Tag Archives: romania

Mission Space Lab flight status announced!

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/mission-space-lab-flight-status-announced/

In September of last year, we launched our 2017/2018 Astro Pi challenge with our partners at the European Space Agency (ESA). Students from ESA membership and associate countries had the chance to design science experiments and write code to be run on one of our two Raspberry Pis on the International Space Station (ISS).

Astro Pi Mission Space Lab logo

Submissions for the Mission Space Lab challenge have just closed, and the results are in! Students had the opportunity to design an experiment for one of the following two themes:

  • Life in space
    Making use of Astro Pi Vis (Ed) in the European Columbus module to learn about the conditions inside the ISS.
  • Life on Earth
    Making use of Astro Pi IR (Izzy), which will be aimed towards the Earth through a window to learn about Earth from space.

ESA astronaut Alexander Gerst, speaking from the replica of the Columbus module at the European Astronaut Center in Cologne, has a message for all Mission Space Lab participants:

ESA astronaut Alexander Gerst congratulates Astro Pi 2017-18 winners

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Flight status

We had a total of 212 Mission Space Lab entries from 22 countries. Of these, a 114 fantastic projects have been given flight status, and the teams’ project code will run in space!

But they’re not winners yet. In April, the code will be sent to the ISS, and then the teams will receive back their experimental data. Next, to get deeper insight into the process of scientific endeavour, they will need produce a final report analysing their findings. Winners will be chosen based on the merit of their final report, and the winning teams will get exclusive prizes. Check the list below to see if your team got flight status.

Belgium

Flight status achieved:

  • Team De Vesten, Campus De Vesten, Antwerpen
  • Ursa Major, CoderDojo Belgium, West-Vlaanderen
  • Special operations STEM, Sint-Claracollege, Antwerpen

Canada

Flight status achieved:

  • Let It Grow, Branksome Hall, Toronto
  • The Dark Side of Light, Branksome Hall, Toronto
  • Genie On The ISS, Branksome Hall, Toronto
  • Byte by PIthons, Youth Tech Education Society & Kid Code Jeunesse, Edmonton
  • The Broadviewnauts, Broadview, Ottawa

Czech Republic

Flight status achieved:

  • BLEK, Střední Odborná Škola Blatná, Strakonice

Denmark

Flight status achieved:

  • 2y Infotek, Nærum Gymnasium, Nærum
  • Equation Quotation, Allerød Gymnasium, Lillerød
  • Team Weather Watchers, Allerød Gymnasium, Allerød
  • Space Gardners, Nærum Gymnasium, Nærum

Finland

Flight status achieved:

  • Team Aurora, Hyvinkään yhteiskoulun lukio, Hyvinkää

France

Flight status achieved:

  • INC2, Lycée Raoul Follereau, Bourgogne
  • Space Project SP4, Lycée Saint-Paul IV, Reunion Island
  • Dresseurs2Python, clg Albert CAMUS, essonne
  • Lazos, Lycée Aux Lazaristes, Rhone
  • The space nerds, Lycée Saint André Colmar, Alsace
  • Les Spationautes Valériquais, lycée de la Côte d’Albâtre, Normandie
  • AstroMega, Institut de Genech, north
  • Al’Crew, Lycée Algoud-Laffemas, Auvergne-Rhône-Alpes
  • AstroPython, clg Albert CAMUS, essonne
  • Aruden Corp, Lycée Pablo Neruda, Normandie
  • HeroSpace, clg Albert CAMUS, essonne
  • GalaXess [R]evolution, Lycée Saint Cricq, Nouvelle-Aquitaine
  • AstroBerry, clg Albert CAMUS, essonne
  • Ambitious Girls, Lycée Adam de Craponne, PACA

Germany

Flight status achieved:

  • Uschis, St. Ursula Gymnasium Freiburg im Breisgau, Breisgau
  • Dosi-Pi, Max-Born-Gymnasium Germering, Bavaria

Greece

Flight status achieved:

  • Deep Space Pi, 1o Epal Grevenon, Grevena
  • Flox Team, 1st Lyceum of Kifissia, Attiki
  • Kalamaria Space Team, Second Lyceum of Kalamaria, Central Macedonia
  • The Earth Watchers, STEM Robotics Academy, Thessaly
  • Celestial_Distance, Gymnasium of Kanithos, Sterea Ellada – Evia
  • Pi Stars, Primary School of Rododaphne, Achaias
  • Flarions, 5th Primary School of Salamina, Attica

Ireland

Flight status achieved:

  • Plant Parade, Templeogue College, Leinster
  • For Peats Sake, Templeogue College, Leinster
  • CoderDojo Clonakilty, Co. Cork

Italy

Flight status achieved:

  • Trentini DOP, CoderDojo Trento, TN
  • Tarantino Space Lab, Liceo G. Tarantino, BA
  • Murgia Sky Lab, Liceo G. Tarantino, BA
  • Enrico Fermi, Liceo XXV Aprile, Veneto
  • Team Lampone, CoderDojoTrento, TN
  • GCC, Gali Code Club, Trentino Alto Adige/Südtirol
  • Another Earth, IISS “Laporta/Falcone-Borsellino”
  • Anti Pollution Team, IIS “L. Einaudi”, Sicily
  • e-HAND, Liceo Statale Scientifico e Classico ‘Ettore Majorana’, Lombardia
  • scossa team, ITTS Volterra, Venezia
  • Space Comet Sisters, Scuola don Bosco, Torino

