Tag Archives: Ukraine

Disrupting FlyingYeti’s campaign targeting Ukraine

Post Syndicated from Cloudforce One original https://blog.cloudflare.com/disrupting-flyingyeti-campaign-targeting-ukraine


Cloudforce One is publishing the results of our investigation and real-time effort to detect, deny, degrade, disrupt, and delay threat activity by the Russia-aligned threat actor FlyingYeti during their latest phishing campaign targeting Ukraine. At the onset of Russia’s invasion of Ukraine on February 24, 2022, Ukraine introduced a moratorium on evictions and termination of utility services for unpaid debt. The moratorium ended in January 2024, resulting in significant debt liability and increased financial stress for Ukrainian citizens. The FlyingYeti campaign capitalized on anxiety over the potential loss of access to housing and utilities by enticing targets to open malicious files via debt-themed lures. If opened, the files would result in infection with the PowerShell malware known as COOKBOX, allowing FlyingYeti to support follow-on objectives, such as installation of additional payloads and control over the victim’s system.

Since April 26, 2024, Cloudforce One has taken measures to prevent FlyingYeti from launching their phishing campaign – a campaign involving the use of Cloudflare Workers and GitHub, as well as exploitation of the WinRAR vulnerability CVE-2023-38831. Our countermeasures included internal actions, such as detections and code takedowns, as well as external collaboration with third parties to remove the actor’s cloud-hosted malware. Our effectiveness against this actor prolonged their operational timeline from days to weeks. For example, in a single instance, FlyingYeti spent almost eight hours debugging their code as a result of our mitigations. By employing proactive defense measures, we successfully stopped this determined threat actor from achieving their objectives.

Executive Summary

  • On April 18, 2024, Cloudforce One detected the Russia-aligned threat actor FlyingYeti preparing to launch a phishing espionage campaign targeting individuals in Ukraine.
  • We discovered the actor used similar tactics, techniques, and procedures (TTPs) as those detailed in Ukranian CERT’s article on UAC-0149, a threat group that has primarily targeted Ukrainian defense entities with COOKBOX malware since at least the fall of 2023.
  • From mid-April to mid-May, we observed FlyingYeti conduct reconnaissance activity, create lure content for use in their phishing campaign, and develop various iterations of their malware. We assessed that the threat actor intended to launch their campaign in early May, likely following Orthodox Easter.
  • After several weeks of monitoring actor reconnaissance and weaponization activity (Cyber Kill Chain Stages 1 and 2), we successfully disrupted FlyingYeti’s operation moments after the final COOKBOX payload was built.
  • The payload included an exploit for the WinRAR vulnerability CVE-2023-38831, which FlyingYeti will likely continue to use in their phishing campaigns to infect targets with malware.
  • We offer steps users can take to defend themselves against FlyingYeti phishing operations, and also provide recommendations, detections, and indicators of compromise.

Who is FlyingYeti?

FlyingYeti is the cryptonym given by Cloudforce One to the threat group behind this phishing campaign, which overlaps with UAC-0149 activity tracked by CERT-UA in February and April 2024. The threat actor uses dynamic DNS (DDNS) for their infrastructure and leverages cloud-based platforms for hosting malicious content and for malware command and control (C2). Our investigation of FlyingYeti TTPs suggests this is likely a Russia-aligned threat group. The actor appears to primarily focus on targeting Ukrainian military entities. Additionally, we observed Russian-language comments in FlyingYeti’s code, and the actor’s operational hours falling within the UTC+3 time zone.

Campaign background

In the days leading up to the start of the campaign, Cloudforce One observed FlyingYeti conducting reconnaissance on payment processes for Ukrainian communal housing and utility services:

  • April 22, 2024 – research into changes made in 2016 that introduced the use of QR codes in payment notices
  • April 22, 2024 – research on current developments concerning housing and utility debt in Ukraine
  • April 25, 2024 – research on the legal basis for restructuring housing debt in Ukraine as well as debt involving utilities, such as gas and electricity

Cloudforce One judges that the observed reconnaissance is likely due to the Ukrainian government’s payment moratorium introduced at the start of the full-fledged invasion in February 2022. Under this moratorium, outstanding debt would not lead to evictions or termination of provision of utility services. However, on January 9, 2024, the government lifted this ban, resulting in increased pressure on Ukrainian citizens with outstanding debt. FlyingYeti sought to capitalize on that pressure, leveraging debt restructuring and payment-related lures in an attempt to increase their chances of successfully targeting Ukrainian individuals.

Analysis of the Komunalka-themed phishing site

The disrupted phishing campaign would have directed FlyingYeti targets to an actor-controlled GitHub page at hxxps[:]//komunalka[.]github[.]io, which is a spoofed version of the Kyiv Komunalka communal housing site https://www.komunalka.ua. Komunalka functions as a payment processor for residents in the Kyiv region and allows for payment of utilities, such as gas, electricity, telephone, and Internet. Additionally, users can pay other fees and fines, and even donate to Ukraine’s defense forces.

Based on past FlyingYeti operations, targets may be directed to the actor’s Github page via a link in a phishing email or an encrypted Signal message. If a target accesses the spoofed Komunalka platform at hxxps[:]//komunalka[.]github[.]io, the page displays a large green button with a prompt to download the document “Рахунок.docx” (“Invoice.docx”), as shown in Figure 1. This button masquerades as a link to an overdue payment invoice but actually results in the download of the malicious archive “Заборгованість по ЖКП.rar” (“Debt for housing and utility services.rar”).

Figure 1: Prompt to download malicious archive “Заборгованість по ЖКП.rar”

A series of steps must take place for the download to successfully occur:

  • The target clicks the green button on the actor’s GitHub page hxxps[:]//komunalka.github[.]io
  • The target’s device sends an HTTP POST request to the Cloudflare Worker worker-polished-union-f396[.]vqu89698[.]workers[.]dev with the HTTP request body set to “user=Iahhdr”
  • The Cloudflare Worker processes the request and evaluates the HTTP request body
  • If the request conditions are met, the Worker fetches the RAR file from hxxps[:]//raw[.]githubusercontent[.]com/kudoc8989/project/main/Заборгованість по ЖКП.rar, which is then downloaded on the target’s device

Cloudforce One identified the infrastructure responsible for facilitating the download of the malicious RAR file and remediated the actor-associated Worker, preventing FlyingYeti from delivering its malicious tooling. In an effort to circumvent Cloudforce One’s mitigation measures, FlyingYeti later changed their malware delivery method. Instead of the Workers domain fetching the malicious RAR file, it was loaded directly from GitHub.

Analysis of the malicious RAR file

During remediation, Cloudforce One recovered the RAR file “Заборгованість по ЖКП.rar” and performed analysis of the malicious payload. The downloaded RAR archive contains multiple files, including a file with a name that contains the unicode character “U+201F”. This character appears as whitespace on Windows devices and can be used to “hide” file extensions by adding excessive whitespace between the filename and the file extension. As highlighted in blue in Figure 2, this cleverly named file within the RAR archive appears to be a PDF document but is actually a malicious CMD file (“Рахунок на оплату.pdf[unicode character U+201F].cmd”).

Figure 2: Files contained in the malicious RAR archive “Заборгованість по ЖКП.rar” (“Housing Debt.rar”)

FlyingYeti included a benign PDF in the archive with the same name as the CMD file but without the unicode character, “Рахунок на оплату.pdf” (“Invoice for payment.pdf”). Additionally, the directory name for the archive once decompressed also contained the name “Рахунок на оплату.pdf”. This overlap in names of the benign PDF and the directory allows the actor to exploit the WinRAR vulnerability CVE-2023-38831. More specifically, when an archive includes a benign file with the same name as the directory, the entire contents of the directory are opened by the WinRAR application, resulting in the execution of the malicious CMD. In other words, when the target believes they are opening the benign PDF “Рахунок на оплату.pdf”, the malicious CMD file is executed.

The CMD file contains the FlyingYeti PowerShell malware known as COOKBOX. The malware is designed to persist on a host, serving as a foothold in the infected device. Once installed, this variant of COOKBOX will make requests to the DDNS domain postdock[.]serveftp[.]com for C2, awaiting PowerShell cmdlets that the malware will subsequently run.

Alongside COOKBOX, several decoy documents are opened, which contain hidden tracking links using the Canary Tokens service. The first document, shown in Figure 3 below, poses as an agreement under which debt for housing and utility services will be restructured.

Figure 3: Decoy document Реструктуризація боргу за житлово комунальні послуги.docx

The second document (Figure 4) is a user agreement outlining the terms and conditions for the usage of the payment platform komunalka[.]ua.

Figure 4: Decoy document Угода користувача.docx (User Agreement.docx)

The use of relevant decoy documents as part of the phishing and delivery activity are likely an effort by FlyingYeti operators to increase the appearance of legitimacy of their activities.

The phishing theme we identified in this campaign is likely one of many themes leveraged by this actor in a larger operation to target Ukrainian entities, in particular their defense forces. In fact, the threat activity we detailed in this blog uses many of the same techniques outlined in a recent FlyingYeti campaign disclosed by CERT-UA in mid-April 2024, where the actor leveraged United Nations-themed lures involving Peace Support Operations to target Ukraine’s military. Due to Cloudforce One’s defensive actions covered in the next section, this latest FlyingYeti campaign was prevented as of the time of publication.

Mitigating FlyingYeti activity

Cloudforce One mitigated FlyingYeti’s campaign through a series of actions. Each action was taken to increase the actor’s cost of continuing their operations. When assessing which action to take and why, we carefully weighed the pros and cons in order to provide an effective active defense strategy against this actor. Our general goal was to increase the amount of time the threat actor spent trying to develop and weaponize their campaign.

We were able to successfully extend the timeline of the threat actor’s operations from hours to weeks. At each interdiction point, we assessed the impact of our mitigation to ensure the actor would spend more time attempting to launch their campaign. Our mitigation measures disrupted the actor’s activity, in one instance resulting in eight additional hours spent on debugging code.

Due to our proactive defense efforts, FlyingYeti operators adapted their tactics multiple times in their attempts to launch the campaign. The actor originally intended to have the Cloudflare Worker fetch the malicious RAR file from GitHub. After Cloudforce One interdiction of the Worker, the actor attempted to create additional Workers via a new account. In response, we disabled all Workers, leading the actor to load the RAR file directly from GitHub. Cloudforce One notified GitHub, resulting in the takedown of the RAR file, the GitHub project, and suspension of the account used to host the RAR file. In return, FlyingYeti began testing the option to host the RAR file on the file sharing sites pixeldrain and Filemail, where we observed the actor alternating the link on the Komunalka phishing site between the following:

  • hxxps://pixeldrain[.]com/api/file/ZAJxwFFX?download=one
  • hxxps://1014.filemail[.]com/api/file/get?filekey=e_8S1HEnM5Rzhy_jpN6nL-GF4UAP533VrXzgXjxH1GzbVQZvmpFzrFA&pk_vid=a3d82455433c8ad11715865826cf18f6

We notified GitHub of the actor’s evolving tactics, and in response GitHub removed the Komunalka phishing site. After analyzing the files hosted on pixeldrain and Filemail, we determined the actor uploaded dummy payloads, likely to monitor access to their phishing infrastructure (FileMail logs IP addresses, and both file hosting sites provide view and download counts). At the time of publication, we did not observe FlyingYeti upload the malicious RAR file to either file hosting site, nor did we identify the use of alternative phishing or malware delivery methods.

A timeline of FlyingYeti’s activity and our corresponding mitigations can be found below.

