Tag Archives: coding

Hello World Issue 4: Professional Development

Post Syndicated from Carrie Anne Philbin original https://www.raspberrypi.org/blog/hello-world-issue-4/

Another new year brings with it thoughts of setting goals and targets. Thankfully, there is a new issue of Hello World packed with practical advise to set you on the road to success.

Hello World is our magazine about computing and digital making for educators, and it’s a collaboration between the Raspberry Pi Foundation and Computing at School, which is part of the British Computing Society.

Hello World 4 Professional Development Raspberry Pi CAS

In issue 4, our international panel of educators and experts recommends approaches to continuing professional development in computer science education.

Approaches to professional development, and much more

With recommendations for more professional development in the Royal Society’s report, and government funding to support this, our cover feature explores some successful approaches. In addition, the issue is packed with other great resources, guides, features, and lesson plans to support educators.

Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS

Highlights include:

  • The Royal Society: After the Reboot — learn about the latest report and its findings about computing education
  • The Cyber Games — a new programme looking for the next generation of security experts
  • Engaging Students with Drones
  • Digital Literacy: Lost in Translation?
  • Object-oriented Coding with Python

Get your copy of Hello World 4

Hello World is available as a free Creative Commons download for anyone around the world who is interested in computer science and digital making education. You can get the latest issue as a PDF file straight from the Hello World website.

Thanks to the very generous sponsorship of BT, we are able to offer free print copies of the magazine to serving educators in the UK. It’s for teachers, Code Club volunteers, teaching assistants, teacher trainers, and others who help children and young people learn about computing and digital making. So remember to subscribe to have your free print magazine posted directly to your home — 6000 educators have already signed up to receive theirs!

Could you write for Hello World?

By sharing your knowledge and experience of working with young people to learn about computing, computer science, and digital making in Hello World, you will help inspire others to get involved. You will also help bring the power of digital making to more and more educators and learners.

The computing education community is full of people who lend their experience to help colleagues. Contributing to Hello World is a great way to take an active part in this supportive community, and you’ll be adding to a body of free, open-source learning resources that are available for anyone to use, adapt, and share. It’s also a tremendous platform to broadcast your work: Hello World digital versions alone have been downloaded more than 50000 times!

Wherever you are in the world, get in touch with us by emailing our editorial team about your article idea.

The post Hello World Issue 4: Professional Development appeared first on Raspberry Pi.

Create SLUG! It’s just like Snake, but with a slug

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/slug-snake/

Recreate Snake, the favourite mobile phone game from the late nineties, using a slug*, a Raspberry Pi, a Sense HAT, and our free resource!

Raspberry Pi Sense HAT Slug free resource

*A virtual slug. Not a real slug. Please leave the real slugs out in nature.

Snake SLUG!

Move aside, Angry Birds! On your bike, Pokémon Go! When it comes to the cream of the crop of mobile phone games, Snake holds the top spot.

Snake Nokia Game

I could while away the hours…

You may still have an old Nokia 3310 lost in the depths of a drawer somewhere — the drawer that won’t open all the way because something inside is jammed at an odd angle. So it will be far easier to grab your Pi and Sense HAT, or use the free Sense HAT emulator (online or on Raspbian), and code Snake SLUG yourself. In doing so, you can introduce the smaller residents of your household to the best reptile-focused game ever made…now with added mollusc.

The resource

To try out the game for yourself, head to our resource page, where you’ll find the online Sense HAT emulator embedded and ready to roll.

Raspberry Pi Sense HAT Slug free resource

It’ll look just like this, and you can use your computer’s arrow keys to direct your slug toward her tasty treats.

From there, you’ll be taken on a step-by-step journey from zero to SLUG glory while coding your own versionof the game in Python. On the way, you’ll learn to work with two-dimensional lists and to use the Sense HAT’s pixel display and joystick input. And by completing the resource, you’ll expand your understanding of applying abstraction and decomposition to solve more complex problems, in line with our Digital Making Curriculum.

The Sense HAT

The Raspberry Pi Sense HAT was originally designed and made as part of the Astro Pi mission in December 2015. With an 8×8 RGB LED matrix, a joystick, and a plethora of on-board sensors including an accelerometer, gyroscope, and magnetometer, it’s a great add-on for your digital making toolkit, and excellent for projects involving data collection and evaluation.

