Tag Archives: Raspberry Pi 3B+

Raspberry Pi retro gaming on Reddit

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-retro-gaming-on-reddit/

Reddit was alive with the sound of retro gaming this weekend.

First out to bat is this lovely minimalist, wall-mounted design built by u/sturnus-vulgaris, who states:

I had planned on making a bar top arcade, but after I built the control panel, I kind of liked the simplicity. I mounted a frame of standard 2×4s cut with a miter saw. Might trim out in black eventually (I have several panels I already purchased), but I do like the look of wood.

Next up, a build with Lego bricks, because who doesn’t love Lego bricks?

Just completed my mini arcade cabinet that consists of approximately 1,000 [Lego bricks], a Raspberry Pi, a SNES style controller, Amazon Basics computer speakers, and a 3.5″ HDMI display.

u/RealMagicman03 shared the build here, so be sure to give them an upvote and leave a comment if, like us, you love Raspberry Pi projects that involve Lego bricks.

And lastly, this wonderful use of the Raspberry Pi Compute Module 3+, proving yet again how versatile the form factor can be.

CM3+Lite cartridge for GPi case. I made this cartridge for fun at first, and it works as all I expected. Now I can play more games l like on this lovely portable stuff. And CM3+ is as powerful as RPi3B+, I really like it.

Creator u/martinx72 goes into far more detail in their post, so be sure to check it out.

What other projects did you see this weekend? Share your links with us in the comments below.

The post Raspberry Pi retro gaming on Reddit appeared first on Raspberry Pi.

Musically synced car windscreen wipers using Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/musically-synced-car-windscreen-wipers-using-raspberry-pi/

Hey there! I’ve just come back from a two-week vacation, Liz and Helen are both off sick, and I’m not 100% sure I remember how to do my job.

So, while I figure out how to social media and word write, here’s this absolutely wonderful video from Ian Charnas, showing how he hacked his car windscreen wipers to sync with his stereo.

FINALLY! Wipers Sync to Music

In this video, I modify my car so the windshield wipers sync to the beat of whatever music I’m listening to. You can own this idea!

Ian will be auctioning off the intellectual property rights to his dancing wipers on eBay, will all proceeds going to a charity supporting young makers.

The post Musically synced car windscreen wipers using Raspberry Pi appeared first on Raspberry Pi.

Growth Monitor pi: an open monitoring system for plant science

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/growth-monitor-pi-an-open-monitoring-system-for-plant-science/

Plant scientists and agronomists use growth chambers to provide consistent growing conditions for the plants they study. This reduces confounding variables – inconsistent temperature or light levels, for example – that could render the results of their experiments less meaningful. To make sure that conditions really are consistent both within and between growth chambers, which minimises experimental bias and ensures that experiments are reproducible, it’s helpful to monitor and record environmental variables in the chambers.

A neat grid of small leafy plants on a black plastic tray. Metal housing and tubing is visible to the sides.

Arabidopsis thaliana in a growth chamber on the International Space Station. Many experimental plants are less well monitored than these ones.
(“Arabidopsis thaliana plants […]” by Rawpixel Ltd (original by NASA) / CC BY 2.0)

In a recent paper in Applications in Plant Sciences, Brandin Grindstaff and colleagues at the universities of Missouri and Arizona describe how they developed Growth Monitor pi, or GMpi: an affordable growth chamber monitor that provides wider functionality than other devices. As well as sensing growth conditions, it sends the gathered data to cloud storage, captures images, and generates alerts to inform scientists when conditions drift outside of an acceptable range.

The authors emphasise – and we heartily agree – that you don’t need expertise with software and computing to build, use, and adapt a system like this. They’ve written a detailed protocol and made available all the necessary software for any researcher to build GMpi, and they note that commercial solutions with similar functionality range in price from $10,000 to $1,000,000 – something of an incentive to give the DIY approach a go.

GMpi uses a Raspberry Pi Model 3B+, to which are connected temperature-humidity and light sensors from our friends at Adafruit, as well as a Raspberry Pi Camera Module.

The team used open-source app Rclone to upload sensor data to a cloud service, choosing Google Drive since it’s available for free. To alert users when growing conditions fall outside of a set range, they use the incoming webhooks app to generate notifications in a Slack channel. Sensor operation, data gathering, and remote monitoring are supported by a combination of software that’s available for free from the open-source community and software the authors developed themselves. Their package GMPi_Pack is available on GitHub.

With a bill of materials amounting to something in the region of $200, GMpi is another excellent example of affordable, accessible, customisable open labware that’s available to researchers and students. If you want to find out how to build GMpi for your lab, or just for your greenhouse, Affordable remote monitoring of plant growth in facilities using Raspberry Pi computers by Brandin et al. is available on PubMed Central, and it includes appendices with clear and detailed set-up instructions for the whole system.

