Earlier this month we launched the C5 Instances with Local NVMe Storage and I told you that we would be doing the same for additional instance types in the near future!
Today we are introducing M5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for workloads that require a balance of compute and memory resources. Here are the specs:
Instance Name
vCPUs
RAM
Local Storage
EBS-Optimized Bandwidth
Network Bandwidth
m5d.large
2
8 GiB
1 x 75 GB NVMe SSD
Up to 2.120 Gbps
Up to 10 Gbps
m5d.xlarge
4
16 GiB
1 x 150 GB NVMe SSD
Up to 2.120 Gbps
Up to 10 Gbps
m5d.2xlarge
8
32 GiB
1 x 300 GB NVMe SSD
Up to 2.120 Gbps
Up to 10 Gbps
m5d.4xlarge
16
64 GiB
1 x 600 GB NVMe SSD
2.210 Gbps
Up to 10 Gbps
m5d.12xlarge
48
192 GiB
2 x 900 GB NVMe SSD
5.0 Gbps
10 Gbps
m5d.24xlarge
96
384 GiB
4 x 900 GB NVMe SSD
10.0 Gbps
25 Gbps
The M5d instances are powered by Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, including support for AVX-512.
You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.
Here are a couple of things to keep in mind about the local NVMe storage on the M5d instances:
Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.
Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.
Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.
Available Now M5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent M5 instances.
Join us this month to learn about AWS services and solutions. New this month, we have a fireside chat with the GM of Amazon WorkSpaces and our 2nd episode of the “How to re:Invent” series. We’ll also cover best practices, deep dives, use cases and more! Join us and register today!
AWS re:Invent June 13, 2018 | 05:00 PM – 05:30 PM PT – Episode 2: AWS re:Invent Breakout Content Secret Sauce – Hear from one of our own AWS content experts as we dive deep into the re:Invent content strategy and how we maintain a high bar. Compute
Containers June 25, 2018 | 09:00 AM – 09:45 AM PT – Running Kubernetes on AWS – Learn about the basics of running Kubernetes on AWS including how setup masters, networking, security, and add auto-scaling to your cluster.
June 19, 2018 | 11:00 AM – 11:45 AM PT – Launch AWS Faster using Automated Landing Zones – Learn how the AWS Landing Zone can automate the set up of best practice baselines when setting up new
June 21, 2018 | 01:00 PM – 01:45 PM PT – Enabling New Retail Customer Experiences with Big Data – Learn how AWS can help retailers realize actual value from their big data and deliver on differentiated retail customer experiences.
June 28, 2018 | 01:00 PM – 01:45 PM PT – Fireside Chat: End User Collaboration on AWS – Learn how End User Compute services can help you deliver access to desktops and applications anywhere, anytime, using any device. IoT
June 27, 2018 | 11:00 AM – 11:45 AM PT – AWS IoT in the Connected Home – Learn how to use AWS IoT to build innovative Connected Home products.
Mobile June 25, 2018 | 11:00 AM – 11:45 AM PT – Drive User Engagement with Amazon Pinpoint – Learn how Amazon Pinpoint simplifies and streamlines effective user engagement.
June 26, 2018 | 11:00 AM – 11:45 AM PT – Deep Dive: Hybrid Cloud Storage with AWS Storage Gateway – Learn how you can reduce your on-premises infrastructure by using the AWS Storage Gateway to connecting your applications to the scalable and reliable AWS storage services. June 27, 2018 | 01:00 PM – 01:45 PM PT – Changing the Game: Extending Compute Capabilities to the Edge – Discover how to change the game for IIoT and edge analytics applications with AWS Snowball Edge plus enhanced Compute instances. June 28, 2018 | 11:00 AM – 11:45 AM PT – Big Data and Analytics Workloads on Amazon EFS – Get best practices and deployment advice for running big data and analytics workloads on Amazon EFS.
The German charity Save Nemo works to protect coral reefs, and they are developing Nemo-Pi, an underwater “weather station” that monitors ocean conditions. Right now, you can vote for Save Nemo in the Google.org Impact Challenge.
Save Nemo
The organisation says there are two major threats to coral reefs: divers, and climate change. To make diving saver for reefs, Save Nemo installs buoy anchor points where diving tour boats can anchor without damaging corals in the process.
In addition, they provide dos and don’ts for how to behave on a reef dive.
The Nemo-Pi
To monitor the effects of climate change, and to help divers decide whether conditions are right at a reef while they’re still on shore, Save Nemo is also in the process of perfecting Nemo-Pi.
This Raspberry Pi-powered device is made up of a buoy, a solar panel, a GPS device, a Pi, and an array of sensors. Nemo-Pi measures water conditions such as current, visibility, temperature, carbon dioxide and nitrogen oxide concentrations, and pH. It also uploads its readings live to a public webserver.
The Save Nemo team is currently doing long-term tests of Nemo-Pi off the coast of Thailand and Indonesia. They are also working on improving the device’s power consumption and durability, and testing prototypes with the Raspberry Pi Zero W.
The web dashboard showing live Nemo-Pi data
Long-term goals
Save Nemo aims to install a network of Nemo-Pis at shallow reefs (up to 60 metres deep) in South East Asia. Then diving tour companies can check the live data online and decide day-to-day whether tours are feasible. This will lower the impact of humans on reefs and help the local flora and fauna survive.
A healthy coral reef
Nemo-Pi data may also be useful for groups lobbying for reef conservation, and for scientists and activists who want to shine a spotlight on the awful effects of climate change on sea life, such as coral bleaching caused by rising water temperatures.
A bleached coral reef
Vote now for Save Nemo
If you want to help Save Nemo in their mission today, vote for them to win the Google.org Impact Challenge:
Click “Abstimmen” in the footer of the page to vote
Click “JA” in the footer to confirm
Voting is open until 6 June. You can also follow Save Nemo on Facebook or Twitter. We think this organisation is doing valuable work, and that their projects could be expanded to reefs across the globe. It’s fantastic to see the Raspberry Pi being used to help protect ocean life.
Python code creates curious, wordless comic strips at random, spewing them from the thermal printer mouth of a laser-cut body reminiscent of Disney Pixar’s WALL-E: meet the Vomit Comic Robot!
The age of the thermal printer!
Thermal printers allow you to instantly print photos, data, and text using a few lines of code, with no need for ink. More and more makers are using this handy, low-maintenance bit of kit for truly creative projects, from Pierre Muth’s tiny PolaPi-Zero camera to the sound-printing Waves project by Eunice Lee, Matthew Zhang, and Bomani McClendon (and our own Secret Santa Babbage).
Vomiting robots
Interaction designer and developer Cadin Batrack, whose background is in game design and interactivity, has built the Vomit Comic Robot, which creates “one-of-a-kind comics on demand by processing hand-drawn images through a custom software algorithm.”