You can find more of our free Sense HAT tutorials here, including for making Flappy Bird Astronaut, a marble maze, and Pong.

The post Create SLUG! It’s just like Snake, but with a slug appeared first on Raspberry Pi.

Playing tic-tac-toe against a Raspberry Pi at Maker Faire

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/tic-tac-toe-maker-faire/

At Maker Faire New York, we met up with student Toby Goebeler of Dover High School, Pennsylvania, to learn more about his Tic-Tac-Toe Robot.

Play Tic-Tac-Toe against a Raspberry Pi #MFNYC

Uploaded by Raspberry Pi on 2017-12-18.

Tic-tac-toe with Dover Robotics

We came to see Toby and Brian Bahn, physics teacher for Dover High School and leader of the Dover Robotics club, so they could tell us about the inner workings of the Tic-Tac-Toe Robot project, and how the Raspberry Pi fit within it. Check out our video for Toby’s explanation of the build and the software controlling it.

Wooden robotic arm — Toby Goebeler Tic-Tac-Toe arm Raspberry Pi

Toby’s original robotic arm prototype used a weight to direct the pen on and off the paper. He later replaced this with a servo motor.

Toby documented the prototyping process for the robot on the Dover Robotics blog. Head over there to hear more about the highs and lows of building a robotic arm from scratch, and about how Toby learned to integrate a Raspberry Pi for both software and hardware control.

Wooden robotic arm playing tic-tac-toe — Toby Goebeler Tic-Tac-Toe arm Raspberry Pi

The finished build is a tic-tac-toe beast, besting everyone who dares to challenge it to a game.

And in case you’re wondering: no, none of the Raspberry Pi team were able to beat the Tic-Tac-Toe Robot when we played against it.

Your turn

We always love seeing Raspberry Pis being used in schools to teach coding and digital making, whether in the classroom or during after-school activities such as the Dover Robotics club and our own Code Clubs and CoderDojos. If you are part of a coding or robotics club, we’d love to hear your story! So make sure to share your experiences and projects in the comments below, or via our social media accounts.

The post Playing tic-tac-toe against a Raspberry Pi at Maker Faire appeared first on Raspberry Pi.

Thank you for my new Raspberry Pi, Santa! What next?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/thank-you-for-my-new-raspberry-pi-santa-what-next/

Note: the Pi Towers team have peeled away from their desks to spend time with their families over the festive season, and this blog will be quiet for a while as a result. We’ll be back in the New Year with a bushel of amazing projects, awesome resources, and much merriment and fun times. Happy holidays to all!

Now back to the matter at hand. Your brand new Christmas Raspberry Pi.

Your new Raspberry Pi

Did you wake up this morning to find a new Raspberry Pi under the tree? Congratulations, and welcome to the Raspberry Pi community! You’re one of us now, and we’re happy to have you on board.

But what if you’ve never seen a Raspberry Pi before? What are you supposed to do with it? What’s all the fuss about, and why does your new computer look so naked?

Setting up your Raspberry Pi

Are you comfy? Good. Then let us begin.

Download our free operating system

First of all, you need to make sure you have an operating system on your micro SD card: we suggest Raspbian, the Raspberry Pi Foundation’s official supported operating system. If your Pi is part of a starter kit, you might find that it comes with a micro SD card that already has Raspbian preinstalled. If not, you can download Raspbian for free from our website.

An easy way to get Raspbian onto your SD card is to use a free tool called Etcher. Watch The MagPi’s Lucy Hattersley show you what you need to do. You can also use NOOBS to install Raspbian on your SD card, and our Getting Started guide explains how to do that.

Plug it in and turn it on

Your new Raspberry Pi 3 comes with four USB ports and an HDMI port. These allow you to plug in a keyboard, a mouse, and a television or monitor. If you have a Raspberry Pi Zero, you may need adapters to connect your devices to its micro USB and micro HDMI ports. Both the Raspberry Pi 3 and the Raspberry Pi Zero W have onboard wireless LAN, so you can connect to your home network, and you can also plug an Ethernet cable into the Pi 3.