The post Growth Monitor pi: an open monitoring system for plant science appeared first on Raspberry Pi.

Raspberry Pi in space!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-in-space/

We love ‘Raspberry Pi + space’ stuff. There, I’ve said it. No taksies backsies.

From high-altitude balloon projects transporting Raspberry Pis to near space, to our two Astro Pi units living aboard the International Space Station, we simply can’t get enough.

Seriously, if you’ve created anything space-related using a Raspberry Pi, please tell us!

Capturing Earth from low orbit

Surrey Satellite Technology Ltd (SSTL) sent a Raspberry Pi Zero to space as part of their Demonstration of Technology (DoT-1) satellite, launched aboard a Soyuz rocket in July.

Earth captured from Low Earth Orbit by a Raspberry Pi

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

So, not that we’re complaining, but why did they send the Raspberry Pi Zero to space to begin with? Well, why not? As SSTL state:

Whilst the primary objective of the 17.5kg self-funded DoT-1 satellite is to demonstrate SSTL’s new Core Data Handling System (Core-DHS), accommodation was made available for some additional experimental payloads including the Raspberry Pi camera experiment which was designed and implemented in conjunction with the Surrey Space Centre.

Essentially, if you can fit a Raspberry Pi into your satellite, you should.


Managing Director of SSTL Sarah Parker went on to say that “the success of the Raspberry Pi camera experiment is an added bonus which we can now evaluate for future missions where it could be utilised for spacecraft ‘selfies’ to check the operation of key equipments, and also for outreach activities.”

SSTL’s very snazzy-looking Demonstration of Technology (DoT-1) satellite

The onboard Raspberry Pi Zero was equipped with a Raspberry Pi Camera Module and a DesignSpark M12 Mount Lens. Image data captured on the space-bound Raspberry Pi was sent back to the SSTL ground station via the Core-DHS.

So, have you sent a Raspberry Pi to space? Or anywhere else we wouldn’t expect a Raspberry Pi to go? Let us know in the comments!

The post Raspberry Pi in space! appeared first on Raspberry Pi.

Control a vintage Roland pen plotter with Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/control-vintage-roland-pen-plotter/

By refitting a vintage Roland DG DXY-990 pen plotter using Raspberry Pi, the members of Liege Hackerspace in Belgium have produced a rather nifty build that writes out every tweet mentioning a specific hashtag.

Liege Hackerspace member u/iooner first shared an image of the plotter yesterday, and fellow Redditors called for video of the project in action immediately.

Watch the full video here. And to see the code code for the project, visit the Liege Hackerspace GitHub.

The post Control a vintage Roland pen plotter with Raspberry Pi appeared first on Raspberry Pi.

Controlling a boom lift with a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/controlling-a-boom-lift-with-a-raspberry-pi/

Do you have a spare Raspberry Pi lying around? And a Bluetooth games controller? Do you have access to boom lifts or other heavy machinery?

Well, then we most certainly (do not) have the project for you.

Allow us to introduce what is (possibly, probably, hopefully) the world’s first Raspberry Pi–controlled boom lift. Weighing in at 13,000lb, this is the epitome of DON’T try this at home.

Please don’t!

Raspberry Pi-controlled boom lift

Shared on Reddit over the weekend, u/Ccundiff12’s project received many an upvote and concerned comment, but, as the poster explains, hacking the boom is a personal project for personal use to fix a specific problem — thankfully not something built for the sake of having some fun.

Meet STRETCH. Circa 1989 Genie Boom that I bought (cheap) from a neighbor. I use it to trim trees around my property. Its biggest problem was that it always got stuck. It’s not really an off-road vehicle. It used to take two people to move it around… one to drive the lift, and the other to push it with the tractor when it lost traction. The last time it got stuck, I asked my wife to assist by driving one of the two…….. the next day I started splicing into the control system. Now I can push with the tractor & run the boom via remote!

Visit the original Reddit post for more information on the build. And remember: please do not try this at home.

The post Controlling a boom lift with a Raspberry Pi appeared first on Raspberry Pi.

Use PlayStation Buzz! controllers with a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/use-playstation-buzz-controllers-with-a-raspberry-pi/

Buzz! was a favourite amongst my university housemates and me. With popular culture questions asked by an animated Jason Donovan, answered using real-life quiz controllers with a big red button, what’s not to like?

But, as with most of the tech available in the early 2000s, my Buzz! controllers now sit in a box somewhere, dusty and forgotten.

That’s why it is so goshdarn delightful to see PiMyLifeUp breathe new life into these awesome-looking games controllers.

Bringing Buzz! back

The tutorial uses the hidapi library to communicate with the controllers, allowing them to control functions through the Raspberry Pi, and the Raspberry Pi to control the LED within the big red button.

