Tag Archives: audio

Click Here to Kill Everybody Available as an Audiobook

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/12/click_here_to_k_2.html

Click Here to Kill Everybody is finally available on Audible.com. I have ten download codes. Not having anything better to do with them, here they are:

  1. HADQSSFC98WCQ
  2. LDLMC6AJLBDJY
  3. YWSY8CXYMQNJ6
  4. JWM7SGNUXX7DB
  5. UPKAJ6MHB2LEF
  6. M85YN36UR926H
  7. 9ULE4NFAH2SLF
  8. GU7A79GSDCXAT
  9. 9K8Q4RX6DKL84
  10. M92GB246XY7JN

Congratulations to the first ten people to try to use them.

EDITED TO ADD (12/30): All the codes are long gone.

Halloween voice-changer using Raspberry Pi Zero

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/halloween-voice-changer-using-raspberry-pi-zero/

Olivier Ros has put together a short and sweet tutorial for creating your own voice-changing mask for Halloween.

Voice changer with Raspberry Pi Zero for Halloween

How to make a voice changer with Raspberry Pi Zero for Halloween Buy MIC+ sound card on Amazon : goo.gl/VDFzu7 tutorial here: https://www.instructables.com/id/Halloween-Voice-Changer-With-Raspberry-Pi/ https://www.raspiaudio.com/halloween

Halloween — we love it!

Grab your ghostly fairy lights, hollow out your pumpkins, and hunt down your box of spooky knick-knacks — it’s Halloween season! And with every year that passes, we see more and more uses of the Raspberry Pi in haunting costumes and decorations.

Voice-changers

At the top of the list is an increase in the number of voice changers. And Olivier Ros’s recent project is a great example of an easy-to-build piece costumimg that’s possible thanks to the small footprint of the Raspberry Pi Zero.

An image of the Raspberry Pi Zero voice changer inside a scary mask

Playdough: so many uses, yet all we wanted to do as kids was eat it.

Oliver used a Pi Zero, though if you have the mask fit it into, you could use any 40-pin Pi and an audio DAC HAT such as this one. He also used Playdough to isolate the Zero and keep it in place, but some foam should do the trick too. Just see what you have lying around.

When I said this is an easy project, I meant it: Olivier has provided the complete code for you to install on a newly setup SD card, or to download via the terminal on your existing Raspbian configuration.

You can read through the entire build on his website, and see more of his projects over on his Instructables page.

More Halloween inspiration

If you’re looking to beef up your Halloween game this October, you should really include a Raspberry Pi in the mix. For example, our Halloween Pumpkin Light tutorial allows you to control the light show inside your carved fruit without the risk of fire. Yes, you read that correctly: a pumpkin is a fruit.

Halloween Pumpkin Light Effect

Use a Raspberry Pi and Pimoroni Blinkt! to create an realistic lighting effect for your Halloween Pumpkin.

For more inspiration and instructions, check out John Park’s Haunted Portrait, some of our favourite tweeted spooky projects from last year, and our list of some of the best Halloween projects online.

The post Halloween voice-changer using Raspberry Pi Zero appeared first on Raspberry Pi.

Security and Human Behavior (SHB 2018)

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/security_and_hu_7.html

I’m at Carnegie Mellon University, at the eleventh Workshop on Security and Human Behavior.

SHB is a small invitational gathering of people studying various aspects of the human side of security, organized each year by Alessandro Acquisti, Ross Anderson, and myself. The 50 or so people in the room include psychologists, economists, computer security researchers, sociologists, political scientists, neuroscientists, designers, lawyers, philosophers, anthropologists, business school professors, and a smattering of others. It’s not just an interdisciplinary event; most of the people here are individually interdisciplinary.

The goal is to maximize discussion and interaction. We do that by putting everyone on panels, and limiting talks to 7-10 minutes. The rest of the time is left to open discussion. Four hour-and-a-half panels per day over two days equals eight panels; six people per panel means that 48 people get to speak. We also have lunches, dinners, and receptions — all designed so people from different disciplines talk to each other.

I invariably find this to be the most intellectually stimulating conference of my year. It influences my thinking in many different, and sometimes surprising, ways.

This year’s program is here. This page lists the participants and includes links to some of their work. As he does every year, Ross Anderson is liveblogging the talks. (Ross also maintains a good webpage of psychology and security resources.)

Here are my posts on the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth SHB workshops. Follow those links to find summaries, papers, and occasionally audio recordings of the various workshops.

Next year, I’ll be hosting the event at Harvard.

Amazon Sumerian – Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sumerian-now-generally-available/

We announced Amazon Sumerian at AWS re:Invent 2017. As you can see from Tara‘s blog post (Presenting Amazon Sumerian: An Easy Way to Create VR, AR, and 3D Experiences), Sumerian does not require any specialized programming or 3D graphics expertise. You can build VR, AR, and 3D experiences for a wide variety of popular hardware platforms including mobile devices, head-mounted displays, digital signs, and web browsers.

I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.

Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.

Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.

During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:

Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.

Jeff;

 

Франция: законопроектът срещу фалшивите новини внесен в парламента

Post Syndicated from nellyo original https://nellyo.wordpress.com/2018/05/15/fr_fake-2/

В парламента на Франция е внесен законопроект за борбата с фалшивите данни.

Въвеждат се мерки за борба с разпространението на такава информация. По време на предизборната кампания интернет платформите ще бъдат предмет на по-строги задължения за прозрачност, предназначени да позволят на публичните органи да открият кампании за дестабилизация, фалшива информация и второ, за да се даде възможност на потребителите на интернет да идентифицират поддръжниците на спонсорирано съдържание. Съдилищата също ще могат бързо да спрат разпространението на такива материали.

Част II от законопроекта е предназначена да позволи на Conseil Supérieur de l’Audiovisuel (национален аудиовизуален регулатор – CSA) да предотвратява  или спира разпространението на телевизионни услуги, контролирани от чужда държава, които нарушават основните интереси на Франция или участват в дестабилизиране на  институциите, по-специално чрез разпространението на  фалшиви новини.  Законопроектът установява и специална процедура за спиране на медийна услуга, ако нейната дейност има за цел да засегне честността на изборите.  CSA ще може да отнеме лицензията на съответния доставчик.

И накрая, законопроектът  предвижда задължение за по-широко сътрудничество  на  посредници/разпространители/платформи/доставчици на услуги – освен задължението за своевременно отстраняване на всяко незаконно съдържание, за което са узнали,  те трябва да предоставят на всяко лице  възможност  по лесно достъпен начин да уведоми за   невярна информация. И накрая, доставчиците на услуги трябва да разкриват пред обществеността стъпките, които предприемат, за да се борят срещу разпространението на неверни данни.

Правителството обяви, че законопроектът ще бъде разгледан по ускорена  процедура.

Pascutto: Linux sandboxing improvements in Firefox 60

Post Syndicated from corbet original https://lwn.net/Articles/754270/rss

Gian-Carlo Pascutto posts
about the sandboxing improvements
in the Firefox 60 release.
The most important change is that content processes — which render
Web pages and execute JavaScript — are no longer allowed to directly
connect to the Internet, or connect to most local services accessed with
Unix-domain sockets (for example, PulseAudio).