The robot is made up of a Raspberry Pi 3, a USB thermal printer, and a handful of LEDs.
At the press of a button, Processing code selects one of a set of Cadin’s hand-drawn empty comic grids and then randomly picks images from a library to fill in the gaps.
Each image is associated with data that allows the code to fit it correctly into the available panels. Cadin says about the concept behing his build:
Although images are selected and placed randomly, the comic panel format suggests relationships between elements. Our minds create a story where there is none in an attempt to explain visuals created by a non-intelligent machine.
The Raspberry Pi saves the final image as a high-resolution PNG file (so that Cadin can sell prints on thick paper via Etsy), and a Python script sends it to be vomited up by the thermal printer.
For more about the Vomit Comic Robot, check out Cadin’s blog. If you want to recreate it, you can find the info you need in the Imgur album he has put together.
We cute robots
We have a soft spot for cute robots here at Pi Towers, and of course we make no exception for the Vomit Comic Robot. If, like us, you’re a fan of adorable bots, check out Mira, the tiny interactive robot by Alonso Martinez, and Peeqo, the GIF bot by Abhishek Singh.
A hanging plotter, also known as a polar plotter or polargraph, is a machine for drawing images on a vertical surface. It does so by using motors to control the length of two cords that form a V shape, supporting a pen where they meet. We’ve featured one on this blog before: Norbert “HomoFaciens” Heinz’s video is a wonderfully clear introduction to how a polargraph works and what you have to consider when you’re putting one together.
Today, we look at Inky Lines, by John Proudlock. With it, John is creating a series of captivating and beautiful pieces, and with his most recent work, each rendering of an image is unique.
An evolving project
The project isn’t new – John has been working on it for at least a couple of years – but it is constantly evolving. When we first spotted it, John had just implemented code to allow the plotter to produce mesmeric, spiralling patterns.
But we’re skipping ahead. Let’s go back to the beginning.
From pixels to motor movements
John starts by providing an image, usually no more than 100 pixels wide, to a Raspberry Pi. Custom software that he wrote evaluates the darkness of each pixel and selects a pattern of a suitable density to represent it.
The two cords supporting the plotter’s pen are wound around the shafts of two stepper motors, such that the movement of the motors controls the length of the cords: the program next calculates how much each motor must move in order to produce the pattern. The Raspberry Pi passes corresponding instructions to two motor circuits, which transform the signals to a higher voltage and pass them to the stepper motors. These turn by very precise amounts, winding or unwinding the cords and, very slowly, dragging the pen across the paper.
Suspended in-between the two motors is a print head, made out of a new 3-d modelling material I’ve been prototyping called cardboard. An old coat hanger and some velcro were also used.
The earlier drawings that John made used a repeatable method to render image files as lines on paper. That is, if the machine drew the same image a number of times, each copy would be identical. More recently, though, he has been using a method that yields random movements of the pen:
The pen point is guided around the image, but moves to each new point entirely at random. Up close this looks like a chaotic squiggle, but from a distance of a couple of meters, the human eye (and brain) make order from the chaos and view an infinite number of shades and a smoother, less mechanical image.
This method means that no matter how many times the polargraph repeats the same image, each copy will be unique.
A gallery of work
Inky Lines’ website and its Instagram feed offer a collection of wonderful pieces John has drawn with his polargraph, and he discusses the different techniques and types of image that he is exploring.
They range from holiday photographs, processed to extract particular features and rendered in silhouette, to portraits, made with a single continuous line that can be several hundred metres long, to generative images spirograph images like those pictured above, created by an algorithm rather than rendered from a source image.
Abstract: The detection of faked identities is a major problem in security. Current memory-detection techniques cannot be used as they require prior knowledge of the respondent’s true identity. Here, we report a novel technique for detecting faked identities based on the use of unexpected questions that may be used to check the respondent identity without any prior autobiographical information. While truth-tellers respond automatically to unexpected questions, liars have to “build” and verify their responses. This lack of automaticity is reflected in the mouse movements used to record the responses as well as in the number of errors. Responses to unexpected questions are compared to responses to expected and control questions (i.e., questions to which a liar also must respond truthfully). Parameters that encode mouse movement were analyzed using machine learning classifiers and the results indicate that the mouse trajectories and errors on unexpected questions efficiently distinguish liars from truth-tellers. Furthermore, we showed that liars may be identified also when they are responding truthfully. Unexpected questions combined with the analysis of mouse movement may efficiently spot participants with faked identities without the need for any prior information on the examinee.
As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!
Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.
New C5d Instances with Local Storage In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:
Instance Name
vCPUs
RAM
Local Storage
EBS Bandwidth
Network Bandwidth
c5d.large
2
4 GiB
1 x 50 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.xlarge
4
8 GiB
1 x 100 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.2xlarge
8
16 GiB
1 x 225 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.4xlarge
16
32 GiB
1 x 450 GB NVMe SSD
2.25 Gbps
Up to 10 Gbps
c5d.9xlarge
36
72 GiB
1 x 900 GB NVMe SSD
4.5 Gbps
10 Gbps
c5d.18xlarge
72
144 GiB
2 x 900 GB NVMe SSD
9 Gbps
25 Gbps
Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.
You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.
Here are a couple of things to keep in mind about the local NVMe storage:
Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.
Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.
Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.
Available Now C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.
Many of my colleagues are fortunate to be able to spend a good part of their day sitting down with and listening to our customers, doing their best to understand ways that we can better meet their business and technology needs. This information is treated with extreme care and is used to drive the roadmap for new services and new features.
AWS customers in the financial services industry (often abbreviated as FSI) are looking ahead to the Fundamental Review of Trading Book (FRTB) regulations that will come in to effect between 2019 and 2021. Among other things, these regulations mandate a new approach to the “value at risk” calculations that each financial institution must perform in the four hour time window after trading ends in New York and begins in Tokyo. Today, our customers report this mission-critical calculation consumes on the order of 200,000 vCPUs, growing to between 400K and 800K vCPUs in order to meet the FRTB regulations. While there’s still some debate about the magnitude and frequency with which they’ll need to run this expanded calculation, the overall direction is clear.
Building a Big Grid In order to make sure that we are ready to help our FSI customers meet these new regulations, we worked with TIBCO to set up and run a proof of concept grid in the AWS Cloud. The periodic nature of the calculation, along with the amount of processing power and storage needed to run it to completion within four hours, make it a great fit for an environment where a vast amount of cost-effective compute power is available on an on-demand basis.
