-pi-from-code-club-to-coolest-projects-usa/

Yolanda Payne is a veteran teacher and Raspberry Pi Certified Educator. After discovering a love for computers at an early age (through RadioShack Tandy), Yolanda pursued degrees in Instructional/Educational Technology at Mississippi State University, the University of Florida, and the University of Georgia. She has worked as an instructional designer, webmaster, and teacher, and she loves integrating technology into her lessons. Here’s Yolanda’s story:

My journey to becoming a Raspberry Pi Certified Educator started when an esteemed mentor, Juan Valentin, tweeted about the awesome experience he had while attending Picademy. Having never heard of Picademy or the Raspberry Pi, I decided to check out the website and instantly became intrigued. I applied for a Raspberry Pi STEM kit from the Civil Air Patrol and received a Raspberry Pi and a ton of accessories. My curiosity would not be satisfied until I learned just what I could do with the box of goodies. So I decided to apply to Picademy and was offered a spot after being waitlisted. Thus my obsession with the possibilities of the Raspberry Pi began.

Code Club allows me to provide a variety of lessons, tailored to my students’ interests and skill levels, without me having to be an expert

While at Picademy, I learned about Code Club. Code Club allows me to provide a variety of lessons tailored to my learners’ interests and skill levels, without me having to be an expert in all of the lessons. My students are 6th- to 8th-graders, and there are novice coders as well as intermediate and advanced coders in the group. We work through lessons together, and I get to be a student with them.

I have found a myriad of resources to support their dreams of making

Although I may not have all the answers to their questions, I’m willing to work to secure whatever supplies they need for their project making. Whether through DonorsChoose, grants, student fundraising, or my personal contributions, I have found a myriad of resources to support their dreams of making.

Raspberry Pi group photo!

My district has invested in a one-to-one computer initiative for students, and I am happy to help students become creators of technology and not just consumers. Having worked with Code Club through the Raspberry Pi Foundation, my students and I realize just how achievable this dream can be. I’m able to enhance my Pi skills by teaching a summer hacking camp at our local university, and next year, we have goals to host a Pi Jam! Thankfully, my principal is very supportive of our endeavours.

Students at Coolest Projects USA 2018

This year, a few of my students and my son were able to participate in Coolest Projects USA 2018 to show off their projects, including a home surveillance camera, a RetroPie arcade game, a Smart Mirror, and a photo booth and dash cam. They dedicated a lot of time and effort to bring these projects to life, often on their own and beyond the hours of our Code Club. This adventure has inspired them, and they are already recruiting other students to join them next year! The possibilities of the Raspberry Pi constantly rejuvenates my curiosity and enhances the creativity that I get to bring to my teaching — both inside and outside the classroom.

Learn more

Learn more about the free programmes and resources Yolanda has used on her computer science education journey, such as Picademy, Code Club, and Coolest Projects, by visiting the Education section of our website.

The post Possibilities of the Raspberry Pi — from Code Club to Coolest Projects USA appeared first on Raspberry Pi.

‘Gender Balance in Computing’ research project launch

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/gender-balance-in-computing-research-project-launch/

I am excited to reveal that a consortium of partners has been awarded £2.4 million for a new research project to investigate how to engage more girls in computing, as part of our work with the National Centre for Computing Education. The award comes at a crucial time in computing education, after research by the University of Roehampton and the Royal Society recently found that only 20% of computing candidates for GCSE and 10% for A level Computer Science were girls.

The project will investigate ways to make computing more inclusive.

The project

‘Gender Balance in Computing’ is a collaboration between the consortium of the Raspberry Pi Foundation, STEM Learning, BCS, The Chartered Institute for IT, and the Behavioural Insights Team. Our partners, Apps for Good and WISE, will also be working on the project. Trials will run from 2019–2022 in Key Stages 1–4, and more than 15,000 students and 550 schools will be involved. It will be the largest national research effort to tackle this issue to date!

Our research around gender balance has many synergies with the work of the wider National Centre for Computing Education (NCCE) programme, which also focuses on pedagogy and widening participation. We will also be working with NCCE Computing Hubs when planning and implementing the trials.