This is a really lovely Raspberry Pi tricorder

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/raspberry-pi-tricorder-prop/

At the moment I’m spending my evenings watching all of Star Trek in order. Yes, I have watched it before (but with some really big gaps). Yes, including the animated series (I’m up to The Terratin Incident). So I’m gratified to find this beautiful The Original Series–style tricorder build.

Star Trek Tricorder with Working Display!

At this year’s Replica Prop Forum showcase, we meet up once again wtih Brian Mix, who brought his new Star Trek TOS Tricorder. This beautiful replica captures the weight and finish of the filming hand prop, and Brian has taken it one step further with some modern-day electronics!

A what now?

If you don’t know what a tricorder is, which I guess is faintly possible, the easiest way I can explain is to steal words that Liz wrote when Recantha made one back in 2013. It’s “a made-up thing used by the crew of the Enterprise to measure stuff, store data, and scout ahead remotely when exploring strange new worlds, seeking out new life and new civilisations, and all that jazz.”

A brief history of Picorders

We’ve seen other Raspberry Pi–based realisations of this iconic device. Recantha’s LEGO-cased tricorder delivered some authentic functionality, including temperature sensors, an ultrasonic distance sensor, a photosensor, and a magnetometer. Michael Hahn’s tricorder for element14’s Sci-Fi Your Pi competition in 2015 packed some similar functions, along with Original Series audio effects, into a neat (albeit non-canon) enclosure.

Brian Mix’s Original Series tricorder

Brian Mix’s tricorder, seen in the video above from Tested at this year’s Replica Prop Forum showcase, is based on a high-quality kit into which, he discovered, a Raspberry Pi just fits. He explains that the kit is the work of the late Steve Horch, a special effects professional who provided props for later Star Trek series, including the classic Deep Space Nine episode Trials and Tribble-ations.

A still from an episode of Star Trek: Deep Space Nine: Jadzia Dax, holding an Original Series-sylte tricorder, speaks with Benjamin Sisko

Dax, equipped for time travel

This episode’s plot required sets and props — including tricorders — replicating the USS Enterprise of The Original Series, and Steve Horch provided many of these. Thus, a tricorder kit from him is about as close to authentic as you can possibly find unless you can get your hands on a screen-used prop. The Pi allows Brian to drive a real display and a speaker: “Being the geek that I am,” he explains, “I set it up to run every single Original Series Star Trek episode.”

Even more wonderful hypothetical tricorders that I would like someone to make

This tricorder is beautiful, and it makes me think how amazing it would be to squeeze in some of the sensor functionality of the devices depicted in the show. Space in the case is tight, but it looks like there might be a little bit of depth to spare — enough for an IMU, maybe, or a temperature sensor. I’m certain the future will bring more Pi tricorder builds, and I, for one, can’t wait. Please tell us in the comments if you’re planning something along these lines, and, well, I suppose some other sci-fi franchises have decent Pi project potential too, so we could probably stand to hear about those.

If you’re commenting, no spoilers please past The Animated Series S1 E11. Thanks.

The post This is a really lovely Raspberry Pi tricorder appeared first on Raspberry Pi.

3D-printed speakers from the Technical University of Denmark

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/technical-university-denmark-speakers/

Students taking Design of Mechatronics at the Technical University of Denmark have created some seriously elegant and striking Raspberry Pi speakers. Their builds are part of a project asking them to “explore, design and build a 3D printed speaker, around readily available electronics and components”.

The students have been uploading their designs, incorporating Raspberry Pis and HiFiBerry HATs, to Thingiverse throughout April. The task is a collaboration with luxury brand Bang & Olufsen’s Create initiative, and the results wouldn’t look out of place in a high-end showroom; I’d happily take any of these home.

The Sphere

Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker

Søren Qvist’s wall-mounted kitchen sphere uses 3D-printed and laser-cut parts, along with the HiFiBerry HAT and B&O speakers to create a sleek-looking design.

Hex One

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann’s group have designed the Hex One – a work-in-progress wireless 360° speaker. A particular objective for their project is to create a speaker using as many 3D-printed parts as possible.

Portable B&O-Create Speaker



“The design is supposed to resemble that of a B&O speaker, and from a handful of categories we chose to create a portable and wearable speaker,” explain Gustav Larsen and his team.

Desktop Loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens and team have housed a Raspberry Pi and HiFiBerry HAT inside this this stylish airplay speaker. You can follow their design progress on their team blog.

B&O TILE



Tue Thomsen’s six-person team Mechatastic have produced the B&O TILE. “The speaker consists of four 3D-printed cabinet and top parts, where the top should be covered by fabric,” they explain. “The speaker insides consists of laser-cut wood to hold the tweeter and driver and encase the Raspberry Pi.”

The team aimed to design a speaker that would be at home in a kitchen. With a removable upper casing allowing for a choice of colour, the TILE can be customised to fit particular tastes and colour schemes.

Build your own speakers with Raspberry Pis

Raspberry Pi’s onboard audio jack, along with third-party HATs such as the HiFiBerry and Pimoroni Speaker pHAT, make speaker design and fabrication with the Pi an interesting alternative to pre-made tech. These builds don’t tend to be technically complex, and they provide some lovely examples of tech-based projects that reflect makers’ own particular aesthetic style.

If you have access to a 3D printer or a laser cutter, perhaps at a nearby maker space, then those can be excellent resources, but fancy kit isn’t a requirement. Basic joinery and crafting with card or paper are just a couple of ways you can build things that are all your own, using familiar tools and materials. We think more people would enjoy getting hands-on with this sort of thing if they gave it a whirl, and we publish a free magazine to help.

Raspberry Pi Zero AirPlay Speaker

Looking for a new project to build around the Raspberry Pi Zero, I came across the pHAT DAC from Pimoroni. This little add-on board adds audio playback capabilities to the Pi Zero. Because the pHAT uses the GPIO pins, the USB OTG port remains available for a wifi dongle.

This video by Frederick Vandenbosch is a great example of building AirPlay speakers using a Pi and HAT, and a quick search will find you lots more relevant tutorials and ideas.

Have you built your own? Share your speaker-based Pi builds with us in the comments.

The post 3D-printed speakers from the Technical University of Denmark appeared first on Raspberry Pi.

Using AWS Lambda and Amazon Comprehend for sentiment analysis

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/using-aws-lambda-and-amazon-comprehend-for-sentiment-analysis/

This post courtesy of Giedrius Praspaliauskas, AWS Solutions Architect

Even with best IVR systems, customers get frustrated. What if you knew that 10 callers in your Amazon Connect contact flow were likely to say “Agent!” in frustration in the next 30 seconds? Would you like to get to them before that happens? What if your bot was smart enough to admit, “I’m sorry this isn’t helping. Let me find someone for you.”?

In this post, I show you how to use AWS Lambda and Amazon Comprehend for sentiment analysis to make your Amazon Lex bots in Amazon Connect more sympathetic.

