Tag Archives: workflow

Replacing macOS Server with Synology NAS

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/replacing-macos-server-with-synology-nas/

Synology NAS boxes backed up to the cloud

Businesses and organizations that rely on macOS server for essential office and data services are facing some decisions about the future of their IT services.

Apple recently announced that it is deprecating a significant portion of essential network services in macOS Server, as they described in a support statement posted on April 24, 2018, “Prepare for changes to macOS Server.” Apple’s note includes:

macOS Server is changing to focus more on management of computers, devices, and storage on your network. As a result, some changes are coming in how Server works. A number of services will be deprecated, and will be hidden on new installations of an update to macOS Server coming in spring 2018.

The note lists the services that will be removed in a future release of macOS Server, including calendar and contact support, Dynamic Host Configuration Protocol (DHCP), Domain Name Services (DNS), mail, instant messages, virtual private networking (VPN), NetInstall, Web server, and the Wiki.

Apple assures users who have already configured any of the listed services that they will be able to use them in the spring 2018 macOS Server update, but the statement ends with links to a number of alternative services, including hosted services, that macOS Server users should consider as viable replacements to the features it is removing. These alternative services are all FOSS (Free and Open-Source Software).

As difficult as this could be for organizations that use macOS server, this is not unexpected. Apple left the server hardware space back in 2010, when Steve Jobs announced the company was ending its line of Xserve rackmount servers, which were introduced in May, 2002. Since then, macOS Server has hardly been a prominent part of Apple’s product lineup. It’s not just the product itself that has lost some luster, but the entire category of SMB office and business servers, which has been undergoing a gradual change in recent years.

Some might wonder how important the news about macOS Server is, given that macOS Server represents a pretty small share of the server market. macOS Server has been important to design shops, agencies, education users, and small businesses that likely have been on Macs for ages, but it’s not a significant part of the IT infrastructure of larger organizations and businesses.

What Comes After macOS Server?

Lovers of macOS Server don’t have to fear having their Mac minis pried from their cold, dead hands quite yet. Installed services will continue to be available. In the fall of 2018, new installations and upgrades of macOS Server will require users to migrate most services to other software. Since many of the services of macOS Server were already open-source, this means that a change in software might not be required. It does mean more configuration and management required from those who continue with macOS Server, however.

Users can continue with macOS Server if they wish, but many will see the writing on the wall and look for a suitable substitute.

The Times They Are A-Changin’

For many people working in organizations, what is significant about this announcement is how it reflects the move away from the once ubiquitous server-based IT infrastructure. Services that used to be centrally managed and office-based, such as storage, file sharing, communications, and computing, have moved to the cloud.

In selecting the next office IT platforms, there’s an opportunity to move to solutions that reflect and support how people are working and the applications they are using both in the office and remotely. For many, this means including cloud-based services in office automation, backup, and business continuity/disaster recovery planning. This includes Software as a Service, Platform as a Service, and Infrastructure as a Service (Saas, PaaS, IaaS) options.

IT solutions that integrate well with the cloud are worth strong consideration for what comes after a macOS Server-based environment.

Synology NAS as a macOS Server Alternative

One solution that is becoming popular is to replace macOS Server with a device that has the ability to provide important office services, but also bridges the office and cloud environments. Using Network-Attached Storage (NAS) to take up the server slack makes a lot of sense. Many customers are already using NAS for file sharing, local data backup, automatic cloud backup, and other uses. In the case of Synology, their operating system, Synology DiskStation Manager (DSM), is Linux based, and integrates the basic functions of file sharing, centralized backup, RAID storage, multimedia streaming, virtual storage, and other common functions.

Synology NAS box

Synology NAS

Since DSM is based on Linux, there are numerous server applications available, including many of the same ones that are available for macOS Server, which shares conceptual roots with Linux as it comes from BSD Unix.

Synology DiskStation Manager Package Center screenshot

Synology DiskStation Manager Package Center

According to Ed Lukacs, COO at 2FIFTEEN Systems Management in Salt Lake City, their customers have found the move from macOS Server to Synology NAS not only painless, but positive. DSM works seamlessly with macOS and has been faster for their customers, as well. Many of their customers are running Adobe Creative Suite and Google G Suite applications, so a workflow that combines local storage, remote access, and the cloud, is already well known to them. Remote users are supported by Synology’s QuickConnect or VPN.

Business continuity and backup are simplified by the flexible storage capacity of the NAS. Synology has built-in backup to Backblaze B2 Cloud Storage with Synology’s Cloud Sync, as well as a choice of a number of other B2-compatible applications, such as Cloudberry, Comet, and Arq.

Customers have been able to get up and running quickly, with only initial data transfers requiring some time to complete. After that, management of the NAS can be handled in-house or with the support of a Managed Service Provider (MSP).

Are You Sticking with macOS Server or Moving to Another Platform?

If you’re affected by this change in macOS Server, please let us know in the comments how you’re planning to cope. Are you using Synology NAS for server services? Please tell us how that’s working for you.

The post Replacing macOS Server with Synology NAS appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Introducing the AWS Machine Learning Competency for Consulting Partners

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/introducing-the-aws-machine-learning-competency-for-consulting-partners/

Today I’m excited to announce a new Machine Learning Competency for Consulting Partners in the Amazon Partner Network (APN). This AWS Competency program allows APN Consulting Partners to demonstrate a deep expertise in machine learning on AWS by providing solutions that enable machine learning and data science workflows for their customers. This new AWS Competency is in addition to the Machine Learning comptency for our APN Technology Partners, that we launched at the re:Invent 2017 partner summit.

These APN Consulting Partners help organizations solve their machine learning and data challenges through:

  • Providing data services that help data scientists and machine learning practitioners prepare their enterprise data for training.
  • Platform solutions that provide data scientists and machine learning practitioners with tools to take their data, train models, and make predictions on new data.
  • SaaS and API solutions to enable predictive capabilities within customer applications.

Why work with an AWS Machine Learning Competency Partner?

The AWS Competency Program helps customers find the most qualified partners with deep expertise. AWS Machine Learning Competency Partners undergo a strict validation of their capabilities to demonstrate technical proficiency and proven customer success with AWS machine learning tools.

If you’re an AWS customer interested in machine learning workloads on AWS, check out our AWS Machine Learning launch partners below:

 

Interested in becoming an AWS Machine Learning Competency Partner?

APN Partners with experience in Machine Learning can learn more about becoming an AWS Machine Learning Competency Partner here. To learn more about the benefits of joining the AWS Partner Network, see our APN Partner website.

Thanks to the AWS Partner Team for their help with this post!
Randall

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

#!/bin/bash
hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
LOCATION '$1/';

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 campaign['n'],',',pdays['n'],',',previous['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

#!/bin/bash
## Define variable 
REGION=$2
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 


# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
    IMAGE="174872318107.dkr.ecr.us-west-2.amazonaws.com/linear-learner:latest"
    ;;
"us-east-1" )
    IMAGE="382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:latest" 
    ;;
"us-east-2" )
    IMAGE="404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:latest" 
    ;;
"eu-west-1" )
    IMAGE="438346466558.dkr.ecr.eu-west-1.amazonaws.com/linear-learner:latest" 
    ;;
 *)
    echo "Invalid Region Name"
    exit 1 ;  
esac

# Start training job and creating model artifact 
TRAINING_JOB_NAME=TRAIN-${DTTIME} 
S3OUTPUT="s3://<your bucket name>/model/" 
INSTANCETYPE="ml.m4.xlarge"
INSTANCECOUNT=1
VOLUMESIZE=5 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
MODELNAME=MODEL-${DTTIME}
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
CONFIGNAME=CONFIG-${DTTIME}
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
then
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
else
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}
fi

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:UpdateEndpoint",
 "iam:PassRole"
 ],
 "Resource": "*"
 }
 ]
}

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
    EndpointName='ServiceEndpoint',
    Body=new_customer_info, 
    ContentType='text/csv'
)
result = json.loads(response['Body'].read().decode())
print(result)
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
CREATE EXTERNAL TABLE datasource (
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
)
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n' 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;

Conclusion

In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.