Make sure to plug the power cable in last. There’s no ‘on’ switch, so your Pi will turn on as soon as you connect the power. Raspberry Pi uses a micro USB power supply, so you can use a phone charger if you didn’t receive one as part of a kit.

Learn with our free projects

If you’ve never used a Raspberry Pi before, or you’re new to the world of coding, the best place to start is our projects site. It’s packed with free projects that will guide you through the basics of coding and digital making. You can create projects right on your screen using Scratch and Python, connect a speaker to make music with Sonic Pi, and upgrade your skills to physical making using items from around your house.

Here’s James to show you how to build a whoopee cushion using a Raspberry Pi, paper plates, tin foil and a sponge:

Whoopee cushion PRANK with a Raspberry Pi: HOW-TO

Explore the world of Raspberry Pi physical computing with our free FutureLearn courses: http://rpf.io/futurelearn Free make your own Whoopi Cushion resource: http://rpf.io/whoopi For more information on Raspberry Pi and the charitable work of the Raspberry Pi Foundation, including Code Club and CoderDojo, visit http://rpf.io Our resources are free to use in schools, clubs, at home and at events.

Diving deeper

You’ve plundered our projects, you’ve successfully rigged every chair in the house to make rude noises, and now you want to dive deeper into digital making. Good! While you’re digesting your Christmas dinner, take a moment to skim through the Raspberry Pi blog for inspiration. You’ll find projects from across our worldwide community, with everything from home automation projects and retrofit upgrades, to robots, gaming systems, and cameras.

You’ll also find bucketloads of ideas in The MagPi magazine, the official monthly Raspberry Pi publication, available in both print and digital format. You can download every issue for free. If you subscribe, you’ll get a Raspberry Pi Zero W to add to your new collection. HackSpace magazine is another fantastic place to turn for Raspberry Pi projects, along with other maker projects and tutorials.

And, of course, simply typing “Raspberry Pi projects” into your preferred search engine will find thousands of ideas. Sites like Hackster, Hackaday, Instructables, Pimoroni, and Adafruit all have plenty of fab Raspberry Pi tutorials that they’ve devised themselves and that community members like you have created.

And finally

If you make something marvellous with your new Raspberry Pi – and we know you will – don’t forget to share it with us! Our Twitter, Facebook, Instagram and Google+ accounts are brimming with chatter, projects, and events. And our forums are a great place to visit if you have questions about your Raspberry Pi or if you need some help.

It’s good to get together with like-minded folks, so check out the growing Raspberry Jam movement. Raspberry Jams are community-run events where makers and enthusiasts can meet other makers, show off their projects, and join in with workshops and discussions. Find your nearest Jam here.

Have a great festive holiday and welcome to the community. We’ll see you in 2018!

The post Thank you for my new Raspberry Pi, Santa! What next? appeared first on Raspberry Pi.

All the lights, all of the twinkly lights

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/all-of-the-lights/

Twinkly lights are to Christmas what pumpkins are to Halloween. And when you add a Raspberry Pi to your light show, the result instantly goes from “Meh, yeah.” to “OMG, wow!”

Here are some cool light-based Christmas projects to inspire you this weekend.

Raspberry Pi Christmas Lights

App-based light control

Christmas Tree Lights Demo

Project Code – https://github.com/eidolonFIRE/Christmas-Lights Raspberry Pi A+ ws2812b – https://smile.amazon.com/gp/product/B01H04YAIQ/ref=od_aui_detailpages00?ie=UTF8&psc=1 200w 5V supply – https://smile.amazon.com/gp/product/B01LZRIWZD/ref=od_aui_detailpages01?ie=UTF8&psc=1

In his Christmas lights project, Caleb Johnson uses an app as a control panel to switch between predefined displays. The full code is available on his GitHub, and it connects a Raspberry Pi A+ to a strip of programmable LEDs that change their pattern at the touch of a phone screen.

What’s great about this project, aside from the simplicity of its design, is the scope for extending it. Why not share the app with friends and family, allowing them to control your lights remotely? Or link the lights to social media so they are triggered by a specific hashtag, like in Alex Ellis’ #cheerlights project below.