Setting up a Lambda function for sentiment analysis

There are multiple natural language and text processing frameworks or services available to use with Lambda, including but not limited to Amazon Comprehend, TextBlob, Pattern, and NLTK. Pick one based on the nature of your system:  the type of interaction, languages supported, and so on. For this post, I picked Amazon Comprehend, which uses natural language processing (NLP) to extract insights and relationships in text.

The walkthrough in this post is just an example. In a full-scale implementation, you would likely implement a more nuanced approach. For example, you could keep the overall sentiment score through the conversation and act only when it reaches a certain threshold. It is worth noting that this Lambda function is not called for missed utterances, so there may be a gap between what is being analyzed and what was actually said.

The Lambda function is straightforward. It analyses the input transcript field of the Amazon Lex event. Based on the overall sentiment value, it generates a response message with next step instructions. When the sentiment is neutral, positive, or mixed, the response leaves it to Amazon Lex to decide what the next steps should be. It adds to the response overall sentiment value as an additional session attribute, along with slots’ values received as an input.

When the overall sentiment is negative, the function returns the dialog action, pointing to an escalation intent (specified in the environment variable ESCALATION_INTENT_NAME) or returns the fulfillment closure action with a failure state when the intent is not specified. In addition to actions or intents, the function returns a message, or prompt, to be provided to the customer before taking the next step. Based on the returned action, Amazon Connect can select the appropriate next step in a contact flow.

For this walkthrough, you create a Lambda function using the AWS Management Console:

  1. Open the Lambda console.
  2. Choose Create Function.
  3. Choose Author from scratch (no blueprint).
  4. For Runtime, choose Python 3.6.
  5. For Role, choose Create a custom role. The custom execution role allows the function to detect sentiments, create a log group, stream log events, and store the log events.
  6. Enter the following values:
    • For Role Description, enter Lambda execution role permissions.
    • For IAM Role, choose Create an IAM role.
    • For Role Name, enter LexSentimentAnalysisLambdaRole.
    • For Policy, use the following policy:
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": "arn:aws:logs:*:*:*"
        },
        {
            "Action": [
                "comprehend:DetectDominantLanguage",
                "comprehend:DetectSentiment"
            ],
            "Effect": "Allow",
            "Resource": "*"
        }
    ]
}
    1. Choose Create function.
    2. Copy/paste the following code to the editor window
import os, boto3

ESCALATION_INTENT_MESSAGE="Seems that you are having troubles with our service. Would you like to be transferred to the associate?"
FULFILMENT_CLOSURE_MESSAGE="Seems that you are having troubles with our service. Let me transfer you to the associate."

escalation_intent_name = os.getenv('ESACALATION_INTENT_NAME', None)

client = boto3.client('comprehend')

def lambda_handler(event, context):
    sentiment=client.detect_sentiment(Text=event['inputTranscript'],LanguageCode='en')['Sentiment']
    if sentiment=='NEGATIVE':
        if escalation_intent_name:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                    },
                    "dialogAction": {
                        "type": "ConfirmIntent", 
                        "message": {
                            "contentType": "PlainText", 
                            "content": ESCALATION_INTENT_MESSAGE
                        }, 
                    "intentName": escalation_intent_name
                    }
            }
        else:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                },
                "dialogAction": {
                    "type": "Close",
                    "fulfillmentState": "Failed",
                    "message": {
                            "contentType": "PlainText",
                            "content": FULFILMENT_CLOSURE_MESSAGE
                    }
                }
            }

    else:
        result ={
            "sessionAttributes": {
                "sentiment": sentiment
            },
            "dialogAction": {
                "type": "Delegate",
                "slots" : event["currentIntent"]["slots"]
            }
        }
    return result
  1. Below the code editor specify the environment variable ESCALATION_INTENT_NAME with a value of Escalate.

  1. Click on Save in the top right of the console.

Now you can test your function.

  1. Click Test at the top of the console.
  2. Configure a new test event using the following test event JSON:
{
  "messageVersion": "1.0",
  "invocationSource": "DialogCodeHook",
  "userId": "1234567890",
  "sessionAttributes": {},
  "bot": {
    "name": "BookSomething",
    "alias": "None",
    "version": "$LATEST"
  },
  "outputDialogMode": "Text",
  "currentIntent": {
    "name": "BookSomething",
    "slots": {
      "slot1": "None",
      "slot2": "None"
    },
    "confirmationStatus": "None"
  },
  "inputTranscript": "I want something"
}
  1. Click Create
  2. Click Test on the console

This message should return a response from Lambda with a sentiment session attribute of NEUTRAL.

However, if you change the input to “This is garbage!”, Lambda changes the dialog action to the escalation intent specified in the environment variable ESCALATION_INTENT_NAME.

Setting up Amazon Lex

Now that you have your Lambda function running, it is time to create the Amazon Lex bot. Use the BookTrip sample bot and call it BookSomething. The IAM role is automatically created on your behalf. Indicate that this bot is not subject to the COPPA, and choose Create. A few minutes later, the bot is ready.

Make the following changes to the default configuration of the bot:

  1. Add an intent with no associated slots. Name it Escalate.
  2. Specify the Lambda function for initialization and validation in the existing two intents (“BookCar” and “BookHotel”), at the same time giving Amazon Lex permission to invoke it.
  3. Leave the other configuration settings as they are and save the intents.

You are ready to build and publish this bot. Set a new alias, BookSomethingWithSentimentAnalysis. When the build finishes, test it.

As you see, sentiment analysis works!

Setting up Amazon Connect

Next, provision an Amazon Connect instance.

After the instance is created, you need to integrate the Amazon Lex bot created in the previous step. For more information, see the Amazon Lex section in the Configuring Your Amazon Connect Instance topic.  You may also want to look at the excellent post by Randall Hunt, New – Amazon Connect and Amazon Lex Integration.

Create a new contact flow, “Sentiment analysis walkthrough”:

  1. Log in into the Amazon Connect instance.
  2. Choose Create contact flow, Create transfer to agent flow.
  3. Add a Get customer input block, open the icon in the top left corner, and specify your Amazon Lex bot and its intents.
  4. Select the Text to speech audio prompt type and enter text for Amazon Connect to play at the beginning of the dialog.
  5. Choose Amazon Lex, enter your Amazon Lex bot name and the alias.
  6. Specify the intents to be used as dialog branches that a customer can choose: BookHotel, BookTrip, or Escalate.
  7. Add two Play prompt blocks and connect them to the customer input block.
    • If booking hotel or car intent is returned from the bot flow, play the corresponding prompt (“OK, will book it for you”) and initiate booking (in this walkthrough, just hang up after the prompt).
    • However, if escalation intent is returned (caused by the sentiment analysis results in the bot), play the prompt (“OK, transferring to an agent”) and initiate the transfer.
  8. Save and publish the contact flow.

As a result, you have a contact flow with a single customer input step and a text-to-speech prompt that uses the Amazon Lex bot. You expect one of the three intents returned:

Edit the phone number to associate the contact flow that you just created. It is now ready for testing. Call the phone number and check how your contact flow works.