Our customers are already using the TIBCO GridServer on-premises and want to use it in the cloud. This product is designed to run grids at enterprise scale. It runs apps in a virtualized fashion, and accepts requests for resources, dynamically provisioning them on an as-needed basis. The cloud version supports Amazon Linux as well as the PostgreSQL-compatible edition of Amazon Aurora.
Working together with TIBCO, we set out to create a grid that was substantially larger than the current high-end prediction of 800K vCPUs, adding a 50% safety factor and then rounding up to reach 1.3 million vCPUs (5x the size of the largest on-premises grid). With that target in mind, the account limits were raised as follows:
Spot Instance Limit – 120,000
EBS Volume Limit – 120,000
EBS Capacity Limit – 2 PB
If you plan to create a grid of this size, you should also bring your friendly local AWS Solutions Architect into the loop as early as possible. They will review your plans, provide you with architecture guidance, and help you to schedule your run.
Running the Grid We hit the Go button and launched the grid, watching as it bid for and obtained Spot Instances, each of which booted, initialized, and joined the grid within two minutes. The test workload used the Strata open source analytics & market risk library from OpenGamma and was set up with their assistance.
The grid grew to 61,299 Spot Instances (1.3 million vCPUs drawn from 34 instance types spanning 3 generations of EC2 hardware) as planned, with just 1,937 instances reclaimed and automatically replaced during the run, and cost $30,000 per hour to run, at an average hourly cost of $0.078 per vCPU. If the same instances had been used in On-Demand form, the hourly cost to run the grid would have been approximately $93,000.
Despite the scale of the grid, prices for the EC2 instances did not move during the bidding process. This is due to the overall size of the AWS Cloud and the smooth price change model that we launched late last year.
To give you a sense of the compute power, we computed that this grid would have taken the #1 position on the TOP 500 supercomputer list in November 2007 by a considerable margin, and the #2 position in June 2008. Today, it would occupy position #360 on the list.
I hope that you enjoyed this AWS success story, and that it gives you an idea of the scale that you can achieve in the cloud!
If, like us, you’ve been bingeflixing your way through Netflix’s new show, Lost in Space, you may have noticed a Raspberry Pi being used as futuristic space tech.
Danger, Will Robinson, that probably won’t work
This isn’t the first time a Pi has been used as a film or television prop. From Mr. Robot and Disney Pixar’s Big Hero 6 to Mr. Robot, Sense8, and Mr. Robot, our humble little computer has become quite the celeb.
Raspberry Pi Spy has been working hard to locate and document the appearance of the Raspberry Pi in some of our favourite shows and movies. He’s created this video covering 2010-2017:
Since 2012 the Raspberry Pi single board computer has appeared in a number of movies and TV shows. This video is a run through of those appearances where the Pi has been used as a prop.
For 2018 appearances and beyond, you can find a full list on the Raspberry Pi Spy website. If you’ve spotted an appearance that’s not on the list, tell us in the comments!
EC2 Spot Fleets are really cool. You can launch a fleet of Spot Instances that spans EC2 instance types and Availability Zones without having to write custom code to discover capacity or monitor prices. You can set the target capacity (the size of the fleet) in units that are meaningful to your application and have Spot Fleet create and then maintain the fleet on your behalf. Our customers are creating Spot Fleets of all sizes. For example, one financial service customer runs Monte Carlo simulations across 10 different EC2 instance types. They routinely make requests for hundreds of thousands of vCPUs and count on Spot Fleet to give them access to massive amounts of capacity at the best possible price.
EC2 Fleet Today we are extending and generalizing the set-it-and-forget-it model that we pioneered in Spot Fleet with EC2 Fleet, a new building block that gives you the ability to create fleets that are composed of a combination of EC2 On-Demand, Reserved, and Spot Instances with a single API call. You tell us what you need, capacity and instance-wise, and we’ll handle all the heavy lifting. We will launch, manage, monitor and scale instances as needed, without the need for scaffolding code.
You can specify the capacity of your fleet in terms of instances, vCPUs, or application-oriented units, and also indicate how much of the capacity should be fulfilled by Spot Instances. The application-oriented units allow you to specify the relative power of each EC2 instance type in a way that directly maps to the needs of your application. All three capacity specification options (instances, vCPUs, and application-oriented units) are known as weights.
I think you’ll find a number ways this feature makes managing a fleet of instances easier, and believe that you will also appreciate the team’s near-term feature roadmap of interest (more on that in a bit).
Using EC2 Fleet There are a number of ways that you can use this feature, whether you’re running a stateless web service, a big data cluster or a continuous integration pipeline. Today I’m going to describe how you can use EC2 Fleet for genomic processing, but this is similar to workloads like risk analysis, log processing or image rendering. Modern DNA sequencers can produce multiple terabytes of raw data each day, to process that data into meaningful information in a timely fashion you need lots of processing power. I’ll be showing you how to deploy a “grid” of worker nodes that can quickly crunch through secondary analysis tasks in parallel.
Projects in genomics can use the elasticity EC2 provides to experiment and try out new pipelines on hundreds or even thousands of servers. With EC2 you can access as many cores as you need and only pay for what you use. Prior to today, you would need to use the RunInstances API or an Auto Scaling group for the On-Demand & Reserved Instance portion of your grid. To get the best price performance you’d also create and manage a Spot Fleet or multiple Spot Auto Scaling groups with different instance types if you wanted to add Spot Instances to turbo-boost your secondary analysis. Finally, to automate scaling decisions across multiple APIs and Auto Scaling groups you would need to write Lambda functions that periodically assess your grid’s progress & backlog, as well as current Spot prices – modifying your Auto Scaling Groups and Spot Fleets accordingly.
You can now replace all of this with a single EC2 Fleet, analyzing genomes at scale for as little as $1 per analysis. In my grid, each step in in the pipeline requires 1 vCPU and 4 GiB of memory, a perfect match for M4 and M5 instances with 4 GiB of memory per vCPU. I will create a fleet using M4 and M5 instances with weights that correspond to the number of vCPUs on each instance:
m4.16xlarge – 64 vCPUs, weight = 64
m5.24xlarge – 96 vCPUs, weight = 96
This is expressed in a template that looks like this:
By default, EC2 Fleet will select the most cost effective combination of instance types and Availability Zones (both specified in the template) using the current prices for the Spot Instances and public prices for the On-Demand Instances (if you specify instances for which you have matching RIs, your discounts will apply). The default mode takes weights into account to get the instances that have the lowest price per unit. So for my grid, fleet will find the instance that offers the lowest price per vCPU.