Worldwide holiday #cheerlights

Holiday lights hack – 1$ Snowman + Raspberry Pi

Here we have a smart holiday light which will only run when it detects your presence in the room through a passive infrared PIR sensor. I’ve used hot glue for the fixings and an 8-LED NeoPixel strip connected to port 18.

Cheerlights, an online service created by Hans Scharler, allows makers to incorporate hashtag-controlled lighting into the projects. By tweeting the hashtag #cheerlights, followed by a colour, you can control a network of lights so that they are all displaying the same colour.

For his holiday light hack using Cheerlights, Alex incorporated the Pimoroni Blinkt! and a collection of cheap Christmas decorations to create cute light-up ornaments for the festive season.

To make your own, check out Alex’s blog post, and head to your local £1/$1 store for hackable decor. You could even link your Christmas tree and the trees of your family, syncing them all in one glorious, Santa-pleasing spectacular.

Outdoor decorations

DIY musical Xmas lights for beginners with raspberry pi

With just a few bucks of extra material, I walk you through converting your regular Christmas lights into a whole-house light show. The goal here is to go from scratch. Although this guide is intended for people who don’t know how to use linux at all and those who do alike, the focus is for people for whom linux and the raspberry pi are a complete mystery.

Looking to outdo your neighbours with your Christmas light show this year? YouTuber Makin’Things has created a beginners guide to setting up a Raspberry Pi–based musical light show for your facade, complete with information on soldering, wiring, and coding.

Once you’ve wrapped your house in metres and metres of lights and boosted your speakers so they can be heard for miles around, why not incorporate #cheerlights to make your outdoor decor interactive?

Still not enough? How about controlling your lights using a drum kit? Christian Kratky’s MIDI-Based Christmas Lights Animation system (or as I like to call it, House Rock) does exactly that.

Eye Of The Tiger (MIDI based christmas lights animation system prototype)

Project documentation and source code: https://www.hackster.io/cyborg-titanium-14/light-pi-1c88b0 The song is taken from: https://www.youtube.com/watch?v=G6r1dAire0Y

Any more?

We know these projects are just the tip of the iceberg when it comes to the Raspberry Pi–powered Christmas projects out there, and as always, we’d love you to share yours with us. So post a link in the comments below, or tag us on social media when posting your build photos, videos, and/or blog links. ‘Tis the season for sharing after all.

The post All the lights, all of the twinkly lights appeared first on Raspberry Pi.

How to Enhance the Security of Sensitive Customer Data by Using Amazon CloudFront Field-Level Encryption

Post Syndicated from Alex Tomic original https://aws.amazon.com/blogs/security/how-to-enhance-the-security-of-sensitive-customer-data-by-using-amazon-cloudfront-field-level-encryption/

Amazon CloudFront is a web service that speeds up distribution of your static and dynamic web content to end users through a worldwide network of edge locations. CloudFront provides a number of benefits and capabilities that can help you secure your applications and content while meeting compliance requirements. For example, you can configure CloudFront to help enforce secure, end-to-end connections using HTTPS SSL/TLS encryption. You also can take advantage of CloudFront integration with AWS Shield for DDoS protection and with AWS WAF (a web application firewall) for protection against application-layer attacks, such as SQL injection and cross-site scripting.

Now, CloudFront field-level encryption helps secure sensitive data such as a customer phone numbers by adding another security layer to CloudFront HTTPS. Using this functionality, you can help ensure that sensitive information in a POST request is encrypted at CloudFront edge locations. This information remains encrypted as it flows to and beyond your origin servers that terminate HTTPS connections with CloudFront and throughout the application environment. In this blog post, we demonstrate how you can enhance the security of sensitive data by using CloudFront field-level encryption.

Note: This post assumes that you understand concepts and services such as content delivery networks, HTTP forms, public-key cryptography, CloudFrontAWS Lambda, and the AWS CLI. If necessary, you should familiarize yourself with these concepts and review the solution overview in the next section before proceeding with the deployment of this post’s solution.