Cleanup

Don’t forget to delete all the resources created during this walkthrough to avoid incurring any more costs:

  • Amazon Connect instance
  • Amazon Lex bot
  • Lambda function
  • IAM role LexSentimentAnalysisLambdaRole

Summary

In this walkthrough, you implemented sentiment analysis with a Lambda function. The function can be integrated into Amazon Lex and, as a result, into Amazon Connect. This approach gives you the flexibility to analyze user input and then act. You may find the following potential use cases of this approach to be of interest:

  • Extend the Lambda function to identify “hot” topics in the user input even if the sentiment is not negative and take action proactively. For example, switch to an escalation intent if a user mentioned “where is my order,” which may signal potential frustration.
  • Use Amazon Connect Streams to provide agent sentiment analysis results along with call transfer. Enable service tailored towards particular customer needs and sentiments.
  • Route calls to agents based on both skill set and sentiment.
  • Prioritize calls based on sentiment using multiple Amazon Connect queues instead of transferring directly to an agent.
  • Monitor quality and flag for review contact flows that result in high overall negative sentiment.
  • Implement sentiment and AI/ML based call analysis, such as a real-time recommendation engine. For more details, see Machine Learning on AWS.

If you have questions or suggestions, please comment below.

More power to your Pi

Post Syndicated from James Adams original https://www.raspberrypi.org/blog/pi-power-supply-chip/

It’s been just over three weeks since we launched the new Raspberry Pi 3 Model B+. Although the product is branded Raspberry Pi 3B+ and not Raspberry Pi 4, a serious amount of engineering was involved in creating it. The wireless networking, USB/Ethernet hub, on-board power supplies, and BCM2837 chip were all upgraded: together these represent almost all the circuitry on the board! Today, I’d like to tell you about the work that has gone into creating a custom power supply chip for our newest computer.

Raspberry Pi 3 Model B+, with custome power supply chip

The new Raspberry Pi 3B+, sporting a new, custom power supply chip (bottom left-hand corner)

Successful launch

The Raspberry Pi 3B+ has been well received, and we’ve enjoyed hearing feedback from the community as well as reading the various reviews and articles highlighting the solid improvements in wireless networking, Ethernet, CPU, and thermal performance of the new board. Gareth Halfacree’s post here has some particularly nice graphs showing the increased performance as well as how the Pi 3B+ keeps cool under load due to the new CPU package that incorporates a metal heat spreader. The Raspberry Pi production lines at the Sony UK Technology Centre are running at full speed, and it seems most people who want to get hold of the new board are able to find one in stock.

Powering your Pi

One of the most critical but often under-appreciated elements of any electronic product, particularly one such as Raspberry Pi with lots of complex on-board silicon (processor, networking, high-speed memory), is the power supply. In fact, the Raspberry Pi 3B+ has no fewer than six different voltage rails: two at 3.3V — one special ‘quiet’ one for audio, and one for everything else; 1.8V; 1.2V for the LPDDR2 memory; and 1.2V nominal for the CPU core. Note that the CPU voltage is actually raised and lowered on the fly as the speed of the CPU is increased and decreased depending on how hard the it is working. The sixth rail is 5V, which is the master supply that all the others are created from, and the output voltage for the four downstream USB ports; this is what the mains power adaptor is supplying through the micro USB power connector.

Power supply primer

There are two common classes of power supply circuits: linear regulators and switching regulators. Linear regulators work by creating a lower, regulated voltage from a higher one. In simple terms, they monitor the output voltage against an internally generated reference and continually change their own resistance to keep the output voltage constant. Switching regulators work in a different way: they ‘pump’ energy by first storing the energy coming from the source supply in a reactive component (usually an inductor, sometimes a capacitor) and then releasing it to the regulated output supply. The switches in switching regulators effect this energy transfer by first connecting the inductor (or capacitor) to store the source energy, and then switching the circuit so the energy is released to its destination.

Linear regulators produce smoother, less noisy output voltages, but they can only convert to a lower voltage, and have to dissipate energy to do so. The higher the output current and the voltage difference across them is, the more energy is lost as heat. On the other hand, switching supplies can, depending on their design, convert any voltage to any other voltage and can be much more efficient (efficiencies of 90% and above are not uncommon). However, they are more complex and generate noisier output voltages.

Designers use both types of regulators depending on the needs of the downstream circuit: for low-voltage drops, low current, or low noise, linear regulators are usually the right choice, while switching regulators are used for higher power or when efficiency of conversion is required. One of the simplest switching-mode power supply circuits is the buck converter, used to create a lower voltage from a higher one, and this is what we use on the Pi.

A history lesson

The BCM2835 processor chip (found on the original Raspberry Pi Model B and B+, as well as on the Zero products) has on-chip power supplies: one switch-mode regulator for the core voltage, as well as a linear one for the LPDDR2 memory supply. This meant that in addition to 5V, we only had to provide 3.3V and 1.8V on the board, which was relatively simple to do using cheap, off-the-shelf parts.

Pi Zero sporting a BCM2835 processor which only needs 2 external switchers (the components clustered behind the camera port)

When we moved to the BCM2836 for Raspberry Pi Model 2 (and subsequently to the BCM2837A1 and B0 for Raspberry Pi 3B and 3B+), the core supply and the on-chip LPDDR2 memory supply were not up to the job of supplying the extra processor cores and larger memory, so we removed them. (We also used the recovered chip area to help fit in the new quad-core ARM processors.) The upshot of this was that we had to supply these power rails externally for the Raspberry Pi 2 and models thereafter. Moreover, we also had to provide circuitry to sequence them correctly in order to control exactly when they power up compared to the other supplies on the board.

Power supply design is tricky (but critical)

Raspberry Pi boards take in 5V from the micro USB socket and have to generate the other required supplies from this. When 5V is first connected, each of these other supplies must ‘start up’, meaning go from ‘off’, or 0V, to their correct voltage in some short period of time. The order of the supplies starting up is often important: commonly, there are structures inside a chip that form diodes between supply rails, and bringing supplies up in the wrong order can sometimes ‘turn on’ these diodes, causing them to conduct, with undesirable consequences. Silicon chips come with a data sheet specifying what supplies (voltages and currents) are needed and whether they need to be low-noise, in what order they must power up (and in some cases down), and sometimes even the rate at which the voltages must power up and down.

A Pi3. Power supply components are clustered bottom left next to the micro USB, middle (above LPDDR2 chip which is on the bottom of the PCB) and above the A/V jack.

In designing the power chain for the Pi 2 and 3, the sequencing was fairly straightforward: power rails power up in order of voltage (5V, 3.3V, 1.8V, 1.2V). However, the supplies were all generated with individual, discrete devices. Therefore, I spent quite a lot of time designing circuitry to control the sequencing — even with some design tricks to reduce component count, quite a few sequencing components are required. More complex systems generally use a Power Management Integrated Circuit (PMIC) with multiple supplies on a single chip, and many different PMIC variants are made by various manufacturers. Since Raspberry Pi 2 days, I was looking for a suitable PMIC to simplify the Pi design, but invariably (and somewhat counter-intuitively) these were always too expensive compared to my discrete solution, usually because they came with more features than needed.

One device to rule them all

It was way back in May 2015 when I first chatted to Peter Coyle of Exar (Exar were bought by MaxLinear in 2017) about power supply products for Raspberry Pi. We didn’t find a product match then, but in June 2016 Peter, along with Tuomas Hollman and Trevor Latham, visited to pitch the possibility of building a custom power management solution for us.