Event timeline

Date Event Description
2024-04-18 12:18 Threat Actor (TA) creates a Worker to handle requests from a phishing site
2024-04-18 14:16 TA creates phishing site komunalka[.]github[.]io on GitHub
2024-04-25 12:25 TA creates a GitHub repo to host a RAR file
2024-04-26 07:46 TA updates the first Worker to handle requests from users visiting komunalka[.]github[.]io
2024-04-26 08:24 TA uploads a benign test RAR to the GitHub repo
2024-04-26 13:38 Cloudforce One identifies a Worker receiving requests from users visiting komunalka[.]github[.]io, observes its use as a phishing page
2024-04-26 13:46 Cloudforce One identifies that the Worker fetches a RAR file from GitHub (the malicious RAR payload is not yet hosted on the site)
2024-04-26 19:22 Cloudforce One creates a detection to identify the Worker that fetches the RAR
2024-04-26 21:13 Cloudforce One deploys real-time monitoring of the RAR file on GitHub
2024-05-02 06:35 TA deploys a weaponized RAR (CVE-2023-38831) to GitHub with their COOKBOX malware packaged in the archive
2024-05-06 10:03 TA attempts to update the Worker with link to weaponized RAR, the Worker is immediately blocked
2024-05-06 10:38 TA creates a new Worker, the Worker is immediately blocked
2024-05-06 11:04 TA creates a new account (#2) on Cloudflare
2024-05-06 11:06 TA creates a new Worker on account #2 (blocked)
2024-05-06 11:50 TA creates a new Worker on account #2 (blocked)
2024-05-06 12:22 TA creates a new modified Worker on account #2
2024-05-06 16:05 Cloudforce One disables the running Worker on account #2
2024-05-07 22:16 TA notices the Worker is blocked, ceases all operations
2024-05-07 22:18 TA deletes original Worker first created to fetch the RAR file from the GitHub phishing page
2024-05-09 19:28 Cloudforce One adds phishing page komunalka[.]github[.]io to real-time monitoring
2024-05-13 07:36 TA updates the github.io phishing site to point directly to the GitHub RAR link
2024-05-13 17:47 Cloudforce One adds COOKBOX C2 postdock[.]serveftp[.]com to real-time monitoring for DNS resolution
2024-05-14 00:04 Cloudforce One notifies GitHub to take down the RAR file
2024-05-15 09:00 GitHub user, project, and link for RAR are no longer accessible
2024-05-21 08:23 TA updates Komunalka phishing site on github.io to link to pixeldrain URL for dummy payload (pixeldrain only tracks view and download counts)
2024-05-21 08:25 TA updates Komunalka phishing site to link to FileMail URL for dummy payload (FileMail tracks not only view and download counts, but also IP addresses)
2024-05-21 12:21 Cloudforce One downloads PixelDrain document to evaluate payload
2024-05-21 12:47 Cloudforce One downloads FileMail document to evaluate payload
2024-05-29 23:59 GitHub takes down Komunalka phishing site
2024-05-30 13:00 Cloudforce One publishes the results of this investigation

Coordinating our FlyingYeti response

Cloudforce One leveraged industry relationships to provide advanced warning and to mitigate the actor’s activity. To further protect the intended targets from this phishing threat, Cloudforce One notified and collaborated closely with GitHub’s Threat Intelligence and Trust and Safety Teams. We also notified CERT-UA and Cloudflare industry partners such as CrowdStrike, Mandiant/Google Threat Intelligence, and Microsoft Threat Intelligence.

Hunting FlyingYeti operations

There are several ways to hunt FlyingYeti in your environment. These include using PowerShell to hunt for WinRAR files, deploying Microsoft Sentinel analytics rules, and running Splunk scripts as detailed below. Note that these detections may identify activity related to this threat, but may also trigger unrelated threat activity.

PowerShell hunting

Consider running a PowerShell script such as this one in your environment to identify exploitation of CVE-2023-38831. This script will interrogate WinRAR files for evidence of the exploit.

CVE-2023-38831
Description:winrar exploit detection 
open suspios (.tar / .zip / .rar) and run this script to check it 

function winrar-exploit-detect(){
$targetExtensions = @(".cmd" , ".ps1" , ".bat")
$tempDir = [System.Environment]::GetEnvironmentVariable("TEMP")
$dirsToCheck = Get-ChildItem -Path $tempDir -Directory -Filter "Rar*"
foreach ($dir in $dirsToCheck) {
    $files = Get-ChildItem -Path $dir.FullName -File
    foreach ($file in $files) {
        $fileName = $file.Name
        $fileExtension = [System.IO.Path]::GetExtension($fileName)
        if ($targetExtensions -contains $fileExtension) {
            $fileWithoutExtension = [System.IO.Path]::GetFileNameWithoutExtension($fileName); $filename.TrimEnd() -replace '\.$'
            $cmdFileName = "$fileWithoutExtension"
            $secondFile = Join-Path -Path $dir.FullName -ChildPath $cmdFileName
            
            if (Test-Path $secondFile -PathType Leaf) {
                Write-Host "[!] Suspicious pair detected "
                Write-Host "[*]  Original File:$($secondFile)" -ForegroundColor Green 
                Write-Host "[*] Suspicious File:$($file.FullName)" -ForegroundColor Red

                # Read and display the content of the command file
                $cmdFileContent = Get-Content -Path $($file.FullName)
                Write-Host "[+] Command File Content:$cmdFileContent"
            }
        }
    }
}
}
winrar-exploit-detect

Microsoft Sentinel

In Microsoft Sentinel, consider deploying the rule provided below, which identifies WinRAR execution via cmd.exe. Results generated by this rule may be indicative of attack activity on the endpoint and should be analyzed.

DeviceProcessEvents
| where InitiatingProcessParentFileName has @"winrar.exe"
| where InitiatingProcessFileName has @"cmd.exe"
| project Timestamp, DeviceName, FileName, FolderPath, ProcessCommandLine, AccountName
| sort by Timestamp desc

Splunk

Consider using this script in your Splunk environment to look for WinRAR CVE-2023-38831 execution on your Microsoft endpoints. Results generated by this script may be indicative of attack activity on the endpoint and should be analyzed.

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where Processes.parent_process_name=winrar.exe `windows_shells` OR Processes.process_name IN ("certutil.exe","mshta.exe","bitsadmin.exe") by Processes.dest Processes.user Processes.parent_process_name Processes.parent_process Processes.process_name Processes.process Processes.process_id Processes.parent_process_id 
| `drop_dm_object_name(Processes)` 
| `security_content_ctime(firstTime)` 
| `security_content_ctime(lastTime)` 
| `winrar_spawning_shell_application_filter`

Cloudflare product detections

Cloudflare Email Security

Cloudflare Email Security (CES) customers can identify FlyingYeti threat activity with the following detections.

  • CVE-2023-38831
  • FLYINGYETI.COOKBOX
  • FLYINGYETI.COOKBOX.Launcher
  • FLYINGYETI.Rar

Recommendations

Cloudflare recommends taking the following steps to mitigate this type of activity:

  • Implement Zero Trust architecture foundations:    
  • Deploy Cloud Email Security to ensure that email services are protected against phishing, BEC and other threats
  • Leverage browser isolation to separate messaging applications like LinkedIn, email, and Signal from your main network
  • Scan, monitor and/or enforce controls on specific or sensitive data moving through your network environment with data loss prevention policies
  • Ensure your systems have the latest WinRAR and Microsoft security updates installed
  • Consider preventing WinRAR files from entering your environment, both at your Cloud Email Security solution and your Internet Traffic Gateway
  • Run an Endpoint Detection and Response (EDR) tool such as CrowdStrike or Microsoft Defender for Endpoint to get visibility into binary execution on hosts
  • Search your environment for the FlyingYeti indicators of compromise (IOCs) shown below to identify potential actor activity within your network.

If you’re looking to uncover additional Threat Intelligence insights for your organization or need bespoke Threat Intelligence information for an incident, consider engaging with Cloudforce One by contacting your Customer Success manager or filling out this form.

Indicators of Compromise

Filename SHA256 Hash Description
Заборгованість по ЖКП.rar a0a294f85c8a19be048ffcc05ede6fd5a7ac5e2f0032a3ca0050dc1ae960c314 RAR archive
Рахунок на оплату.pdf
                                                                                 .cmd
0cca8f795c7a81d33d36d5204fcd9bc73bdc2af7de315c1449cbc3551ef4fb59 COOKBOX Sample (contained in RAR archive)
Реструктуризація боргу за житлово комунальні послуги.docx 915721b94e3dffa6cef3664532b586be6cf989fec923b26c62fdaf201ee81d2c Benign Word Document with Tracking Link (contained in RAR archive)
Угода користувача.docx 79a9740f5e5ea4aa2157d9d96df34ee49a32e2d386fe55fedfd1aa33e151c06d Benign Word Document with Tracking Link (contained in RAR archive)
Рахунок на оплату.pdf 19e25456c2996ded3e29577b609de54a2bef90dad8f868cdad795c18df05a79b Random Binary Data (contained in RAR archive)
Заборгованість по ЖКП станом на 26.04.24.docx e0d65e2d36afd3db1b603f10e0488cee3f58ade24d8abc6bee240314d8696708 Random Binary Data (contained in RAR archive)
Domain / URL Description
komunalka[.]github[.]io Phishing page
hxxps[:]//github[.]com/komunalka/komunalka[.]github[.]io Phishing page
hxxps[:]//worker-polished-union-f396[.]vqu89698[.]workers[.]dev Worker that fetches malicious RAR file
hxxps[:]//raw[.]githubusercontent[.]com/kudoc8989/project/main/Заборгованість по ЖКП.rar Delivery of malicious RAR file
hxxps[:]//1014[.]filemail[.]com/api/file/get?filekey=e_8S1HEnM5Rzhy_jpN6nL-GF4UAP533VrXzgXjxH1GzbVQZvmpFzrFA&pk_vid=a3d82455433c8ad11715865826cf18f6 Dummy payload
hxxps[:]//pixeldrain[.]com/api/file/ZAJxwFFX?download= Dummy payload
hxxp[:]//canarytokens[.]com/stuff/tags/ni1cknk2yq3xfcw2al3efs37m/payments.js Tracking link
hxxp[:]//canarytokens[.]com/stuff/terms/images/k22r2dnjrvjsme8680ojf5ccs/index.html Tracking link
postdock[.]serveftp[.]com COOKBOX C2

Cyberattack on Ukraine’s Kyivstar Seems to Be Russian Hacktivists

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/12/cyberattack-on-ukraines-kyivstar-seems-to-be-russian-hacktivists.html

The Solntsepek group has taken credit for the attack. They’re linked to the Russian military, so it’s unclear whether the attack was government directed or freelance.

This is one of the most significant cyberattacks since Russia invaded in February 2022.

LitterDrifter USB Worm

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/11/litterdrifter-usb-worm.html

A new worm that spreads via USB sticks is infecting computers in Ukraine and beyond.

The group­—known by many names, including Gamaredon, Primitive Bear, ACTINIUM, Armageddon, and Shuckworm—has been active since at least 2014 and has been attributed to Russia’s Federal Security Service by the Security Service of Ukraine. Most Kremlin-backed groups take pains to fly under the radar; Gamaredon doesn’t care to. Its espionage-motivated campaigns targeting large numbers of Ukrainian organizations are easy to detect and tie back to the Russian government. The campaigns typically revolve around malware that aims to obtain as much information from targets as possible.

One of those tools is a computer worm designed to spread from computer to computer through USB drives. Tracked by researchers from Check Point Research as LitterDrifter, the malware is written in the Visual Basic Scripting language. LitterDrifter serves two purposes: to promiscuously spread from USB drive to USB drive and to permanently infect the devices that connect to such drives with malware that permanently communicates with Gamaredon-operated command-and-control servers.

One year of war in Ukraine: Internet trends, attacks, and resilience

Post Syndicated from João Tomé original https://blog.cloudflare.com/one-year-of-war-in-ukraine/

One year of war in Ukraine: Internet trends, attacks, and resilience

One year of war in Ukraine: Internet trends, attacks, and resilience

The Internet has become a significant factor in geopolitical conflicts, such as the ongoing war in Ukraine. Tomorrow marks one year since the Russian invasion of that country. This post reports on Internet insights and discusses how Ukraine’s Internet remained resilient in spite of dozens of disruptions in three different stages of the conflict.

Key takeaways:

  • Internet traffic shifts in Ukraine are clearly visible from east to west as Ukrainians fled the war, with country-wide traffic dropping as much as 33% after February 24, 2022.
  • Air strikes on energy infrastructure starting in October led to widespread Internet disruptions that continue in 2023.
  • Application-layer cyber attacks in Ukraine rose 1,300% in early March 2022 compared to pre-war levels.
  • Government administration, financial services, and the media saw the most attacks targeting Ukraine.
  • Traffic from a number of networks in Kherson was re-routed through Russia between June and October, subjecting traffic to Russia’s restrictions and limitations, including content filtering. Even after traffic ceased to reroute through Russia, those Ukrainian networks saw major outages through at least the end of the year, while two networks remain offline.
  • Through efforts on the ground to repair damaged fiber optics and restore electrical power, Ukraine’s networks have remained resilient from both an infrastructure and routing perspective. This is partly due to Ukraine’s widespread connectivity to networks outside the country and large number of IXPs.
  • Starlink traffic in Ukraine grew over 500% between mid-March and mid-May, and continued to grow from mid-May through mid-November, increasing nearly 300% over that six-month period. For the full period from mid-March (two weeks after it was made available) to mid-December, it was over a 1,600% increase, dropping a bit after that.

Internet changes and disruptions

An Internet shock after February 24, 2022

In Ukraine, human Internet traffic dropped as much as 33% in the weeks following February 24. The following chart shows Cloudflare’s perspective on daily traffic (by number of requests).