By the end of this tutorial, you will have learned how to read information about all your USB devices, learned how to read data that the devices are sending back and also how to write a library that will act as a simple wrapper to dealing with the device.

Aside from the Buzz! controllers, available on eBay or similar for a few pounds, you only need a Raspberry Pi and its essential peripherals to get started, as the controllers connect directly via USB — thanks, Buzz!

PiMyLifeUp’s tutorial is wonderfully detailed, explaining the hows and whys of the lines of code needed to turn your old Buzz! controllers into a quiz game written in Python that uses the coloured buttons to answer multiple-choice questions.

Guitar Hero, dance mats, Donkey Kong Bongos — what other gaming peripherals would you like to bring back to life?

The post Use PlayStation Buzz! controllers with a Raspberry Pi appeared first on Raspberry Pi.

Raspberry Pi Sense HAT impact recorder for your car

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-sense-hat-impact-recorder-for-your-car/

Let the accelerometer and gyroscope of your Raspberry Pi Sense HAT measure and record impact sustained in a car collision.

Raspberry Pi Sense HAT

The Raspberry Pi Sense HAT was originally designed for the European Astro Pi Challenge, inviting schoolchildren to code their own experiments for two Raspberry Pi units currently orbiting the Earth upon the International Space Station.

The Sense HAT is kitted out with an 8×8 RGB LED matrix and a five-button joystick, and it houses an array of useful sensors, including an accelerometer and gyroscope.

And it’s these two sensors that Instructables user Ashu_d has used for their Impact Recorder for Vehicles.

Impact Recorder for Vehicles

“Impact Recorder is designed to record impact sustained to a vehicle while driving or stationary,” Ashu_d explains. Alongside the Raspberry Pi and Sense HAT, the build also uses a Raspberry Pi Camera Module to record footage, saving video and/or picture files to the SD card for you to examine after a collision. “The impacts are stored in the database in the form of readings as well as video/picture.”

By following Ashu_d’s Instructables tutorial, you’re essentially building yourself a black box for your car, recording impact data as the Sense HAT records outside the standard parameters of your daily commute.

“Upon impact, remote users can be verified in real time,” they continue, “and remote users can then watch the saved video or take remote access to the Pi Camera Module and watch events accordingly.”

Ashu_d goes into great detail on how to use Node-RED and MQTT to complete the project, how you can view video in real time using VLC, and how each element works to create the final build over at Instructables.

The post Raspberry Pi Sense HAT impact recorder for your car appeared first on Raspberry Pi.

Playing Snake on a Raspberry Pi word clock

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/playing-snake-on-a-raspberry-pi-word-clock/

I have a soft spot for Raspberry Pi word clocks. True, they may not be as helpful as your standard clock face if you need to tell the time super quickly, but at least they’re easier to read than this binary clock built by engineerish.

“But Alex,” I hear you cry, “word clocks are so done. We’re over them. They’re so 2018. What’s so special about a word clock that you feel it to be worthy of a blog post?”

And the answer, dear reader, is Snake, the best gosh darn game to ever grace the screen of a mobile phone, ever — sorry, Candy Crush.

If you’re looking to build a word clock using your Raspberry Pi, here’s a great tutorial from Benedikt Künzel. And, if you’re looking to upgrade said word clock to another level and introduce it to Snake, well, actually, there isn’t a tutorial for that, yet, but there’s a whole conversation going on about it on Reddit, so you should check that out.

There is, however, a tutorial for coding your own game of Snake Slug on the Raspberry Pi Sense HAT here. So give that a whirl!

Until tomorrow, fair reader, adieu.

The post Playing Snake on a Raspberry Pi word clock appeared first on Raspberry Pi.

Bringing a book to life with Raspberry Pi | Hello World #9

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/bringing-a-book-to-life-with-raspberry-pi-hello-world-9/

Sian Wheatcroft created an interactive story display to enable children to explore her picture book This Bear, That Bear. She explains the project, and her current work in teaching, in the newest issue of Hello World magazine, available now.

The task of promoting my first children’s picture book, This Bear, That Bear, was a daunting one. At the time, I wasn’t a teacher and the thought of standing in front of assembly halls and classrooms sounded terrifying. As well as reading the book to the children, I wanted to make my events interactive using physical computing, showing a creative side to coding and enabling a story to come to life in a different way than what the children would typically see, i.e. animated retellings.

The plan

Coming from a tech-loving family, I naturally gravitated towards the Raspberry Pi, and found out about Bare Conductive and their PiCap. I first envisaged using their conductive paint on the canvas, enabling users to touch the paint to interact with the piece. It would be some sort of scene from the book, bringing some of the characters to life. I soon scrapped that idea, as I discovered that simply using copper tape on the back of the canvas was conductive enough, which also allowed me to add colour to the piece.