I was initially sceptical that it could be made cheap enough. However, our discussion indicated that if we could tailor the solution to just what we needed, it could be cost-effective. Over the coming weeks and months, we honed a specification we agreed on from the initial sketches we’d made, and Exar thought they could build it for us at the target price.

The chip we designed would contain all the key supplies required for the Pi on one small device in a cheap QFN package, and it would also perform the required sequencing and voltage monitoring. Moreover, the chip would be flexible to allow adjustment of supply voltages from their default values via I2C; the largest supply would be capable of being adjusted quickly to perform the dynamic core voltage changes needed in order to reduce voltage to the processor when it is idling (to save power), and to boost voltage to the processor when running at maximum speed (1.4 GHz). The supplies on the chip would all be generously specified and could deliver significantly more power than those used on the Raspberry Pi 3. All in all, the chip would contain four switching-mode converters and one low-current linear regulator, this last one being low-noise for the audio circuitry.

The MXL7704 chip

The project was a great success: MaxLinear delivered working samples of first silicon at the end of May 2017 (almost exactly a year after we had kicked off the project), and followed through with production quantities in December 2017 in time for the Raspberry Pi 3B+ production ramp.

The team behind the power supply chip on the Raspberry Pi 3 Model B+ (group of six men, two of whom are holding Raspberry Pi boards)

Front row: Roger with the very first Pi 3B+ prototypes and James with a MXL7704 development board hacked to power a Pi 3. Back row left to right: Will Torgerson, Trevor Latham, Peter Coyle, Tuomas Hollman.

The MXL7704 device has been key to reducing Pi board complexity and therefore overall bill of materials cost. Furthermore, by being able to deliver more power when needed, it has also been essential to increasing the speed of the (newly packaged) BCM2837B0 processor on the 3B+ to 1.4GHz. The result is improvements to both the continuous output current to the CPU (from 3A to 4A) and to the transient performance (i.e. the chip has helped to reduce the ‘transient response’, which is the change in supply voltage due to a sudden current spike that occurs when the processor suddenly demands a large current in a few nanoseconds, as modern CPUs tend to do).

With the MXL7704, the power supply circuitry on the 3B+ is now a lot simpler than the Pi 3B design. This new supply also provides the LPDDR2 memory voltage directly from a switching regulator rather than using linear regulators like the Pi 3, thereby improving energy efficiency. This helps to somewhat offset the extra power that the faster Ethernet, wireless networking, and processor consume. A pleasing side effect of using the new chip is the symmetric board layout of the regulators — it’s easy to see the four switching-mode supplies, given away by four similar-looking blobs (three grey and one brownish), which are the inductors.

Close-up of the power supply chip on the Raspberry Pi 3 Model B+

The Pi 3B+ PMIC MXL7704 — pleasingly symmetric

Kudos

It takes a lot of effort to design a new chip from scratch and get it all the way through to production — we are very grateful to the team at MaxLinear for their hard work, dedication, and enthusiasm. We’re also proud to have created something that will not only power Raspberry Pis, but will also be useful for other product designs: it turns out when you have a low-cost and flexible device, it can be used for many things — something we’re fairly familiar with here at Raspberry Pi! For the curious, the product page (including the data sheet) for the MXL7704 chip is here. Particular thanks go to Peter Coyle, Tuomas Hollman, and Trevor Latham, and also to Jon Cronk, who has been our contact in the US and has had to get up early to attend all our conference calls!

The MXL7704 design team celebrating on Pi Day — it takes a lot of people to design a chip!

I hope you liked reading about some of the effort that has gone into creating the new Pi. It’s nice to finally have a chance to tell people about some of the (increasingly complex) technical work that makes building a $35 computer possible — we’re very pleased with the Raspberry Pi 3B+, and we hope you enjoy using it as much as we’ve enjoyed creating it!

The post More power to your Pi appeared first on Raspberry Pi.

Artefacts in the classroom with Museum in a Box

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/museum-in-a-box/

Museum in a Box bridges the gap between museums and schools by creating a more hands-on approach to conservation education through 3D printing and digital making.

Artefacts in the classroom with Museum in a Box || Raspberry Pi Stories

Learn more: http://rpf.io/ Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Fantastic collections and where to find them

Large, impressive statues are truly a sight to be seen. Take for example the 2.4m Hoa Hakananai’a at the British Museum. Its tall stature looms over you as you read its plaque to learn of the statue’s journey from Easter Island to the UK under the care of Captain Cook in 1774, and you can’t help but wonder at how it made it here in one piece.

Hoa Hakananai’a Captain Cook British Museum
Hoa Hakananai’a Captain Cook British Museum

But unless you live near a big city where museums are plentiful, you’re unlikely to see the likes of Hoa Hakananai’a in person. Instead, you have to content yourself with online photos or videos of world-famous artefacts.

And that only accounts for the objects that are on display: conservators estimate that only approximately 5 to 10% of museums’ overall collections are actually on show across the globe. The rest is boxed up in storage, inaccessible to the public due to risk of damage, or simply due to lack of space.

Museum in a Box

Museum in a Box aims to “put museum collections and expert knowledge into your hand, wherever you are in the world,” through modern maker practices such as 3D printing and digital making. With the help of the ‘Scan the World’ movement, an “ambitious initiative whose mission is to archive objects of cultural significance using 3D scanning technologies”, the Museum in a Box team has been able to print small, handheld replicas of some of the world’s most recognisable statues and sculptures.

Museum in a Box Raspberry Pi

Each 3D print gets NFC tags so it can initiate audio playback from a Raspberry Pi that sits snugly within the laser-cut housing of a ‘brain box’. Thus the print can talk directly to us through the magic of wireless technology, replacing the dense, dry text of a museum plaque with engaging speech.

Museum in a Box Raspberry Pi

The Museum in a Box team headed by CEO George Oates (featured in the video above) makes use of these 3D-printed figures alongside original artefacts, postcards, and more to bridge the gap between large, crowded, distant museums and local schools. Modeled after the museum handling collections that used to be sent to schools, Museum in a Box is a cheaper, more accessible alternative. Moreover, it not only allows for hands-on learning, but also encourages children to get directly involved by hacking its technology! With NFC technology readily available to the public, students can curate their own collections about their local area, record their own messages, and send their own box-sized museums on to schools in other towns or countries. In this way, Museum in a Box enables students to explore, and expand the reach of, their own histories.

Moving forward

With the technology perfected and interest in the project ever-growing, Museum in a Box has a busy year ahead. Supporting the new ‘Unstacked’ learning initiative, the team will soon be delivering ten boxes to the Smithsonian Libraries. The team has curated two collections specifically for this: an exploration into Asia-Pacific America experiences of migration to the USA throughout the 20th century, and a look into the history of science.

Smithsonian Library Museum in a Box Raspberry Pi

The team will also be making a box for the British Museum to support their Iraq Scheme initiative, and another box will be heading to the V&A to support their See Red programme. While primarily installed in the Lansbury Micro Museum, the box will also take to the road to visit the local Spotlight high school.