One year of war in Ukraine: Internet trends, attacks, and resilience

Internet traffic levels recovered over the next few months, including strong growth seen in September and October, when many Ukrainian refugees returned to the country. That said, there were also country-wide outages, mostly after October, that are discussed below.

14% of total traffic from Ukraine (including traffic from Crimea and other occupied regions) was mitigated as potential attacks, while 10% of total traffic to Ukraine was mitigated as potential attacks in the last 12 months.

Before February 24, 2022, typical weekday Internet traffic in Ukraine initially peaked after lunch, around 15:00 local time, dropped between 17:00 and 18:00 (consistent with people leaving work), and reached the biggest peak of the day at around 21:00 (possibly after dinner for mobile and streaming use).

After the invasion started, we observed less variation during the day in a clear change in the usual pattern given the reported disruption and “exodus” from the country​. During the first few days after the invasion began, peak traffic occurred around 19:00, at a time when nights for many in cities such as Kyiv were spent in improvised underground bunkers. By late March, the 21:00 peak had returned, but the early evening drop in traffic did not return until May.

When looking at Ukraine Internet requests by type of traffic in the chart below (from February 10, 2022, through February 2023), we observe that while traffic from both mobile and desktop devices dropped after the invasion, request volume from mobile devices has remained higher over the past year. Pre-war, mobile devices accounted for around 53% of traffic, and grew to around 60% during the first weeks of the invasion. By late April, it had returned to typical pre-war levels, falling back to around 54% of traffic. There’s also a noticeable December drop/outage that we’ll go over below.

One year of war in Ukraine: Internet trends, attacks, and resilience

Millions moving from east to west in Ukraine

The invasion brought attacks and failing infrastructure across a number of cities, but the target in the early days wasn’t the country’s energy infrastructure, as it was in October 2022. In the first weeks of the war, Internet traffic changes were largely driven by people evacuating conflict zones with their families. Over eight million Ukrainians left the country in the first three months, and many more relocated internally to safer cities, although many returned during the summer of 2022. The Internet played a critical role during this refugee crisis, supporting communications and access to real-time information that could save lives, as well as apps providing services, among others.

There was also an increase in traffic in the western part of Ukraine, in areas such as Lviv (further away from the conflict areas), and a decrease in the east, in areas like Kharkiv, where the Russian military was arriving and attacks were a constant threat. The figure below provides a view of how Internet traffic across Ukraine changed in the week after the war began (a darker pink means a drop in traffic — as much as 60% — while a darker green indicates an increase in Internet traffic — as much as 50%).

One year of war in Ukraine: Internet trends, attacks, and resilience
Source: https://datawrapper.dwcdn.net/dsUSJ/2/

The biggest drops in Internet traffic observed in Ukraine in the first days of the war were in Kharkiv Oblast in the east, and Chernihiv in the north, both with a 60% decrease, followed by Kyiv Oblast, with traffic 40% lower on March 2, 2022, as compared with February 23.

In western Ukraine, traffic surged. The regions with the highest observed traffic growth included Rivne (50%), Volyn (30%), Lviv (28%), Chernivtsi (25%), and Zakarpattia (15%).

At the city level, analysis of Internet traffic in Ukraine gives us some insight into usage of the Internet and availability of Internet access in those first weeks, with noticeable outages in places where direct conflict was going on or that was already occupied by Russian soldiers.

North of Kyiv, the city of Chernihiv had a significant drop in traffic the first week of the war and residual traffic by mid-March, with traffic picking up only after the Russians retreated in early April.

One year of war in Ukraine: Internet trends, attacks, and resilience

In the capital city of Kyiv, there is a clear disruption in Internet traffic right after the war started, possibly caused by people leaving, attacks and use of underground shelters.

One year of war in Ukraine: Internet trends, attacks, and resilience

Near Kyiv, we observed a clear outage in early March in Bucha. After April 1, when the Russians withdrew, Internet traffic started to come back a few weeks later.

One year of war in Ukraine: Internet trends, attacks, and resilience

In Irpin, just outside Kyiv, close to the Hostomel airport and Bucha, a similar outage pattern to Bucha was observed. Traffic only began to come back more clearly in late May.

One year of war in Ukraine: Internet trends, attacks, and resilience

In the east, in the city of Kharkiv, traffic dropped 50% on March 3, with a similar scenario seen not far away in Sumy. The disruption was related to people leaving and also by power outages affecting some networks.

One year of war in Ukraine: Internet trends, attacks, and resilience

Other cities in the south of Ukraine, like Berdyansk, had outages. This graph shows Enerhodar, the small city where Europe’s largest nuclear plant, Zaporizhzhya NPP, is located, with residual traffic compared to before.

One year of war in Ukraine: Internet trends, attacks, and resilience

In the cities located in the south of Ukraine, there were clear Internet disruptions. The Russians laid siege to Mariupol on February 24. Energy infrastructure strikes and shutdowns had an impact on local networks and Internet traffic, which fell to minimal levels by March 1. Estimates indicate that 95% of the buildings in the city were destroyed, and by mid-May, the city was fully under Russian control. While there was some increase in traffic by the end of April, it reached only ~22% of what it was before the war’s start.

One year of war in Ukraine: Internet trends, attacks, and resilience

When looking at Ukrainian Internet Service Providers (ISPs) or the autonomous systems (ASNs) they use, we observed more localized disruptions in certain regions during the first months of the war, but recovery was almost always swift. AS6849 (Ukrtel) experienced problems with very short-term outages in mid-March. AS13188 (Triolan), which services Kyiv, Chernihiv, and Kharkiv, was another provider experiencing problems (they reported a cyberattack on March 9), as could be observed in the next chart:

One year of war in Ukraine: Internet trends, attacks, and resilience

We did not observe a clear national outage in Ukraine’s main ISP, AS15895 (Kyivstar) until the October-November attacks on energy infrastructure, which also shows some early resilience of Ukrainian networks.

Ukraine’s counteroffensive and its Internet impact

As Russian troops retreated from the northern front in Ukraine, they shifted their efforts to gain ground in the east (Battle of Donbas) and south (occupation of the Kherson region) after late April. This resulted in Internet disruptions and traffic shifts, which are discussed in more detail in a section below. However, Internet traffic in the Kherson region was intermittent and included outages after May, given the battle for Internet control. News reports in June revealed that ISP workers damaged their own equipment to thwart Russia’s efforts to control the Ukrainian Internet.

Before the September Ukrainian counteroffensive, another example of the war’s impact on a city’s Internet traffic occurred during the summer, when Russian troops seized Lysychansk in eastern Ukraine in early July after what became known as the Battle of Lysychansk. Internet traffic in Lysychansk clearly decreased after the war started. That slide continues during the intense fighting that took place after April, which led to most of the city’s population leaving. By May, traffic was almost residual (with a mid-May few days short term increase).

One year of war in Ukraine: Internet trends, attacks, and resilience

In early September the Ukrainian counteroffensive took off in the east, although the media initially reported a south offensive in Kherson Oblast that was a “deception” move. The Kherson offensive only came to fruition in late October and early November. Ukraine was able to retake in September over 500 settlements and 12,000 square kilometers of territory in the Kharkiv region. At that time, there were Internet outages in several of those settlements.

In response to the successful Ukrainian counteroffensive, Russian airstrikes caused power outages and Internet disruptions in the region. That was the case in Kharkiv on September 11, 12, and 13. The figure below shows a 12-hour near-complete outage on September 11, followed by two other periods of drop in traffic.

One year of war in Ukraine: Internet trends, attacks, and resilience

When nuclear inspectors arrive, so do Internet outages

In the Zaporizhzhia region, there were also outages. On September 1, 2022, the day the International Atomic Energy Agency (IAEA) inspectors arrived at the Russian-controlled Zaporizhzhia nuclear power plant in Enerhodar, there were Internet outages in two local ASNs that service the area: AS199560 (Engrup) and AS197002 (OOO Tenor). Those outages lasted until September 10, as shown in the charts below.

One year of war in Ukraine: Internet trends, attacks, and resilience

One year of war in Ukraine: Internet trends, attacks, and resilience

More broadly, the city of Enerhodar, where the nuclear power plant is located, experienced a four-day outage after September 6.

Mid-September traffic drop in Crimea

In mid-September, following Ukraine’s counteroffensive, there were questions as to when Crimea might be targeted by Ukrainian forces, with news reports indicating that there was an evacuation of the Russian population from Crimea around September 13. We saw a clear drop in traffic on that Tuesday, compared with the previous day, as seen in the map of Crimea below (red is decrease in traffic, green is increase).

One year of war in Ukraine: Internet trends, attacks, and resilience

October brings energy infrastructure attacks and country-wide disruptions

As we have seen, the Russian air strikes targeting critical energy infrastructure began in September as a retaliation to Ukraine’s counteroffensive. The following month, the Crimean Bridge explosion on Saturday, October 8 (when a truck-borne bomb destroyed part of the bridge) led to more air strikes that affected networks and Internet traffic across Ukraine.

On Monday, October 10, Ukraine woke up to air strikes on energy infrastructure and experienced severe electricity and Internet outages. At 07:35 UTC, traffic in the country was 35% below its usual level compared with the previous week and only fully recovered more than 24 hours later. The impact was particularly significant in regions like Kharkiv, where traffic was down by around 80%, and Lviv, where it dropped by about 60%. The graph below shows how new air strikes in Lviv Oblast the following day affected Internet traffic.

One year of war in Ukraine: Internet trends, attacks, and resilience

There were clear disruptions in Internet connectivity in several regions on October 17, but also on October 20, when the destruction of several power stations in Kyiv resulted in a 25% drop in Internet traffic from Kyiv City as compared to the two previous weeks. It lasted 12 hours, and was followed the next day by a shorter partial outage as seen in the graph below.

One year of war in Ukraine: Internet trends, attacks, and resilience

In late October, according to Ukrainian officials, 30% of Ukraine’s power stations were destroyed. Self-imposed power limitations because of this destruction resulted in drops in Internet traffic observed in places like Kyiv and the surrounding region.

The start of a multi-week Internet disruption in Kherson Oblast can be seen in the graph below, showing ~70% lower traffic than in previous weeks. The disruption began on Saturday, October 22, when Ukrainians were gaining ground in the Kherson region.

One year of war in Ukraine: Internet trends, attacks, and resilience

Traffic began to return after Ukrainian forces took Kherson city on November 11, 2022. The graph below shows a week-over-week comparison for Kherson Oblast for the weeks of November 7, November 28, and December 19 for better visualization in the chart while showing the evolution through a seven-week period.

One year of war in Ukraine: Internet trends, attacks, and resilience

Ongoing strikes and Internet disruptions

Throughout the rest of the year and into 2023, Ukraine has continued to face intermittent Internet disruptions. On November 23, 2022, the country experienced widespread power outages after Russian strikes, causing a nearly 50% decrease in Internet traffic in Ukraine. This disruption lasted for almost a day and a half, further emphasizing the ongoing impact of the conflict on Ukraine’s infrastructure.

One year of war in Ukraine: Internet trends, attacks, and resilience

Although there was a recovery after that late November outage, only a few days later traffic seemed closer to normal levels. Below is a chart of the week-over-week evolution of Internet traffic in Ukraine at both a national and local level during that time:

One year of war in Ukraine: Internet trends, attacks, and resilience

In Kyiv Oblast:

One year of war in Ukraine: Internet trends, attacks, and resilience

In the Odessa region:

One year of war in Ukraine: Internet trends, attacks, and resilience

And Kharkiv (where a December 16 outage is also clear — in the green line):

One year of war in Ukraine: Internet trends, attacks, and resilience

On December 16, there was another country-level Internet disruption caused by air strikes targeting energy infrastructure. Traffic at a national level dropped as much as 13% compared with the previous week, but Ukrainian networks were even more affected. AS13188 (Triolan) had a 70% drop in traffic, and AS15895 (Kyivstar) a 40% drop, both shown in the figures below.

One year of war in Ukraine: Internet trends, attacks, and resilience

One year of war in Ukraine: Internet trends, attacks, and resilience

In January 2023, air strikes caused additional Internet disruptions. One such recent event was in Odessa, where traffic dropped as low as 54% compared with the previous week during an 18-hour disruption.

A cyber war with global impact

“Shields Up” on cyber attacks

The US government and the FBI issued warnings in March to all citizens, businesses, and organizations in the country, as well as allies and partners, to be aware of the need to “enhance cybersecurity.” The US Cybersecurity and Infrastructure Security Agency (CISA) launched the Shields Up initiative, noting that “Russia’s invasion of Ukraine could impact organizations both within and beyond the region.” The UK and Japan, among others, also issued warnings.