I enlisted the help of my two sons (two and five at the time) — they gladly supplied their voices to some of the bears and, my personal favourite on the canvas, the ghost. The final design features characters from the book — when children touch certain areas of the canvas, they hear the voices of the characters.

The back of the canvas, covered in copper tape

Getting the project up and running went pretty smoothly. I do regret making the piece so large, though, as it proved difficult to transport across the country, especially on the busy London Underground!

Interactivity and props

The project added a whole other layer to the events I was taking part in. In schools, I would read the book and have props for the children to wear, allowing them to act out the book as I read aloud. The canvas then added further interaction, and it surprised me how excited the children were about it. They were also really curious and wanted to know how it worked. I enjoyed showing them the back of the canvas with all its copper tape and crocodile clips. They were amazed by the fact it was all run on the Raspberry Pi — such a tiny computer!

The front of the interactive canvas

Fast-forward a few years, and I now find myself in the classroom full-time as a newly qualified teacher. The canvas has recently moved out of the classroom cupboard into my newly developed makerspace, in the hope of a future project being born.

I teach in Year 3, so coding in Python or using the command line on Raspbian may be a little beyond my students. However, I have a keen interest in project-based learning and am hoping to incorporate a host of cross-curricular activities with my students involving the canvas.

I hope to instil a love for digital making in my students and, in turn, show senior leaders what can be done with such equipment and projects.

A literacy project

This work really lends itself to a literacy project that other educators could try. Perhaps you’re reading a picture book or a more text-based piece: why not get the students to design the canvas using characters from the story? The project would also work equally well with foundation subjects like History or Science. Children could gather information onto the canvas, explaining how something works or how something happened. The age of the children would influence the level of involvement they had in the rest of the project’s creation. The back end could be pre-made — older children could help with the copper tape and wiring, while younger children could stop at the design process.

Part of the project is getting the children to create sounds to go with their design, enabling deeper thinking about a story or topic.

It’s about a collaborative process with the teacher and students, followed by the sharing of their creation with the broader school community.

Get Hello World magazine issue 9 for free

The brand-new issue of Hello World is available right now as a free PDF download from the Hello World website.

UK-based educators can also subscribe to receive Hello World as printed magazine FOR FREE, direct to their door. And those outside the UK, educator or not, can subscribe to receive free digital issues of Hello World in their inbox on the day of their release.

Head to helloworld.raspberrypi.org to sign up today!

The post Bringing a book to life with Raspberry Pi | Hello World #9 appeared first on Raspberry Pi.

Saving biologists’ time with Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/saving-biologists-time-with-raspberry-pi/

In an effort to save themselves and fellow biologists hours of time each week, Team IoHeat are currently prototyping a device that allows solutions to be heated while they are still in cold storage.

The IoHeat team didn’t provide any photos with their project writeup, so here’s a picture of a bored biologist that I found online

Saving time in the lab

As they explain in their prototype write-up:

As scientists working with living organisms (from single cells to tissue samples), we are often required to return to work outside of normal hours to maintain our specimens. In many cases, the compounds and solutions we are using in our line of work are stored at 4°C and need to reach 37°C before they can be used. So far, in order to do this we need to return to our workplace early, incubate our solutions at 37°C for 1–2h, depending on the required volume, and then use them in processes that often take a few minutes. It is clear that there is a lot of room here to improve our efficiency.

Controlling temperatures with Raspberry Pi

These hours wasted on waiting for solutions to heat up could be better spent elsewhere, so the team is building a Raspberry Pi–powered device that will allow them to control the heating process remotely.

We are aiming to built a small incubator that we can store in a cold room/fridge, and that can be activated remotely to warm up to a defined temperature. This incubator will enable us to safely store our reagents at low temperature and warm them up remotely before we need to use them, saving an estimate of 12h per week per user.

This is a great project idea, and they’ve already prototyped it using a Raspberry Pi, heating element, and fan. Temperature and humidity sensors connected to the Raspberry Pi monitor conditions inside the incubator, and the prototype can be controlled via Telegram.

Find out more about the project on Hackster.

We’ve got more than one biologist on the Raspberry Pi staff, so we have a personal appreciation for the effort behind this project, and we look forward to seeing how IoHeat progresses in the future.

The post Saving biologists’ time with Raspberry Pi appeared first on Raspberry Pi.

Take the Wizarding World of Harry Potter home with you

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/take-the-wizarding-world-of-harry-potter-home-with-you/

If you’ve visited the Wizarding World of Harry Potter and found yourself in possession of an interactive magic wand as a souvenir, then you’ll no doubt be wondering by now, “What do I do with it at home though?”

While the wand was great for setting off window displays at the park itself, it now sits dusty and forgotten upon a shelf. But it still has life left in it — let Jasmeet Singh show you how.