Luxembourg

Flight status achieved:

  • Spaceballs, Atert Lycée Rédange, Diekirch
  • Aline in space, Lycée Aline Mayrisch Luxembourg (LAML)

Poland

Flight status achieved:

  • AstroLeszczynPi, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • Astrokompasy, High School nr XVII in Wrocław named after Agnieszka Osiecka, Lower Silesian
  • Cosmic Investigators, Publiczna Szkoła Podstawowa im. Św. Jadwigi Królowej w Rzezawie, Małopolska
  • ApplePi, III Liceum Ogólnokształcące im. prof. T. Kotarbińskiego w Zielonej Górze, Lubusz Voivodeship
  • ELE Society 2, Zespol Szkol Elektronicznych i Samochodowych, Lubuskie
  • ELE Society 1, Zespol Szkol Elektronicznych i Samochodowych, Lubuskie
  • SpaceOn, Szkola Podstawowa nr 12 w Jasle – Gimnazjum Nr 2, Podkarpackie
  • Dewnald Ducks, III Liceum Ogólnokształcące w Zielonej Górze, lubuskie
  • Nova Team, III Liceum Ogolnoksztalcace im. prof. T. Kotarbinskiego, lubuskie district
  • The Moons, Szkola Podstawowa nr 12 w Jasle – Gimnazjum Nr 2, Podkarpackie
  • Live, Szkoła Podstawowa nr 1 im. Tadeusza Kościuszki w Zawierciu, śląskie
  • Storm Hunters, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • DeepSky, Szkoła Podstawowa nr 1 im. Tadeusza Kościuszki w Zawierciu, śląskie
  • Small Explorers, ZPO Konina, Malopolska
  • AstroZSCL, Zespół Szkół w Czerwionce-Leszczynach, śląskie
  • Orchestra, Szkola Podstawowa nr 12 w Jasle, Podkarpackie
  • ApplePi, I Liceum Ogolnoksztalcace im. Krola Stanislawa Leszczynskiego w Jasle, podkarpackie
  • Green Crew, Szkoła Podstawowa nr 2 w Czeladzi, Silesia

Portugal

Flight status achieved:

  • Magnetics, Escola Secundária João de Deus, Faro
  • ECA_QUEIROS_PI, Secondary School Eça de Queirós, Lisboa
  • ESDMM Pi, Escola Secundária D. Manuel Martins, Setúbal
  • AstroPhysicists, EB 2,3 D. Afonso Henriques, Braga

Romania

Flight status achieved:

  • Caelus, “Tudor Vianu” National High School of Computer Science, District One
  • CodeWarriors, “Tudor Vianu” National High School of Computer Science, District One
  • Dark Phoenix, “Tudor Vianu” National High School of Computer Science, District One
  • ShootingStars, “Tudor Vianu” National High School of Computer Science, District One
  • Astro Pi Carmen Sylva 2, Liceul Teoretic “Carmen Sylva”, Constanta
  • Astro Meridian, Astro Club Meridian 0, Bihor

Slovenia

Flight status achieved:

  • astrOSRence, OS Rence
  • Jakopičevca, Osnovna šola Riharda Jakopiča, Ljubljana

Spain

Flight status achieved:

  • Exea in Orbit, IES Cinco Villas, Zaragoza
  • Valdespartans, IES Valdespartera, Zaragoza
  • Valdespartans2, IES Valdespartera, Zaragoza
  • Astropithecus, Institut de Bruguers, Barcelona
  • SkyPi-line, Colegio Corazón de María, Asturias
  • ClimSOLatic, Colegio Corazón de María, Asturias
  • Científicosdelsaz, IES Profesor Pablo del Saz, Málaga
  • Canarias 2, IES El Calero, Las Palmas
  • Dreamers, M. Peleteiro, A Coruña
  • Canarias 1, IES El Calero, Las Palmas

The Netherlands

Flight status achieved:

  • Team Kaki-FM, Rkbs De Reiger, Noord-Holland

United Kingdom

Flight status achieved:

  • Binco, Teignmouth Community School, Devon
  • 2200 (Saddleworth), Detached Flight Royal Air Force Air Cadets, Lanchashire
  • Whatevernext, Albyn School, Highlands
  • GraviTeam, Limehurst Academy, Leicestershire
  • LSA Digital Leaders, Lytham St Annes Technology and Performing Arts College, Lancashire
  • Mead Astronauts, Mead Community Primary School, Wiltshire
  • STEAMCademy, Castlewood Primary School, West Sussex
  • Lux Quest, CoderDojo Banbridge, Co. Down
  • Temparatus, Dyffryn Taf, Carmarthenshire
  • Discovery STEMers, Discovery STEM Education, South Yorkshire
  • Code Inverness, Code Club Inverness, Highland
  • JJB, Ashton Sixth Form College, Tameside
  • Astro Lab, East Kent College, Kent
  • The Life Savers, Scratch and Python, Middlesex
  • JAAPiT, Taylor Household, Nottingham
  • The Heat Guys, The Archer Academy, Greater London
  • Astro Wantenauts, Wantage C of E Primary School, Oxfordshire
  • Derby Radio Museum, Radio Communication Museum of Great Britain, Derbyshire
  • Bytesyze, King’s College School, Cambridgeshire

Other

Flight status achieved:

  • Intellectual Savage Stars, Lycée français de Luanda, Luanda

 

Congratulations to all successful teams! We are looking forward to reading your reports.