Below, we discuss Web Application Firewall (WAF) mitigations and DDoS attacks. A WAF helps protect web applications by filtering and monitoring HTTP traffic between a web application and the Internet. A WAF is a protocol layer 7 defense (in the OSI model), and is not designed to defend against all types of attacks. Distributed Denial of Service (DDoS) attacks are cyber attacks that aim to take down Internet properties and make them unavailable for users.

Cyber attacks rose 1,300% in Ukraine by early March

The charts below are based on normalized data, and show threats mitigated by our WAF.

Mitigated application-layer threats blocked by our WAF skyrocketed after the war started on February 24. Mitigated requests were 105% higher on Monday, February 28 than in the previous (pre-war) Monday, and peaked on March 8, reaching 1,300% higher than pre-war levels.

Between February 2022 and February 2023, an average of 10% of all traffic to Ukraine was mitigations of potential attacks.

The graph below shows the daily percentage of application layer traffic to Ukraine that Cloudflare mitigated as potential attacks. In early March, 30% of all traffic was mitigated. This fell in April, and remained low for several months, but it picked up in early September around the time of the Ukrainian counteroffensive in east and south Ukraine. The peak was reached on October 29 when DDoS attack traffic constituted 39% of total traffic to Cloudflare’s Ukrainian customer websites.

One year of war in Ukraine: Internet trends, attacks, and resilience

This trend is more evident when looking at all traffic to sites on the “.ua” top-level domain (from Cloudflare’s perspective). The chart below shows that DDoS attack traffic accounted for over 80% of all traffic by early March 2022. The first clear spikes occurred on February 16 and 19, with around 25% of traffic mitigated. There was no moment of rest after the war started, except towards the end of November and December, but the attacks resumed just before Christmas. An average of 13% of all traffic to “.ua”, between February 2022 and February 2023 was mitigations of potential attacks. The following graph provides a comprehensive view of DDoS application layer attacks on “.ua” sites:

One year of war in Ukraine: Internet trends, attacks, and resilience

Moving on to types of mitigations of product groups that were used (related to “.ua” sites), as seen in the next chart, around 57% were done by the ruleset which automatically detects and mitigates HTTP DDoS attacks (DDoS Mitigation), 31% were being mitigated by firewall rules put in place (WAF), and 10% were blocking requests based on our IP threat reputation database (IP Reputation).

One year of war in Ukraine: Internet trends, attacks, and resilience

It’s important to note that WAF rules in the graph above are also associated with custom firewall rules created by customers to provide a more tailored protection. “DDoS Mitigation” (application layer DDoS protection) and “Access Rules” (rate limiting) are specifically used for DDoS protection.

In contrast to the first graph shown in this section, which looked at mitigated attack traffic targeting Ukraine, we can also look at mitigated attack traffic originating in Ukraine. The graph below also shows that the share of mitigated traffic from Ukraine also increased considerably after the invasion started.

One year of war in Ukraine: Internet trends, attacks, and resilience

Top attacked industries: from government to news media

The industries sectors that had a higher share of WAF mitigations were government administration, financial services, and the media, representing almost half of all WAF mitigations targeting Ukraine during 2022.

Looking at DDoS attacks, there was a surge in attacks on media and publishing companies during 2022 in Ukraine. Entities targeting Ukrainian companies appeared to be focused on information-related websites. The top five most attacked industries in the Ukraine in the first two quarters of 2022 were all in broadcasting, Internet, online media, and publishing, accounting for almost 80% of all DDoS attacks targeting Ukraine.

In a more focused look at the type of websites Cloudflare has protected throughout the war, the next two graphs provide a view of mitigated application layer attacks by the type of “.ua” sites we helped to protect. In the first days of the war, mitigation spikes were observed at a news service, a TV channel, a government website, and a bank.

One year of war in Ukraine: Internet trends, attacks, and resilience

In July, spikes in mitigations we observed across other types of “.ua” websites, including food delivery, e-commerce, auto parts, news, and government.

One year of war in Ukraine: Internet trends, attacks, and resilience

More recently, in February 2023, the spikes in mitigations were somewhat similar to what we saw one year ago, including electronics, e-commerce, IT, and education websites.

One year of war in Ukraine: Internet trends, attacks, and resilience

12.6% of network-layer traffic was DDoS activity in Q1 2022

Network-layer (layer 3 and 4) traffic is harder to attribute to a specific domain or target because IP addresses are shared across different customers. Looking at network-level DDoS traffic hitting our Kyiv data center, we saw peaks of DDoS traffic higher than before the war in early March, but they were much higher in June and August.

One year of war in Ukraine: Internet trends, attacks, and resilience

In our Q1 2022 DDoS report, we also noted that 12.6% of Ukraine’s traffic was DDoS activity, compared with 1% in the previous quarter, a 1,160% quarter-over-quarter increase.

Several of our quarterly DDoS reports from 2022 include attack trends related to the war in Ukraine, with quarter over quarter interactive comparisons.

Network re-routing in Kherson

On February 24, 2022, Russian forces invaded Ukraine’s Kherson Oblast region. The city of Kherson was captured on March 2, as the first major city and only regional capital to be captured by Russian forces during the initial invasion. The Russian occupation of Kherson Oblast continued until Ukrainian forces resumed control on November 11, after launching a counteroffensive at the end of August.

On May 4, 2022, we published Tracking shifts in Internet connectivity in Kherson, Ukraine, a blog post that explored a re-routing event that impacted AS47598 (Khersontelecom), a telecommunications provider in Kherson Oblast. Below, we summarize this event, and explore similar activity across other providers in Kherson that has taken place since then.

On May 1, 2022, we observed a shift in routing for the IPv4 prefix announced by Ukrainian network AS47598 (Khersontelecom). During April, it reached the Internet through several other Ukrainian network providers, including AS12883 (Vega Telecom) and AS3326 (Datagroup). However, after the shift, its routing path now showed a Russian network, AS201776 (Miranda-Media), as the sole upstream provider. With traffic from KhersonTelecom passing through a Russian network, it was subject to the restrictions and limitations imposed on any traffic transiting Russian networks, including content filtering.

The flow of traffic from Khersontelecom before and after May 1, with rerouting through Russian network provider Miranda-Media, is illustrated in the chart below. This particular re-routing event was short-lived, as a routing update for AS47598 on May 4 saw it return to reaching the Internet through other Ukrainian providers.

One year of war in Ukraine: Internet trends, attacks, and resilience

As a basis for our analysis, we started with a list of 15 Autonomous System Numbers (ASNs) belonging to networks in Kherson Oblast. Using that list, we analyzed routing information collected by route-views2 over the past year, from February 1, 2022, to February 15, 2023. route-views2 is a BGP route collector run by the University of Oregon Route Views Project. Note that with respect to the discussions of ASNs in this and the following section, we are treating them equally, and have not specifically factored estimated user population into these analyses.

The figure below illustrates the result of this analysis, showing that re-routing of Kherson network providers (listed along the y-axis) through Russian upstream networks was fairly widespread, and for some networks, has continued into 2023. During the analysis time frame, there were three primary Russian networks that appeared as upstream providers: AS201776 (Miranda-Media), AS52091 (Level-MSK Ltd.), and AS8492 (OBIT Ltd.).

Within the graph, black bars indicate periods when the ASN effectively disappeared from the Internet; white segments indicate the ASN was dependent on other Ukraine networks as immediate upstreams; and red indicates the presence of Russian networks in the set of upstream providers. The intensity of the red shading corresponds to the percentage of announced prefixes for which a Russian network provider is present in the routing path as observed from networks outside Ukraine. Bright red shading, equivalent to “1” in the legend, indicates the presence of a Russian provider in all routing paths for announced prefixes.

One year of war in Ukraine: Internet trends, attacks, and resilience

In the blog post linked above, we referenced an outage that began on April 30. This is clearly visible in the figure as a black bar that runs for several days across all the listed ASNs. In this instance, AS47598 (KhersonTelecom) recovered a day later, but was sending traffic through AS201776 (Miranda-Media), a Russian provider, as discussed above.

Another Ukrainian network, AS49168 (Brok-X), recovered from the outage on May 2, and was also sending traffic through Miranda-Media. By May 4, most of the other Kherson networks recovered from the outage, and both AS47598 and AS49168 returned to using Ukrainian networks as immediate upstream providers. Routing remained “normal” until May 30. Then, a more widespread shift to routing traffic through Russian providers began, although it appears that this shift was preceded by a brief outage for a few networks. For the most part, this re-routing lasted through the summer and into October. Some networks saw a brief outage on October 17, but most stopped routing directly through Russia by October 22.

However, this shift away from Russia was followed by periods of extended outages. KhersonTelecom suffered such an outage, and has remained offline since October, except for the first week of November when all of its traffic routed through Russia. Many other networks rejoined the Internet in early December, relying mostly on other Ukrainian providers for Internet connectivity. However, since early December, AS204485 (PE Berislav Cable Television), AS56359 (CHP Melnikov Roman Sergeevich), and AS49465 (Teleradiocompany RubinTelecom Ltd.) have continued to use Miranda-Media as an upstream provider, in addition to experiencing several brief outages. In addition, over the last several months, AS25082 (Viner Telecom) has used both a Ukrainian network and Miranda-Media as upstream providers.

Internet resilience in Ukraine

In the context of the Internet, “resilience” refers to the ability of a network to operate continuously in a manner that is highly resistant to disruption. This includes the ability of a network to: (1) operate in a degraded mode if damaged, (2) rapidly recover if failure does occur, and (3) scale to meet rapid or unpredictable demands. Throughout the Russia-Ukraine conflict, media coverage (VICE, Bloomberg, Washington Post) has highlighted the work done in Ukraine to repair damaged fiber-optic cables and mobile network infrastructure to keep the country online. This work has been critically important to maintaining the resilience of Ukrainian Internet infrastructure.

According to PeeringDB, as of February 2023, there are 25 Internet Exchange Points (IXPs) in Ukraine and 50 interconnection facilities. (An IXP may span multiple physical facilities.) Within this set of IXPs, Autonomous Systems (ASes) belonging to international providers are currently present in over half of them. The number of facilities, IXPs, and international ASes present in Ukraine points to a resilient interconnection fabric, with multiple locations for both domestic and international providers to exchange traffic.

To better understand these international interconnections, we first analyze the connectivity of ASes in Ukraine, and we classify the links to domestic networks (links where both ASes are registered in Ukraine) and international networks (links between ASes in Ukraine and ASes outside Ukraine). To determine which ASes are domestic in Ukraine, we can use information from the extended delegation reports from the Réseaux IP Européens Network Coordination Centre (RIPE NCC), the Regional Internet Registry that covers Ukraine. We also parsed collected BGP data to extract the AS-level links between Ukrainian ASes and ASes registered in a different country, and we consider these the international connectivity of the domestic ASes.

A March 2022 article in The Economist noted that “For one thing, Ukraine boasts an unusually large number of internet-service providers—by one reckoning the country has the world’s fourth-least-concentrated Internet market. This means the network has few choke points, so is hard to disable.” As of the writing of this blog post, there are 2,190 ASes registered in Ukraine (UA ASes), and 1,574 of those ASes appear in the BGP routing table as active. These counts support the article’s characterization, and below we discuss several additional observations that reinforce Ukraine’s Internet resilience.

One year of war in Ukraine: Internet trends, attacks, and resilience

The figure above is a cumulative distribution function showing the fraction of domestic Ukrainian ASes that have direct connections to international networks. In February 2023, approximately 50% had more than one (100) international link, while approximately 10% had more than 10, and approximately 2% had 100 or more. Although these numbers have dropped slightly over the last year, they underscore the lack of centralized choke points in the Ukrainian Internet.

For the networks with international connectivity, we can also look at the distribution of “next-hop” countries – countries with which those international networks are associated. (Note that some networks may have a global footprint, and for these, the associated country is the one recorded in their autonomous system registration.) Comparing the choropleth maps below illustrates how this set of countries, and their fraction of international paths, have changed between February 2022 and February 2023. The data underlying these maps shows that international connectivity from Ukraine is distributed across 18 countries — unsurprisingly, mostly in Europe.

One year of war in Ukraine: Internet trends, attacks, and resilience

In February 2022, these countries/locations accounted for 77% of Ukraine’s next-hop international paths. The top four all had 7.8% each. However, in February 2023, the top 10 next-hop countries/locations dropped slightly to 76% of international paths. While just a slight change from the previous year, the set of countries/locations and many of their respective fractions saw considerable change.