How it will work

‘Gender Balance in Computing’ will develop and roll out several projects that aim to increase the number of girls choosing to study a computing subject at GCSE and A level. The consortium has already identified some of the possible reasons why a large percentage of girls don’t consider computing as the right choice for further study and potential careers. These include: feeling that they don’t belong in the subject; not being sufficiently encouraged; and feeling that computing is not relevant to them. We will go on to research and pilot a series of new interventions, with each focusing on addressing a different barrier to girls’ participation.

We will also trial initiatives such as more inclusive pedagogical approaches to teaching computing to facilitate self-efficacy, and relating informal learning opportunities, which are often popular with girls, to computing as an academic subject or career choice.

Signposting the links between informal and formal learning is one of the interventions that will be trialled.

Introducing our partners

WISE works to increase the participation, contribution, and success of women in the UK’s scientific, technology, and engineering (STEM) workforce. Since 1984, they have supported young women into careers in STEM, and are committed to raising aspirations and awareness for girls in school to help them achieve their full potential. In the past three years, their programmes have inspired more than 13,500 girls.

The Behavioural Insights Team have worked with governments, local authorities, businesses and charities to tackle major policy problems. They generate and apply behavioural insights to inform policy and improve public services.

Apps for Good has impacted more than 130,000 young people in 1500 schools and colleges across the UK since their foundation in 2010. They are committed to improving diversity within the tech sector, engaging schools within deprived and challenging contexts, and enthusing girls to pursue a pathway in computing; in 2018, 56% of students participating in an Apps for Good programme were female.

“A young person’s location, background, or gender should never be a barrier to their future success. Apps for Good empowers young people to change their world through technology, and we have a strong track record of engaging girls in computing. We are excited to be a part of this important work to create, test, and scale solutions to inspire more girls to pursue technology in education. We look forward to helping to build a more diverse talent pool of future tech creators.” Sophie Ball & Natalie Moore, Co-Managing Directors, Apps for Good

The Raspberry Pi Foundation has a strong track record for inclusion through our informal learning programmes: out of the 375,000 children who attended a Code Club or a CoderDojo in 2018, 140,000 (37%) were girls. This disparity between the gender balance in informal learning and the imbalance in formal learning is one of the things our new research project will be investigating.

The challenge of encouraging more girls to take up computing has long been a concern, and overcoming it will be critical to ensuring that the nation’s workforce is suitably skilled to work in an increasingly digital world. I’m therefore very proud to be working with this group of excellent organisations on this important research project (and on such a scale!). Together, we have the opportunity to rigorously trial a range of evidence-informed initiatives to improve the gender balance in computing in primary and secondary schools.

The post ‘Gender Balance in Computing’ research project launch appeared first on Raspberry Pi.

Interactive fiction with Python | Hello World issue 8

Post Syndicated from Sian Williams Page original https://www.raspberrypi.org/blog/interactive-fiction-with-python-hello-world-issue-8/

Nicholas Provenzano explains how he introduced Python to students in his literature class, bridging computer science and literacy.

Literature classes seem like the last place you would find students coding, but interactive fiction has been around for decades. Students love to play computer games, and the very best games have amazing stories. This project will allow students to create their own piece of fiction and then use Python to turn it into a text-based computer game. Students will have a chance to create their own hero and monsters, treasures and traps and so much more while being introduced to Python. Students that love to write, and students that love to code, will love this lesson.

Hello World issue 8

I’ve been thinking a lot recently about to ways to bring computer science into the literature classroom. I set out exploring the Raspberry Pi projects page, where I saw a project that allowed the user to create their own text-based computer game using Python. I thought this would be a great way to engage students in reading, writing, and programming.

Students create their own piece of fiction and then use their stories to create an amazing text-based computer game based on the role-playing game (RPG) tutorial from Raspberry Pi: helloworld.cc/rpg. From the first day working on this project, my students fell in love with the writing and the coding. They couldn’t wait to create their game and share them with their friends.

The project is best introduced with a focus on creative writing, where students should create an outline for their own adventure story. With that in hand, introduce the students to the Raspberry Pi RPG tutorial. It is much easier for students to create their game if they draw out the rooms on paper to help them visualise the game they’re creating. The more time they are given to create their game, the more complex it can become. Students will be able to fully explore the code while creating a fun game they can share with others.