The post Mission Space Lab flight status announced! appeared first on Raspberry Pi.

ЕСПЧ: свободата на изразяване по време на телевизионни дебати

Post Syndicated from nellyo original https://nellyo.wordpress.com/2017/09/21/echr_tv/

Европейският съд по правата на човека (ЕКПЧ) в решение по дело  Ghiulfer Predescu v. Romania  обсъди защитата на свободата на изразяване по време на телевизионни дебати.

Журналистка участва в телевизионно предаване на национална телевизия заедно с кмета на Констанца. Обсъжда се насилие в крайбрежния курорт Мамая. По време на предаването журналистката твърди, че кметът е лично свързан с престъпни  кланове, действащи в района. Кметът настоява, че твърденията на  Предеску относно конкретни факти не са   проверени и доказани и, като свързва името му с престъпни групи, журналистката сериозно засяга доброто му име. Решението на съда по казуса е в полза на кмета.  Журналистката е осъдена да плати обезщетение (около 10 000 евро)   и да публикува за своя сметка съдебното решение в два вестника.

Въпросът пред Европейския съд по правата на човека се състои в това дали националните власти са постигнали справедлив баланс между защитата на свободата на изразяване, защитавана от чл.10 ЕКПЧ,  и защитата на доброто име –  право, което като аспект на личния живот  е защитено от чл. 8 ЕКПЧ.

Стандарти

Съдът напомня първо, че става дума за политическо слово и политическото слово е силно защитено. Когато се водят дебати по въпроси от обществен интерес, както в случая,   се допускат критики в по-широки граници    по отношение на държавен служител или политик, действащ в негово публично качество, отколкото във връзка с частно лице.

Журналистическата свобода обхваща и евентуално преувеличаване или дори провокация. По-специално ЕСПЧ отново заявява, че свободата на изразяване е приложима и към “информация” или “идеи”, които обиждат, шокират или смущават.

В ситуации, в които   е направено фактическо изявление, по отношение на което има недостатъчно доказателства, но журналистът обсъжда въпрос от истински обществен интерес, се проверява дали журналистът е действал професионално и добросъвестно. Защитата, предоставена от член 10 от ЕКПЧ на журналистите във връзка с отразяване на въпроси от общ интерес, е подчинена на условието те да действат добросъвестно за да предоставят точна и надеждна информация в съответствие с етиката на журналистиката.  Впрочем подобен е и американският стандарт в New York Times Co. v. Sullivan, 376 U.S. 254.

Съдът трябва също така да провери дали местните власти са постигнали справедлив баланс между защитата на свободата на изразяване, предвидена в чл.10, и защитата на доброто име на засегнатото лице  – право, защитено от чл. 8 от Конвенцията.  ЕСПЧ   определя редица критерии, които трябва да бъдат взети предвид, когато правото на свобода на изразяване се балансира спрямо правото на зачитане на личния живот (вж Axel Springer AG срещу Германия   39954/08,  Von Hannover срещу Германия (№ 2)  40660/08 и 60641/08 и др.)

На последно място, естеството и тежестта на наложените санкции са също фактори, които трябва да бъдат взети предвид при оценката на пропорционалността на намесата. Както вече изтъква Съдът, намесата в свободата на изразяване може да има смразяващо  въздействие върху упражняването на тази свобода.

Решението

Съдът подчертава функциите на медиите: със сигурност между тях е функцията да предупреждават обществеността за предполагаеми злоупотреби от страна на  държавни служители и политици на изборни длъжности.

Форматът   е предназначен да насърчава обмен на мнения и  аргументи по такъв начин, че изразените мнения да се противопоставят един на друг и дебатите да привличат вниманието на зрителите. При живо предаване по телевизията   възможността  да се преформулира,  прецизира или да се оттегли каквото и да било изявление е ограничена.

В случая изявленията на журналистката  са имали достатъчна фактическа основа, тъй като се основават на информация, която вече е била известна на широката общественост – а именно статии и журналистически разследващ материал, публикуван преди това за кмета.

ЕСПЧ е на мнение, че нищо в случая не предполага, че твърденията на журналиста са били направени с други мотиви, а не добросъвестно и в преследване на легитимна цел   обсъждане на въпрос от обществен интерес.

Накрая ЕСПЧ отбелязва, че обезщетението е с изключително висок размер, способен да има  смразяващ и възпиращ ефект върху свободата на изразяване.