Real Working Harry Potter Wand With Computer Vision and ML

A few months back my brother visited Japan and had real wizarding experience in the Wizarding World of Harry Potter at the Universal Studios made possible through the technology of Computer Vision. At the Wizarding World of Harry Potter in Universal Studios the tourists can perform “real magic” at certain locations(where the motion capture system is installed) using specially made wands with retro-reflective beads at the tip.

How do Harry Potter interactive wands work?

The interactive displays at Universal Studios’ Wizarding World of Harry Potter have infrared cameras in place, which are ready to read the correct movements of retroflector-tipped wands. Move your wand in the right way, and the cameras will recognise your spell and set window displays in motion. Oooooo…magic!

How do I know this? Thanks to William Osman and Allen Pan, who used this Wizarding World technology to turn cheap hot dogs into their own unique wands! Those boys…

Hacking Wands at Harry Potter World

How to make your very own mostly-functional interactive wand. Please don’t ban me from Universal Studios. Links on my blog: http://www.williamosman.com/2017/12/hacking-harry-potter-wands.html Allen’s Channel: https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A Support us on Patreon: https://www.patreon.com/williamosman Website: http://www.williamosman.com/ Facebook: https://www.facebook.com/williamosmanscience/ InstaHam: https://www.instagram.com/crabsandscience/ CameraManJohn: http://www.johnwillner.com/

For his Raspberry Pi-enabled wand project, Jasmeet took that same Wizarding World concept to create a desktop storage box that opens and closes in response to the correct flicks of a wand.

A simple night vision camera can be used as our camera for motion capture as they also blast out infrared light which is not visible to humans but can be clearly seen with a camera that has no infrared filter.

So, the video stream from the camera is fed into a Raspberry Pi which has a Python program running OpenCV which is used for detecting, isolating and tracking the wand tip. Then we use SVM (Simple Vector Machine) algorithm of machine learning to recognize the pattern drawn and accordingly control the GPIOs of the raspberry pi to perform some activities.

For more information on the project, including all the code needed to get started, head over to hackster.io to find Jasmeet’s full tutorial.

The post Take the Wizarding World of Harry Potter home with you appeared first on Raspberry Pi.

Steampunk-inspired Raspberry Pi enclosure | HackSpace magazine #20

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/steampunk-inspired-raspberry-pi-enclosure-hackspace-magazine-20/

Who doesn’t like a good-looking case for their Raspberry Pi?

Exactly.

We’ve seen many homemade cases over the years, from 3D-printed enclosures to LEGO, Altoid tins and gravity-defying Zelda-themed wonderments. We love them all as much as we love own — our own case being this one if you fancy one — and always look forward to seeing more.

Cue this rather fancy steampunk-inspired enclosure made by Erich Styger, as featured in the latest issue of HackSpace magazine.

The magazine states:

This steampunk enclosure for the Raspberry Pi by Erich Styger was laser-cut out of 4 mm birch plywood, and stained to make it look a bit more 1890s. It’s built to fit a Raspberry Pi with an NXP tinyK22 board and a battery backup, and there are ports artfully crafted into it so that the system is fully functional even when the box is closed.

Those gears aren’t just for show: turn the central wheel on the front of the box to open the enclosure and get access to the electronics inside.



Cool, right?

What cases have you made for your Raspberry Pi? Let us know in the comments, or by tagging @Raspberry_Pi and @HackSpaceMag on Twitter.

HackSpace magazine is out now

You can read the rest of this feature in HackSpace magazine issue 20, out today in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy HackSpace mag directly from us — worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

The post Steampunk-inspired Raspberry Pi enclosure | HackSpace magazine #20 appeared first on Raspberry Pi.

Chat to Ada Lovelace via a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/chat-ada-lovelace-raspberry-pi/

Our friends, 8 Bits and a Byte, have built a Historic Voicebot, allowing users to chat to their favourite historical figures.

It’s rather marvellous.

The Historic Voicebot

Have a chat with your favourite person from the past with the Historic Voicebot! With this interactive installation, you can talk to a historical figure through both chat and voice. Made using Dialogflow, Node.js, HTML Canvas, an AIY Voice Kit, a Raspberry Pi and a vintage phone.

All the skills

Coding? Check. Woodwork? Check. Tearing apart a Google AIY Kit in order to retrofit it into a vintage telephone while ensuring it can still pick up voice via the handset? Check, check, check – this project has it all.

The concept consists of two parts:

  • A touchscreen with animations of a historical figure. The touchscreen also displays the dialog and has buttons so people can ask an FAQ.
  • A physical phone that captures speech and gives audio output, so it can be used to ask questions and listen to the answer.

While Nicole doesn’t go into full detail in the video, the Ada animation uses Dialogflow, Node.js, and HTML Canvas to work, and pairs up with the existing tech in the Google AIY Kit.