Hello World issue 8

This project is the perfect way to bring coding to a literature class. Students that love to write will be introduced to text-based programming, while students that love to code will have an opportunity to explore fiction through their own writing.

My students were excited to spend their time creating a complex story, and an even more complex game to challenge their friends and their teacher. Students who struggled with the code were helped by other students who’d already moved ahead. We spent a week on this project, but you could spend longer, depending on the breadth of the stories and games. Watching students use their critical thinking skills to plan out a maze for their players was great to see.

The best part was watching students who do not normally engage in reading and writing lessons become leaders as they embraced the coding and were excited to turn their story into a game and share it with everyone. This project will become a mainstay in my teaching for years to come.

Take this to your club or classroom

For the complete lesson plan of the above project, download Hello World issue 8 for free and turn to pages 80–81.

Hello World issue 8

Get Hello World issue 8 for free

Hello World is available to download for free in PDF format anywhere in the world. Subscribe to Hello World today to receive the latest issues into your inbox as soon as they’re released.

Hello World issue 8

If you are a UK-based educator, you can also subscribe for free print copies of Hello World, which will be delivered to your door at no extra cost.

And, lastly, if you’d like to purchase Hello World magazine, you can buy the latest issue via the Raspberry Pi Press website.

The post Interactive fiction with Python | Hello World issue 8 appeared first on Raspberry Pi.

New Wolfram Mathematica free resources for your Raspberry Pi

Post Syndicated from Philip Harney original https://www.raspberrypi.org/blog/new-wolfram-mathematica-resources-2019/

We’ve worked alongside the team at Wolfram Mathematica to create ten new free resources for our projects site, perfect to use at home, or in your classroom, Code Club, or CoderDojo.

Try out the Wolfram Language today, available as a free download for your Raspberry Pi (download details are below).

The Wolfram Language

The Wolfram language is particularly good at retrieving and working with data, like natural language and geographic information, and at producing visual representations with an impressively small amount of code. The language does a lot of the heavy lifting for you and is a great way to let young learners in particular work with data to quickly produce real results.

If you’d like to learn more about the Wolfram Language on the Raspberry Pi, check out this great blog post written by Lucy, Editor of The MagPi magazine!

Weather dashboard

Wolfram Mathematica Raspberry Pi Weather Dashboard

My favourite of the new projects is the weather dashboard which, in a few quick steps, teaches you to create this shiny-looking widget that takes the user’s location, finds their nearest major city, and gets current weather data for it. I tried this out with my own CoderDojo club and it got a very positive reception, even if Dublin weather usually does report rain!

Coin and dice

Wolfram Mathematica Raspberry Pi Coin and Dice

The coin and dice project shows you how to create a coin toss and dice roller that you can use to move your favourite board game into the digital age. It also introduces you to creating interfaces and controls for your projects, choosing random outcomes, and displaying images with the Wolfram Language.

Day and night

In the day and night tracker project, you create a program that gives you a real-time view of where the sun is up right now and lets you check whether it’s day or night time in a particular country. This is not only a pretty cool way to learn about things like time zones, but also shows you how to use geographic data and create an interactive experience in the Wolfram Language.

Sentimental 8-ball

Wolfram Mathematica Raspberry Pi 8-ball

In Sentimental 8-Ball, you create a Magic 8-Ball that picks its answers based on how positive or negative the mood of the user’s question seems. In doing so, you learn to work with lists and use the power of sentiment analysis in the Wolfram Language.

Face swap

Wolfram Mathematica Raspberry Pi face swap

This fun project lets you take a photo of you and your friend and have the Wolfram Language identify and swap your faces! Perfect for updating your profile photo, and also a great way to learn about functions and lists!

More Wolfram Mathematica projects

That’s only half of the selection of great new projects we’ve got for you! Go check them out, along with all the other Wolfram Language projects on our projects site.

Download the Wolfram Language and Mathematica to your Raspberry Pi

Mathematica and the Wolfram Language are included as part of NOOBS, or you can download them to Raspbian on your Raspberry Pi for free by entering the following commands into a terminal window and pressing Enter after each:

sudo apt-get update
sudo apt-get install wolfram-engine

The post New Wolfram Mathematica free resources for your Raspberry Pi appeared first on Raspberry Pi.