 


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

CI/CD with Data: Enabling Data Portability in a Software Delivery Pipeline with AWS Developer Tools, Kubernetes, and Portworx

Post Syndicated from Kausalya Rani Krishna Samy original https://aws.amazon.com/blogs/devops/cicd-with-data-enabling-data-portability-in-a-software-delivery-pipeline-with-aws-developer-tools-kubernetes-and-portworx/

This post is written by Eric Han – Vice President of Product Management Portworx and Asif Khan – Solutions Architect

Data is the soul of an application. As containers make it easier to package and deploy applications faster, testing plays an even more important role in the reliable delivery of software. Given that all applications have data, development teams want a way to reliably control, move, and test using real application data or, at times, obfuscated data.

For many teams, moving application data through a CI/CD pipeline, while honoring compliance and maintaining separation of concerns, has been a manual task that doesn’t scale. At best, it is limited to a few applications, and is not portable across environments. The goal should be to make running and testing stateful containers (think databases and message buses where operations are tracked) as easy as with stateless (such as with web front ends where they are often not).

Why is state important in testing scenarios? One reason is that many bugs manifest only when code is tested against real data. For example, we might simply want to test a database schema upgrade but a small synthetic dataset does not exercise the critical, finer corner cases in complex business logic. If we want true end-to-end testing, we need to be able to easily manage our data or state.

In this blog post, we define a CI/CD pipeline reference architecture that can automate data movement between applications. We also provide the steps to follow to configure the CI/CD pipeline.

 

Stateful Pipelines: Need for Portable Volumes

As part of continuous integration, testing, and deployment, a team may need to reproduce a bug found in production against a staging setup. Here, the hosting environment is comprised of a cluster with Kubernetes as the scheduler and Portworx for persistent volumes. The testing workflow is then automated by AWS CodeCommit, AWS CodePipeline, and AWS CodeBuild.

Portworx offers Kubernetes storage that can be used to make persistent volumes portable between AWS environments and pipelines. The addition of Portworx to the AWS Developer Tools continuous deployment for Kubernetes reference architecture adds persistent storage and storage orchestration to a Kubernetes cluster. The example uses MongoDB as the demonstration of a stateful application. In practice, the workflow applies to any containerized application such as Cassandra, MySQL, Kafka, and Elasticsearch.

Using the reference architecture, a developer calls CodePipeline to trigger a snapshot of the running production MongoDB database. Portworx then creates a block-based, writable snapshot of the MongoDB volume. Meanwhile, the production MongoDB database continues serving end users and is uninterrupted.

Without the Portworx integrations, a manual process would require an application-level backup of the database instance that is outside of the CI/CD process. For larger databases, this could take hours and impact production. The use of block-based snapshots follows best practices for resilient and non-disruptive backups.

As part of the workflow, CodePipeline deploys a new MongoDB instance for staging onto the Kubernetes cluster and mounts the second Portworx volume that has the data from production. CodePipeline triggers the snapshot of a Portworx volume through an AWS Lambda function, as shown here

 

 

 

AWS Developer Tools with Kubernetes: Integrated Workflow with Portworx

In the following workflow, a developer is testing changes to a containerized application that calls on MongoDB. The tests are performed against a staging instance of MongoDB. The same workflow applies if changes were on the server side. The original production deployment is scheduled as a Kubernetes deployment object and uses Portworx as the storage for the persistent volume.

The continuous deployment pipeline runs as follows:

  • Developers integrate bug fix changes into a main development branch that gets merged into a CodeCommit master branch.
  • Amazon CloudWatch triggers the pipeline when code is merged into a master branch of an AWS CodeCommit repository.
  • AWS CodePipeline sends the new revision to AWS CodeBuild, which builds a Docker container image with the build ID.
  • AWS CodeBuild pushes the new Docker container image tagged with the build ID to an Amazon ECR registry.
  • Kubernetes downloads the new container (for the database client) from Amazon ECR and deploys the application (as a pod) and staging MongoDB instance (as a deployment object).
  • AWS CodePipeline, through a Lambda function, calls Portworx to snapshot the production MongoDB and deploy a staging instance of MongoDB• Portworx provides a snapshot of the production instance as the persistent storage of the staging MongoDB
    • The MongoDB instance mounts the snapshot.

At this point, the staging setup mimics a production environment. Teams can run integration and full end-to-end tests, using partner tooling, without impacting production workloads. The full pipeline is shown here.

 

Summary

This reference architecture showcases how development teams can easily move data between production and staging for the purposes of testing. Instead of taking application-specific manual steps, all operations in this CodePipeline architecture are automated and tracked as part of the CI/CD process.

This integrated experience is part of making stateful containers as easy as stateless. With AWS CodePipeline for CI/CD process, developers can easily deploy stateful containers onto a Kubernetes cluster with Portworx storage and automate data movement within their process.

The reference architecture and code are available on GitHub:

● Reference architecture: https://github.com/portworx/aws-kube-codesuite
● Lambda function source code for Portworx additions: https://github.com/portworx/aws-kube-codesuite/blob/master/src/kube-lambda.py

For more information about persistent storage for containers, visit the Portworx website. For more information about Code Pipeline, see the AWS CodePipeline User Guide.

10 visualizations to try in Amazon QuickSight with sample data

Post Syndicated from Karthik Kumar Odapally original https://aws.amazon.com/blogs/big-data/10-visualizations-to-try-in-amazon-quicksight-with-sample-data/

If you’re not already familiar with building visualizations for quick access to business insights using Amazon QuickSight, consider this your introduction. In this post, we’ll walk through some common scenarios with sample datasets to provide an overview of how you can connect yuor data, perform advanced analysis and access the results from any web browser or mobile device.

The following visualizations are built from the public datasets available in the links below. Before we jump into that, let’s take a look at the supported data sources, file formats and a typical QuickSight workflow to build any visualization.

Which data sources does Amazon QuickSight support?

At the time of publication, you can use the following data methods:

  • Connect to AWS data sources, including:
    • Amazon RDS
    • Amazon Aurora
    • Amazon Redshift
    • Amazon Athena
    • Amazon S3
  • Upload Excel spreadsheets or flat files (CSV, TSV, CLF, and ELF)
  • Connect to on-premises databases like Teradata, SQL Server, MySQL, and PostgreSQL
  • Import data from SaaS applications like Salesforce and Snowflake
  • Use big data processing engines like Spark and Presto

This list is constantly growing. For more information, see Supported Data Sources.

Answers in instants

SPICE is the Amazon QuickSight super-fast, parallel, in-memory calculation engine, designed specifically for ad hoc data visualization. SPICE stores your data in a system architected for high availability, where it is saved until you choose to delete it. Improve the performance of database datasets by importing the data into SPICE instead of using a direct database query. To calculate how much SPICE capacity your dataset needs, see Managing SPICE Capacity.