And, if you don’t have an AIY Kit to hand, don’t worry; you can have the same functionality using a standard USB speaker and microphone, and Google Home running on a Raspberry Pi.

You can find a tutorial for the whole project on hackster.io.

Follow 8 Bits and a Byte

There are a lot of YouTube channels out there that don’t have the follow count we reckon they deserve, and 8 Bits and a Byte is one of them. So, head to their channel and click that subscribe button, and be sure to check out their other videos for some more Raspberry Pi goodness.

The post Chat to Ada Lovelace via a Raspberry Pi appeared first on Raspberry Pi.

An in-flight entertainment system that isn’t terrible

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/an-in-flight-entertainment-system-that-isnt-terrible/

No Alex today; she’s tragically germ-ridden and sighing weakly beneath a heap of duvets on her sofa. But, in spite of it all, she’s managed to communicate that I should share Kyle‘s Raspberry Pi in-flight entertainment system with you.

I made my own IN-FLIGHT entertainment system! ft. Raspberry Pi

Corsair Ironclaw RGB Gaming Mouse: http://bit.ly/2vFwYw5 From poor A/V quality to lackluster content selection, in-flight entertainment centers are full of compromises. Let’s create our own using a Raspberry Pi 3 B+!

Kyle is far from impressed with the in-flight entertainment on most planes: the audio is terrible, the touchscreens are annoyingly temperamental, and the movie selection is often frustratingly limited. So, the night before a morning flight to visit family (congrats on becoming an uncle, Kyle! We trust you’ll use your powers only for good!), he hit upon the idea of building his own in-flight entertainment system, using stuff he already had lying around.

Yes, we know, he could just have taken a tablet with him. But we agree with him that his solution is way funner. It’s way more customisable too. Kyle’s current rushed prototype features a Raspberry Pi 3B+ neatly cable-tied into a drilled Altoids tin lid, which is fixed flush to the back of a 13.3-inch portable monitor with adhesive Velcro. He’s using VLC Media Player, which comes with Raspbian and supports a lot of media control functions straight out of the box; this made using his mouse and mini keyboard a fairly seamless experience. And a handy magnetic/suction bracket lets him put the screen in the back of the seat in front to the best possible use: as a mounting surface.

As Kyle says, “Is it ridiculous? I mean, yes, obviously it’s ridiculous, but would you ever consider doing something like this?”

The post An in-flight entertainment system that isn’t terrible appeared first on Raspberry Pi.

Playback your favourite records with Plynth

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/playback-your-favourite-records-with-plynth/

Use album artwork to trigger playback of your favourite music with Plynth, the Raspberry Pi–powered, camera-enhanced record stand.

Plynth Demo

This is “Plynth Demo” by Plynth on Vimeo, the home for high quality videos and the people who love them.

Record playback with Plynth

Plynth uses a Raspberry Pi and Pi Camera Module to identify cover artwork and play the respective album on your sound system, via your preferred streaming service or digital library.

As the project’s website explains, using Plynth is pretty simple. Just:

  • Place a n LP, CD, tape, VHS, DVD, piece of artwork – anything, really – onto Plynth
  • Plynth uses its built-in camera to scan and identify the work
  • Plynth starts streaming your music on your connected speakers or home stereo system

As for Plynth’s innards? The stand houses a Raspberry Pi 3B+ and Camera Module, and relies on “a combination of the Google Vision API and OpenCV, which is great because there’s a lot of documentation online for both of them”, states the project creator, sp_cecamp, on Reddit.

Other uses

Some of you may wonder why you wouldn’t have your records with your record player and, as such, use that record player to play those records. If you are one of these people, then consider, for example, the beautiful Damien Rice LP I own that tragically broke during a recent house move. While I can no longer play the LP, its artwork is still worthy of a place on my record shelf, and with Plynth I can still play the album as well.

In addition, instead of album artwork to play an album, you could use photographs, doodles, or type to play curated playlists, or, as mentioned on the website, DVDs to play the movies soundtrack, or CDs to correctly select the right disc in a disc changer.

Convinced or not, I think what we can all agree on is that Plynth is a good-looking bit of kit, and at Pi Towers look forward to seeing where they project leads.

The post Playback your favourite records with Plynth appeared first on Raspberry Pi.

Ghost hunting in schools with Raspberry Pi | Hello World #9

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/digital-ghost-hunt-raspberry-pi-hello-world-9/

In Hello World issue 9, out today, Elliott Hall and Tom Bowtell discuss The Digital Ghost Hunt: an immersive theatre and augmented reality experience that takes a narrative-driven approach in order to make digital education accessible.The Digital Ghost Hunt - Raspberry Pi Hello World

The Digital Ghost Hunt combines coding education, augmented reality, and live performance to create an immersive storytelling experience. It begins when a normal school assembly is disrupted by the unscheduled arrival of Deputy Undersecretary Quill of the Ministry of Real Paranormal Hygiene, there to recruit students into the Department’s Ghost Removal Section. She explains that the Ministry needs the students’ help because children have the unique ability to see and interact with ghostly spirits.