Now I can request capacity in terms of vCPUs, knowing EC2 Fleet will select the lowest cost option using only the instance types I’ve defined as acceptable. Also, I can specify how many vCPUs I want to launch using On-Demand or Reserved Instance capacity and how many vCPUs should be launched using Spot Instance capacity:
The above means that I want a total of 2880 vCPUs, with 960 vCPUs fulfilled using On-Demand and 1920 using Spot. The On-Demand price per vCPU is lower for m5.24xlarge than the On-Demand price per vCPU for m4.16xlarge, so EC2 Fleet will launch 10 m5.24xlarge instances to fulfill 960 vCPUs. Based on current Spot pricing (again, on a per-vCPU basis), EC2 Fleet will choose to launch 30 m4.16xlarge instances or 20 m5.24xlarges, delivering 1920 vCPUs either way.
Putting it all together, I have a single file (fl1.json) that describes my fleet:
My entire fleet is created within seconds and was built using 10 m5.24xlarge On-Demand Instances and 30 m4.16xlarge Spot Instances, since the current Spot price was 1.5¢ per vCPU for m4.16xlarge and 1.6¢ per vCPU for m5.24xlarge.
Now lets imagine my grid has crunched through its backlog and no longer needs the additional Spot Instances. I can then modify the size of my fleet by changing the target capacity in my fleet specification, like this:
{
"TotalTargetCapacity": 960,
}
Since 960 was equal to the amount of On-Demand vCPUs I had requested, when I describe my fleet I will see all of my capacity being delivered using On-Demand capacity:
Earlier I described how RI discounts apply when EC2 Fleet launches instances for which you have matching RIs, so you might be wondering how else RI customers benefit from EC2 Fleet. Let’s say that I own regional RIs for M4 instances. In my EC2 Fleet I would remove m5.24xlarge and specify m4.10xlarge and m4.16xlarge. Then when EC2 Fleet creates the grid, it will quickly find M4 capacity across the sizes and AZs I’ve specified, and my RI discounts apply automatically to this usage.
In the Works We plan to connect EC2 Fleet and EC2 Auto Scaling groups. This will let you create a single fleet that mixed instance types and Spot, Reserved and On-Demand, while also taking advantage of EC2 Auto Scaling features such as health checks and lifecycle hooks. This integration will also bring EC2 Fleet functionality to services such as Amazon ECS, Amazon EKS, and AWS Batch that build on and make use of EC2 Auto Scaling for fleet management.
Available Now You can create and make use of EC2 Fleets today in all public AWS Regions!
Researchers at Princeton University have released IoT Inspector, a tool that analyzes the security and privacy of IoT devices by examining the data they send across the Internet. They’ve already used the tool to study a bunch of different IoT devices. From their blog post:
Finding #3: Many IoT Devices Contact a Large and Diverse Set of Third Parties
In many cases, consumers expect that their devices contact manufacturers’ servers, but communication with other third-party destinations may not be a behavior that consumers expect.
We have found that many IoT devices communicate with third-party services, of which consumers are typically unaware. We have found many instances of third-party communications in our analyses of IoT device network traffic. Some examples include:
Samsung Smart TV. During the first minute after power-on, the TV talks to Google Play, Double Click, Netflix, FandangoNOW, Spotify, CBS, MSNBC, NFL, Deezer, and Facebookeven though we did not sign in or create accounts with any of them.
Amcrest WiFi Security Camera. The camera actively communicates with cellphonepush.quickddns.com using HTTPS. QuickDDNS is a Dynamic DNS service provider operated by Dahua. Dahua is also a security camera manufacturer, although Amcrest’s website makes no references to Dahua. Amcrest customer service informed us that Dahua was the original equipment manufacturer.
Halo Smoke Detector. The smart smoke detector communicates with broker.xively.com. Xively offers an MQTT service, which allows manufacturers to communicate with their devices.
Geeni Light Bulb. The Geeni smart bulb communicates with gw.tuyaus.com, which is operated by TuYa, a China-based company that also offers an MQTT service.
We also looked at a number of other devices, such as Samsung Smart Camera and TP-Link Smart Plug, and found communications with third parties ranging from NTP pools (time servers) to video storage services.
Their first two findings are that “Many IoT devices lack basic encryption and authentication” and that “User behavior can be inferred from encrypted IoT device traffic.” No surprises there.
AWS CloudFormation allows developers and systems administrators to easily create and manage a collection of related AWS resources (called a CloudFormation stack) by provisioning and updating them in an orderly and predictable way. CloudFormation users can now deploy and manage AWS Batch resources in exactly the same way that they are managing the rest of their AWS infrastructure.
This post highlights the native resources supported in CloudFormation and demonstrates how to create AWS Batch compute environments using CloudFormation. All sample CloudFormation, per-region templates related to this post can be found on the CloudFormation sample template site. The Ohio (us-east-2) Region is used as the example region for the remainder of this post.
AWS Batch Resources
AWS Batch is a managed service that helps you efficiently run batch computing workloads on the AWS Cloud. Users submit jobs to job queues, specifying the application to be run and their jobs’ CPU and memory requirements. AWS Batch is responsible for launching the appropriate quantity and types of instances needed to run your jobs.
AWS Batch removes the undifferentiated heavy lifting of configuring and managing compute infrastructure, allowing you to instead focus on your applications and users. This is demonstrated in the How AWS Batch Works video.
AWS Batch manages the following resources:
Job definitions
Job queues
Compute environments
A job definition specifies how jobs are to be run—for example, which Docker image to use for your job, how many vCPUs and how much memory is required, the IAM role to be used, and more.
Jobs are submitted to job queues where they reside until they can be scheduled to run on Amazon EC2 instances within a compute environment. An AWS account can have multiple job queues, each with varying priority. This gives you the ability to closely align the consumption of compute resources with your organizational requirements.
Compute environments provision and manage your EC2 instances and other compute resources that are used to run your AWS Batch jobs. Job queues are mapped to one more compute environments and a given environment can also be mapped to one or more job queues. This many-to-many relationship is defined by the compute environment order and job queue priority properties.
The following diagram shows a general overview of how the AWS Batch resources interact.
CloudFormation stack creation and updates
Upon the creation of your stack, an AWS Batch job definition is registered using your CloudFormation template. If a job definition with the same name has already been registered, a new revision is created. On stack updates, any changes to your job definition specifications in the CloudFormation template result in a new revision of that job definition and a deregistration of the previous job definition revision. Stack deletions only result in the deregistration of your job definition, as AWS Batch does not delete job definitions.
At the stack creation, a job queue is created using the template. Any changes to your job queue properties within the stack result in a call to the UpdateJobQueue API action. Similarly, stack deletions result in the deletion of job queues from your AWS Batch compute environment.
CloudFormation creates an AWS Batch compute environment using the properties specified in your template. Stack updates result in updates to your compute environment where possible. If you need to change a parameter that is not supported by the UpdateComputeEnvironment API action, stack updates result in the deletion and re-creation of your compute environment. Upon stack deletion, your compute environment is disabled, and then deleted.