Typical Amazon QuickSight workflow

When you create an analysis, the typical workflow is as follows:

  1. Connect to a data source, and then create a new dataset or choose an existing dataset.
  2. (Optional) If you created a new dataset, prepare the data (for example, by changing field names or data types).
  3. Create a new analysis.
  4. Add a visual to the analysis by choosing the fields to visualize. Choose a specific visual type, or use AutoGraph and let Amazon QuickSight choose the most appropriate visual type, based on the number and data types of the fields that you select.
  5. (Optional) Modify the visual to meet your requirements (for example, by adding a filter or changing the visual type).
  6. (Optional) Add more visuals to the analysis.
  7. (Optional) Add scenes to the default story to provide a narrative about some aspect of the analysis data.
  8. (Optional) Publish the analysis as a dashboard to share insights with other users.

The following graphic illustrates a typical Amazon QuickSight workflow.

Visualizations created in Amazon QuickSight with sample datasets

Visualizations for a data analyst

Source:  https://data.worldbank.org/

Download and Resources:  https://datacatalog.worldbank.org/dataset/world-development-indicators

Data catalog:  The World Bank invests into multiple development projects at the national, regional, and global levels. It’s a great source of information for data analysts.

The following graph shows the percentage of the population that has access to electricity (rural and urban) during 2000 in Asia, Africa, the Middle East, and Latin America.

The following graph shows the share of healthcare costs that are paid out-of-pocket (private vs. public). Also, you can maneuver over the graph to get detailed statistics at a glance.

Visualizations for a trading analyst

Source:  Deutsche Börse Public Dataset (DBG PDS)

Download and resources:  https://aws.amazon.com/public-datasets/deutsche-boerse-pds/

Data catalog:  The DBG PDS project makes real-time data derived from Deutsche Börse’s trading market systems available to the public for free. This is the first time that such detailed financial market data has been shared freely and continually from the source provider.

The following graph shows the market trend of max trade volume for different EU banks. It builds on the data available on XETRA engines, which is made up of a variety of equities, funds, and derivative securities. This graph can be scrolled to visualize trade for a period of an hour or more.

The following graph shows the common stock beating the rest of the maximum trade volume over a period of time, grouped by security type.

Visualizations for a data scientist

Source:  https://catalog.data.gov/

Download and resources:  https://catalog.data.gov/dataset/road-weather-information-stations-788f8

Data catalog:  Data derived from different sensor stations placed on the city bridges and surface streets are a core information source. The road weather information station has a temperature sensor that measures the temperature of the street surface. It also has a sensor that measures the ambient air temperature at the station each second.

The following graph shows the present max air temperature in Seattle from different RWI station sensors.

The following graph shows the minimum temperature of the road surface at different times, which helps predicts road conditions at a particular time of the year.

Visualizations for a data engineer

Source:  https://www.kaggle.com/

Download and resources:  https://www.kaggle.com/datasnaek/youtube-new/data

Data catalog:  Kaggle has come up with a platform where people can donate open datasets. Data engineers and other community members can have open access to these datasets and can contribute to the open data movement. They have more than 350 datasets in total, with more than 200 as featured datasets. It has a few interesting datasets on the platform that are not present at other places, and it’s a platform to connect with other data enthusiasts.

The following graph shows the trending YouTube videos and presents the max likes for the top 20 channels. This is one of the most popular datasets for data engineers.

The following graph shows the YouTube daily statistics for the max views of video titles published during a specific time period.

Visualizations for a business user

Source:  New York Taxi Data

Download and resources:  https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb

Data catalog: NYC Open data hosts some very popular open data sets for all New Yorkers. This platform allows you to get involved in dive deep into the data set to pull some useful visualizations. 2016 Green taxi trip dataset includes trip records from all trips completed in green taxis in NYC in 2016. Records include fields capturing pick-up and drop-off dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate types, payment types, and driver-reported passenger counts.

The following graph presents maximum fare amount grouped by the passenger count during a period of time during a day. This can be further expanded to follow through different day of the month based on the business need.

The following graph shows the NewYork taxi data from January 2016, showing the dip in the number of taxis ridden on January 23, 2016 across all types of taxis.

A quick search for that date and location shows you the following news report:

Summary

Using Amazon QuickSight, you can see patterns across a time-series data by building visualizations, performing ad hoc analysis, and quickly generating insights. We hope you’ll give it a try today!

 


Additional Reading

If you found this post useful, be sure to check out Amazon QuickSight Adds Support for Combo Charts and Row-Level Security and Visualize AWS Cloudtrail Logs Using AWS Glue and Amazon QuickSight.


Karthik Odapally is a Sr. Solutions Architect in AWS. His passion is to build cost effective and highly scalable solutions on the cloud. In his spare time, he bakes cookies and cupcakes for family and friends here in the PNW. He loves vintage racing cars.

 

 

 

Pranabesh Mandal is a Solutions Architect in AWS. He has over a decade of IT experience. He is passionate about cloud technology and focuses on Analytics. In his spare time, he likes to hike and explore the beautiful nature and wild life of most divine national parks around the United States alongside his wife.

 

 

 

 

Grafana v5.1 Released

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2018/04/26/grafana-v5.1-released/

v5.1 Stable Release

The recent 5.0 major release contained a lot of new features so the Grafana 5.1 release is focused on smoothing out the rough edges and iterating over some of the new features.

Download Grafana 5.1 Now

Release Highlights

There are two new features included, Heatmap Support for Prometheus and a new core data source for Microsoft SQL Server.

Another highlight is the revamp of the Grafana docker container that makes it easier to run and control but be aware there is a breaking change to file permissions that will affect existing containers with data volumes.

We got tons of useful improvement suggestions, bug reports and Pull Requests from our amazing community. Thank you all! See the full changelog for more details.

Improved Scrolling Experience

In Grafana v5.0 we introduced a new scrollbar component. Unfortunately this introduced a lot of issues and in some scenarios removed
the native scrolling functionality. Grafana v5.1 ships with a native scrollbar for all pages together with a scrollbar component for
the dashboard grid and panels that does not override the native scrolling functionality. We hope that these changes and improvements should
make the Grafana user experience much better!

Improved Docker Image

Grafana v5.1 brings an improved official docker image which should make it easier to run and use the Grafana docker image and at the same time give more control to the user how to use/run it.

We have switched the id of the grafana user running Grafana inside a docker container. Unfortunately this means that files created prior to 5.1 will not have the correct permissions for later versions and thereby introduces a breaking change. We made this change so that it would be easier for you to control what user Grafana is executed as.

Please read the updated documentation which includes migration instructions and more information.

Heatmap Support for Prometheus

The Prometheus datasource now supports transforming Prometheus histograms to the heatmap panel. The Prometheus histogram is a powerful feature, and we’re
really happy to finally allow our users to render those as heatmaps. The Heatmap panel documentation
contains more information on how to use it.

Another improvement is that the Prometheus query editor now supports autocomplete for template variables. More information in the Prometheus data source documentation.

Microsoft SQL Server

Grafana v5.1 now ships with a built-in Microsoft SQL Server (MSSQL) data source plugin that allows you to query and visualize data from any
Microsoft SQL Server 2005 or newer, including Microsoft Azure SQL Database. Do you have metric or log data in MSSQL? You can now visualize
that data and define alert rules on it as with any of Grafana’s other core datasources.

The using Microsoft SQL Server in Grafana documentation has more detailed information on how to get started.