The Digital Ghost Hunt - Raspberry Pi Hello World

Under the tutelage of Deputy Undersecretary Quill and Professor Bray (the Ministry’s chief scientist), the young ghost-hunters learn how to program and use their own paranormal detectors. These allow students to discover ghostly traces, translate Morse code using flickering lights, and find messages left in ultraviolet ectoplasm. Meanwhile, the ghost communicates through a mixture of traditional theatrical effects and the poltergeist potential of smart home technology. Together, students uncover the ghost’s identity, discover her reason for haunting the building, unmask a dastardly villain, find a stolen necklace, clear the ghost’s name, right an old wrong, and finally set the ghost free.

The Digital Ghost Hunt - Raspberry Pi Hello World

The project conducted two successful test performances at the Battersea Arts Centre in South London in November 2018, funded by a grant from AHRC’s New Immersive Experiences Programme, led by Mary Krell of Sussex University. Its next outing will be at York Theatre Royal in August.

Adventures in learning

The Digital Ghost Hunt arose out of a shared interest in putting experimentation and play at the centre for learners. We felt that the creative, tinkering spirit of earlier computing — learning how to program BASIC on an Atari 800XL to create a game, for example — was being supplanted by a didactic and prescriptive approach to digital learning. KIT Theatre’s practice — creating classroom adventures that cast pupils as heroes in missions — is also driven by a less trammelled, more experiment-led approach to learning.

We believe that the current Computer Science curriculum isn’t engaging enough for students. We wanted to shift the context of how computer science is perceived, from ‘something techy and boyish’ back to the tool of the imagination that it should be. We did this by de-emphasising the technology itself and, instead, placing it in the larger context of a ghost story. The technology becomes a tool to navigate the narrative world — a means to an end rather than an end in itself. This helps create a more welcoming space for students who are bored or intimidated by the computer lab: a space of performance, experiment, and play.

Ghosts and machines

The device we built for the students was the SEEK Ghost Detector, made from a Raspberry Pi and a micro:bit, which Elliot stapled together. The micro:bit was the device’s interface, which students programmed using the block-based language MakeCode. The Raspberry Pi handled the heavier technical requirements of the show, and communicated them to the micro:bit in a form students could use. The detector had no screen, only the micro:bit’s LEDs. This meant that students’ attention was focused on the environment and what the detector could tell them about it, rather than having their attention pulled to a screen to the exclusion of the ‘real’ world around them.

In addition to the detector, we used a Raspberry Pi to make ordinary smart home technology into our poltergeist. It communicated with the students using effects such as smart bulbs that flashed in Morse code, which the students could then decode on their devices.

To program their detectors, students took part in a series of four lessons at school, focused on thinking like a programmer and the logic of computing. Two of the lessons featured significant time spent programming the micro:bit. The first focused on reading code on paper, and students were asked to look out for any bugs. The second had students thinking about what the detector will do, and acting out the steps together, effectively ‘performing’ the algorithm.

We based the process on KIT Theatre’s Adventures in Learning model, and its Theory of Change:

  • Disruption: an unexpected event grabs attention, creating a new learning space
  • Mission: a character directly asks pupils for their help in completing a mission
  • Achievement: pupils receive training and are given agency to successfully complete the mission

The Ghost Hunt

During these lessons, Deputy Undersecretary Quill kept in touch with the students via email, and the chief scientist sent them instructional videos. Their work culminated in their first official assignment: a ghost haunting the Battersea Arts Centre — a 120-year-old former town hall. After arriving, students were split into four teams, working together. Two teams analysed evidence at headquarters, while the others went out into places in the building where we’d hidden ghostly traces that their detectors would discover. The students pooled their findings to learn the ghost’s story, and then the teams swapped roles. The detectors were therefore only one method of exploring the narrative world. But the fact that they’d learned some of the code gave students a confidence in using the detectors — a sense of ownership. During one performance, one of the students pointed to a detector and said: “I made that.”

Future of the project

The project is now adapting the experience into a family show, in partnership with Pilot Theatre, premiering in York in summer 2019. We aim for it to become the core of an ecosystem of lessons, ideas, and activities — to engage audiences in the imaginative possibilities of digital technology.

You can find out more about the Digital Ghost Hunt on their website, which also includes rather lovely videos that Vimeo won’t let me embed here.

Hello World issue 9

The brand-new issue of Hello World is out today, and available right now as a free PDF download from the Hello World website.