Real role models for International Women’s Day 2019

Post Syndicated from Maria Quevedo original https://www.raspberrypi.org/blog/real-role-models-international-womens-day-2019/

The Raspberry Pi Foundation’s mission is to bring computing and digital making to everyone. Tackling the persistent gender imbalance in technology is a crucial part of this undertaking. As part of our work to increase the number of girls choosing to learn how to create with technology, we are marking International Women’s Day with a celebration of real role models.

Real role models for International Women’s Day 2019

Maria Quevedo, Managing Director, Code Club & Raspberry Pi Foundation, talks about the importance of real role models who show girls and women that computing

Real role models are important

There is strong evidence to indicate that the presence of role models is a very effective way to inspire women and minorities to become interested in subjects and industries where they are underrepresented. Research suggests that the imbalance among the role models that girls and women are exposed to in their everyday lives contributes significantly to the persistently low number of girls pursuing science, technology, engineering and mathematics (STEM) subjects at school, and ultimately impacts their career choices.

A women and a young girl sit side by side. They are concentrating on a screen connected to a Raspberry Pi and smiling widely

Female role models in UK media

In order to understand the extent of this imbalance, we carried out an analysis to explore the visibility of female technology role models in the UK media.

One of our most striking findings was that in the twelve months since International Women’s Day 2018, each of the women competing in UK television’s Love Island 2018 was written about in the UK media on average seven times more often than 50 of the UK’s top female technology role models. And popular UK men’s lifestyle magazines were twice as likely to write about top female technology leaders than magazines aimed at women.

The cover of HackSpace magazine issue 11, with a "BEST MAKER HARDWARE" feature and photos of maker Alex Glow with her robot owl
A page from a magazine with the headline "Meet The Maker: Rachel 'Konichiwakitty' Wong" and a photograph of Rachel smiling and wearing LED kitty ears
Part of a magazine spread with the header "This Month in Raspberry Pi". There are lots of photos of makers, speakers and guests at World Maker Faire New York, most of them women, along with varied colourful projects
HackSpace magazine issue 5 cover, featuring Limor "Ladyada" Fried

We also looked at the subject matter covered by popular women’s and men’s magazines in the UK. We found that fashion (37% of all articles) and beauty (26%) were the most popular topics in women’s lifestyle media, while politics (5%) and careers (4%) were some of the least popular. The contrast with men’s lifestyle media was very pronounced. There, topic coverage was much more evenly distributed: fashion (21%) and politics (16%) came top, with grooming (12%) and careers (12%) close behind.

In other words, in the women’s lifestyle magazines, about 14 articles are written about fashion and beauty for every one about careers. Men’s lifestyle magazines, meanwhile, publish one careers piece for every three fashion and grooming articles.

Real role models in Code Club, CoderDojo, and beyond

It’s alarming to see such a dramatic imbalance in visibility for female technology leaders, and such stark differences between the focus of women’s and men’s media. We work hard to make sure our activities such as Code Club and CoderDojo are equally welcoming to girls and boys, and we’re proud that 45% of the volunteers and educators who run these clubs are women. However, role models in wider society are just as important in shaping the values, beliefs, and ambitions of girls and women.

We have a consistently high proportion of girls – around 40% – attending our Code Clubs and CoderDojos. But girls’ perceptions of computing, and their confidence, can be influenced hugely before they ever arrive at our clubs to give it a try – so much so that they may never arrive at all.

In this context, the differences we observed between the topics that women’s and men’s media cover are troubling. It really comes down to balance: there is absolutely nothing wrong with reading about fashion or beauty, but greater diversity in the women, interests, and careers that saturate our popular culture would undoubtedly impact the gender imbalance that persists in sectors such as technology and science.

We are for everyone

When it comes to encouraging girls to take part in our digital skills activities, our approach is highly adaptable, but ultimately we are for everyone. We believe this inclusive approach is the most effective way of reinforcing that all genders are equally capable of enjoying and excelling at computing. It would be invaluable to see this reflected in popular culture.