All naming conventions specified by CloudFormation should be followed—especially in the case of resource replacement—or you run the risk of a failed stack changes. For example, all AWS Batch resource property names must be capitalized, and resource names must be changed in the case of resource replacement, as is the case in any CloudFormation stack.
If you do not provide values for ComputeEnvironmentName, JobQueueName, or JobDefinitionName in your template, a pseudo-random name is generated for you using the logical ID that you gave the resource in CloudFormation.
Launching a “Hello World” example stack
Here’s a familiar “Hello World” example of a CloudFormation stack with AWS Batch resources.
This example registers a simple job definition, a job queue that can accept job submissions, and a compute environment that contains the compute resources used to execute your job. The stack template also creates additional AWS resources that are required by AWS Batch:
An IAM service role that gives AWS Batch permissions to take the required actions on your behalf
An IAM ECS instance role
A VPC
A VPC subnet (though I’ve provided a general template, I suggest that this be a private subnet)
A security group
This stack can easily be deployed in the CloudFormation console, but I provide CLI commands that complete the stack creation for you. Use the Launch stack button or run the following command:
You can monitor the creation of the resources in your CloudFormation stack in the CloudFormation console, on the Events tab:
Confirm the successful creation of your stack by observing a CREATE_COMPLETE status. At this point, you should also be able to view the new resource ARNs on the Outputs tab:
After your stack is successfully created, everything that you need to submit a “hello-world” job is complete.
Make sure to use the accurate job definition name and revision number. You can find the accurate Amazon Resource Name (ARN) on the CloudFormation stack Outputs tab. A pseudo-random resource name is generated for your AWS Batch resources. If you do have an existing hello-world job definition, make sure that you run the command with the job definition revision created by your new CloudFormation stack from the stack outputs.
You can monitor the successful execution of the job in the AWS Batch console under Jobs:
When you are done using this stack and want to delete the resources, run the following command. CloudFormation deregisters the job definition, and deletes the job queue, compute environment, and the rest of the resources in the stack template.
Now that you know the basics of AWS Batch resources, here’s a more complex example.
High– and low-priority job queues with On-Demand and Spot compute environments
This CloudFormation stack creates two job queues with varying priority and two compute environments. You have one On-Demand compute environment and one Spot compute environment with a Spot price at 40% of On-Demand.
The first job queue is higher priority and feeds jobs to both compute environments, while the lower priority job queue only submits jobs for execution to the Spot compute environment.
There are two job definitions, one high-priority job queue and one low-priority job queue. Each job submitted using a given job definition is submitted to a job queue. For example, jobs submitted with an important-production-application job definition are submitted to the high priority job queue, while jobs submitted with a test-application job definition are submitted to the low priority job queue.
This example registers both job definitions and creates your compute environments and job queues. It also creates the VPC, subnet, security group, IAM service role for AWS Batch, ECS instance role, and an IAM Spot Fleet role. Use the Launch stack button or run the following command:
As with any CloudFormation stack, you can update resources for your application’s specific needs. AWS CloudFormation Designer is a graphic tool for creating, viewing, and modifying CloudFormation templates.
Any changes to resource properties that require replacement results in the creation of a new resource to reflect this change, and the deletion of the obsolete resource. Changes to an immutable compute environment or job queue properties results in replacement. Changes to updateable properties update the existing resource. Any changes to job definitions (beyond the name) result in the registration of a new revision of the existing job definition, followed by the deregistration of the previous revision.
Finally, run the following command to delete the CloudFormation stack containing your AWS Batch resources:
In this post, I detailed the steps to create, update with and without replacement, and delete your AWS Batch resources using CloudFormation templates as part of CloudFormation stacks with other AWS service resources. For more information, see the following topics:
The furor over the Meltdown and Spectre vulnerabilities has calmed a bit — for now, at least — but that does not mean that developers have stopped worrying about them. Spectre variant 1 (the bounds-check bypass vulnerability) has been of particular concern because, while the kernel is thought to contain numerous vulnerable spots, nobody really knows how to find them all. As a result, the defenses that have been developed for variant 1 have only been deployed in a few places. Recently, though, Dan Carpenter has enhanced the smatch tool to enable it to find possibly vulnerable code in the kernel.
Amazon Elastic Block Store (EBS) offers an encryption solution for your Amazon EBS volumes so you don’t have to build, maintain, and secure your own infrastructure for managing encryption keys for block storage. Amazon EBS encryption uses AWS Key Management Service (AWS KMS) customer master keys (CMKs) when creating encrypted Amazon EBS volumes, providing you all the benefits associated with using AWS KMS. You can specify either an AWS managed CMK or a customer-managed CMK to encrypt your Amazon EBS volume. If you use a customer-managed CMK, you retain granular control over your encryption keys, such as having AWS KMS rotate your CMK every year. To learn more about creating CMKs, see Creating Keys.
In this post, we demonstrate how to create an encrypted Amazon EBS volume using a customer-managed CMK when you launch an EC2 instance from the EC2 console, AWS CLI, and AWS SDK.
Creating an encrypted Amazon EBS volume from the EC2 console
Follow these steps to launch an EC2 instance from the EC2 console with Amazon EBS volumes that are encrypted by customer-managed CMKs:
Select Launch instance, and then, in Step 1 of the wizard, select an Amazon Machine Image (AMI).
In Step 2 of the wizard, select an instance type, and then provide additional configuration details in Step 3. For details about configuring your instances, see Launching an Instance.
In Step 4 of the wizard, specify additional EBS volumes that you want to attach to your instances.
To create an encrypted Amazon EBS volume, first add a new volume by selecting Add new volume. Leave the Snapshot column blank.
In the Encrypted column, select your CMK from the drop-down menu. You can also paste the full Amazon Resource Name (ARN) of your custom CMK key ID in this box. To learn more about finding the ARN of a CMK, see Working with Keys.
Select Review and Launch. Your instance will launch with an additional Amazon EBS volume with the key that you selected. To learn more about the launch wizard, see Launching an Instance with Launch Wizard.
Creating Amazon EBS encrypted volumes from the AWS CLI or SDK
You also can use RunInstances to launch an instance with additional encrypted Amazon EBS volumes by setting Encrypted to true and adding kmsKeyID along with the actual key ID in the BlockDeviceMapping object, as shown in the following command:
You can also launch instances with additional encrypted EBS data volumes via an Auto Scaling or Spot Fleet by creating a launch template with the above BlockDeviceMapping. For example:
To learn more about launching an instance with the AWS CLI or SDK, see the AWS CLI Command Reference.