How field-level encryption works

Many web applications collect and store data from users as those users interact with the applications. For example, a travel-booking website may ask for your passport number and less sensitive data such as your food preferences. This data is transmitted to web servers and also might travel among a number of services to perform tasks. However, this also means that your sensitive information may need to be accessed by only a small subset of these services (most other services do not need to access your data).

User data is often stored in a database for retrieval at a later time. One approach to protecting stored sensitive data is to configure and code each service to protect that sensitive data. For example, you can develop safeguards in logging functionality to ensure sensitive data is masked or removed. However, this can add complexity to your code base and limit performance.

Field-level encryption addresses this problem by ensuring sensitive data is encrypted at CloudFront edge locations. Sensitive data fields in HTTPS form POSTs are automatically encrypted with a user-provided public RSA key. After the data is encrypted, other systems in your architecture see only ciphertext. If this ciphertext unintentionally becomes externally available, the data is cryptographically protected and only designated systems with access to the private RSA key can decrypt the sensitive data.

It is critical to secure private RSA key material to prevent unauthorized access to the protected data. Management of cryptographic key material is a larger topic that is out of scope for this blog post, but should be carefully considered when implementing encryption in your applications. For example, in this blog post we store private key material as a secure string in the Amazon EC2 Systems Manager Parameter Store. The Parameter Store provides a centralized location for managing your configuration data such as plaintext data (such as database strings) or secrets (such as passwords) that are encrypted using AWS Key Management Service (AWS KMS). You may have an existing key management system in place that you can use, or you can use AWS CloudHSM. CloudHSM is a cloud-based hardware security module (HSM) that enables you to easily generate and use your own encryption keys in the AWS Cloud.

To illustrate field-level encryption, let’s look at a simple form submission where Name and Phone values are sent to a web server using an HTTP POST. A typical form POST would contain data such as the following.

POST / HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length:60

Name=Jane+Doe&Phone=404-555-0150

Instead of taking this typical approach, field-level encryption converts this data similar to the following.

POST / HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 1713

Name=Jane+Doe&Phone=AYABeHxZ0ZqWyysqxrB5pEBSYw4AAA...

To further demonstrate field-level encryption in action, this blog post includes a sample serverless application that you can deploy by using a CloudFormation template, which creates an application environment using CloudFront, Amazon API Gateway, and Lambda. The sample application is only intended to demonstrate field-level encryption functionality and is not intended for production use. The following diagram depicts the architecture and data flow of this sample application.

Sample application architecture and data flow

Diagram of the solution's architecture and data flow

Here is how the sample solution works:

  1. An application user submits an HTML form page with sensitive data, generating an HTTPS POST to CloudFront.
  2. Field-level encryption intercepts the form POST and encrypts sensitive data with the public RSA key and replaces fields in the form post with encrypted ciphertext. The form POST ciphertext is then sent to origin servers.
  3. The serverless application accepts the form post data containing ciphertext where sensitive data would normally be. If a malicious user were able to compromise your application and gain access to your data, such as the contents of a form, that user would see encrypted data.
  4. Lambda stores data in a DynamoDB table, leaving sensitive data to remain safely encrypted at rest.
  5. An administrator uses the AWS Management Console and a Lambda function to view the sensitive data.
  6. During the session, the administrator retrieves ciphertext from the DynamoDB table.
  7. The administrator decrypts sensitive data by using private key material stored in the EC2 Systems Manager Parameter Store.
  8. Decrypted sensitive data is transmitted over SSL/TLS via the AWS Management Console to the administrator for review.

Deployment walkthrough

The high-level steps to deploy this solution are as follows:

  1. Stage the required artifacts
    When deployment packages are used with Lambda, the zipped artifacts have to be placed in an S3 bucket in the target AWS Region for deployment. This step is not required if you are deploying in the US East (N. Virginia) Region because the package has already been staged there.
  2. Generate an RSA key pair
    Create a public/private key pair that will be used to perform the encrypt/decrypt functionality.
  3. Upload the public key to CloudFront and associate it with the field-level encryption configuration
    After you create the key pair, the public key is uploaded to CloudFront so that it can be used by field-level encryption.
  4. Launch the CloudFormation stack
    Deploy the sample application for demonstrating field-level encryption by using AWS CloudFormation.
  5. Add the field-level encryption configuration to the CloudFront distribution
    After you have provisioned the application, this step associates the field-level encryption configuration with the CloudFront distribution.
  6. Store the RSA private key in the Parameter Store
    Store the private key in the Parameter Store as a SecureString data type, which uses AWS KMS to encrypt the parameter value.