This International Women’s Day, we’re encouraging women to consider the ways in which we are real role models. Join us to celebrate the #RealRoleModels who inspire you, and share the fantastic contributions of girls and women in technology.

The post Real role models for International Women’s Day 2019 appeared first on Raspberry Pi.

What we are learning about learning

Post Syndicated from Oliver Quinlan original https://www.raspberrypi.org/blog/what-we-are-learning-about-learning/

Across Code Clubs, CoderDojos, Raspberry Jams, and all our other education programmes, we’re working with hundreds of thousands of young people. They are all making different projects and learning different things while they are making. The research team at the Raspberry Pi Foundation does lots of work to help us understand what exactly these young people learn, and how the adults and peers who mentor them share their skills with them.

Coolest Projects International 2018

Senior Research Manager Oliver Quinlan chats to participants at Coolest Projects 2018

We do our research work by:

  • Visiting clubs, Dojos, and events, seeing how they run, and talking to the adults and young people involved
  • Running surveys to get feedback on how people are helping young people learn
  • Testing new approaches and resources with groups of clubs and Dojos to try different ways which might help to engage more young people or help them learn more effectively

Over the last few months, we’ve been running lots of research projects and gained some fascinating insights into how young people are engaging with digital making. As well as using these findings to shape our education work, we also publish what we find, for free, over on our research page.

How do children tackle digital making projects?

We found that making ambitious digital projects is a careful balance between ideas, technology, and skills. Using this new understanding, we will help children and the adults that support them plan a process for exploring open-ended projects.

Coolest Projects USA 2018

Coolest Projects USA 2018

For this piece of research, we interviewed children and young people at last year’s Coolest Projects International and Coolest Projects UK , asking questions about the kinds of projects they made and how they created them. We found that the challenge they face is finding a balance between three things: the ideas and problems they want to address, the technologies they have access to, and their skills. Different children approached their projects in different ways, some starting with the technology they had access to, others starting with an idea or with a problem they wanted to solve.

Achieving big ambitions with the technology you have to hand while also learning the skills you need can be tricky. We’re planning to develop more resources to help young people with this.

Coolest Projects International 2018

Research Assistant Lucia Florianova learns about Rebel Girls at Coolest Projects International 2018

We also found out a lot about the power of seeing other children’s projects, what children learn, and the confidence they develop in presenting their projects at these events. Alongside our analysis, we’ve put together some case studies of the teams we interviewed, so people can read in-depth about their projects and the stories of how they created them.

Who comes to Code Club?

In another research project, we found that Code Clubs in schools are often diverse and cater well for the communities the schools serve; Code Club is not an exclusive club, but something for everyone.

Code Club Athens

Code Clubs are run by volunteers in all sorts of schools, libraries, and other venues across the world; we know a lot about the spaces the clubs take place in and the volunteers who run them, but less about the children who choose to take part. We’ve started to explore this through structured visits to clubs in a sample of schools across the West Midlands in England, interviewing teachers about the groups of children in their club. We knew Code Clubs were reaching schools that cater for a whole range of communities, and the evidence of this project suggests that the children who attend the Code Club in those schools come from a range of backgrounds themselves.

Scouts Raspberry Pi

Photo c/o Dave Bird — thanks, Dave!

We found that in these primary schools, children were motivated to join Code Club more because the club is fun rather than because the children see themselves as people who are programmers. This is partly because adults set up Code Clubs with an emphasis on fun: although children are learning, they are not perceiving Code Club as an academic activity linked with school work. Our project also showed us how Code Clubs fit in with the other after-school clubs in schools, and that children often choose Code Club as part of a menu of after-school clubs.

Raspberry Jam

Visitors to Pi Towers Raspberry Jam get hands-on with coding

In the last few months we’ve also published insights into how Raspberry Pi Certified Educators are using their training in schools, and into how schools are using Raspberry Pi computers. You can find our reports on all of these topics over at our research page.

Thanks to all the volunteers, educators, and young people who are finding time to help us with their research. If you’re involved in any of our education programmes and want to take part in a research project, or if you are doing your own research into computing education and want to start a conversation, then reach out to us via [email protected].

The post What we are learning about learning appeared first on Raspberry Pi.