February 2022 February 2023
1 Germany 7.85% Russia 11.62%
2 Netherlands 7.85% Germany 11.43%
3 United Kingdom 7.83% Hong Kong 8.38%
4 Hong Kong 7.81% Poland 7.93%
5 Sweden 7.77% Italy 7.75%
6 Romania 7.72% Turkey 6.86%
7 Russia 7.67% Bulgaria 6.20%
8 Italy 7.64% Netherlands 5.31%
9 Poland 7.60% United Kingdom 5.30%
10 Hungary 7.54% Sweden 5.26%

Russia’s share grew by 50% year to 11.6%, giving it the biggest share of next-hop ASes. Germany also grew to account for more than 11% of paths.

One year of war in Ukraine: Internet trends, attacks, and resilience

Satellite Internet connectivity

Cloudflare observed a rapid growth in Starlink’s ASN (AS14593) traffic to Ukraine during 2022 and into 2023. Between mid-March and mid-May, Starlink’s traffic in the country grew over 530%, and continued to grow from mid-May up until mid-November, increasing nearly 300% over that six-month period — from mid-March to mid-December the growth percentage was over 1600%. After that, traffic stabilized and even dropped a bit during January 2023.

One year of war in Ukraine: Internet trends, attacks, and resilience

Our data shows that between November and December 2022, Starlink represented between 0.22% and 0.3% of traffic from Ukraine, but that number is now lower than 0.2%.

One year of war in Ukraine: Internet trends, attacks, and resilience

Conclusion

One year in, the war in Ukraine has taken an unimaginable humanitarian toll. The Internet in Ukraine has also become a battleground, suffering attacks, re-routing, and disruptions. But it has proven to be exceptionally resilient, recovering time and time again from each setback.

We know that the need for a secure and reliable Internet there is more critical than ever. At Cloudflare, we’re committed to continue providing tools that protect Internet services from cyber attack, improve security for those operating in the region, and share information about Internet connectivity and routing inside Ukraine.

Cyberwar Lessons from the War in Ukraine

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/02/cyberwar-lessons-from-the-war-in-ukraine.html

The Aspen Institute has published a good analysis of the successes, failures, and absences of cyberattacks as part of the current war in Ukraine: “The Cyber Defense Assistance Imperative ­ Lessons from Ukraine.”

Its conclusion:

Cyber defense assistance in Ukraine is working. The Ukrainian government and Ukrainian critical infrastructure organizations have better defended themselves and achieved higher levels of resiliency due to the efforts of CDAC and many others. But this is not the end of the road—the ability to provide cyber defense assistance will be important in the future. As a result, it is timely to assess how to provide organized, effective cyber defense assistance to safeguard the post-war order from potential aggressors.

The conflict in Ukraine is resetting the table across the globe for geopolitics and international security. The US and its allies have an imperative to strengthen the capabilities necessary to deter and respond to aggression that is ever more present in cyberspace. Lessons learned from the ad hoc conduct of cyber defense assistance in Ukraine can be institutionalized and scaled to provide new approaches and tools for preventing and managing cyber conflicts going forward.

I am often asked why where weren’t more successful cyberattacks by Russia against Ukraine. I generally give four reasons: (1) Cyberattacks are more effective in the “grey zone” between peace and war, and there are better alternatives once the shooting and bombing starts. (2) Setting these attacks up takes time, and Putin was secretive about his plans. (3) Putin was concerned about attacks spilling outside the war zone, and affecting other countries. (4) Ukrainian defenses were good, aided by other countries and companies. This paper gives a fifth reasons: they were technically successful, but keeping them out of the news made them operationally unsuccessful.

Uptick in healthcare organizations experiencing targeted DDoS attacks

Post Syndicated from Cat Allen original https://blog.cloudflare.com/uptick-in-healthcare-organizations-experiencing-targeted-ddos-attacks/

Uptick in healthcare organizations experiencing targeted DDoS attacks

Healthcare in the crosshairs

Uptick in healthcare organizations experiencing targeted DDoS attacks

Over the past few days, Cloudflare, as well as other sources, have observed healthcare organizations targeted by a pro-Russian hacktivist group claiming to be Killnet. There has been an increase in the amount of healthcare organizations coming to us to help get out from under these types of attacks. Multiple healthcare organizations behind Cloudflare have also been targeted by HTTP DDoS attacks and Cloudflare has helped them successfully mitigate these attacks. The United States Department of Health and Human Services issued an Analyst Note detailing the threat of Killnet-related cyberattacks to the healthcare industry.

A rise in political tensions and escalation of the conflict in Ukraine are all factors that play into the current cybersecurity threat landscape. Unlike traditional warfare, the Internet has enabled and empowered groups of individuals to carry out targeted attacks regardless of their location or involvement. Distributed-denial-of-Service (DDoS) attacks have the unfortunate advantage of not requiring an intrusion or a foothold to be launched and have, unfortunately, become more accessible than ever before.

The attacks observed by the Cloudflare global network do not show a clear indication that they are originating from a single botnet and the attack methods and sources seem to vary. This could indicate the involvement of multiple threat actors acting on behalf of Killnet or it could indicate a more sophisticated, coordinated attack.

Cloudflare application services customers are protected against the attacks. Cloudflare systems have been automatically detecting and mitigating the attacks on behalf of our customers. Our team continues to monitor the situation closely and is prepared to deploy countermeasures, if needed.

As an extra precaution, customers in the Healthcare industry are advised to follow the mitigation recommendations in the “How to Prepare” section below.

Uptick in healthcare organizations experiencing targeted DDoS attacks
Uptick in healthcare organizations experiencing targeted DDoS attacks

Who is Killnet?

Killnet is a group of pro-Russian individuals that gather and communicate on a Telegram channel. The channel provides a space for pro-Russian sympathizers to volunteer their expertise by participating in cyberattacks against Western interests. Previously, in the fourth quarter of 2022, Killnet called to attack US airport websites.

Why DDoS attacks?

DDoS attacks, unlike ransomware, do not require an intrusion or foothold in the target network to be launched. Much like how physical addresses are publicly available via directories or for services like mail delivery, IP addresses and domain names are also publicly available. Unfortunately, this means that every domain name (layer 7) and every network that connects to the Internet (layers 3 & 4) must proactively prepare to defend against DDoS attacks. DDoS attacks are not new threats, but they have become larger, more sophisticated, and more frequent in recent years.

How to prepare

While Cloudflare’s systems have been automatically detecting and mitigating these DDoS attacks, we recommend additional precautionary measures to improve your security posture:

  1. Ensure all other DDoS Managed Rules are set to default settings (High sensitivity level and mitigation actions) for optimal DDoS activation
  2. Cloudflare Enterprise customers with Advanced DDoS should consider enabling Adaptive DDoS Protection, which mitigates traffic that deviates based on your traffic profiles
  3. Deploy firewall rules and rate-limiting rules to enforce a combined positive and negative security model. Reduce the traffic allowed to your website based on your known usage.
  4. Ensure your origin is not exposed to the public Internet (i.e. only enable access to Cloudflare IP addresses)
  5. Customers with access to Managed IP Lists should consider leveraging those lists in firewall rules
  6. Enable caching as much as possible to reduce the strain on your origin servers
  7. Enable DDoS alerting to improve your response time

Though attacks are launched by humans, they are carried out by bots. Defenders who do not leverage automated defenses are at a disadvantage. Cloudflare has helped, and will continue to help, our customers in the healthcare industry prepare for and respond to these attacks.

Under attack? We can help. Visit this webpage or call us at +1 (888) 99 FLARE

Bivol’s findings – ignored for months Bivol exposed our secret weapons in Ukraine; Petkov and Ninova denied it

Post Syndicated from Николай Марченко original https://bivol.bg/bivol-exposed-our-secret-weapons-in-ukraine-petkov-and-ninova-denied-it.html

четвъртък 19 януари 2023


No, there is no news in Die Welt and POLITICO’s articles, the secret weapons deliveries to Ukraine were first exposed by investigative journalism outlet Bivol in partnership with  Polish investigative…

Ukraine Intercepting Russian Soldiers’ Cell Phone Calls

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/12/ukraine-intercepting-russian-soldiers-cell-phone-calls.html

They’re using commercial phones, which go through the Ukrainian telecom network:

“You still have a lot of soldiers bringing cellphones to the frontline who want to talk to their families and they are either being intercepted as they go through a Ukrainian telecommunications provider or intercepted over the air,” said Alperovitch. “That doesn’t pose too much difficulty for the Ukrainian security services.”

[…]

“Security has always been a mess, both in the army and among defence officials,” the source said. “For example, in 2013 they tried to get all the staff at the ministry of defence to replace our iPhones with Russian-made Yoto smartphones.

“But everyone just kept using the iPhone as a second mobile because it was much better. We would just keep the iPhone in the car’s glove compartment for when we got back from work. In the end, the ministry gave up and stopped caring. If the top doesn’t take security very seriously, how can you expect any discipline in the regular army?”

This isn’t a new problem and it isn’t a Russian problem. Here’s a more general article on the problem from 2020.

Trojaned Windows Installer Targets Ukraine

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/12/trojaned-windows-installer-targets-ukraine.html

Mandiant is reporting on a trojaned Windows installer that targets Ukrainian users. The installer was left on various torrent sites, presumably ensnaring people downloading pirated copies of the operating system:

Mandiant uncovered a socially engineered supply chain operation focused on Ukrainian government entities that leveraged trojanized ISO files masquerading as legitimate Windows 10 Operating System installers. The trojanized ISOs were hosted on Ukrainian- and Russian-language torrent file sharing sites. Upon installation of the compromised software, the malware gathers information on the compromised system and exfiltrates it. At a subset of victims, additional tools are deployed to enable further intelligence gathering. In some instances, we discovered additional payloads that were likely deployed following initial reconnaissance including the STOWAWAY, BEACON, and SPAREPART backdoors.

One obvious solution would be for Microsoft to give the Ukrainians Windows licenses, so they don’t have to get their software from sketchy torrent sites.

How to Surrender to a Drone

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/12/how-to-surrender-to-a-drone.html

The Ukrainian army has released an instructional video explaining how Russian soldiers should surrender to a drone:

“Seeing the drone in the field of view, make eye contact with it,” the video instructs. Soldiers should then raise their arms and signal they’re ready to follow.

After that the drone will move up and down a few meters, before heading off at walking pace in the direction of the nearest representatives of Ukraine’s army, it says.

The video also warns that the drone’s battery may run low, in which case it will head back to base and the soldiers should stay put and await a fresh one.

That one, too, should be met with eye contact and arms raised, it says.

Incredible.

The latest on attacks, traffic patterns and cyber protection in Ukraine

Post Syndicated from Alissa Starzak original https://blog.cloudflare.com/ukraine-update/

The latest on attacks, traffic patterns and cyber protection in Ukraine

The latest on attacks, traffic patterns and cyber protection in Ukraine

On February 24, 2022, when Russia invaded Ukraine, Cloudflare jumped into action to provide services that could help prevent potentially destructive cyber attacks and keep the global Internet flowing. In the nearly 10 months since that day, we’ve posted about our actions, network traffic patterns, cyberattacks and network outages we’ve seen during the conflict.

During Impact Week, we want to provide an update on where things currently stand, the role of security companies like Cloudflare, and some of our takeaways from the conflict so far.

Cyberattacks on Ukrainian infrastructure and Cloudflare’s assistance

Since the time of the invasion, Ukrainian government and civilian infrastructure has come under a barrage of DDoS and other common cyberattacks. Although the public perception has been that cyberattacks have not played a significant role in the conflict, cyberspace has been an active battlefield. Ukrainian websites saw a significant spike in application layer firewall mitigated attacks in March 2022 and another spike in mid-September. Ukrainian sites have also seen a significant increase in the percentage of requests that were mitigated as attack traffic on a daily average, when compared with Q4 2021.  Those spikes are shown below, using a seven-day rolling average:

The latest on attacks, traffic patterns and cyber protection in Ukraine
Note: our Firewall blocks malicious HTTP requests: e.g. L7 DDoS requests, hacking attempts, vulnerability scanning, brute force login attempts

Nor have the attacks abated as the conflict has worn on. Although we’ve seen a reduction in firewall mitigations, in recent months we have seen spikes in DDoS attacks. On a number of occasions in September and October, DDoS attack traffic amounted to more than 80 percent of all traffic to sites on the .ua top level domain, as shown in the chart below.

The latest on attacks, traffic patterns and cyber protection in Ukraine

Cloudflare was proud to play a role in ensuring that these types of widespread DDoS and other cyberattacks did not disrupt the Ukrainian Internet. Cloudflare has offered free services and support to a wide variety of Ukrainian government and infrastructure providers to help address those attacks since the beginning of the conflict. We currently protect approximately 130 Ukrainian domains in this program, run by more than 50 different Ukrainian government agencies and companies.