Deploy the solution

1. Stage the required artifacts

(If you are deploying in the US East [N. Virginia] Region, skip to Step 2, “Generate an RSA key pair.”)

Stage the Lambda function deployment package in an Amazon S3 bucket located in the AWS Region you are using for this solution. To do this, download the zipped deployment package and upload it to your in-region bucket. For additional information about uploading objects to S3, see Uploading Object into Amazon S3.

2. Generate an RSA key pair

In this section, you will generate an RSA key pair by using OpenSSL:

  1. Confirm access to OpenSSL.
    $ openssl version

    You should see version information similar to the following.

    OpenSSL <version> <date>

  1. Create a private key using the following command.
    $ openssl genrsa -out private_key.pem 2048

    The command results should look similar to the following.

    Generating RSA private key, 2048 bit long modulus
    ................................................................................+++
    ..........................+++
    e is 65537 (0x10001)
  1. Extract the public key from the private key by running the following command.
    $ openssl rsa -pubout -in private_key.pem -out public_key.pem

    You should see output similar to the following.

    writing RSA key
  1. Restrict access to the private key.$ chmod 600 private_key.pem Note: You will use the public and private key material in Steps 3 and 6 to configure the sample application.

3. Upload the public key to CloudFront and associate it with the field-level encryption configuration

Now that you have created the RSA key pair, you will use the AWS Management Console to upload the public key to CloudFront for use by field-level encryption. Complete the following steps to upload and configure the public key.

Note: Do not include spaces or special characters when providing the configuration values in this section.

  1. From the AWS Management Console, choose Services > CloudFront.
  2. In the navigation pane, choose Public Key and choose Add Public Key.
    Screenshot of adding a public key

Complete the Add Public Key configuration boxes:

  • Key Name: Type a name such as DemoPublicKey.
  • Encoded Key: Paste the contents of the public_key.pem file you created in Step 2c. Copy and paste the encoded key value for your public key, including the -----BEGIN PUBLIC KEY----- and -----END PUBLIC KEY----- lines.
  • Comment: Optionally add a comment.
  1. Choose Create.
  2. After adding at least one public key to CloudFront, the next step is to create a profile to tell CloudFront which fields of input you want to be encrypted. While still on the CloudFront console, choose Field-level encryption in the navigation pane.
  3. Under Profiles, choose Create profile.
    Screenshot of creating a profile

Complete the Create profile configuration boxes:

  • Name: Type a name such as FLEDemo.
  • Comment: Optionally add a comment.
  • Public key: Select the public key you configured in Step 4.b.
  • Provider name: Type a provider name such as FLEDemo.
    This information will be used when the form data is encrypted, and must be provided to applications that need to decrypt the data, along with the appropriate private key.
  • Pattern to match: Type phone. This configures field-level encryption to match based on the phone.
  1. Choose Save profile.
  2. Configurations include options for whether to block or forward a query to your origin in scenarios where CloudFront can’t encrypt the data. Under Encryption Configurations, choose Create configuration.
    Screenshot of creating a configuration

Complete the Create configuration boxes:

  • Comment: Optionally add a comment.
  • Content type: Enter application/x-www-form-urlencoded. This is a common media type for encoding form data.
  • Default profile ID: Select the profile you added in Step 3e.
  1. Choose Save configuration

4. Launch the CloudFormation stack

Launch the sample application by using a CloudFormation template that automates the provisioning process.

Input parameter Input parameter description
ProviderID Enter the Provider name you assigned in Step 3e. The ProviderID is used in field-level encryption configuration in CloudFront (letters and numbers only, no special characters)
PublicKeyName Enter the Key Name you assigned in Step 3b. This name is assigned to the public key in field-level encryption configuration in CloudFront (letters and numbers only, no special characters).
PrivateKeySSMPath Leave as the default: /cloudfront/field-encryption-sample/private-key
ArtifactsBucket The S3 bucket with artifact files (staged zip file with app code). Leave as default if deploying in us-east-1.
ArtifactsPrefix The path in the S3 bucket containing artifact files. Leave as default if deploying in us-east-1.