Museum in a Box at Raspberry Fields

Lastly, by far the most exciting thing the Museum in a Box team will be doing this year — in our opinion at least — is showcasing at Raspberry Fields! This is our brand-new festival of digital making that’s taking place on 30 June and 1 July 2018 here in Cambridge, UK. Find more information about it and get your ticket here.

The post Artefacts in the classroom with Museum in a Box appeared first on Raspberry Pi.

Amazon Transcribe Now Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-transcribe-now-generally-available/


At AWS re:Invent 2017 we launched Amazon Transcribe in private preview. Today we’re excited to make Amazon Transcribe generally available for all developers. Amazon Transcribe is an automatic speech recognition service (ASR) that makes it easy for developers to add speech to text capabilities to their applications. We’ve iterated on customer feedback in the preview to make a number of enhancements to Amazon Transcribe.

New Amazon Transcribe Features in GA

To start off we’ve made the SampleRate parameter optional which means you only need to know the file type of your media and the input language. We’ve added two new features – the ability to differentiate multiple speakers in the audio to provide more intelligible transcripts (“who spoke when”), and a custom vocabulary to improve the accuracy of speech recognition for product names, industry-specific terminology, or names of individuals. To refresh our memories on how Amazon Transcribe works lets look at a quick example. I’ll convert this audio in my S3 bucket.

import boto3
transcribe = boto3.client("transcribe")
transcribe.start_transcription_job(
    TranscriptionJobName="TranscribeDemo",
    LanguageCode="en-US",
    MediaFormat="mp3",
    Media={"MediaFileUri": "https://s3.amazonaws.com/randhunt-transcribe-demo-us-east-1/out.mp3"}
)

This will output JSON similar to this (I’ve stripped out most of the response) with indidivudal speakers identified:

{
  "jobName": "reinvent",
  "accountId": "1234",
  "results": {
    "transcripts": [
      {
        "transcript": "Hi, everybody, i'm randall ..."
      }
    ],
    "speaker_labels": {
      "speakers": 2,
      "segments": [
        {
          "start_time": "0.000000",
          "speaker_label": "spk_0",
          "end_time": "0.010",
          "items": []
        },
        {
          "start_time": "0.010000",
          "speaker_label": "spk_1",
          "end_time": "4.990",
          "items": [
            {
              "start_time": "1.000",
              "speaker_label": "spk_1",
              "end_time": "1.190"
            },
            {
              "start_time": "1.190",
              "speaker_label": "spk_1",
              "end_time": "1.700"
            }
          ]
        }
      ]
    },
    "items": [
      {
        "start_time": "1.000",
        "end_time": "1.190",
        "alternatives": [
          {
            "confidence": "0.9971",
            "content": "Hi"
          }
        ],
        "type": "pronunciation"
      },
      {
        "alternatives": [
          {
            "content": ","
          }
        ],
        "type": "punctuation"
      },
      {
        "start_time": "1.190",
        "end_time": "1.700",
        "alternatives": [
          {
            "confidence": "1.0000",
            "content": "everybody"
          }
        ],
        "type": "pronunciation"
      }
    ]
  },
  "status": "COMPLETED"
}

Custom Vocabulary

Now if I needed to have a more complex technical discussion with a colleague I could create a custom vocabulary. A custom vocabulary is specified as an array of strings passed to the CreateVocabulary API and you can include your custom vocabulary in a transcription job by passing in the name as part of the Settings in a StartTranscriptionJob API call. An individual vocabulary can be as large as 50KB and each phrase must be less than 256 characters. If I wanted to transcribe the recordings of my highschool AP Biology class I could create a custom vocabulary in Python like this:

import boto3
transcribe = boto3.client("transcribe")
transcribe.create_vocabulary(
LanguageCode="en-US",
VocabularyName="APBiology"
Phrases=[
    "endoplasmic-reticulum",
    "organelle",
    "cisternae",
    "eukaryotic",
    "ribosomes",
    "hepatocyes",
    "cell-membrane"
]
)

I can refer to this vocabulary later on by the name APBiology and update it programatically based on any errors I may find in the transcriptions.

Available Now

Amazon Transcribe is available now in US East (N. Virginia), US West (Oregon), US East (Ohio) and EU (Ireland). Transcribe’s free tier gives you 60 minutes of transcription for free per month for the first 12 months with a pay-as-you-go model of $0.0004 per second of transcribed audio after that, with a minimum charge of 15 seconds.

When combined with other tools and services I think transcribe opens up a entirely new opportunities for application development. I’m excited to see what technologies developers build with this new service.

Randall

Innovation Flywheels and the AWS Serverless Application Repository

Post Syndicated from Tim Wagner original https://aws.amazon.com/blogs/compute/innovation-flywheels-and-the-aws-serverless-application-repository/

At AWS, our customers have always been the motivation for our innovation. In turn, we’re committed to helping them accelerate the pace of their own innovation. It was in the spirit of helping our customers achieve their objectives faster that we launched AWS Lambda in 2014, eliminating the burden of server management and enabling AWS developers to focus on business logic instead of the challenges of provisioning and managing infrastructure.

 

In the years since, our customers have built amazing things using Lambda and other serverless offerings, such as Amazon API Gateway, Amazon Cognito, and Amazon DynamoDB. Together, these services make it easy to build entire applications without the need to provision, manage, monitor, or patch servers. By removing much of the operational drudgery of infrastructure management, we’ve helped our customers become more agile and achieve faster time-to-market for their applications and services. By eliminating cold servers and cold containers with request-based pricing, we’ve also eliminated the high cost of idle capacity and helped our customers achieve dramatically higher utilization and better economics.

After we launched Lambda, though, we quickly learned an important lesson: A single Lambda function rarely exists in isolation. Rather, many functions are part of serverless applications that collectively deliver customer value. Whether it’s the combination of event sources and event handlers, as serverless web apps that combine APIs with functions for dynamic content with static content repositories, or collections of functions that together provide a microservice architecture, our customers were building and delivering serverless architectures for every conceivable problem. Despite the economic and agility benefits that hundreds of thousands of AWS customers were enjoying with Lambda, we realized there was still more we could do.

How Customer Feedback Inspired Us to Innovate

We heard from our customers that getting started—either from scratch or when augmenting their implementation with new techniques or technologies—remained a challenge. When we looked for serverless assets to share, we found stellar examples built by serverless pioneers that represented a multitude of solutions across industries.

There were apps to facilitate monitoring and logging, to process image and audio files, to create Alexa skills, and to integrate with notification and location services. These apps ranged from “getting started” examples to complete, ready-to-run assets. What was missing, however, was a unified place for customers to discover this diversity of serverless applications and a step-by-step interface to help them configure and deploy them.

We also heard from customers and partners that building their own ecosystems—ecosystems increasingly composed of functions, APIs, and serverless applications—remained a challenge. They wanted a simple way to share samples, create extensibility, and grow consumer relationships on top of serverless approaches.

 

We built the AWS Serverless Application Repository to help solve both of these challenges by offering publishers and consumers of serverless apps a simple, fast, and effective way to share applications and grow user communities around them. Now, developers can easily learn how to apply serverless approaches to their implementation and business challenges by discovering, customizing, and deploying serverless applications directly from the Serverless Application Repository. They can also find libraries, components, patterns, and best practices that augment their existing knowledge, helping them bring services and applications to market faster than ever before.