В заключение: Стандартите, приложени от националните институции, не   гарантират справедлив баланс между съответните права и свързаните с тях интереси.  Намесата в свободата на изразяване не е  необходима в едно демократично общество  по смисъла на член 10 § 2 от ЕКПЧ.

Нарушение на чл. 10  ЕКПЧ.

Filed under: Media Law Tagged: еспч

Approved Reseller programme launch PLUS more Pi Zero resellers

Post Syndicated from Mike Buffham original https://www.raspberrypi.org/blog/approved-reseller/

Ever since the launch of the first Raspberry Pi back in 2012, one thing that has been critical to us is to make our products easy to buy in as many countries as possible.

Buying a Raspberry Pi is certainly much simpler nowadays than it was when we were just starting out. Nevertheless, we want to go even further, and so today we are introducing an Approved Reseller programme. With this programme, we aim to recognise those resellers that represent Raspberry Pi products well, and make purchasing them easy for their customers.

The Raspberry Pi Approved Reseller programme

We’re launching the programme in eleven countries today: the UK, Ireland, France, Spain, Portugal, Italy, the Netherlands, Belgium, Luxembourg, Greece and South Africa. Over the next few weeks, you will see us expand it to at least 50 countries.

We will link to the Approved Resellers’ websites directly from our Products page via the “Buy now” button. For customers who want to buy for business applications we have also added a “Buy for business” button. After clicking it, you will be able to select your country from a drop down menu. Doing so will link you directly to the local websites of our two licensed partners, Premier Farnell and Electrocomponents.

Our newest Raspberry Pi Zero resellers

On top of this we are also adding 6 new Raspberry Pi Zero resellers, giving 13 countries direct access to the Raspberry Pi Zero for the first time. We are particularly excited that these countries include Brazil and India, since they both have proved difficult to supply in the past.

The full list of new resellers is:

Hong Kong and China

Brazil

Raspberry Pi Brazil

India

Raspberry Pi India

Czech Republic and Slovakia

Raspberry Pi Czech Republic and Slovakia

Slovenia, Croatia, Serbia and Bosnia-Herzegovina

Raspberry Pi Slovenia, Croatia, Serbia and Bosnia

Romania, Bulgaria and Hungary

Raspberry Pi Romania, Bulgaria and Hungary

Mexico

Raspberry Pi Mexico

The post Approved Reseller programme launch PLUS more Pi Zero resellers appeared first on Raspberry Pi.

Deploying an NGINX Reverse Proxy Sidecar Container on Amazon ECS

Post Syndicated from Nathan Peck original https://aws.amazon.com/blogs/compute/nginx-reverse-proxy-sidecar-container-on-amazon-ecs/

Reverse proxies are a powerful software architecture primitive for fetching resources from a server on behalf of a client. They serve a number of purposes, from protecting servers from unwanted traffic to offloading some of the heavy lifting of HTTP traffic processing.

This post explains the benefits of a reverse proxy, and explains how to use NGINX and Amazon EC2 Container Service (Amazon ECS) to easily implement and deploy a reverse proxy for your containerized application.

Components

NGINX is a high performance HTTP server that has achieved significant adoption because of its asynchronous event driven architecture. It can serve thousands of concurrent requests with a low memory footprint. This efficiency also makes it ideal as a reverse proxy.

Amazon ECS is a highly scalable, high performance container management service that supports Docker containers. It allows you to run applications easily on a managed cluster of Amazon EC2 instances. Amazon ECS helps you get your application components running on instances according to a specified configuration. It also helps scale out these components across an entire fleet of instances.

Sidecar containers are a common software pattern that has been embraced by engineering organizations. It’s a way to keep server side architecture easier to understand by building with smaller, modular containers that each serve a simple purpose. Just like an application can be powered by multiple microservices, each microservice can also be powered by multiple containers that work together. A sidecar container is simply a way to move part of the core responsibility of a service out into a containerized module that is deployed alongside a core application container.

The following diagram shows how an NGINX reverse proxy sidecar container operates alongside an application server container:

In this architecture, Amazon ECS has deployed two copies of an application stack that is made up of an NGINX reverse proxy side container and an application container. Web traffic from the public goes to an Application Load Balancer, which then distributes the traffic to one of the NGINX reverse proxy sidecars. The NGINX reverse proxy then forwards the request to the application server and returns its response to the client via the load balancer.

Reverse proxy for security

Security is one reason for using a reverse proxy in front of an application container. Any web server that serves resources to the public can expect to receive lots of unwanted traffic every day. Some of this traffic is relatively benign scans by researchers and tools, such as Shodan or nmap:

[18/May/2017:15:10:10 +0000] "GET /YesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScann HTTP/1.1" 404 1389 - Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36
[18/May/2017:18:19:51 +0000] "GET /clientaccesspolicy.xml HTTP/1.1" 404 322 - Cloud mapping experiment. Contact [email protected]

But other traffic is much more malicious. For example, here is what a web server sees while being scanned by the hacking tool ZmEu, which scans web servers trying to find PHPMyAdmin installations to exploit:

[18/May/2017:16:27:39 +0000] "GET /mysqladmin/scripts/setup.php HTTP/1.1" 404 391 - ZmEu
[18/May/2017:16:27:39 +0000] "GET /web/phpMyAdmin/scripts/setup.php HTTP/1.1" 404 394 - ZmEu
[18/May/2017:16:27:39 +0000] "GET /xampp/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /apache-default/phpmyadmin/scripts/setup.php HTTP/1.1" 404 405 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /phpMyAdmin-2.10.0.0/scripts/setup.php HTTP/1.1" 404 397 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /mysql/scripts/setup.php HTTP/1.1" 404 386 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /admin/scripts/setup.php HTTP/1.1" 404 386 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /forum/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /typo3/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:42 +0000] "GET /phpMyAdmin-2.10.0.1/scripts/setup.php HTTP/1.1" 404 399 - ZmEu
[18/May/2017:16:27:44 +0000] "GET /administrator/components/com_joommyadmin/phpmyadmin/scripts/setup.php HTTP/1.1" 404 418 - ZmEu
[18/May/2017:18:34:45 +0000] "GET /phpmyadmin/scripts/setup.php HTTP/1.1" 404 390 - ZmEu
[18/May/2017:16:27:45 +0000] "GET /w00tw00t.at.blackhats.romanian.anti-sec:) HTTP/1.1" 404 401 - ZmEu

In addition, servers can also end up receiving unwanted web traffic that is intended for another server. In a cloud environment, an application may end up reusing an IP address that was formerly connected to another service. It’s common for misconfigured or misbehaving DNS servers to send traffic intended for a different host to an IP address now connected to your server.

It’s the responsibility of anyone running a web server to handle and reject potentially malicious traffic or unwanted traffic. Ideally, the web server can reject this traffic as early as possible, before it actually reaches the core application code. A reverse proxy is one way to provide this layer of protection for an application server. It can be configured to reject these requests before they reach the application server.

Reverse proxy for performance

Another advantage of using a reverse proxy such as NGINX is that it can be configured to offload some heavy lifting from your application container. For example, every HTTP server should support gzip. Whenever a client requests gzip encoding, the server compresses the response before sending it back to the client. This compression saves network bandwidth, which also improves speed for clients who now don’t have to wait as long for a response to fully download.

NGINX can be configured to accept a plaintext response from your application container and gzip encode it before sending it down to the client. This allows your application container to focus 100% of its CPU allotment on running business logic, while NGINX handles the encoding with its efficient gzip implementation.

An application may have security concerns that require SSL termination at the instance level instead of at the load balancer. NGINX can also be configured to terminate SSL before proxying the request to a local application container. Again, this also removes some CPU load from the application container, allowing it to focus on running business logic. It also gives you a cleaner way to patch any SSL vulnerabilities or update SSL certificates by updating the NGINX container without needing to change the application container.

NGINX configuration

Configuring NGINX for both traffic filtering and gzip encoding is shown below:

http {
  # NGINX will handle gzip compression of responses from the app server
  gzip on;
  gzip_proxied any;
  gzip_types text/plain application/json;
  gzip_min_length 1000;
 
  server {
    listen 80;
 
    # NGINX will reject anything not matching /api
    location /api {
      # Reject requests with unsupported HTTP method
      if ($request_method !~ ^(GET|POST|HEAD|OPTIONS|PUT|DELETE)$) {
        return 405;
      }
 
      # Only requests matching the whitelist expectations will
      # get sent to the application server
      proxy_pass http://app:3000;
      proxy_http_version 1.1;
      proxy_set_header Upgrade $http_upgrade;
      proxy_set_header Connection 'upgrade';
      proxy_set_header Host $host;
      proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
      proxy_cache_bypass $http_upgrade;
    }
  }
}

The above configuration only accepts traffic that matches the expression /api and has a recognized HTTP method. If the traffic matches, it is forwarded to a local application container accessible at the local hostname app. If the client requested gzip encoding, the plaintext response from that application container is gzip-encoded.

Amazon ECS configuration

Configuring ECS to run this NGINX container as a sidecar is also simple. ECS uses a core primitive called the task definition. Each task definition can include one or more containers, which can be linked to each other:

 {
  "containerDefinitions": [
     {
       "name": "nginx",
       "image": "<NGINX reverse proxy image URL here>",
       "memory": "256",
       "cpu": "256",
       "essential": true,
       "portMappings": [
         {
           "containerPort": "80",
           "protocol": "tcp"
         }
       ],
       "links": [
         "app"
       ]
     },
     {
       "name": "app",
       "image": "<app image URL here>",
       "memory": "256",
       "cpu": "256",
       "essential": true
     }
   ],
   "networkMode": "bridge",
   "family": "application-stack"
}

This task definition causes ECS to start both an NGINX container and an application container on the same instance. Then, the NGINX container is linked to the application container. This allows the NGINX container to send traffic to the application container using the hostname app.

The NGINX container has a port mapping that exposes port 80 on a publically accessible port but the application container does not. This means that the application container is not directly addressable. The only way to send it traffic is to send traffic to the NGINX container, which filters that traffic down. It only forwards to the application container if the traffic passes the whitelisted rules.