Adding New Panels to Dashboards

The control for adding new panels to dashboards now includes panel search and it is also now possible to copy and paste panels between dashboards.

By copying a panel in a dashboard it will be displayed in the Paste tab. When you switch to a new dashboard you can paste the
copied panel.

Align Zero-Line for Right and Left Y-axes

The feature request to align the zero-line for right and left Y-axes on the Graph panel is more than 3 years old. It has finally been implemented – more information in the Graph panel documentation.

Other Highlights

  • Table Panel: New enhancements includes support for mapping a numeric value/range to text and additional units. More information in the Table panel documentation.
  • New variable interpolation syntax: We now support a new option for rendering variables that gives the user full control of how the value(s) should be rendered. More details in the in the Variables documentation.
  • Improved workflow for provisioned dashboards. More details here.

Changelog

Checkout the CHANGELOG.md file for a complete list
of new features, changes, and bug fixes.

Tips for Success: GDPR Lessons Learned

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/tips-for-success-gdpr-lessons-learned/

Security is our top priority at AWS, and from the beginning we have built security into the fabric of our services. With the introduction of GDPR (which becomes enforceable on May 25 of 2018), privacy and data protection have become even more ingrained into our security-centered culture. Three weeks ago, well ahead of the deadline, we announced that all AWS services are compliant with GDPR, meaning you can use AWS as a data processor as a way to help solve your GDPR challenges (be sure to visit our GDPR Center for additional information).

When it comes to GDPR compliance, many customers are progressing nicely and much of the initial trepidation is gone. In my interactions with customers on this topic, a few themes have emerged as universal:

  • GDPR is important. You need to have a plan in place if you process personal data of EU data subjects, not only because it’s good governance, but because GDPR does carry significant penalties for non-compliance.
  • Solving this can be complex, potentially involving a lot of personnel and multiple tools. Your GDPR process will also likely span across disciplines – impacting people, processes, and technology.
  • Each customer is unique, and there are many methodologies around assessing your compliance with GDPR. It’s important to be aware of your own individual business attributes.

I thought it might be helpful to share some of our own lessons learned. In our experience in solving the GDPR challenge, the following were keys to our success:

  1. Get your senior leadership involved. We have a regular cadence of detailed status conversations about GDPR with our CEO, Andy Jassy. GDPR is high stakes, and the AWS leadership team knows it. If GDPR doesn’t have the attention it needs with the visibility of top management today, it’s time to escalate.
  2. Centralize the GDPR efforts. Driving all work streams centrally is key. This may sound obvious, but managing this in a distributed manner may result in duplicative effort and/or team members moving in a different direction.
  3. The most important single partner in solving GDPR is your legal team. Having non-legal people make assumptions about how to interpret GDPR for your unique environment is both risky and a potential waste of time and resources. You want to avoid analysis paralysis by getting proper legal advice, collaborating on a direction, and then moving forward with the proper urgency.
  4. Collaborate closely with tech leadership. The “process” people in your organization, the ones who already know how to approach governance problems, are typically comfortable jumping right in to GDPR. But technical teams, including data owners, have set up their software for business application. They may not even know what kind of data they are storing, processing, or transferring to other parts of the business. In the GDPR exercise they need to be aware of (or at least help facilitate) the tracking of data and data elements between systems. This isn’t a typical ask for technical teams, so be prepared to educate and to fully understand data flow.
  5. Don’t live by the established checklists. There are multiple methodologies to solving the compliance challenges of GDPR. At AWS, we ended up establishing core requirements, mapped out by data controller and data processor functions and then, in partnership with legal, decided upon a group of projects based on our known current state. Be careful about using a set methodology, tool or questionnaire to govern your efforts. These generic assessments can help educate, but letting them drive or limit your work could lead to missing something that is key to your own compliance. In this sense, a generic, “one size fits all” solution might not be helpful.
  6. Don’t be afraid to challenge prior orthodoxy. Many times we changed course based on new information. You shouldn’t be afraid to scrap an effort if you determine it’s not working. You should also not be afraid to escalate issues to senior leadership when needed. This is an executive issue.
  7. Look for ways to leverage your work beyond this compliance activity. GDPR requires serious effort, but are the results limited to GDPR compliance? Certainly not. You can use GDPR workflows as a way to ensure better governance moving forward. Privacy and security will require work for the foreseeable future, so make your governance program scalable and usable for other purposes.

One last tip that has made all the difference: think about protecting data subjects and work backwards from there. Customer focus drives us to ask, “what would customers and data subjects want and expect us to do?” Taking GDPR from a pure legal or compliance standpoint may be technically sufficient, but we believe the objectives of security and personal data protection require a more comprehensive view, and you can most effectively shape that view by starting with the individuals GDPR was meant to protect.

If you would like to find out more about our experiences, as well as how we can help you in your efforts, please reach out to us today.

-Chad Woolf

Vice President, AWS Security Assurance

Interested in additional AWS Security news? Follow the AWS Security Blog on Twitter.

Implement continuous integration and delivery of serverless AWS Glue ETL applications using AWS Developer Tools

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/

AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.

AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.

When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:

  • Iterative development with unit tests
  • Continuous integration and build
  • Pushing the ETL pipeline to a test environment
  • Pushing the ETL pipeline to a production environment
  • Testing ETL applications using real data (live test)
  • Exploring and validating data

In this post, I walk you through a solution that implements a CI/CD pipeline for serverless AWS Glue ETL applications supported by AWS Developer Tools (including AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild) and AWS CloudFormation.

Solution overview

The following diagram shows the pipeline workflow:

This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:

1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.

To get the ETL job source code and AWS CloudFormation template, download the gluedemoetl.zip file. This solution is developed based on a previous post, Build a Data Lake Foundation with AWS Glue and Amazon S3.

2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.

The LiveTest stage includes the following actions:

  • Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
  • AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
  • LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
  • LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval

3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.

Try it out

This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).

To get started with this solution, choose Launch Stack:

This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.

In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.

After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.

Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.

In the CodeCommit console, choose Code in the navigation pane to view the solution files.

Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.

At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.

At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.

Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:

Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.

SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";

The following shows the raw data:

The following shows the transformed data:

The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.

Add comments as needed, and choose Approve.

The LiveTestApproval stage now appears as Approved on the console.

After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.

Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.

After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.

Conclusion

In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.

If you have questions or suggestions, please comment below.

 


Additional Reading

If you found this post useful, be sure to check out Implement Continuous Integration and Delivery of Apache Spark Applications using AWS and Build a Data Lake Foundation with AWS Glue and Amazon S3.

 


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

Confused About the Hybrid Cloud? You’re Not Alone

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/confused-about-the-hybrid-cloud-youre-not-alone/

Hybrid Cloud. What is it?

Do you have a clear understanding of the hybrid cloud? If you don’t, it’s not surprising.

Hybrid cloud has been applied to a greater and more varied number of IT solutions than almost any other recent data management term. About the only thing that’s clear about the hybrid cloud is that the term hybrid cloud wasn’t invented by customers, but by vendors who wanted to hawk whatever solution du jour they happened to be pushing.

Let’s be honest. We’re in an industry that loves hype. We can’t resist grafting hyper, multi, ultra, and super and other prefixes onto the beginnings of words to entice customers with something new and shiny. The alphabet soup of cloud-related terms can include various options for where the cloud is located (on-premises, off-premises), whether the resources are private or shared in some degree (private, community, public), what type of services are offered (storage, computing), and what type of orchestrating software is used to manage the workflow and the resources. With so many moving parts, it’s no wonder potential users are confused.