How the AWS Serverless Application Repository Inspires Innovation for All Customers

Companies that want to create ecosystems, share samples, deliver extensibility and customization options, and complement their existing SaaS services use the Serverless Application Repository as a distribution channel, producing apps that can be easily discovered and consumed by their customers. AWS partners like HERE have introduced their location and transit services to thousands of companies and developers. Partners like Datadog, Splunk, and TensorIoT have showcased monitoring, logging, and IoT applications to the serverless community.

Individual developers are also publishing serverless applications that push the boundaries of innovation—some have published applications that leverage machine learning to predict the quality of wine while others have published applications that monitor crypto-currencies, instantly build beautiful image galleries, or create fast and simple surveys. All of these publishers are using serverless apps, and the Serverless Application Repository, as the easiest way to share what they’ve built. Best of all, their customers and fellow community members can find and deploy these applications with just a few clicks in the Lambda console. Apps in the Serverless Application Repository are free of charge, making it easy to explore new solutions or learn new technologies.

Finally, we at AWS continue to publish apps for the community to use. From apps that leverage Amazon Cognito to sync user data across applications to our latest collection of serverless apps that enable users to quickly execute common financial calculations, we’re constantly looking for opportunities to contribute to community growth and innovation.

At AWS, we’re more excited than ever by the growing adoption of serverless architectures and the innovation that services like AWS Lambda make possible. Helping our customers create and deliver new ideas drives us to keep inventing ways to make building and sharing serverless apps even easier. As the number of applications in the Serverless Application Repository grows, so too will the innovation that it fuels for both the owners and the consumers of those apps. With the general availability of the Serverless Application Repository, our customers become more than the engine of our innovation—they become the engine of innovation for one another.

To browse, discover, deploy, and publish serverless apps in minutes, visit the Serverless Application Repository. Go serverless—and go innovate!

Dr. Tim Wagner is the General Manager of AWS Lambda and Amazon API Gateway.

[$] The Sound Open Firmware project launches

Post Syndicated from corbet original https://lwn.net/Articles/749888/rss

It is an increasingly poorly kept secret that, underneath the hood of
the components that most of us view as “hardware”, there is a great deal of
proprietary software. This code, written by anonymous developers, rarely
sees the light of day; as a result, it tends to have all of the pathologies
associated with software that nobody can either review or fix. The 2018
Embedded Linux Conference
saw an announcement for a new project that, with luck, will change that
situation, at least for one variety of hardware: audio devices.

One LED Matrix Table to rule them all

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/led-matrix-table/

Germany-based Andreas Rottach’s multi-purpose LED table is an impressive build within a gorgeous-looking body. Play games, view (heavily pixelated) images, and become hypnotised by flashy lights, once you’ve built your own using his newly released tutorial.

LED-Matrix Table – 300 LEDs – Raspberry Pi – C++ Engine – Custom Controllers

This is a short presentation of my LED-Matrix Table. The table is controlled by a raspberry pi computer that executes a control engine, written in c++. It supports input from keyboards or custom made game controllers. A full list of all features as well as the source code is available on GitHub (https://github.com/rottaca/LEDTableEngine).

Much excitement

Andreas uploaded a video of his LED Matrix Table to YouTube back in February, with the promise of publishing a complete write-up within the coming weeks. And so the members of Pi Towers sat, eagerly waiting and watching. Now the write-up has arrived, to our cheers of acclaim for this beautful, shiny, flashy, LED-based wonderment.

Build your own LED table

In his GitHub tutorial, Andreas goes through all the stages of building the table, from the necessary components to coding the Raspberry Pi 3 and 3D printing your own controllers.

Raspberry Pi LED Table

Find files for the controllers on Thingiverse

Andreas created the table’s impressive light matrix using a strip of 300 LEDs, chained together and connected to the Raspberry Pi via an LED controller.

Raspberry Pi LED Table

The LEDs are set out in zigzags

For the code, he used several open-source tools, such as SDL for image and audio support, and CMake for building the project software.

Anyone planning to recreate Andreas’ table can compile its engine by downloading the project repository from GitHub. Again, find full instructions for this on his GitHub.

Features

The table boasts multiple cool features, including games and visualisation tools. Using the controllers, you can play simplified versions of Flappy Bird and Minesweeper, or go on a nostalgia trip with Tetris, Pong, and Snake.

Raspberry Pi LED Table

There’s also a version of Conway’s Game of Life. Andreas explains: “The lifespan of each cell is color-coded. If the game field gets static, the animation is automatically reset to a new random cell population.”

Raspberry Pi LED Table

The table can also display downsampled Bitmap images, or show clear static images such as a chess board, atop of which you can place physical game pieces.

Raspberry Pi LED Table
Raspberry Pi LED Table
Raspberry Pi LED Table

Find all the 3D-printable aspects of the LED table on Thingiverse here and here, and the full GitHub tutorial and repository here. If you build your own, or have already dabbled in LED tables and displays, be sure to share your project with us, either in the comments below or via our social media accounts. What other functions would you integrate into this awesome build?

The post One LED Matrix Table to rule them all appeared first on Raspberry Pi.

Friday Squid Blogging: Interesting Interview

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/friday_squid_bl_615.html

Here’s an hour-long audio interview with squid scientist Sarah McAnulty.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Backblaze Cuts B2 Download Price In Half

Post Syndicated from Ahin Thomas original https://www.backblaze.com/blog/backblaze-b2-drops-download-price-in-half/

Backblaze B2 downloads now cost 50% less
Backblaze is pleased to announce that, effective immediately, we are reducing the price of Backblaze B2 Cloud Storage downloads by 50%. This means that B2 download pricing drops from $0.02 to $0.01 per GB. As always, the first gigabyte of data downloaded each day remains free.

If some of this sounds familiar, that’s because a little under a year ago, we dropped our download price from $0.05 to $0.02. While that move solidified our position as the affordability leader in the high performance cloud storage space, we continue to innovate on our platform and are excited to provide this additional value to our customers.

This price reduction applies immediately to all existing and new customers. In keeping with Backblaze’s overall approach to providing services, there are no tiers or minimums. It’s automatic and it starts today.

Why Is Backblaze Lowering What Is Already The Industry’s Lowest Price?

Because it makes cloud storage more useful for more people.

When we decided to use Backblaze B2 as our cloud storage service, their download pricing at the time enabled us to offer our broadcasters unlimited audio uploads so they can upload past decades of preaching to our extensive library for streaming and downloading. With Backblaze cutting the bandwidth prices 50% to just one penny a gigabyte, we are excited about offering much higher quality video. — Ian Wagner, Senior Developer, Sermon Audio

Since our founding in 2007, Backblaze’s mission has been to make storing data astonishingly easy and affordable. We have a well documented, relentless pursuit of lowering storage costs — it starts with our storage pods and runs through everything we do. Today, we have over 500 petabytes of customer data stored. B2’s storage pricing already being 14 that of Amazon’s S3 has certainly helped us get there. Today’s pricing reduction puts our download pricing 15 that of S3. The “affordable” part of our story is well established.