Conclusion

Running a sidecar container such as NGINX can bring significant benefits by making it easier to provide protection for application containers. Sidecar containers also improve performance by freeing your application container from various CPU intensive tasks. Amazon ECS makes it easy to run sidecar containers, and automate their deployment across your cluster.

To see the full code for this NGINX sidecar reference, or to try it out yourself, you can check out the open source NGINX reverse proxy reference architecture on GitHub.

– Nathan
 @nathankpeck

CoderDojo Coolest Projects 2017

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/coderdojo-coolest-projects-2017/

When I heard we were merging with CoderDojo, I was delighted. CoderDojo is a wonderful organisation with a spectacular community, and it’s going to be great to join forces with the team and work towards our common goal: making a difference to the lives of young people by making technology accessible to them.

You may remember that last year Philip and I went along to Coolest Projects, CoderDojo’s annual event at which their global community showcase their best makes. It was awesome! This year a whole bunch of us from the Raspberry Pi Foundation attended Coolest Projects with our new Irish colleagues, and as expected, the projects on show were as cool as can be.

Coolest Projects 2017 attendee

Crowd at Coolest Projects 2017

This year’s coolest projects!

Young maker Benjamin demoed his brilliant RGB LED table tennis ball display for us, and showed off his brilliant project tutorial website codemakerbuddy.com, which he built with Python and Flask. [Click on any of the images to enlarge them.]

Coolest Projects 2017 LED ping-pong ball display
Coolest Projects 2017 Benjamin and Oly

Next up, Aimee showed us a recipes app she’d made with the MIT App Inventor. It was a really impressive and well thought-out project.

Coolest Projects 2017 Aimee's cook book
Coolest Projects 2017 Aimee's setup

This very successful OpenCV face detection program with hardware installed in a teddy bear was great as well:

Coolest Projects 2017 face detection bear
Coolest Projects 2017 face detection interface
Coolest Projects 2017 face detection database

Helen’s and Oly’s favourite project involved…live bees!

Coolest Projects 2017 live bees

BEEEEEEEEEEES!

Its creator, 12-year-old Amy, said she wanted to do something to help the Earth. Her project uses various sensors to record data on the bee population in the hive. An adjacent monitor displays the data in a web interface:

Coolest Projects 2017 Aimee's bees

Coolest robots

I enjoyed seeing lots of GPIO Zero projects out in the wild, including this robotic lawnmower made by Kevin and Zach:

Raspberry Pi Lawnmower

Kevin and Zach’s Raspberry Pi lawnmower project with Python and GPIO Zero, showed at CoderDojo Coolest Projects 2017

Philip’s favourite make was a Pi-powered robot you can control with your mind! According to the maker, Laura, it worked really well with Philip because he has no hair.

Philip Colligan on Twitter

This is extraordinary. Laura from @CoderDojo Romania has programmed a mind controlled robot using @Raspberry_Pi @coolestprojects

And here are some pictures of even more cool robots we saw:

Coolest Projects 2017 coolest robot no.1
Coolest Projects 2017 coolest robot no.2
Coolest Projects 2017 coolest robot no.3

Games, toys, activities

Oly and I were massively impressed with the work of Mogamad, Daniel, and Basheerah, who programmed a (borrowed) Amazon Echo to make a voice-controlled text-adventure game using Java and the Alexa API. They’ve inspired me to try something similar using the AIY projects kit and adventurelib!

Coolest Projects 2017 Mogamad, Daniel, Basheerah, Oly
Coolest Projects 2017 Alexa text-based game

Christopher Hill did a brilliant job with his Home Alone LEGO house. He used sensors to trigger lights and sounds to make it look like someone’s at home, like in the film. I should have taken a video – seeing it in action was great!

Coolest Projects 2017 Lego home alone house
Coolest Projects 2017 Lego home alone innards
Coolest Projects 2017 Lego home alone innards closeup

Meanwhile, the Northern Ireland Raspberry Jam group ran a DOTS board activity, which turned their area into a conductive paint hazard zone.

Coolest Projects 2017 NI Jam DOTS activity 1
Coolest Projects 2017 NI Jam DOTS activity 2
Coolest Projects 2017 NI Jam DOTS activity 3
Coolest Projects 2017 NI Jam DOTS activity 4
Coolest Projects 2017 NI Jam DOTS activity 5
Coolest Projects 2017 NI Jam DOTS activity 6

Creativity and ingenuity

We really enjoyed seeing so many young people collaborating, experimenting, and taking full advantage of the opportunity to make real projects. And we loved how huge the range of technologies in use was: people employed all manner of hardware and software to bring their ideas to life.

Philip Colligan on Twitter

Wow! Look at that room full of awesome young people. @coolestprojects #coolestprojects @CoderDojo

Congratulations to the Coolest Projects 2017 prize winners, and to all participants. Here are some of the teams that won in the different categories:

Coolest Projects 2017 winning team 1
Coolest Projects 2017 winning team 2
Coolest Projects 2017 winning team 3

Take a look at the gallery of all winners over on Flickr.