Many nonprofit groups trying to operate in the region by helping refugees, documenting war crimes, sharing information and providing local services have also had to contend with cyberattacks. We expedited the onboarding of these groups onto Cloudflare’s Project Galileo, Cloudflare’s project to provide free services to vulnerable non-profits and human rights defenders. Since the invasion, we have onboarded 54 organizations in Ukraine to Project Galileo. Overall, we protect 79 organizations in Ukraine. We currently protect 130 organizations in the broader region, with 77 organizations (including those in Ukraine) onboarded to the project during the crisis.

New models of security

As Russian troops advanced deep into Ukraine earlier this year, the physical security of Ukrainian Internet infrastructure became as much a concern as the digital security. Companies and data centers operating in the region had to plan for possible degradation of the infrastructure through power outages or bombings as well as the possibility that Russian forces might get physical access to their offices or equipment. This reality raised both security and data destruction concerns.

Cloudflare took steps to secure our infrastructure in the region, configuring our machines to brick themselves if they lost power or connectivity. We carefully monitored activity in the region, ensuring that we would be aware of any notable changes in circumstances. We also secured our customers’ data, moving customer key material out of our data centers in the region. We’ve continued to operate our services in the region with Keyless SSL.

The Russian occupation of Ukraine highlighted the importance of having networks and digital defense systems that extend beyond a single country’s borders. Ukrainian government agencies and companies looking to make sure they could continue to provide vital services migrated their data to public clouds, allowing them to move it to safety in data centers throughout Europe. Cloudflare’s massive global network allowed those same entities to easily mitigate cyberattacks in the country where the attacks originated, rather than battling massive influxes of traffic and attacks inside Ukraine.

The possibility that Russian troops would get physical access to work locations also brought into sharp view the need for entities to have granular control over access to internal systems and applications. Companies needed to be able to quickly and efficiently withdraw access for those who might have remained in the region. Cloudflare saw a spike in demand for our zero trust solutions, prompted by those concerns about possible lateral movement in the event of a breach, as well as the need for VPN availability and performance.

Internet disruptions and routing as tools in armed conflict

The world has been watching as the Ukrainian Internet has become a tool in the ongoing conflict. Internet shutdowns in war torn areas disrupt critical communications, making it challenging for people to learn about the safety of their loved ones and to disseminate information about events on the ground to the world.

At Cloudflare, we have tracked dozens of Internet outages in Ukraine since the beginning of the conflict, caused by power outages and Russian attacks. We continue to publicly report on outages in the Cloudflare Radar Outages Center.

Some of these outages also raise significant questions. On September 1, 2022, for example, the day the International Atomic Energy Agency (IAEA) inspectors arrived at the Zaporizhzhia Nuclear Power Plant, there were Internet outages in two local ISPs that service the area. Those outages lasted until September 10, as shown in the charts below.

The latest on attacks, traffic patterns and cyber protection in Ukraine

The latest on attacks, traffic patterns and cyber protection in Ukraine

The Russian military also took advantage of its occupation of parts of Ukraine to manipulate Internet access. In multiple instances, they took charge of local telecoms, forcing the rerouting of Internet traffic through Russia or even a complete change of traffic to a Russian Internet service provider. Between May 1, 2022, and September 1, 2022, Cloudflare tracked more than 20 networks whose routing was altered to a Russian Internet service provider. Eleven of those networks had routes altered between May 29, 2022, and May 31, 2022, just as Ukraine announced its counteroffensive in Kherson. Those actions resulted in imposition of the same Russian controls, surveillance, and censorship as the Internet within Russia, giving Russia significant control over the information environment in the affected areas.

What’s next?

We can’t predict how long the war in Ukraine will last, but we do know that the need for a secure and reliable Internet there is as critical as ever. At Cloudflare, we’re committed to continue providing tools that protect critical services from cyber attack, improve security for those operating in the region, and share information about what is happening with the Internet inside Ukraine.

Exclusive reports from Russia and Ukraine Putin Moves to Legalise His Hijacking of the Zaporizhzhia Nuclear Plant

Post Syndicated from Николай Марченко original https://bivol.bg/putin-moves-to-legalise-his-hijacking-of-the-zaporizhzhia-nuclear-plant.html

четвъртък 24 ноември 2022


The Russian federation has found a way to legalise its capture of Europe’s biggest nuclear power plant. Russia’s armed forces stormed the Zaporizhzhia plant in South-Eastern Ukraine in March 2022.…

Russia Creates Malware False-Flag App

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/07/russia-creates-malware-false-flag-app.html

The Russian hacking group Turla released an Android app that seems to aid Ukrainian hackers in their attacks against Russian networks. It’s actually malware, and provides information back to the Russians:

The hackers pretended to be a “community of free people around the world who are fighting russia’s aggression”—much like the IT Army. But the app they developed was actually malware. The hackers called it CyberAzov, in reference to the Azov Regiment or Battalion, a far-right group that has become part of Ukraine’s national guard. To add more credibility to the ruse they hosted the app on a domain “spoofing” the Azov Regiment: cyberazov[.]com.

[…]

The app actually didn’t DDoS anything, but was designed to map out and figure out who would want to use such an app to attack Russian websites, according to Huntely.

[…]

Google said the fake app wasn’t hosted on the Play Store, and that the number of installs “was miniscule.”

Details from Google’s Threat Analysis Group here.

Official documents, photos and videos by Bivol show: Sofia secretly selling old weapons meant for Ukraine via Romania and Poland

Post Syndicated from Николай Марченко original https://bivol.bg/sofia-secretly-selling-old-weapons-meant-for-ukraine-via-romania-and-poland.html

вторник 19 юли 2022


Instead of offering military help in an official and transparent way, Bulgaria is secretly selling weapons meant for Ukraine through Poland and Romania, Bivol found out in a joint investigation…

DDoS attack trends for 2022 Q2

Post Syndicated from Omer Yoachimik original https://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/

DDoS attack trends for 2022 Q2

DDoS attack trends for 2022 Q2

Welcome to our 2022 Q2 DDoS report. This report includes insights and trends about the DDoS threat landscape — as observed across the global Cloudflare network. An interactive version of this report is also available on Radar.

In Q2, we’ve seen some of the largest attacks the world has ever seen including a 26 million request per second HTTPS DDoS attacks that Cloudflare automatically detected and mitigated. Furthermore, attacks against Ukraine and Russia continue, whilst a new Ransom DDoS attack campaign emerged.

The Highlights

Ukrainian and Russian Internet

  • The war on the ground is accompanied by attacks targeting the spread of information.
  • Broadcast Media companies in the Ukraine were the most targeted in Q2 by DDoS attacks. In fact, all the top five most attacked industries are all in online/Internet media, publishing, and broadcasting.
  • In Russia on the other hand, Online Media drops as the most attacked industry to the third place. Making their way to the top, Banking, Financial Services and Insurance (BFSI) companies in Russia were the most targeted in Q2; almost 45% of all application-layer DDoS attacks targeted the BFSI sector. Cryptocurrency companies in Russia were the second most attacked.

Read more about what Cloudflare is doing to keep the Open Internet flowing into Russia and keep attacks from getting out.

Ransom DDoS attacks

  • We’ve seen a new wave of Ransom DDoS attacks by entities claiming to be the Fancy Lazarus.
  • In June 2022, ransom attacks peaked to the highest of the year so far: one out of every five survey respondents who experienced a DDoS attack reported being subject to a Ransom DDoS attack or other threats.
  • Overall in Q2, the percent of Ransom DDoS attacks increased by 11% QoQ.

Application-layer DDoS attacks

  • In 2022 Q2, application-layer DDoS attacks increased by 72% YoY.
  • Organizations in the US were the most targeted, followed by Cyprus, Hong Kong, and China. Attacks on organizations in Cyprus increased by 166% QoQ.
  • The Aviation & Aerospace industry was the most targeted in Q2, followed by the Internet industry, Banking, Financial Services and Insurance, and Gaming / Gambling in fourth place.

Network-layer DDoS attacks

  • In 2022 Q2, network-layer DDoS attacks increased by 109% YoY. Attacks of 100 Gbps and larger increased by 8% QoQ, and attacks lasting more than 3 hours increased by 12% QoQ.
  • The top attacked industries were Telecommunications, Gaming / Gambling and the Information Technology and Services industry.
  • Organizations in the US were the most targeted, followed by China, Singapore, and Germany.

This report is based on DDoS attacks that were automatically detected and mitigated by Cloudflare’s DDoS Protection systems. To learn more about how it works, check out this deep-dive blog post.

A note on how we measure DDoS attacks observed over our network

To analyze attack trends, we calculate the “DDoS activity” rate, which is either the percentage of attack traffic out of the total traffic (attack + clean) observed over our global network, or in a specific location, or in a specific category (e.g., industry or billing country). Measuring the percentages allows us to normalize data points and avoid biases reflected in absolute numbers towards, for example, a Cloudflare data center that receives more total traffic and likely, also more attacks.

Ransom Attacks

Our systems constantly analyze traffic and automatically apply mitigation when DDoS attacks are detected. Each DDoS’d customer is prompted with an automated survey to help us better understand the nature of the attack and the success of the mitigation.

For over two years now, Cloudflare has been surveying attacked customers — one question on the survey being if they received a threat or a ransom note demanding payment in exchange to stop the DDoS attack.

The number of respondents reporting threats or ransom notes in Q2 increased by 11% QoQ and YoY. During this quarter, we’ve been mitigating Ransom DDoS attacks that have been launched by entities claiming to be the Advanced Persistent Threat (APT) group “Fancy Lazarus”. The campaign has been focusing on financial institutions and cryptocurrency companies.

DDoS attack trends for 2022 Q2
The percentage of respondents reported being targeted by a ransom DDoS attack or that have received threats in advance of the attack.

Drilling down into Q2, we can see that in June one out of every five respondents reported receiving a ransom DDoS attack or threat — the highest month in 2022, and the highest since December 2021.

DDoS attack trends for 2022 Q2

Application-layer DDoS attacks

Application-layer DDoS attacks, specifically HTTP DDoS attacks, are attacks that usually aim to disrupt a web server by making it unable to process legitimate user requests. If a server is bombarded with more requests than it can process, the server will drop legitimate requests and — in some cases — crash, resulting in degraded performance or an outage for legitimate users.

DDoS attack trends for 2022 Q2

Application-layer DDoS attacks by month

In Q2, application-layer DDoS attacks increased by 72% YoY.

Overall, in Q2, the volume of application-layer DDoS attacks increased by 72% YoY, but decreased 5% QoQ. May was the busiest month in the quarter. Almost 41% of all application-layer DDoS attacks took place in May, whereas the least number of attacks took place in June (28%).

DDoS attack trends for 2022 Q2

Application-layer DDoS attacks by industry

Attacks on the Aviation and Aerospace industry increased by 493% QoQ.

In Q2, Aviation and Aerospace was the most targeted industry by application-layer DDoS attacks. After it, was the Internet industry, Banking, Financial Institutions and Insurance (BFSI) industry, and in fourth place the Gaming / Gambling industry.

DDoS attack trends for 2022 Q2

Ukraine and Russia cyberspace

Media and publishing companies are the most targeted in Ukraine.

As the war in Ukraine continues on the ground, in the air and on the water, so does it continue in cyberspace. Entities targeting Ukrainian companies appear to be trying to silence information. The top five most attacked industries in the Ukraine are all in broadcasting, Internet, online media, and publishing — that’s almost 80% of all DDoS Attacks targeting Ukraine.

DDoS attack trends for 2022 Q2

On the other side of the war, the Russian Banks, Financial Institutions and Insurance (BFSI) companies came under the most attacks. Almost 45% of all DDoS attacks targeted the BFSI sector. The second most targeted was the Cryptocurrency industry, followed by Online media.

DDoS attack trends for 2022 Q2

In both sides of the war, we can see that the attacks are highly distributed, indicating the use of globally distributed botnets.

Application-layer DDoS attacks by source country

In Q2, attacks from China shrank by 78%, and attacks from the US shrank by 43%.

To understand the origin of the HTTP attacks, we look at the geolocation of the source IP address belonging to the client that generated the attack HTTP requests. Unlike network-layer attacks, source IP addresses cannot be spoofed in HTTP attacks. A high percentage of DDoS activity in a given country doesn’t mean that that specific country is launching the attacks but rather indicates the presence of botnets operating from within the country’s borders.

For the second quarter in a row, the United States tops the charts as the main source of HTTP DDoS attacks. Following the US is China in second place, and India and Germany in the third and fourth. Even though the US remained in the first place, attacks originating from the US shrank by 48% QoQ while attacks from other regions grew; attacks from India grew by 87%, from Germany by 33%, and attacks from Brazil grew by 67%.