I’d like to take a moment to discuss the “easy” part. Our industry has historically done a poor job of putting ourselves in our customers’ shoes. When customers are faced with the decision of where to put their data, price is certainly a factor. But it’s not just the price of storage that customers must consider. There’s a cost to download your data. The business need for providers to charge for this is reasonable — downloading data requires bandwidth, and bandwidth costs money. We discussed that in a prior post on the Cost of Cloud Storage.

But there’s a difference between the costs of bandwidth and what the industry is charging today. There’s a joke that some of the storage clouds are competing to become “Hotel California” — you can check out anytime you want, but your data can never leave.1 Services that make it expensive to restore data or place time lag impediments to data access are reducing the usefulness of your data. Customers should not have to wonder if they can afford to access their own data.

When replacing LTO with StarWind VTL and cloud storage, our customers had only one concern left: the possible cost of data retrieval. Backblaze just wiped this concern out of the way by lowering that cost to just one penny per gig. — Max Kolomyeytsev, Director of Product Management, StarWind

Many businesses have not yet been able to back up their data to the cloud because of the costs. Many of those companies are forced to continue backing up to tape. That tape is an inefficient means for data storage is clear. Solution providers like StarWind VTL specialize in helping businesses move off of antiquated tape libraries. However, as Max Kolomyeytsev, Director of Product Management at StarWind points out, “When replacing LTO with StarWind VTL and cloud storage our customers had only one concern left: the possible cost of data retrieval. Backblaze just wiped this concern out of the way by lowering that cost to just one penny per gig.”

Customers that have already adopted the cloud often are forced to make difficult tradeoffs between data they want to access and the cost associated with that access. Surrendering the use of your own data defeats many of the benefits that “the cloud” brings in the first place. Because of B2’s download price, Ian Wagner, a Senior Developer at Sermon Audio, is able to lower his costs and expand his product offering. “When we decided to use Backblaze B2 as our cloud storage service, their download pricing at the time enabled us to offer our broadcasters unlimited audio uploads so they can upload past decades of preaching to our extensive library for streaming and downloading. With Backblaze cutting the bandwidth prices 50% to just one penny a gigabyte, we are excited about offering much higher quality video.”

Better Download Pricing Also Helps Third Party Applications Deliver Customer Solutions

Many organizations use third party applications or devices to help manage their workflows. Those applications are the hub for customers getting their data to where it needs to go. Leaders in verticals like Media Asset Management, Server & NAS Backup, and Enterprise Storage have already chosen to integrate with B2.

With Backblaze lowering their download price to an amazing one penny a gigabyte, our CloudNAS is even a better fit for photographers, videographers and business owners who need to have their files at their fingertips, with an easy, reliable, low cost way to use Backblaze for unlimited primary storage and active archive. — Paul Tian, CEO, Morro Data

For Paul Tian, founder of Ready NAS and CEO of Morro Data, reasonable download pricing also helps his company better serve its customers. “With Backblaze lowering their download price to an amazing one penny a gigabyte, our CloudNAS is even a better fit for photographers, videographers and business owners who need to have their files at their fingertips, with an easy, reliable, low cost way to use Backblaze for unlimited primary storage and active archive.”

If you use an application that hasn’t yet integrated with B2, please ask your provider to add B2 Cloud Storage and mention the application in the comments below.

 

How Do the Major Cloud Storage Providers Compare on Pricing?

Not only is Backblaze B2 storage 14 the price of Amazon S3, Google Cloud, or Azure, but our download pricing is now 15 their price as well.

Pricing TierBackblaze B2Amazon S3Microsoft AzureGoogle Cloud
First 1 TB$0.01$0.09$0.09$0.12
Next 9 TB$0.01$0.09$0.09$0.11
Next 40 TB$0.01$0.085$0.09$0.08
Next 100 TB$0.01$0.07$0.07$0.08
Next 350 TB+$0.01$0.05$0.05$0.08

Using the chart above, let’s compute a few examples of download costs…

DataBackblaze B2Amazon S3Microsoft AzureGoogle Cloud
1 terabyte$10$90$90$120
10 terabytes$100$900$900$1,200
50 terabytes$500$4,300$4,500$4,310
500 terabytes$5,000$28,800$29,000$40,310
Not only is Backblaze B2 pricing dramatically lower cost, it’s also simple — one price for any amount of data downloaded to anywhere. In comparison, to compute the cost of downloading 500 TB of data with S3 you start with the following formula:
(($0.09 * 10) + ($0.085 * 40) + ($0.07 * 100) + ($0.05 * 350)) * 1,000
Want to see this comparison for the amount of data you manage?
Use our cloud storage calculator.

Customers Want to Avoid Vendor Lock In

Halving the price of downloads is a crazy move — the kind of crazy our customers will be excited about. When using our Transmit 5 app on the Mac to upload their data to B2 Cloud Storage, our users can sleep soundly knowing they’ll be getting a truly affordable price when they need to restore that data. Cool beans, Backblaze. — Cabel Sasser, Co-Founder, Panic

As the cloud storage industry grows, customers are increasingly concerned with getting locked in to one vendor. No business wants to be fully dependent on one vendor for anything. In addition, customers want multiple copies of their data to mitigate against a vendor outage or other issues.

Many vendors offer the ability for customers to replicate data across “regions.” This enables customers to store data in two physical locations of the customer’s choosing. Of course, customers pay for storing both copies of the data and for the data transfer between regions.

At 1¢ per GB, transferring data out of Backblaze is more affordable than transferring data between most other vendor regions. For example, if a customer is storing data in Amazon S3’s Northern California region (US West) and wants to replicate data to S3 in Northern Virginia (US East), she will pay 2¢ per GB to simply move the data.

However, if that same customer wanted to replicate data from Backblaze B2 to S3 in Northern Virginia, she would pay 1¢ per GB to move the data. She can achieve her replication strategy while also mitigating against vendor risk — all while cutting the bandwidth bill by 50%. Of course, this is also before factoring the savings on her storage bill as B2 storage is 14 of the price of S3.

How Is Backblaze Doing This?

Simple. We just changed our pricing table and updated our website.

The longer answer is that the cost of bandwidth is a function of a few factors, including how it’s being used and the volume of usage. With another year of data for B2, over a decade of experience in the cloud storage industry, and data growth exceeding 100 PB per quarter, we know we can sustainably offer this pricing to our customers; we also know how better download pricing can make our customers and partners more effective in their work. So it is an easy call to make.

Our pricing is simple. Storage is $0.005/GB/Month, Download costs are $0.01/GB. There are no tiers or minimums and you can get started any time you wish.

Our desire is to provide a great service at a fair price. We’re proud to be the affordability leader in the Cloud Storage space and hope you’ll give us the opportunity to show you what B2 Cloud Storage can enable for you.

Enjoy the service and I’d love to hear what this price reduction does for you in the comments below…or, if you are attending NAB this year, come by to visit and tell us in person!


1 For those readers who don’t get the Eagles reference there, please click here…I promise you won’t regret the next 7 minutes of your life.

The post Backblaze Cuts B2 Download Price In Half appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.