The wow factor

Raspberry Pi co-founder and Foundation trustee Pete Lomas came along to the event as well. Here’s what he had to say:

It’s hard to describe the scale of the event, and photos just don’t do it justice. The first thing that hit me was the sheer excitement of the CoderDojo ninjas [the children attending Dojos]. Everyone was setting up for their time with the project judges, and their pure delight at being able to show off their creations was evident in both halls. Time and time again I saw the ninjas apply their creativity to help save the planet or make someone’s life better, and it’s truly exciting that we are going to help that continue and expand.

Even after 8 hours, enthusiasm wasn’t flagging – the awards ceremony was just brilliant, with ninjas high-fiving the winners on the way to the stage. This speaks volumes about the ethos and vision of the CoderDojo founders, where everyone is a winner just by being part of a community of worldwide friends. It was a brilliant introduction, and if this weekend was anything to go by, our merger certainly is a marriage made in Heaven.

Join this awesome community!

If all this inspires you as much as it did us, consider looking for a CoderDojo near you – and sign up as a volunteer! There’s plenty of time for young people to build up skills and start working on a project for next year’s event. Check out coolestprojects.com for more information.

The post CoderDojo Coolest Projects 2017 appeared first on Raspberry Pi.

European Astro Pi Challenge winners

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/european-astro-pi-winners/

In October last year, with the European Space Agency and CNES, we launched the first ever European Astro Pi challenge. We asked students from all across Europe to write code for the flight of French ESA astronaut Thomas Pesquet to the International Space Station (ISS) as part of the Proxima mission. Today, we are very excited to announce the winners! First of all, though, we have a very special message from Thomas Pesquet himself, which comes all the way from space…

Thomas Pesquet congratulates Astro Pi participants from space

French ESA astronaut Thomas Pesquet floats in to thank all participants in the European Astro Pi challenge. In October last year, together with the European Space Agency, we launched the first ever European Astro Pi challenge for the flight of French ESA astronaut Thomas Pesquet to the International Space Station (ISS) as part of mission Proxima.

Thomas also recorded a video in French: you can click here to see it and to enjoy some more of his excellent microgravity acrobatics.

A bit of background

This year’s competition expands on our previous work with British ESA astronaut Tim Peake, in which, together with the UK Space Agency and ESA, we invited UK students to design software experiments to run on board the ISS.

Astro Pi Vis (AKA Ed) on board the ISS. Image from ESA.

In 2015, we built two space-hardened Raspberry Pi units, or Astro Pis, to act as the platform on which to run the students’ code. Affectionately nicknamed Ed and Izzy, the units were launched into space on an Atlas V rocket, arriving at the ISS a few days before Tim Peake. He had a great time running all of the programs, and the data collected was transmitted back to Earth so that the winners could analyse their results and share them with the public.

The European challenge provides the opportunity to design code to be run in space to school students from every ESA member country. To support the participants, we worked with ESA and CPC to design, manufacture, and distribute several hundred free Astro Pi activity kits to the teams who registered. Further support for teachers was provided in the form of three live webinars, a demonstration video, and numerous free educational resources.

Image of Astro Pi kit box

The Astro Pi activity kit used by participants in the European challenge.

The challenge

Thomas Pesquet assigned two missions to the teams:

  • A primary mission, for which teams needed to write code to detect when the crew are working in the Columbus module near the Astro Pi units.
  • A secondary mission, for which teams needed to come up with their own scientific investigation and write the code to execute it.

The deadline for code submissions was 28 February 2017, with the judging taking place the following week. We can now reveal which schools will have the privilege of having their code uploaded to the ISS and run in space.

The proud winners!

Everyone produced great work and the judges found it really tough to narrow the entries down. In addition to the winning submissions, there were a number of teams who had put a great deal of work into their projects, and whose entries have been awarded ‘Highly Commended’ status. These teams will also have their code run on the ISS.

We would like to say a big thank you to everyone who participated. Massive congratulations are due to the winners! We will upload your code digitally using the space-to-ground link over the next few weeks. Your code will be executed, and any files created will be downloaded from space and returned to you via email for analysis.

In no particular order, the winners are:

France

  • Winners
    • @stroteam, Institut de Genech, Hauts-de-France
    • Wierzbinski, École à la maison, Occitanie
    • Les Marsilyens, École J. M. Marsily, PACA
    • MauriacSpaceCoders, Lycée François Mauriac, Nouvelle-Aquitaine
    • Ici-bas, École de Saint-André d’Embrun, PACA
    • Les Astrollinaires, Lycée général et technologique Guillaume Apollinaire, PACA
  • Highly Commended
    • ALTAÏR, Lycée Albert Claveille, Nouvelle Aquitaine
    • GalaXess Reloaded, Lycée Saint-Cricq, Nouvelle Aquitaine
    • Les CM de Neffiès, École Louis Authie, Occitanie
    • Équipe Sciences, Collège Léonce Bourliaguet, Nouvelle Aquitaine
    • Maurois ICN, Lycée André Maurois, Normandie
    • Space Project SP4, Lycée Saint-Paul IV, Île de la Réunion
    • 4eme2 Gymnase Jean Sturm, Gymnase Jean Sturm, Grand Est
    • Astro Pascal dans les étoiles, École Pascal, Île-de-France
    • les-4mis, EREA Alexandre Vialatte, Auvergne-Rhône-Alpes
    • Space Cavenne Oddity, École Cavenne, Auvergne-Rhône-Alpes
    • Luanda for Space, Lycée Français de Luanda, Angola
      (Note: this is a French international school and the team members have French nationality/citizenship)
    • François Detrille, Lycée Langevin-Wallon, Île-de-France