In this blog post, we’ve demonstrated a single-step, streamlined process for creating Amazon EBS volumes that are encrypted under your CMK when you launch your EC2 instance, thereby streamlining your instance launch workflow. To start using this functionality, navigate to the EC2 console.
If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on the Amazon EC2 forum or contact AWS Support.
Want more AWS Security news? Follow us on Twitter.
I want to sniff the packets for IoT devices. There are a number of ways of doing this, but one straightforward mechanism is configuring a “Raspberry Pi 3 B” as a WiFi hotspot, then running tcpdump on it to record all the packets that pass through it. Google gives lots of results on how to do this, but they all demand that you have the precise hardware, WiFi hardware, and software that the authors do, so that’s a pain.
I’m using the RPi-3-B and not the RPi-3-B+, and the latest version of Raspbian at the time of this writing, “Raspbian Stretch Lite 2018-3-13”.
Some things didn’t work as described. The first is that it couldn’t find the package “hostapd”. That solution was to run “apt-get update” a second time.
The second problem was error message about the NAT not working when trying to set the masquerade rule. That’s because the ‘upgrade’ updates the kernel, making the running system out-of-date with the files on the disk. The solution to that is make sure you reboot after upgrading.
Thus, what you do at the start is:
apt-get update apt-get upgrade apt-get update shutdown -r now Then it’s just “apt-get install tcpdump” and start capturing on wlan0. This will get the non-monitor-mode Ethernet frames, which is what I want.
We have several upcoming tech talks in the month of April and early May. Come join us to learn about AWS services and solution offerings. We’ll have AWS experts online to help answer questions in real-time. Sign up now to learn more, we look forward to seeing you.
Note – All sessions are free and in Pacific Time.
April & early May — 2018 Schedule
Compute
April 30, 2018 | 01:00 PM – 01:45 PM PT – Best Practices for Running Amazon EC2 Spot Instances with Amazon EMR (300) – Learn about the best practices for scaling big data workloads as well as process, store, and analyze big data securely and cost effectively with Amazon EMR and Amazon EC2 Spot Instances.
May 1, 2018 | 01:00 PM – 01:45 PM PT – How to Bring Microsoft Apps to AWS (300) – Learn more about how to save significant money by bringing your Microsoft workloads to AWS.
May 2, 2018 | 01:00 PM – 01:45 PM PT – Deep Dive on Amazon EC2 Accelerated Computing (300) – Get a technical deep dive on how AWS’ GPU and FGPA-based compute services can help you to optimize and accelerate your ML/DL and HPC workloads in the cloud.
April 25, 2018 | 01:00 PM – 01:45 PM PT – Intro to Open Source Databases on AWS (200) – Learn how to tap the benefits of open source databases on AWS without the administrative hassle.
April 24, 2018 | 11:00 AM – 11:45 AM PT – Deploy your Desktops and Apps on AWS (300) – Learn how to deploy your desktops and apps on AWS with Amazon WorkSpaces and Amazon AppStream 2.0
IoT
May 2, 2018 | 11:00 AM – 11:45 AM PT – How to Easily and Securely Connect Devices to AWS IoT (200) – Learn how to easily and securely connect devices to the cloud and reliably scale to billions of devices and trillions of messages with AWS IoT.
April 30, 2018 | 11:00 AM – 11:45 AM PT – Offline GraphQL Apps with AWS AppSync (300) – Come learn how to enable real-time and offline data in your applications with GraphQL using AWS AppSync.
Networking
May 2, 2018 | 09:00 AM – 09:45 AM PT – Taking Serverless to the Edge (300) – Learn how to run your code closer to your end users in a serverless fashion. Also, David Von Lehman from Aerobatic will discuss how they used [email protected] to reduce latency and cloud costs for their customer’s websites.
May 3, 2018 | 09:00 AM – 09:45 AM PT – Protect Your Game Servers from DDoS Attacks (200) – Learn how to use the new AWS Shield Advanced for EC2 to protect your internet-facing game servers against network layer DDoS attacks and application layer attacks of all kinds.
May 1, 2018 | 11:00 AM – 11:45 AM PT – Building Data Lakes That Cost Less and Deliver Results Faster (300) – Learn how Amazon S3 Select And Amazon Glacier Select increase application performance by up to 400% and reduce total cost of ownership by extending your data lake into cost-effective archive storage.
May 3, 2018 | 11:00 AM – 11:45 AM PT – Integrating On-Premises Vendors with AWS for Backup (300) – Learn how to work with AWS and technology partners to build backup & restore solutions for your on-premises, hybrid, and cloud native environments.
Museum in a Box bridges the gap between museums and schools by creating a more hands-on approach to conservation education through 3D printing and digital making.
Learn more: http://rpf.io/ Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?
Fantastic collections and where to find them
Large, impressive statues are truly a sight to be seen. Take for example the 2.4m Hoa Hakananai’a at the British Museum. Its tall stature looms over you as you read its plaque to learn of the statue’s journey from Easter Island to the UK under the care of Captain Cook in 1774, and you can’t help but wonder at how it made it here in one piece.
But unless you live near a big city where museums are plentiful, you’re unlikely to see the likes of Hoa Hakananai’a in person. Instead, you have to content yourself with online photos or videos of world-famous artefacts.
And that only accounts for the objects that are on display: conservators estimate that only approximately 5 to 10% of museums’ overall collections are actually on show across the globe. The rest is boxed up in storage, inaccessible to the public due to risk of damage, or simply due to lack of space.
Museum in a Box
Museum in a Box aims to “put museum collections and expert knowledge into your hand, wherever you are in the world,” through modern maker practices such as 3D printing and digital making. With the help of the ‘Scan the World’ movement, an “ambitious initiative whose mission is to archive objects of cultural significance using 3D scanning technologies”, the Museum in a Box team has been able to print small, handheld replicas of some of the world’s most recognisable statues and sculptures.
Each 3D print gets NFC tags so it can initiate audio playback from a Raspberry Pi that sits snugly within the laser-cut housing of a ‘brain box’. Thus the print can talk directly to us through the magic of wireless technology, replacing the dense, dry text of a museum plaque with engaging speech.
The Museum in a Box team headed by CEO George Oates (featured in the video above) makes use of these 3D-printed figures alongside original artefacts, postcards, and more to bridge the gap between large, crowded, distant museums and local schools. Modeled after the museum handling collections that used to be sent to schools, Museum in a Box is a cheaper, more accessible alternative. Moreover, it not only allows for hands-on learning, but also encourages children to get directly involved by hacking its technology! With NFC technology readily available to the public, students can curate their own collections about their local area, record their own messages, and send their own box-sized museums on to schools in other towns or countries. In this way, Museum in a Box enables students to explore, and expand the reach of, their own histories.