Let’s take a step back, try to clear up the misconceptions, and come up with a basic understanding of what the hybrid cloud is. To be clear, this is our viewpoint. Others are free to do what they like, so bear that in mind.

So, What is the Hybrid Cloud?

The hybrid cloud refers to a cloud environment made up of a mixture of on-premises private cloud resources combined with third-party public cloud resources that use some kind of orchestration between them.

To get beyond the hype, let’s start with Forrester Research‘s idea of the hybrid cloud: “One or more public clouds connected to something in my data center. That thing could be a private cloud; that thing could just be traditional data center infrastructure.”

To put it simply, a hybrid cloud is a mash-up of on-premises and off-premises IT resources.

To expand on that a bit, we can say that the hybrid cloud refers to a cloud environment made up of a mixture of on-premises private cloud[1] resources combined with third-party public cloud resources that use some kind of orchestration[2] between them. The advantage of the hybrid cloud model is that it allows workloads and data to move between private and public clouds in a flexible way as demands, needs, and costs change, giving businesses greater flexibility and more options for data deployment and use.

In other words, if you have some IT resources in-house that you are replicating or augmenting with an external vendor, congrats, you have a hybrid cloud!

Private Cloud vs. Public Cloud

The cloud is really just a collection of purpose built servers. In a private cloud, the servers are dedicated to a single tenant or a group of related tenants. In a public cloud, the servers are shared between multiple unrelated tenants (customers). A public cloud is off-site, while a private cloud can be on-site or off-site — or on-prem or off-prem.

As an example, let’s look at a hybrid cloud meant for data storage, a hybrid data cloud. A company might set up a rule that says all accounting files that have not been touched in the last year are automatically moved off-prem to cloud storage to save cost and reduce the amount of storage needed on-site. The files are still available; they are just no longer stored on your local systems. The rules can be defined to fit an organization’s workflow and data retention policies.

The hybrid cloud concept also contains cloud computing. For example, at the end of the quarter, order processing application instances can be spun up off-premises in a hybrid computing cloud as needed to add to on-premises capacity.

Hybrid Cloud Benefits

If we accept that the hybrid cloud combines the best elements of private and public clouds, then the benefits of hybrid cloud solutions are clear, and we can identify the primary two benefits that result from the blending of private and public clouds.

Diagram of the Components of the Hybrid Cloud

Benefit 1: Flexibility and Scalability

Undoubtedly, the primary advantage of the hybrid cloud is its flexibility. It takes time and money to manage in-house IT infrastructure and adding capacity requires advance planning.

The cloud is ready and able to provide IT resources whenever needed on short notice. The term cloud bursting refers to the on-demand and temporary use of the public cloud when demand exceeds resources available in the private cloud. For example, some businesses experience seasonal spikes that can put an extra burden on private clouds. These spikes can be taken up by a public cloud. Demand also can vary with geographic location, events, or other variables. The public cloud provides the elasticity to deal with these and other anticipated and unanticipated IT loads. The alternative would be fixed cost investments in on-premises IT resources that might not be efficiently utilized.

For a data storage user, the on-premises private cloud storage provides, among other benefits, the highest speed access. For data that is not frequently accessed, or needed with the absolute lowest levels of latency, it makes sense for the organization to move it to a location that is secure, but less expensive. The data is still readily available, and the public cloud provides a better platform for sharing the data with specific clients, users, or with the general public.

Benefit 2: Cost Savings

The public cloud component of the hybrid cloud provides cost-effective IT resources without incurring capital expenses and labor costs. IT professionals can determine the best configuration, service provider, and location for each service, thereby cutting costs by matching the resource with the task best suited to it. Services can be easily scaled, redeployed, or reduced when necessary, saving costs through increased efficiency and avoiding unnecessary expenses.

Comparing Private vs Hybrid Cloud Storage Costs

To get an idea of the difference in storage costs between a purely on-premises solutions and one that uses a hybrid of private and public storage, we’ll present two scenarios. For each scenario we’ll use data storage amounts of 100 terabytes, 1 petabyte, and 2 petabytes. Each table is the same format, all we’ve done is change how the data is distributed: private (on-premises) cloud or public (off-premises) cloud. We are using the costs for our own B2 Cloud Storage in this example. The math can be adapted for any set of numbers you wish to use.

Scenario 1    100% of data on-premises storage

Data Stored
Data stored On-Premises: 100% 100 TB 1,000 TB 2,000 TB
On-premises cost range Monthly Cost
Low — $12/TB/Month $1,200 $12,000 $24,000
High — $20/TB/Month $2,000 $20,000 $40,000

Scenario 2    20% of data on-premises with 80% public cloud storage (B2)

Data Stored
Data stored On-Premises: 20% 20 TB 200 TB 400 TB
Data stored in Cloud: 80% 80 TB 800 TB 1,600 TB
On-premises cost range Monthly Cost
Low — $12/TB/Month $240 $2,400 $4,800
High — $20/TB/Month $400 $4,000 $8,000
Public cloud cost range Monthly Cost
Low — $5/TB/Month (B2) $400 $4,000 $8,000
High — $20/TB/Month $1,600 $16,000 $32,000
On-premises + public cloud cost range Monthly Cost
Low $640 $6,400 $12,800
High $2,000 $20,000 $40,000

As can be seen in the numbers above, using a hybrid cloud solution and storing 80% of the data in the cloud with a provider such as Backblaze B2 can result in significant savings over storing only on-premises. For other cost scenarios, see the B2 Cost Calculator.

When Hybrid Might Not Always Be the Right Fit

There are circumstances where the hybrid cloud might not be the best solution. Smaller organizations operating on a tight IT budget might best be served by a purely public cloud solution. The cost of setting up and running private servers is substantial.

An application that requires the highest possible speed might not be suitable for hybrid, depending on the specific cloud implementation. While latency does play a factor in data storage for some users, it is less of a factor for uploading and downloading data than it is for organizations using the hybrid cloud for computing. Because Backblaze recognized the importance of speed and low-latency for customers wishing to use computing on data stored in B2, we directly connected our data centers with those of our computing partners, ensuring that latency would not be an issue even for a hybrid cloud computing solution.

It is essential to have a good understanding of workloads and their essential characteristics in order to make the hybrid cloud work well for you. Each application needs to be examined for the right mix of private cloud, public cloud, and traditional IT resources that fit the particular workload in order to benefit most from a hybrid cloud architecture.

The Hybrid Cloud Can Be a Win-Win Solution

From the high altitude perspective, any solution that enables an organization to respond in a flexible manner to IT demands is a win. Avoiding big upfront capital expenses for in-house IT infrastructure will appeal to the CFO. Being able to quickly spin up IT resources as they’re needed will appeal to the CTO and VP of Operations.

Should You Go Hybrid?

We’ve arrived at the bottom line and the question is, should you or your organization embrace hybrid cloud infrastructures?

According to 451 Research, by 2019, 69% of companies will operate in hybrid cloud environments, and 60% of workloads will be running in some form of hosted cloud service (up from 45% in 2017). That indicates that the benefits of the hybrid cloud appeal to a broad range of companies.

In Two Years, More Than Half of Workloads Will Run in Cloud

Clearly, depending on an organization’s needs, there are advantages to a hybrid solution. While it might have been possible to dismiss the hybrid cloud in the early days of the cloud as nothing more than a buzzword, that’s no longer true. The hybrid cloud has evolved beyond the marketing hype to offer real solutions for an increasingly complex and challenging IT environment.