Greece

  • Winners
    • Delta, TALOS ed-UTH-robotix, Magnesia
    • Weightless Mass, Intercultural Junior High School of Evosmos, Macedonia
    • 49th Astro Pi Teamwork, 49th Elementary School of Patras, Achaia
    • Astro Travellers, 12th Primary School of Petroupolis, Attiki
    • GKGF-1, Gymnasium of Kanithos, Sterea Ellada
  • Highly Commended
    • AstroShot, Lixouri High School, Kefalonia
    • Salamina Rockets Pi, 1st Senior High School of Salamina, Attiki
    • The four Astro-fans, 6th Gymnasio of Veria, Macedonia
    • Samians, 2nd Gymnasio Samou, North Eastern Aegean

United Kingdom

  • Winners
    • Madeley Ad Astra, Madeley Academy, Shropshire
    • Team Dexterity, Dyffryn Taf School, Carmarthenshire
    • The Kepler Kids, St Nicolas C of E Junior School, Berkshire
    • Catterline Pi Bugs, Catterline Primary, Aberdeenshire
    • smileyPi, Westminster School, London
  • Highly Commended
    • South London Raspberry Jam, South London Raspberry Jam, London

Italy

  • Winners
    • Garibaldini, Istituto Comprensivo Rapisardi-Garibaldi, Sicilia
    • Buzz, IIS Verona-Trento, Sicilia
    • Water warmers, Liceo Scientifico Galileo Galilei, Abruzzo
    • Juvara/Einaudi Siracusa, IIS L. Einaudi, Sicilia
    • AstroTeam, IIS Arimondi-Eula, Piemonte

Poland

  • Winners
    • Birnam, Zespół Szkoły i Gimnazjum im. W. Orkana w Niedźwiedziu, Malopolska
    • TechnoZONE, Zespół Szkół nr 2 im. Eugeniusza Kwiatkowskiego, Podkarpacie
    • DeltaV, Gimnazjum nr 49, Województwo śląskie
    • The Safety Crew, MZS Gimnazjum nr 1, Województwo śląskie
    • Warriors, Zespół Szkół Miejskich nr 3 w Jaśle, Podkarpackie
  • Highly Commended
    • The Young Cuiavian Astronomers, Gimnazjum im. Stefana Kardynała Wyszyńskiego w Piotrkowie Kujawskim, Kujawsko-pomorskie
    • AstroLeszczynPi, I Liceum Ogolnokształcace w Jasle im. Krola Stanislawa Leszczynskiego, Podkarpackie

Portugal

  • Winners
    • Sampaionautas, Escola Secundária de Sampaio, Setúbal
    • Labutes Pi, Escola Secundária D. João II, Setúbal
    • AgroSpace Makers, EB 2/3 D. Afonso Henriques, Cávado
    • Zero Gravity, EB 2/3 D. Afonso Henriques, Cávado
    • Lua, Agrupamento de Escolas José Belchior Viegas, Algarve

Romania

  • Winners
    • AstroVianu, Tudor Vianu National High School of Computer Science, Bucharest
    • MiBus Researchers, Mihai Busuioc High School, Iași
    • Cosmos Dreams, Nicolae Balcescu High School, Cluj
    • Carmen Sylva Astro Pi, Liceul Teoretic Carmen Sylva Eforie, Constanța
    • Stargazers, Tudor Vianu National High School of Computer Science, Bucharest

Spain

  • Winners
    • Papaya, IES Sopela, Vizcaya
    • Salesianos-Ubeda, Salesianos Santo Domingo Savio, Andalusia
    • Valdespartans, IES Valdespartera, Aragón
    • Ins Terrassa, Institut Terrassa, Cataluña

Ireland

  • Winner
    • Moonty1, Mayfield Community School, Cork

Germany

  • Winner
    • BSC Behringersdorf Space Center, Labenwolf-Gymnasium, Bayern

Norway

  • Winner
    • Skedsmo Kodeklubb, Kjeller Skole, Akershus

Hungary

  • Winner
    • UltimaSpace, Mihaly Tancsics Grammar School of Kaposvár, Somogy

Belgium

  • Winner
    • Lambda Voyager, Stedelijke Humaniora Dilsen, Limburg

FAQ

Why aren’t all 22 ESA member states listed?

  • Because some countries did not have teams participating in the challenge.

Why do some countries have fewer than five teams?

  • Either because those countries had fewer than five teams qualifying for space flight, or because they had fewer than five teams participating in the challenge.

How will I get my results back from space?

  • After your code has run on the ISS, we will download any files you created and they will be emailed to your teacher.

The post European Astro Pi Challenge winners appeared first on Raspberry Pi.