Moving forward
With the technology perfected and interest in the project ever-growing, Museum in a Box has a busy year ahead. Supporting the new ‘Unstacked’ learning initiative, the team will soon be delivering ten boxes to the Smithsonian Libraries. The team has curated two collections specifically for this: an exploration into Asia-Pacific America experiences of migration to the USA throughout the 20th century, and a look into the history of science.
The team will also be making a box for the British Museum to support their Iraq Scheme initiative, and another box will be heading to the V&A to support their See Red programme. While primarily installed in the Lansbury Micro Museum, the box will also take to the road to visit the local Spotlight high school.
Museum in a Box at Raspberry Fields
Lastly, by far the most exciting thing the Museum in a Box team will be doing this year — in our opinion at least — is showcasing at Raspberry Fields! This is our brand-new festival of digital making that’s taking place on 30 June and 1 July 2018 here in Cambridge, UK. Find more information about it and get your ticket here.
In the wake of the Cambridge Analytica scandal, news articles and commentators have focused on what Facebook knows about us. A lot, it turns out. It collects data from our posts, our likes, our photos, things we type and delete without posting, and things we do while not on Facebook and even when we’re offline. It buys data about us from others. And it can infer even more: our sexual orientation, political beliefs, relationship status, drug use, and other personality traits — even if we didn’t take the personality test that Cambridge Analytica developed.
But for every article about Facebook’s creepy stalker behavior, thousands of other companies are breathing a collective sigh of relief that it’s Facebook and not them in the spotlight. Because while Facebook is one of the biggest players in this space, there are thousands of other companies that spy on and manipulate us for profit.
Harvard Business School professor Shoshana Zuboff calls it “surveillance capitalism.” And as creepy as Facebook is turning out to be, the entire industry is far creepier. It has existed in secret far too long, and it’s up to lawmakers to force these companies into the public spotlight, where we can all decide if this is how we want society to operate and — if not — what to do about it.
There are 2,500 to 4,000 data brokers in the United States whose business is buying and selling our personal data. Last year, Equifax was in thenews when hackers stole personal information on 150 million people, including Social Security numbers, birth dates, addresses, and driver’s license numbers.
You certainly didn’t give it permission to collect any of that information. Equifax is one of those thousands of data brokers, most of them you’ve never heard of, selling your personal information without your knowledge or consent to pretty much anyone who will pay for it.
Surveillance capitalism takes this one step further. Companies like Facebook and Google offer you free services in exchange for your data. Google’s surveillance isn’t in the news, but it’s startlingly intimate. We never lie to our search engines. Our interests and curiosities, hopes and fears, desires and sexual proclivities, are all collected and saved. Add to that the websites we visit that Google tracks through its advertising network, our Gmail accounts, our movements via Google Maps, and what it can collect from our smartphones.
That phone is probably the most intimate surveillance device ever invented. It tracks our location continuously, so it knows where we live, where we work, and where we spend our time. It’s the first and last thing we check in a day, so it knows when we wake up and when we go to sleep. We all have one, so it knows who we sleep with. Uber used just some of that information to detect one-night stands; your smartphone provider and any app you allow to collect location data knows a lot more.
Surveillance capitalism drives much of the internet. It’s behind most of the “free” services, and many of the paid ones as well. Its goal is psychological manipulation, in the form of personalized advertising to persuade you to buy something or do something, like vote for a candidate. And while the individualized profile-driven manipulation exposed by Cambridge Analytica feels abhorrent, it’s really no different from what every company wants in the end. This is why all your personal information is collected, and this is why it is so valuable. Companies that can understand it can use it against you.
None of this is new. The media has been reporting on surveillance capitalism for years. In 2015, I wrote a book about it. Back in 2010, the Wall Street Journal publishedan award-winning two-year series about how people are tracked both online and offline, titled “What They Know.”
Surveillance capitalism is deeply embedded in our increasingly computerized society, and if the extent of it came to light there would be broad demands for limits and regulation. But because this industry can largely operate in secret, only occasionally exposed after a data breach or investigative report, we remain mostly ignorant of its reach.
This might change soon. In 2016, the European Union passed the comprehensive General Data Protection Regulation, or GDPR. The details of the law are far too complex to explain here, but some of the things it mandates are that personal data of EU citizens can only be collected and saved for “specific, explicit, and legitimate purposes,” and only with explicit consent of the user. Consent can’t be buried in the terms and conditions, nor can it be assumed unless the user opts in. This law will take effect in May, and companies worldwide are bracing for its enforcement.
Because pretty much all surveillance capitalism companies collect data on Europeans, this will expose the industry like nothing else. Here’s just one example. In preparation for this law, PayPal quietlypublished a list of over 600 companies it might share your personal data with. What will it be like when every company has to publish this sort of information, and explicitly explain how it’s using your personal data? We’re about to find out.
In the wake of this scandal, even Mark Zuckerberg saidthat his industry probably should be regulated, although he’s certainly not wishing for the sorts of comprehensive regulation the GDPR is bringing to Europe.
He’s right. Surveillance capitalism has operated without constraints for far too long. And advances in both big data analysis and artificial intelligence will make tomorrow’s applications far creepier than today’s. Regulation is the only answer.
The first step to any regulation is transparency. Who has our data? Is it accurate? What are they doing with it? Who are they selling it to? How are they securing it? Can we delete it? I don’t see any hope of Congress passing a GDPR-like data protection law anytime soon, but it’s not too far-fetched to demand laws requiring these companies to be more transparent in what they’re doing.
One of the responses to the Cambridge Analytica scandal is that people are deleting their Facebook accounts. It’s hard to do right, and doesn’t do anything about the data that Facebook collectsaboutpeople who don’t use Facebook. But it’s a start. The market can put pressure on these companies to reduce their spying on us, but it can only do that if we force the industry out of its secret shadows.
Today we’re releasing a new machine learning feature in Amazon Kinesis Data Analytics for detecting “hotspots” in your streaming data. We launched Kinesis Data Analytics in August of 2016 and we’ve continued to add features since. As you may already know, Kinesis Data Analytics is a fully managed real-time processing engine for streaming data that lets you write SQL queries to derive meaning from your data and output the results to Kinesis Data Firehose, Kinesis Data Streams, or even an AWS Lambda function. The new HOTSPOT function adds to the existing machine learning capabilities in Kinesis that allow customers to leverage unsupervised streaming based machine learning algorithms. Customers don’t need to be experts in data science or machine learning to take advantage of these capabilities.
Hotspots
The HOTSPOTS function is a new Kinesis Data Analytics SQL function you can use to idenitfy relatively dense regions in your data without having to explicity build and train complicated machine learning models. You can identify subsections of your data that need immediate attention and take action programatically by streaming the hotspots out to a Kinesis Data stream, to a Firehose delivery stream, or by invoking a AWS Lambda function.