If an organization approaches the hybrid cloud with sufficient planning and a structured approach, a hybrid cloud can deliver on-demand flexibility, empower legacy systems and applications with new capabilities, and become a catalyst for digital transformation. The result can be an elastic and responsive infrastructure that has the ability to quickly respond to changing demands of the business.

As data management professionals increasingly recognize the advantages of the hybrid cloud, we can expect more and more of them to embrace it as an essential part of their IT strategy.

Tell Us What You’re Doing with the Hybrid Cloud

Are you currently embracing the hybrid cloud, or are you still uncertain or hanging back because you’re satisfied with how things are currently? Maybe you’ve gone totally hybrid. We’d love to hear your comments below on how you’re dealing with the hybrid cloud.


[1] Private cloud can be on-premises or a dedicated off-premises facility.

[2] Hybrid cloud orchestration solutions are often proprietary, vertical, and task dependent.

The post Confused About the Hybrid Cloud? You’re Not Alone appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Backblaze at NAB 2018 in Las Vegas

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backblaze-at-nab-2018-in-las-vegas/

Backblaze B2 Cloud Storage NAB Booth

Backblaze just returned from exhibiting at NAB in Las Vegas, April 9-12, where the response to our recent announcements was tremendous. In case you missed the news, Backblaze B2 Cloud Storage continues to extend its lead as the most affordable, high performance cloud on the planet.

Backblaze’s News at NAB

Backblaze at NAB 2018 in Las Vegas

The Backblaze booth just before opening

What We Were Asked at NAB

Our booth was busy from start to finish with attendees interested in learning more about Backblaze and B2 Cloud Storage. Here are the questions we were asked most often in the booth.

Q. How long has Backblaze been in business?
A. The company was founded in 2007. Today, we have over 500 petabytes of data from customers in over 150 countries.

B2 Partners at NAB 2018

Q. Where is your data stored?
A. We have data centers in California and Arizona and expect to expand to Europe by the end of the year.

Q. How can your services be so inexpensive?
A. Backblaze’s goal from the beginning was to offer cloud backup and storage that was easy to use and affordable. All the existing options were simply too expensive to be viable, so we created our own infrastructure. Our purpose-built storage system — the Backblaze’s Storage Pod — is recognized as one of the most cost efficient storage platforms available.

Q. Tell me about your hardware.
A. Backblaze’s Storage Pods hold 60 HDDs each, containing as much as 720TB data per pod, stored using Reed-Solomon error correction. Storage Pods are arranged in Tomes with twenty Storage Pods making up a Vault.

Q. Where do you fit in the data workflow?
A. People typically use B2 in for archiving completed projects. All data is readily available for download from B2, making it more convenient than off-line storage. In addition, DAM and MAM systems such as CatDV, axle ai, Cantemo, and others have integrated with B2 to store raw images behind the proxies.

Q. Who uses B2 in the M&E business?
A. KLRU-TV, the PBS station in Austin Texas, uses B2 to archive their entire 43 year catalog of Austin City Limits episodes and related materials. WunderVu, the production house for Pixvana, uses B2 to back up and archive their local storage systems on which they build virtual reality experiences for their customers.

Q. You’re the company that publishes the hard drive stats, right?
A. Yes, we are!

Backblaze Case Studies and Swag at NAB 2018 in Las Vegas

Were You at NAB?

If you were, we hope you stopped by the Backblaze booth to say hello. We’d like to hear what you saw at the show that was interesting or exciting. Please tell us in the comments.

The post Backblaze at NAB 2018 in Las Vegas appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Now You Can Create Encrypted Amazon EBS Volumes by Using Your Custom Encryption Keys When You Launch an Amazon EC2 Instance

Post Syndicated from Nishit Nagar original https://aws.amazon.com/blogs/security/create-encrypted-amazon-ebs-volumes-custom-encryption-keys-launch-amazon-ec2-instance-2/

Amazon Elastic Block Store (EBS) offers an encryption solution for your Amazon EBS volumes so you don’t have to build, maintain, and secure your own infrastructure for managing encryption keys for block storage. Amazon EBS encryption uses AWS Key Management Service (AWS KMS) customer master keys (CMKs) when creating encrypted Amazon EBS volumes, providing you all the benefits associated with using AWS KMS. You can specify either an AWS managed CMK or a customer-managed CMK to encrypt your Amazon EBS volume. If you use a customer-managed CMK, you retain granular control over your encryption keys, such as having AWS KMS rotate your CMK every year. To learn more about creating CMKs, see Creating Keys.

In this post, we demonstrate how to create an encrypted Amazon EBS volume using a customer-managed CMK when you launch an EC2 instance from the EC2 console, AWS CLI, and AWS SDK.

Creating an encrypted Amazon EBS volume from the EC2 console

Follow these steps to launch an EC2 instance from the EC2 console with Amazon EBS volumes that are encrypted by customer-managed CMKs:

  1. Sign in to the AWS Management Console and open the EC2 console.
  2. Select Launch instance, and then, in Step 1 of the wizard, select an Amazon Machine Image (AMI).
  3. In Step 2 of the wizard, select an instance type, and then provide additional configuration details in Step 3. For details about configuring your instances, see Launching an Instance.
  4. In Step 4 of the wizard, specify additional EBS volumes that you want to attach to your instances.
  5. To create an encrypted Amazon EBS volume, first add a new volume by selecting Add new volume. Leave the Snapshot column blank.
  6. In the Encrypted column, select your CMK from the drop-down menu. You can also paste the full Amazon Resource Name (ARN) of your custom CMK key ID in this box. To learn more about finding the ARN of a CMK, see Working with Keys.
  7. Select Review and Launch. Your instance will launch with an additional Amazon EBS volume with the key that you selected. To learn more about the launch wizard, see Launching an Instance with Launch Wizard.

Creating Amazon EBS encrypted volumes from the AWS CLI or SDK

You also can use RunInstances to launch an instance with additional encrypted Amazon EBS volumes by setting Encrypted to true and adding kmsKeyID along with the actual key ID in the BlockDeviceMapping object, as shown in the following command:

$> aws ec2 run-instances –image-id ami-b42209de –count 1 –instance-type m4.large –region us-east-1 –block-device-mappings file://mapping.json

In this example, mapping.json describes the properties of the EBS volume that you want to create:


{
"DeviceName": "/dev/sda1",
"Ebs": {
"DeleteOnTermination": true,
"VolumeSize": 100,
"VolumeType": "gp2",
"Encrypted": true,
"kmsKeyID": "arn:aws:kms:us-east-1:012345678910:key/abcd1234-a123-456a-a12b-a123b4cd56ef"
}
}

You can also launch instances with additional encrypted EBS data volumes via an Auto Scaling or Spot Fleet by creating a launch template with the above BlockDeviceMapping. For example:

$> aws ec2 create-launch-template –MyLTName –image-id ami-b42209de –count 1 –instance-type m4.large –region us-east-1 –block-device-mappings file://mapping.json

To learn more about launching an instance with the AWS CLI or SDK, see the AWS CLI Command Reference.

In this blog post, we’ve demonstrated a single-step, streamlined process for creating Amazon EBS volumes that are encrypted under your CMK when you launch your EC2 instance, thereby streamlining your instance launch workflow. To start using this functionality, navigate to the EC2 console.