Hello World issu 9

UK-based educators can also sign up to receive Hello World as printed magazine FOR FREE, direct to their door, by signing up here. And those outside the UK, educator or not, can subscribe to receive new issues of Hello World in their inbox on the day of release.

The post Ghost hunting in schools with Raspberry Pi | Hello World #9 appeared first on Raspberry Pi.

Quick Fix — a vending machine for likes and followers

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/quick-fix-a-vending-machine-for-likes-and-followers/

Sometimes we come across a project that just scores a perfect 10 on all fronts. This is one of them: an art installation using Raspberry Pi that has something interesting to say, does it elegantly, and is implemented beautifully (nothing presses our buttons like a make that’s got a professionally glossy finish like this).

Quick Fix is a vending machine (and art installation) that sells social media likes and followers. Drop in a coin, enter your social media account name, and an army of fake accounts will like or follow you. I’ll leave the social commentary to you. Here’s a video from the maker, Dries Depoorter:

Quick Fix – the vending machine selling likes and followers

Quick Fix in an interactive installation by Dries Depoorter. The artwork makes it possible to buy followers or likes in just a few seconds. For a few euros you already have 200 of likes on Instagram. “Quick Fix “is easy to use. Choose your product, pay and fill in your social media username.

There’s a Raspberry Pi 3B+ in there, along with an Arduino, powering a coin acceptor and some I2C LCD screens. Then there’s a stainless steel heavy-duty keyboard, which we’re lusting after (a spot of Googling unearthed this, which appears to be the same thing, if you’re in the market for a panel-mounted beast of a keyboard).

This piece was commissioned by Pixelache, a cultural association from Helsinki, whose work looks absolutely fascinating if you’ve got a few minutes to browse. Thanks to them and to Dries Depoorter — I have a feeling this won’t be the last of his projects we’re going to feature here.

The post Quick Fix — a vending machine for likes and followers appeared first on Raspberry Pi.

The NSFW Roomba that screams when it bumps into stuff

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/the-nsfw-roomba-that-screams-when-it-bumps-into-stuff/

Hide yo’ kids, hide yo’ wife — today’s project is NSF(some)W, or for your kids. LOTS OF SWEARS. You have been warned. We’re not embedding the video here so you can decide for yourself whether or not to watch it — click on the image below to watch a sweary robot on YouTube.

Sweary Roomba

Michael Reeves is best known for such… educational Raspberry Pi projects as:

He’s back, this time with yet another NSFW (depending on your W) project that triggers the sensors in a Roomba smart vacuum to scream in pain whenever it bumps into an object.

Because why not?

How it’s made

We have no clue. So very done with fans asking for the project to be made — “I hate every single one of you!” — Michael refuses to say how he did it. But we know this much is true: the build uses optical sensors, relays, a radio receiver, and a Raspberry Pi. How do I know this? Because he showed us:

Roomba innards

But as for the rest? We leave it up to you, our plucky community of tinkerers, to figure it out. Share your guesses in the comments.

More Michael Reeves

Michael is one of our Pi Towers guilty pleasures and if, like us, you want to watch more of his antics, you should subscribe to him on YouTube.

The post The NSFW Roomba that screams when it bumps into stuff appeared first on Raspberry Pi.

Play musical chairs with Marvel’s Avengers

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/play-musical-chairs-marvels-avengers/

You read that title correctly.

I played musical chairs against the Avengers in AR

Planning on teaching a 12 week class on mixed reality development starting in June. Apply if interested – http://bit.ly/3016EdH

Playing with the Avengers

Abhishek Singh recently shared his latest Unity creation on Reddit. And when Simon, Righteous Keeper of the Swag at Pi Towers, shared it with us on Slack because it uses a Raspberry Pi, we all went a little doolally.

As Abhishek explains in the video, the game uses a Raspberry Pi to control sensors and lights, bridging the gap between augmented reality and the physical world.

“The physical world communicates with the virtual world through these buttons. So, when I sit down on a physical chair, and press down on it, the virtual characters know that this chair is occupied,” he explains, highlighting that the chairs’ sensors are attached to a Raspberry Pi. To save the physical-world player from accidentally sitting on Thanos’s lap, LEDs, also attached to the Pi, turn on when a chair is occupied in the virtual world.

Turning the losing Avenger to dust? Priceless 👌

Why do you recognise Abhishek Singh?

You might be thinking, “Where do I recognise Abhishek Singh from?” I was asking myself this for a solid hour — until I remembered Peeqo, his robot that only communicates through GIF reactions. And Instagif NextStep, his instant camera that prints GIFs!

First GIFs, and now musical chairs with the Avengers? Abhishek, it’s as if you’ve understood the very soul of the folks who work at Pi Towers, and for that, well…

The post Play musical chairs with Marvel’s Avengers appeared first on Raspberry Pi.