There are a ton of really cool scenarios where this could make your operations easier. Imagine a ride-share program or autonomous vehicle fleet communicating spatiotemporal data about traffic jams and congestion, or a datacenter where a number of servers start to overheat indicating an HVAC issue. HOTSPOTS is not limited to spatiotemporal data and you could apply it across many problem domains.
The function follows some simple syntax and accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT data types.
The HOTSPOT function takes a cursor as input and returns a JSON string describing the hotspot. This will be easier to understand with an example.
Using Kinesis Data Analytics to Detect Hotspots
Let’s take a simple data set from NY Taxi and Limousine Commission that tracks yellow cab pickup and dropoff locations. Most of this data is already on S3 and publicly accessible at s3://nyc-tlc/. We will create a small python script to load our Kinesis Data Stream with Taxi records which will feed our Kinesis Data Analytics. Finally we’ll output all of this to a Kinesis Data Firehose connected to an Amazon Elasticsearch Service cluster for visualization with Kibana. I know from living in New York for 5 years that we’ll probably find a hotspot or two in this data.
First, we’ll create an input Kinesis stream and start sending our NYC Taxi Ride data into it. I just wrote a quick python script to read from one of the CSV files and used boto3 to push the records into Kinesis. You can put the record in whatever way works for you.
import csv
import json
import boto3
def chunkit(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
kinesis = boto3.client("kinesis")
with open("taxidata2.csv") as f:
reader = csv.DictReader(f)
records = chunkit([{"PartitionKey": "taxis", "Data": json.dumps(row)} for row in reader], 500)
for chunk in records:
kinesis.put_records(StreamName="TaxiData", Records=chunk)
Next, we’ll create the Kinesis Data Analytics application and add our input stream with our taxi data as the source.
Next we’ll automatically detect the schema.
Now we’ll create a quick SQL Script to detect our hotspots and add that to the Real Time Analytics section of our application.
CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
"pickup_longitude" DOUBLE,
"pickup_latitude" DOUBLE,
HOTSPOTS_RESULT VARCHAR(10000)
);
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
SELECT "pickup_longitude", "pickup_latitude", "HOTSPOTS_RESULT" FROM
TABLE(HOTSPOTS(
CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"),
1000,
0.013,
20
)
);
Our HOTSPOTS function takes an input stream, a window size, scan radius, and a minimum number of points to count as a hotspot. The values for these are application dependent but you can tinker with them in the console easily until you get the results you want. There are more details about the parameters themselves in the documentation. The HOTSPOTS_RESULT returns some useful JSON that would let us plot bounding boxes around our hotspots:
When we have our desired results we can save the script and connect our application to our Amazon Elastic Search Service Firehose Delivery Stream. We can run an intermediate lambda function in the firehose to transform our record into a format more suitable for geographic work. Then we can update our mapping in Elasticsearch to index the hotspot objects as Geo-Shapes.
Finally, we can connect to Kibana and visualize the results.
Looks like Manhattan is pretty busy!
Available Now This feature is available now in all existing regions with Kinesis Data Analytics. I think this is a really interesting new feature of Kinesis Data Analytics that can bring immediate value to many applications. Let us know what you build with it on Twitter or in the comments!
The AWS Community Heroes program helps shine a spotlight on some of the innovative work being done by rockstar AWS developers around the globe. Marrying cloud expertise with a passion for community building and education, these Heroes share their time and knowledge across social media and in-person events. Heroes also actively help drive content at Meetups, workshops, and conferences.
This March, we have five Heroes that we’re happy to welcome to our network of cloud innovators:
Peter Sbarski is VP of Engineering at A Cloud Guru and the organizer of Serverlessconf, the world’s first conference dedicated entirely to serverless architectures and technologies. His work at A Cloud Guru allows him to work with, talk and write about serverless architectures, cloud computing, and AWS. He has written a book called Serverless Architectures on AWS and is currently collaborating on another book called Serverless Design Patterns with Tim Wagner and Yochay Kiriaty.
Peter is always happy to talk about cloud computing and AWS, and can be found at conferences and meetups throughout the year. He helps to organize Serverless Meetups in Melbourne and Sydney in Australia, and is always keen to share his experience working on interesting and innovative cloud projects.
Peter’s passions include serverless technologies, event-driven programming, back end architecture, microservices, and orchestration of systems. Peter holds a PhD in Computer Science from Monash University, Australia and can be followed on Twitter, LinkedIn, Medium, and GitHub.
In close collaboration with his brother Andreas Wittig, the Wittig brothers are actively creating AWS related content. Their book Amazon Web Services in Action (Manning) introduces AWS with a strong focus on automation. Andreas and Michael run the blog cloudonaut.io where they share their knowledge about AWS with the community. The Wittig brothers also published a bunch of video courses with O’Reilly, Manning, Pluralsight, and A Cloud Guru. You can also find them speaking at conferences and user groups in Europe. Both brothers are co-organizing the AWS user group in Stuttgart.
Fernando is an experienced Infrastructure Solutions Leader, holding 5 AWS Certifications, with extensive IT Architecture and Management experience in a variety of market sectors. Working as a Cloud Architect Consultant in United Kingdom since 2014, Fernando built an online community for Hispanic speakers worldwide.
Fernando founded a LinkedIn Group, a Slack Community and a YouTube channel all of them named “AWS en Español”, and started to run a monthly webinar via YouTube streaming where different leaders discuss aspects and challenges around AWS Cloud.
During the last 18 months he’s been helping to run and coach AWS User Group leaders across LATAM and Spain, and 10 new User Groups were founded during this time.
Feel free to follow Fernando on Twitter, connect with him on LinkedIn, or join the ever-growing Hispanic Community via Slack, LinkedIn or YouTube.
Anders is a consultant and cloud evangelist at Webstep AS in Norway. He finished his degree in Computer Science at the Norwegian Institute of Technology at about the same time the Internet emerged as a public service. Since then he has been an IT consultant and a passionate advocate of knowledge-sharing.
He architected and implemented his first customer solution on AWS back in 2010, and is essential in building Webstep’s core cloud team. Anders applies his broad expert knowledge across all layers of the organizational stack. He engages with developers on technology and architectures and with top management where he advises about cloud strategies and new business models.
Anders enjoys helping people increase their understanding of AWS and cloud in general, and holds several AWS certifications. He co-founded and co-organizes the AWS User Groups in the largest cities in Norway (Oslo, Bergen, Trondheim and Stavanger), and also uses any opportunity to engage in events related to AWS and cloud wherever he is.
You can follow him on Twitter or connect with him on LinkedIn.
To learn more about the AWS Community Heroes Program and how to get involved with your local AWS community, click here.
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.