If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on the Amazon EC2 forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

American Public Television Embraces the Cloud — And the Future

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/american-public-television-embraces-the-cloud-and-the-future/

American Public Television website

American Public Television was like many organizations that have been around for a while. They were entrenched using an older technology — in their case, tape storage and distribution — that once met their needs but was limiting their productivity and preventing them from effectively collaborating with their many media partners. APT’s VP of Technology knew that he needed to move into the future and embrace cloud storage to keep APT ahead of the game.
Since 1961, American Public Television (APT) has been a leading distributor of groundbreaking, high-quality, top-rated programming to the nation’s public television stations. Gerry Field is the Vice President of Technology at APT and is responsible for delivering their extensive program catalog to 350+ public television stations nationwide.

In the time since Gerry  joined APT in 2007, the industry has been in digital overdrive. During that time APT has continued to acquire and distribute the best in public television programming to their technically diverse subscribers.

This created two challenges for Gerry. First, new technology and format proliferation were driving dramatic increases in digital storage. Second, many of APT’s subscribers struggled to keep up with the rapidly changing industry. While some subscribers had state-of-the-art satellite systems to receive programming, others had to wait for the post office to drop off programs recorded on tape weeks earlier. With no slowdown on the horizon of innovation in the industry, Gerry knew that his storage and distribution systems would reach a crossroads in no time at all.

American Public Television logo

Living the tape paradigm

The digital media industry is only a few years removed from its film, and later videotape, roots. Tape was the input and the output of the industry for many years. As a consequence, the tools and workflows used by the industry were built and designed to work with tape. Over time, the “file” slowly replaced the tape as the object to be captured, edited, stored and distributed. Trouble was, many of the systems and more importantly workflows were based on processing tape, and these have proven to be hard to change.

At APT, Gerry realized the limits of the tape paradigm and began looking for technologies and solutions that enabled workflows based on file and object based storage and distribution.

Thinking file based storage and distribution

For data (digital media) storage, APT, like everyone else, started by installing onsite storage servers. As the amount of digital data grew, more storage was added. In addition, APT was expanding its distribution footprint by creating or partnering with distribution channels such as CreateTV and APT Worldwide. This dramatically increased the number of programming formats and the amount of data that had to be stored. As a consequence, updating, maintaining, and managing the APT storage systems was becoming a major challenge and a major resource hog.

APT Online

Knowing that his in-house storage system was only going to cost more time and money, Gerry decided it was time to look at cloud storage. But that wasn’t the only reason he looked at the cloud. While most people consider cloud storage as just a place to back up and archive files, Gerry was envisioning how the ubiquity of the cloud could help solve his distribution challenges. The trouble was the price of cloud storage from vendors like Amazon S3 and Microsoft Azure was a non-starter, especially for a non-profit. Then Gerry came across Backblaze. B2 Cloud Storage service met all of his performance requirements, and at $0.005/GB/month for storage and $0.01/GB for downloads it was nearly 75% less than S3 or Azure.

Gerry did the math and found that he could economically incorporate B2 Cloud Storage into his IT portfolio, using it for both program submission and for active storage and archiving of the APT programs. In addition, B2 now gives him the foundation necessary to receive and distribute programming content over the Internet. This is especially useful for organizations that can’t conveniently access satellite distribution systems. Not to mention downloading from the cloud is much faster than sending a tape through the mail.

Adding B2 Cloud Storage to their infrastructure has helped American Public Television address two key challenges. First, they now have “unlimited” storage in the cloud without having to add any hardware. In addition, with B2, they only pay for the storage they use. That means they don’t have to buy storage upfront trying to match the maximum amount of storage they’ll ever need. Second, by using B2 as a distribution source for their programming APT subscribers, especially the smaller and remote ones, can get content faster and more reliably without having to perform costly upgrades to their infrastructure.

The road ahead

As APT gets used to their file based infrastructure and workflow, there are a number of cost saving and income generating ideas they are pondering which are now worth considering. Here are a few:

Program Submissions — New content can be uploaded from anywhere using a web browser, an Internet connection, and a login. For example, a producer in Cambodia can upload their film to B2. From there the film is downloaded to an in-house system where it is processed and transcoded using compute. The finished film is added to the APT catalog and added to B2. Once there, the program is instantly available for subscribers to order and download.

“The affordability and performance of Backblaze B2 is what allowed us to make the B2 cloud part of the APT data storage and distribution strategy into the future.” — Gerry Field

Easier Previews — At any time, work in process or finished programs can be made available for download from the B2 cloud. One place this could be useful is where a subscriber needs to review a program to comply with local policies and practices before airing. In the old system, each “one-off” was a time consuming manual process.

Instant Subscriptions — There are many organizations such as schools and businesses that want to use just one episode of a desired show. With an e-commerce based website, current or even archived programming kept in B2 could be available to download or stream for a minimal charge.

At APT there were multiple technologies needed to make their file-based infrastructure work, but as Gerry notes, having an affordable, trustworthy, cloud storage service like B2 is one of the critical building blocks needed to make everything work together.

The post American Public Television Embraces the Cloud — And the Future appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

AWS Secrets Manager: Store, Distribute, and Rotate Credentials Securely

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-secrets-manager-store-distribute-and-rotate-credentials-securely/

Today we’re launching AWS Secrets Manager which makes it easy to store and retrieve your secrets via API or the AWS Command Line Interface (CLI) and rotate your credentials with built-in or custom AWS Lambda functions. Managing application secrets like database credentials, passwords, or API Keys is easy when you’re working locally with one machine and one application. As you grow and scale to many distributed microservices, it becomes a daunting task to securely store, distribute, rotate, and consume secrets. Previously, customers needed to provision and maintain additional infrastructure solely for secrets management which could incur costs and introduce unneeded complexity into systems.

AWS Secrets Manager

Imagine that I have an application that takes incoming tweets from Twitter and stores them in an Amazon Aurora database. Previously, I would have had to request a username and password from my database administrator and embed those credentials in environment variables or, in my race to production, even in the application itself. I would also need to have our social media manager create the Twitter API credentials and figure out how to store those. This is a fairly manual process, involving multiple people, that I have to restart every time I want to rotate these credentials. With Secrets Manager my database administrator can provide the credentials in secrets manager once and subsequently rely on a Secrets Manager provided Lambda function to automatically update and rotate those credentials. My social media manager can put the Twitter API keys in Secrets Manager which I can then access with a simple API call and I can even rotate these programmatically with a custom lambda function calling out to the Twitter API. My secrets are encrypted with the KMS key of my choice, and each of these administrators can explicitly grant access to these secrets with with granular IAM policies for individual roles or users.

Let’s take a look at how I would store a secret using the AWS Secrets Manager console. First, I’ll click Store a new secret to get to the new secrets wizard. For my RDS Aurora instance it’s straightforward to simply select the instance and provide the initial username and password to connect to the database.

Next, I’ll fill in a quick description and a name to access my secret by. You can use whatever naming scheme you want here.

Next, we’ll configure rotation to use the Secrets Manager-provided Lambda function to rotate our password every 10 days.

Finally, we’ll review all the details and check out our sample code for storing and retrieving our secret!

Finally I can review the secrets in the console.

Now, if I needed to access these secrets I’d simply call the API.

import json
import boto3
secrets = boto3.client("secretsmanager")
rds = json.dumps(secrets.get_secrets_value("prod/TwitterApp/Database")['SecretString'])
print(rds)

Which would give me the following values:


{'engine': 'mysql',
 'host': 'twitterapp2.abcdefg.us-east-1.rds.amazonaws.com',
 'password': '-)Kw>THISISAFAKEPASSWORD:lg{&sad+Canr',
 'port': 3306,
 'username': 'ranman'}

More than passwords

AWS Secrets Manager works for more than just passwords. I can store OAuth credentials, binary data, and more. Let’s look at storing my Twitter OAuth application keys.