DDoS attack trends for 2022 Q2

Application-layer DDoS attacks by target country

In order to identify which countries are targeted by the most HTTP DDoS attacks, we bucket the DDoS attacks by our customers’ billing countries and represent it as a percentage out of all DDoS attacks.

HTTP DDoS attacks on US-based countries increased by 67% QoQ pushing the US back to the first place as the main target of application-layer DDoS attacks. Attacks on Chinese companies plunged by 80% QoQ dropping it from the first place to the fourth. Attacks on Cyprus increase by 167% making it the second most attacked country in Q2. Following Cyprus is Hong Kong, China, and the Netherlands.

DDoS attack trends for 2022 Q2

Network-layer DDoS attacks

While application-layer attacks target the application (Layer 7 of the OSI model) running the service that end users are trying to access (HTTP/S in our case), network-layer attacks aim to overwhelm network infrastructure (such as in-line routers and servers) and the Internet link itself.

DDoS attack trends for 2022 Q2

Network-layer DDoS attacks by month

In Q2, network-layer DDoS attacks increased by 109% YoY, and volumetric attacks of 100 Gbps and larger increased by 8% QoQ.

In Q2, the total amount of network-layer DDoS attacks increased by 109% YoY and 15% QoQ. June was the busiest month of the quarter with almost 36% of the attacks occurring in June.

DDoS attack trends for 2022 Q2

Network-layer DDoS attacks by industry

In Q2, attacks on Telecommunication companies grew by 66% QoQ.

For the second consecutive quarter, the Telecommunications industry was the most targeted by network-layer DDoS attacks. Even more so, attacks on Telecommunication companies grew by 66% QoQ. The Gaming industry came in second place, followed by Information Technology and Services companies.

DDoS attack trends for 2022 Q2

Network-layer DDoS attacks by target country

Attacks on US networks grew by 95% QoQ.

In Q2, the US remains the most attacked country. After the US came China, Singapore and Germany.

DDoS attack trends for 2022 Q2

Network-layer DDoS attacks by ingress country

In Q2, almost a third of the traffic Cloudflare observed in Palestine and a fourth in Azerbaijan was part of a network-layer DDoS attack.

When trying to understand where network-layer DDoS attacks originate, we cannot use the same method as we use for the application-layer attack analysis. To launch an application-layer DDoS attack, successful handshakes must occur between the client and the server in order to establish an HTTP/S connection. For a successful handshake to occur, the attacks cannot spoof their source IP address. While the attacker may use botnets, proxies, and other methods to obfuscate their identity, the attacking client’s source IP location does sufficiently represent the attack source of application-layer DDoS attacks.

On the other hand, to launch network-layer DDoS attacks, in most cases, no handshake is needed. Attackers can spoof the source IP address in order to obfuscate the attack source and introduce randomness into the attack properties, which can make it harder for simple DDoS protection systems to block the attack. So if we were to derive the source country based on a spoofed source IP, we would get a ‘spoofed country’.

For this reason, when analyzing network-layer DDoS attack sources, we bucket the traffic by the Cloudflare data center locations where the traffic was ingested, and not by the (potentially) spoofed source IP to get an understanding of where the attacks originate from. We are able to achieve geographical accuracy in our report because we have data centers in over 270 cities around the world. However, even this method is not 100% accurate, as traffic may be back hauled and routed via various Internet Service Providers and countries for reasons that vary from cost reduction to congestion and failure management.

Palestine jumps from the second to the first place as the Cloudflare location with the highest percentage of network-layer DDoS attacks. Following Palestine is Azerbaijan, South Korea, and Angola.

DDoS attack trends for 2022 Q2
DDoS attack trends for 2022 Q2

To view all regions and countries, check out the interactive map.

Attack vectors

In Q2, DNS attacks increased making it the second most frequent attack vector.

An attack vector is a term used to describe the method that the attacker uses to launch their DDoS attack, i.e., the IP protocol, packet attributes such as TCP flags, flooding method, and other criteria.

In Q2, 53% of all network-layer attacks were SYN floods. SYN floods remain the most popular attack vector. They abuse the initial connection request of the stateful TCP handshake. During this initial connection request, servers don’t have any context about the TCP connection as it is new and without the proper protection may find it hard to mitigate a flood of initial connection requests. This makes it easier for the attacker to consume an unprotected server’s resources.

After the SYN floods are attacks targeting DNS infrastructure, RST floods again abusing TCP connection flow, and generic attacks over UDP.

DDoS attack trends for 2022 Q2

Emerging threats

In Q2, the top emerging threats included attacks over CHARGEN, Ubiquiti and Memcached.

Identifying the top attack vectors helps organizations understand the threat landscape. In turn, this may help them improve their security posture to protect against those threats. Similarly, learning about new emerging threats that may not yet account for a significant portion of attacks, can help mitigate them before they become a significant force.

In Q2, the top emerging threats were amplification attacks abusing the Character Generator Protocol (CHARGEN), amplification attacks reflecting traffic off of exposed Ubiquiti devices, and the notorious Memcached attack.

DDoS attack trends for 2022 Q2

Abusing the CHARGEN protocol to launch amplification attacks

In Q2, attacks abusing the CHARGEN protocol increased by 378% QoQ.

Initially defined in RFC 864 (1983), the Character Generator (CHARGEN) protocol is a service of the Internet Protocol Suite that does exactly what it says it does – it generates characters arbitrarily, and it doesn’t stop sending them to the client until the client closes the connection. Its original intent was for testing and debugging. However, it’s rarely used because it can so easily be abused to generate amplification/reflection attacks.

An attacker can spoof the source IP of their victim and fool supporting servers around the world to direct a stream of arbitrary characters “back” to the victim’s servers. This type of attack is amplification/reflection. Given enough simultaneous CHARGEN streams, the victim’s servers, if unprotected, would be flooded and unable to cope with legitimate traffic — resulting in a denial of service event.

Amplification attacks exploiting the Ubiquiti Discovery Protocol

In Q2, attacks over Ubiquity increased by 327% QoQ.

Ubiquiti is a US-based company that provides networking and Internet of Things (IoT) devices for consumers and businesses. Ubiquiti devices can be discovered on a network using the Ubiquiti Discovery protocol over UDP/TCP port 10001.

Similarly to the CHARGEN attack vector, here too, attackers can spoof the source IP to be the victim’s IP address and spray IP addresses that have port 10001 open. Those would then respond to the victim and essentially flood it if the volume is sufficient.

Memcached DDoS attacks

In Q2, Memcached DDoS attacks increased by 287% QoQ.

Memcached is a database caching system for speeding up websites and networks. Similarly to CHARGEN and Ubiquiti, Memcached servers that support UDP can be abused to launch amplification/reflection DDoS attacks. In this case, the attacker would request content from the caching system and spoof the victim’s IP address as the source IP in the UDP packets. The victim will be flooded with the Memcache responses which can be amplified by a factor of up to 51,200x.

Network-layer DDoS attacks by attack rate

Volumetric attacks of over 100 Gbps increase by 8% QoQ.

There are different ways of measuring the size of an L3/4 DDoS attack. One is the volume of traffic it delivers, measured as the bit rate (specifically, terabits per second or gigabits per second). Another is the number of packets it delivers, measured as the packet rate (specifically, millions of packets per second).

Attacks with high bit rates attempt to cause a denial-of-service event by clogging the Internet link, while attacks with high packet rates attempt to overwhelm the servers, routers, or other in-line hardware appliances. These devices dedicate a certain amount of memory and computation power to process each packet. Therefore, by bombarding it with many packets, the appliance can be left with no further processing resources. In such a case, packets are “dropped,” i.e., the appliance is unable to process them. For users, this results in service disruptions and denial of service.

Distribution by packet rate

The majority of network-layer DDoS attacks remain below 50,000 packets per second. While 50 kpps is on the lower side of the spectrum at Cloudflare scale, it can still easily take down unprotected Internet properties and congest even a standard Gigabit Ethernet connection.

DDoS attack trends for 2022 Q2

When we look at the changes in the attack sizes, we can see that packet-intensive attacks above 50 kpps decreased in Q2, resulting in an increase of 4% in small attacks.

DDoS attack trends for 2022 Q2

Distribution by bitrate

In Q2, most of the network-layer DDoS attacks remain below 500 Mbps. This too is a tiny drop in the water at Cloudflare scale, but can very quickly shut down unprotected Internet properties with less capacity or at the very least cause congestion for even a standard Gigabit Ethernet connection.

DDoS attack trends for 2022 Q2

Interestingly enough, large attacks between 500 Mbps and 100 Gbps decreased by 20-40% QoQ, but volumetric attacks above 100 Gbps increased by 8%.

DDoS attack trends for 2022 Q2

Network-layer DDoS attacks by duration

In Q2, attacks lasting over three hours increased by 9%.

We measure the duration of an attack by recording the difference between when it is first detected by our systems as an attack and the last packet we see with that attack signature towards that specific target.

In Q2, 52% of network-layer DDoS attacks lasted less than 10 minutes. Another 40% lasted 10-20 minutes. The remaining 8% include attacks ranging from 20 minutes to over three hours.

One important thing to keep in mind is that even if an attack lasts only a few minutes, if it is successful, the repercussions could last well beyond the initial attack duration. IT personnel responding to a successful attack may spend hours and even days restoring their services.

DDoS attack trends for 2022 Q2

While most of the attacks are indeed short, we can see an increase of over 15% in attacks ranging between 20-60 minutes, and a 12% increase of attacks lasting more than three hours.

DDoS attack trends for 2022 Q2

Short attacks can easily go undetected, especially burst attacks that, within seconds, bombard a target with a significant number of packets, bytes, or requests. In this case, DDoS protection services that rely on manual mitigation by security analysis have no chance in mitigating the attack in time. They can only learn from it in their post-attack analysis, then deploy a new rule that filters the attack fingerprint and hope to catch it next time. Similarly, using an “on-demand” service, where the security team will redirect traffic to a DDoS provider during the attack, is also inefficient because the attack will already be over before the traffic routes to the on-demand DDoS provider.

It’s recommended that companies use automated, always-on DDoS protection services that analyze traffic and apply real-time fingerprinting fast enough to block short-lived attacks.

Summary

Cloudflare’s mission is to help build a better Internet. A better Internet is one that is more secure, faster, and reliable for everyone — even in the face of DDoS attacks. As part of our mission, since 2017, we’ve been providing unmetered and unlimited DDoS protection for free to all of our customers. Over the years, it has become increasingly easier for attackers to launch DDoS attacks. But as easy as it has become, we want to make sure that it is even easier — and free — for organizations of all sizes to protect themselves against DDoS attacks of all types.

Not using Cloudflare yet? Start now with our Free and Pro plans to protect your websites, or contact us for comprehensive DDoS protection for your entire network using Magic Transit.

In Ukraine and beyond, what it takes to keep vulnerable groups online

Post Syndicated from Jocelyn Woolbright original https://blog.cloudflare.com/in-ukraine-and-beyond-what-it-takes-to-keep-vulnerable-groups-online/

In Ukraine and beyond, what it takes to keep vulnerable groups online

This post is also available in 日本語, Deutsch, Français, Español, Português.

In Ukraine and beyond, what it takes to keep vulnerable groups online

As we celebrate the eighth anniversary of Project Galileo, we want to provide a view into the type of cyber attacks experienced by organizations protected under the project. In a year full of new challenges for so many, we hope that analysis of attacks against these vulnerable groups provides researchers, civil society, and targeted organizations with insight into how to better protect those working in these spaces.

For this blog, we want to focus on attacks we have seen against organizations in Ukraine, including significant growth in DDoS attack activity after the start of the conflict. Within the related Radar dashboard, we do a deep dive into attack trends against Project Galileo participants in a range of areas including human rights, journalism, and community led non-profits.

To read the whole report, visit the Project Galileo 8th anniversary Radar Dashboard.

Understanding the Data

  • For this dashboard, we analyzed data from July 1, 2021 to May 5, 2022 from 1,900 organizations from around the world that are protected under the project.
  • For DDoS attacks, we classify this as traffic that we have determined is part of a Layer 7 (application layer) DDoS attack. Such attacks are often malicious floods of requests designed to overwhelm a site with the intention of knocking it offline. We block the requests associated with the attack, ensuring that legitimate requests reach the site, and that it stays online.
  • For traffic mitigated by the web application firewall, this is traffic that was determined to be malicious and was blocked by Cloudflare’s firewall. We provide free Business level services under Project Galileo, and our WAF is one of the valuable tools used to mitigate attempts to exploit vulnerabilities intended to gain unauthorized access to an organization’s online application.
  • For graphs that represent changes in traffic or domains under Project Galileo, we are using the average daily traffic (number of requests) of the first two weeks of July 2021 as the baseline.