Now, I can define the rotation for these third-party OAuth credentials with a custom AWS Lambda function that can call out to Twitter whenever we need to rotate our credentials.

Custom Rotation

One of the niftiest features of AWS Secrets Manager is custom AWS Lambda functions for credential rotation. This allows you to define completely custom workflows for credentials. Secrets Manager will call your lambda with a payload that includes a Step which specifies which step of the rotation you’re in, a SecretId which specifies which secret the rotation is for, and importantly a ClientRequestToken which is used to ensure idempotency in any changes to the underlying secret.

When you’re rotating secrets you go through a few different steps:

  1. createSecret
  2. setSecret
  3. testSecret
  4. finishSecret

The advantage of these steps is that you can add any kind of approval steps you want for each phase of the rotation. For more details on custom rotation check out the documentation.

Available Now
AWS Secrets Manager is available today in US East (N. Virginia), US East (Ohio), US West (N. California), US West (Oregon), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), EU (Frankfurt), EU (Ireland), EU (London), and South America (São Paulo). Secrets are priced at $0.40 per month per secret and $0.05 per 10,000 API calls. I’m looking forward to seeing more users adopt rotating credentials to secure their applications!

Randall

Backblaze Announces B2 Compute Partnerships

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/introducing-cloud-compute-services/

Backblaze Announces B2 Compute Partnerships

In 2015, we announced Backblaze B2 Cloud Storage — the most affordable, high performance storage cloud on the planet. The decision to release B2 as a service was in direct response to customers asking us if they could use the same cloud storage infrastructure we use for our Computer Backup service. With B2, we entered a market in direct competition with Amazon S3, Google Cloud Services, and Microsoft Azure Storage. Today, we have over 500 petabytes of data from customers in over 150 countries. At $0.005 / GB / month for storage (1/4th of S3) and $0.01 / GB for downloads (1/5th of S3), it turns out there’s a healthy market for cloud storage that’s easy and affordable.

As B2 has grown, customers wanted to use our cloud storage for a variety of use cases that required not only storage but compute. We’re happy to say that through partnerships with Packet & ServerCentral, today we’re announcing that compute is now available for B2 customers.

Cloud Compute and Storage

Backblaze has directly connected B2 with the compute servers of Packet and ServerCentral, thereby allowing near-instant (< 10 ms) data transfers between services. Also, transferring data between B2 and both our compute partners is free.

  • Storing data in B2 and want to run an AI analysis on it? — There are no fees to move the data to our compute partners.
  • Generating data in an application? — Run the application with one of our partners and store it in B2.
  • Transfers are free and you’ll save more than 50% off of the equivalent set of services from AWS.

These partnerships enable B2 customers to use compute, give our compute partners’ customers access to cloud storage, and introduce new customers to industry-leading storage and compute — all with high-performance, low-latency, and low-cost.

Is This a Big Deal? We Think So

Compute is one of the most requested services from our customers Why? Because it unlocks a number of use cases for them. Let’s look at three popular examples:

Transcoding Media Files

B2 has earned wide adoption in the Media & Entertainment (“M&E”) industry. Our affordable storage and download pricing make B2 great for a wide variety of M&E use cases. But many M&E workflows require compute. Content syndicators, like American Public Television, need the ability to transcode files to meet localization and distribution management requirements.

There are a multitude of reasons that transcode is needed — thumbnail and proxy generation enable M&E professionals to work efficiently. Without compute, the act of transcoding files remains cumbersome. Either the files need to be brought down from the cloud, transcoded, and then pushed back up or they must be kept locally until the project is complete. Both scenarios are inefficient.

Starting today, any content producer can spin up compute with one of our partners, pay by the hour for their transcode processing, and return the new media files to B2 for storage and distribution. The company saves money, moves faster, and ensures their files are safe and secure.

Disaster Recovery

Backblaze’s heritage is based on providing outstanding backup services. When you have incredibly affordable cloud storage, it ends up being a great destination for your backup data.

Most enterprises have virtual machines (“VMs”) running in their infrastructure and those VMs need to be backed up. In a disaster scenario, a business wants to know they can get back up and running quickly.

With all data stored in B2, a business can get up and running quickly. Simply restore your backed up VM to one of our compute providers, and your business will be able to get back online.

Since B2 does not place restrictions, delays, or penalties on getting data out, customers can get back up and running quickly and affordably.

Saving $74 Million (aka “The Dropbox Effect”)

Ten years ago, Backblaze decided that S3 was too costly a platform to build its cloud storage business. Instead, we created the Backblaze Storage Pod and our own cloud storage infrastructure. That decision enabled us to offer our customers storage at a previously unavailable price point and maintain those prices for over a decade. It also laid the foundation for Netflix Open Connect and Facebook Open Compute.

Dropbox recently migrated the majority of their cloud services off of AWS and onto Dropbox’s own infrastructure. By leaving AWS, Dropbox was able to build out their own data centers and still save over $74 Million. They achieved those savings by avoiding the fees AWS charges for storing and downloading data, which, incidentally, are five times higher than Backblaze B2.

For Dropbox, being able to realize savings was possible because they have access to enough capital and expertise that they can build out their own infrastructure. For companies that have such resources and scale, that’s a great answer.

“Before this offering, the economics of the cloud would have made our business simply unviable.” — Gabriel Menegatti, SlicingDice

The questions Backblaze and our compute partners pondered was “how can we democratize the Dropbox effect for our storage and compute customers? How can we help customers do more and pay less?” The answer we came up with was to connect Backblaze’s B2 storage with strategic compute partners and remove any transfer fees between them. You may not save $74 million as Dropbox did, but you can choose the optimal providers for your use case and realize significant savings in the process.

This Sounds Good — Tell Me More About Your Partners

We’re very fortunate to be launching our compute program with two fantastic partners in Packet and ServerCentral. These partners allow us to offer a range of computing services.

Packet

We recommend Packet for customers that need on-demand, high performance, bare metal servers available by the hour. They also have robust offerings for private / customized deployments. Their offerings end up costing 50-75% of the equivalent offerings from EC2.

To get started with Packet and B2, visit our partner page on Packet.net.

ServerCentral

ServerCentral is the right partner for customers that have business and IT challenges that require more than “just” hardware. They specialize in fully managed, custom cloud solutions that solve complex business and IT challenges. ServerCentral also has expertise in managed network solutions to address global connectivity and content delivery.

To get started with ServerCentral and B2, visit our partner page on ServerCentral.com.

What’s Next?

We’re excited to find out. The combination of B2 and compute unlocks use cases that were previously impossible or at least unaffordable.

“The combination of performance and price offered by this partnership enables me to create an entirely new business line. Before this offering, the economics of the cloud would have made our business simply unviable,” noted Gabriel Menegatti, co-founder at SlicingDice, a serverless data warehousing service. “Knowing that transfers between compute and B2 are free means I don’t have to worry about my business being successful. And, with download pricing from B2 at just $0.01 GB, I know I’m avoiding a 400% tax from AWS on data I retrieve.”

What can you do with B2 & compute? Please share your ideas with us in the comments. And, for those attending NAB 2018 in Las Vegas next week, please come by and say hello!

The post Backblaze Announces B2 Compute Partnerships appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.