Highlights of past year

  • We continue to see cyberattack activity increase, with nearly 18 billion attacks between July 2021 and May 2022. This is an average of nearly 57.9 million cyberattacks per day over the last nine months, an increase of nearly 10% over last year.
  • Mitigated DDoS traffic targeting organizations in Ukraine reached as much as 90% of total traffic during one significant attack in April.
  • After the war in Ukraine started, applications to the project increased by 177% in March 2022.
  • Journalism and media organizations in Europe and the Americas saw traffic grow ~150% over the last year.
  • We see a range of unsophisticated cyberattacks against organizations that work in human rights and journalism. Up to 40% of WAF mitigated requests were classified as HTTP Anomalies, the largest of any WAF rule type, a type of attack that can be damaging to unprotected organizations but is automatically blocked by Cloudflare.
  • From July 2021 to May 2022, organizations based in Europe consistently accounted for half to two-thirds of request traffic out of all the regions covered under the project.

Global Coverage of Project Galileo

In Ukraine and beyond, what it takes to keep vulnerable groups online

Protecting organizations in Ukraine

As the war started in Ukraine, we saw an increase in applications for participation in Project Galileo from organizations looking for our assistance. Many came in while under DDoS attack, but we also saw sites subject to large influxes of traffic from people on the ground in Ukraine attempting to access information due to the ongoing Russian invasion. While traffic from organizations in Ukraine was largely flat before the start of the war, since that time, traffic increases primarily have been driven by organizations that work in journalism and media.

In Ukraine and beyond, what it takes to keep vulnerable groups online

Ahead of the war, organizations that work in community building/social welfare, such as those who provide direct assistance to refugees, or provide donation platforms to support those in Ukraine were responsible for what little traffic that was mitigated by the web application firewall (WAF). However, after the war began, journalism organizations saw the most WAF-mitigated traffic, with frequent spikes, including one on March 13 representing 69% of traffic. During this period of increased WAF-mitigated requests that started in late February, the majority of the attacks were classified as SQLi. WAF mitigated traffic for human rights organizations increased in mid-March, growing to between 5-10% of traffic.

In Ukraine and beyond, what it takes to keep vulnerable groups online

Mitigated DDoS traffic for organizations in Ukraine was concentrated in the mid-March to May timeframe, with rapid growth in the percentage of traffic it represents. The first spikes were in the 20% range, but rapidly grew before receding, including an attack on April 19 that accounted for over 90% of traffic that day.

In Ukraine and beyond, what it takes to keep vulnerable groups online

Since the start of the war, growth in traffic from protected organizations has varied across the categories. Traffic among Health organizations increased by 20-30x over baseline between late March and later April. Setting aside attack spikes, traffic from Journalism organizations was generally up 3-4x over baseline. Growth in the other categories was generally below 3x.

In Ukraine and beyond, what it takes to keep vulnerable groups online

For traffic mitigated by the web application firewall (WAF), the most frequently applied rule was HTTP Anomaly, associated with 92% of requests. Requests for Web content (HTTP requests) have an expected structure, set of headers, and related values. Some attackers will send malformed requests, including anomalies like missing headers, unsupported request methods, using non-standard ports, or invalid character encoding. These requests are classified as “HTTP anomalies”. These anomalous requests are frequently associated with unsophisticated attacks, and are automatically blocked by Cloudflare’s WAF.

In Ukraine and beyond, what it takes to keep vulnerable groups online

With the ongoing war, we continue to onboard and provide protection to organizations in Ukraine and neighboring countries to ensure they have access to information. Any Ukrainian organizations that are facing attack can apply for free protection under Project Galileo by visiting www.cloudflare.com/galileo, and we will expedite their review and approval.

Attack methods based on region

Across the Americas, Asia Pacific, Europe, and Africa/Middle East regions, the largest fraction (28%) of mitigated requests were classified as “HTTP Anomaly”, with 20% of mitigated requests tagged as SQL injection attempts and nearly 13% as attempts to exploit specific CVEs. CVEs are publicly disclosed cybersecurity vulnerabilities. Cloudflare monitors new vulnerabilities and quickly determines which require additional rulesets to protect our users. Depending on the vulnerability, they can be sophisticated attacks but depend on the severity, identification and response by security professionals.

In our previous report, we identified similar attack trends with SQLi injection and HTTP anomalies, classified as User agent anomalies, making up a large part of mitigated requests.

In Ukraine and beyond, what it takes to keep vulnerable groups online

Attacks methods by on organization type

We protect a range of organizations under Project Galileo. For this dashboard, we categorized them in 6 groups: community building/social welfare, education, environmental/disaster relief, human rights and journalism. To help understand threats against these groups, we broke down the types of attacks we saw that were mitigated by the web application firewall. A majority of the mitigated traffic is from HTTP anomalies and SQLi (SQL injection).

SQLi is an attack technique designed to modify or retrieve data from SQL databases. By inserting specialized SQL statements into a form field, attackers attempt to execute commands that allow for the retrieval of data from the database, modification of data within the database, the destruction of sensitive data, or other manipulative behaviors.

In Ukraine and beyond, what it takes to keep vulnerable groups online

Learn more on the 8th Anniversary Radar DashboardSee the full report on attack trends we observed against a wide range of organizations protected under Project Galileo.

The Limits of Cyber Operations in Wartime

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/05/the-limits-of-cyber-operations-in-wartime.html

Interesting paper by Lennart Maschmeyer: “The Subversive Trilemma: Why Cyber Operations Fall Short of Expectations“:

Abstract: Although cyber conflict has existed for thirty years, the strategic utility of cyber operations remains unclear. Many expect cyber operations to provide independent utility in both warfare and low-intensity competition. Underlying these expectations are broadly shared assumptions that information technology increases operational effectiveness. But a growing body of research shows how cyber operations tend to fall short of their promise. The reason for this shortfall is their subversive mechanism of action. In theory, subversion provides a way to exert influence at lower risks than force because it is secret and indirect, exploiting systems to use them against adversaries. The mismatch between promise and practice is the consequence of the subversive trilemma of cyber operations, whereby speed, intensity, and control are negatively correlated. These constraints pose a trilemma for actors because a gain in one variable tends to produce losses across the other two variables. A case study of the Russo-Ukrainian conflict provides empirical support for the argument. Qualitative analysis leverages original data from field interviews, leaked documents, forensic evidence, and local media. Findings show that the subversive trilemma limited the strategic utility of all five major disruptive cyber operations in this conflict.

Tracking shifts in Internet connectivity in Kherson, Ukraine

Post Syndicated from João Tomé original https://blog.cloudflare.com/tracking-shifts-in-internet-connectivity-in-kherson-ukraine/

Tracking shifts in Internet connectivity in Kherson, Ukraine

The Internet is not only a human right according to the United Nations, and a way to get information, but it has also become an important element in geopolitical conflicts, like the war going on in Ukraine. We have previously written about Ukrainians moving westward to escape the war and Internet outages in the country, but also about the importance of the open Internet in Russia.

Over this past week, we observed an outage in the occupied city of Kherson, south Ukraine, coupled with an apparent shift in who controls the Internet within the region. First, let’s give some context and show what we saw.

The Russian-occupied Kherson (a city of 280,000 people) experienced an Internet outage on Saturday, April 30, 2022, that began just after 16:00 UTC. The outage lasted until Wednesday, May 4, with traffic starting to return around 04:30 UTC traffic.

Tracking shifts in Internet connectivity in Kherson, Ukraine

In the chart below, we can see that there was a 43% decrease in traffic from Kherson from February 23 to 24, after the war started. However, this weekend’s outage is the most significant disruption to Internet traffic in Kherson since the start of the war.

Tracking shifts in Internet connectivity in Kherson, Ukraine

According to Ukraine’s vice Prime-Minister, Mykhailo Fedorov, and also the State Service of Special Communications and Information Protection, on Wednesday morning, May 4, “the communication cut off by the occupiers in Kherson and Kherson region was restored” using “backup power channels”. The reasons presented for the lack of communication “were interruptions of fiber-optic trunk lines and disconnection from the power supply of equipment of operators in the region”.

Yuriy Shchyhol, head of the organization, also said during a briefing that the occupiers had connected Ukrainian Internet users to the Russian network by switching fiber-optic lines and communication stations. “This is a gross violation of international law. We have already appealed to the International Telecommunication Union to impose sanctions on the Russian Federation”, he explained.

Shift in routing

Around the time that the outage referenced above began, we also observed a shift in routing for the IPv4 prefix announced by AS47598 (Khersontelecom). As shown in the table below, prior to the outage, it reached the Internet through several other Ukrainian network providers, including AS12883, AS3326, and AS35213. However, a day later, its routing path now showed a Russian network, AS201776 (Miranda) as the upstream provider. The path through Miranda also includes AS12389 (Rostelecom), which bills itself as “the largest digital services provider in Russia”. This aligns with the claims noted above about connecting Ukrainian Internet users to the Russian network.

Peer AS Last Update AS Path
AS1299 (TWELVE99 Arelion, fka Telia Carrier) 5/1/2022 16:02:26 1299 12389 201776 47598
AS6777 (AMS-IX-RS) 4/28/2022 11:23:33 12883 47598

Because Cloudflare uses Anycast to route content requests to data centers on our network, routing changes such as this one can impact data center selection. This is clearly evident in the graph below. Prior to the outage, when Khersontelecom reached the Internet through other Ukrainian providers, requests from the network were handled by Cloudflare data centers in Kyiv, Ukraine and Frankfurt, Germany. On May 1, after the Russian network began to route traffic for Khersontelecom, requests were sent to our Moscow data center.

Tracking shifts in Internet connectivity in Kherson, Ukraine

These requests continued to be handled by our Moscow data center for approximately three days. However, the graph also shows that traffic started being handled again by the Kyiv and Frankfurt data centers, with the Moscow data center no longer in the mix, around 06:00 UTC on May 4. This aligns with the observed update to the routing path for AS47598 shown in the table below – it no longer had Russian networks as upstream providers, but instead returned to reaching the Internet through other Ukrainian networks.

Peer AS Last Update AS Path
AS174 (COGENT-174) 5/4/2022 05:56:27 174 3326 3326 3326 47598
AS1273 (CW Vodafone Group PLC) 5/4/2022 03:11:25 1273 12389 201776 47598

Conclusion

As we saw, not only was there an Internet outage in the Kherson region, but there was also a shift in routing at least in one Kherson network that, for a few days, left traffic passing through Russian networks (along with all the restrictions and limitations, such as content blocking, such an arrangement could potentially have).

Availability of and control over physical resources have always been a key focus of war, but it is now clear that Internet resources now hold similar importance during times of conflict. This is also demonstrated by what happened to the Internet in Crimea after the annexation of 2014, as explained in-depth in this 2020 study.

You can follow Internet trends (including details about ASNs) on Cloudflare Radar, and also on Radar’s Twitter account.

Microsoft Issues Report of Russian Cyberattacks against Ukraine

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/04/microsoft-issues-report-of-russian-cyberattacks-against-ukraine.html

Microsoft has a comprehensive report on the dozens of cyberattacks — and even more espionage operations — Russia has conducted against Ukraine as part of this war:

At least six Russian Advanced Persistent Threat (APT) actors and other unattributed threats, have conducted destructive attacks, espionage operations, or both, while Russian military forces attack the country by land, air, and sea. It is unclear whether computer network operators and physical forces are just independently pursuing a common set of priorities or actively coordinating. However, collectively, the cyber and kinetic actions work to disrupt or degrade Ukrainian government and military functions and undermine the public’s trust in those same institutions.

[…]

Threat groups with known or suspected ties to the GRU have continuously developed and used destructive wiper malware or similarly destructive tools on targeted Ukrainian networks at a pace of two to three incidents a week since the eve of invasion. From February 23 to April 8, we saw evidence of nearly 40 discrete destructive attacks that permanently destroyed files in hundreds of systems across dozens of organizations in Ukraine.

Russian Cyberattack against Ukrainian Power Grid Prevented

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/04/russian-cyberattack-against-ukrainian-power-grid-prevented.html

A Russian cyberweapon, similar to the one used in 2016, was detected and removed before it could be used.

Key points:

  • ESET researchers collaborated with CERT-UA to analyze the attack against the Ukrainian energy company
  • The destructive actions were scheduled for 2022-04-08 but artifacts suggest that the attack had been planned for at least two weeks
  • The attack used ICS-capable malware and regular disk wipers for Windows, Linux and Solaris operating systems
  • We assess with high confidence that the attackers used a new version of the Industroyer malware, which was used in 2016 to cut power in Ukraine
  • We assess with high confidence that the APT group Sandworm is responsible for this new attack

News article.

EDITED TO ADD: Better news coverage from Wired.