To finish creating the CloudFormation stack:

  1. Choose Next on the Select Template page, enter the input parameters and choose Next.
    Note: The Artifacts configuration needs to be updated only if you are deploying outside of us-east-1 (US East [N. Virginia]). See Step 1 for artifact staging instructions.
  2. On the Options page, accept the defaults and choose Next.
  3. On the Review page, confirm the details, choose the I acknowledge that AWS CloudFormation might create IAM resources check box, and then choose Create. (The stack will be created in approximately 15 minutes.)

5. Add the field-level encryption configuration to the CloudFront distribution

While still on the CloudFront console, choose Distributions in the navigation pane, and then:

    1. In the Outputs section of the FLE-Sample-App stack, look for CloudFrontDistribution and click the URL to open the CloudFront console.
    2. Choose Behaviors, choose the Default (*) behavior, and then choose Edit.
    3. For Field-level Encryption Config, choose the configuration you created in Step 3g.
      Screenshot of editing the default cache behavior
    4. Choose Yes, Edit.
    5. While still in the CloudFront distribution configuration, choose the General Choose Edit, scroll down to Distribution State, and change it to Enabled.
    6. Choose Yes, Edit.

6. Store the RSA private key in the Parameter Store

In this step, you store the private key in the EC2 Systems Manager Parameter Store as a SecureString data type, which uses AWS KMS to encrypt the parameter value. For more information about AWS KMS, see the AWS Key Management Service Developer Guide. You will need a working installation of the AWS CLI to complete this step.

  1. Store the private key in the Parameter Store with the AWS CLI by running the following command. You will find the <KMSKeyID> in the KMSKeyID in the CloudFormation stack Outputs. Substitute it for the placeholder in the following command.
    $ aws ssm put-parameter --type "SecureString" --name /cloudfront/field-encryption-sample/private-key --value file://private_key.pem --key-id "<KMSKeyID>"
    
    ------------------
    |  PutParameter  |
    +----------+-----+
    |  Version |  1  |
    +----------+-----+

  1. Verify the parameter. Your private key material should be accessible through the ssm get-parameter in the following command in the Value The key material has been truncated in the following output.
    $ aws ssm get-parameter --name /cloudfront/field-encryption-sample/private-key --with-decryption
    
    -----…
    
    ||  Value  |  -----BEGIN RSA PRIVATE KEY-----
    MIIEowIBAAKCAQEAwGRBGuhacmw+C73kM6Z…….

    Notice we use the —with decryption argument in this command. This returns the private key as cleartext.

    This completes the sample application deployment. Next, we show you how to see field-level encryption in action.

  1. Delete the private key from local storage. On Linux for example, using the shred command, securely delete the private key material from your workstation as shown below. You may also wish to store the private key material within an AWS CloudHSM or other protected location suitable for your security requirements. For production implementations, you also should implement key rotation policies.
    $ shred -zvu -n  100 private*.pem
    
    shred: private_encrypted_key.pem: pass 1/101 (random)...
    shred: private_encrypted_key.pem: pass 2/101 (dddddd)...
    shred: private_encrypted_key.pem: pass 3/101 (555555)...
    ….

Test the sample application

Use the following steps to test the sample application with field-level encryption:

  1. Open sample application in your web browser by clicking the ApplicationURL link in the CloudFormation stack Outputs. (for example, https:d199xe5izz82ea.cloudfront.net/prod/). Note that it may take several minutes for the CloudFront distribution to reach the Deployed Status from the previous step, during which time you may not be able to access the sample application.
  2. Fill out and submit the HTML form on the page:
    1. Complete the three form fields: Full Name, Email Address, and Phone Number.
    2. Choose Submit.
      Screenshot of completing the sample application form
      Notice that the application response includes the form values. The phone number returns the following ciphertext encryption using your public key. This ciphertext has been stored in DynamoDB.
      Screenshot of the phone number as ciphertext
  3. Execute the Lambda decryption function to download ciphertext from DynamoDB and decrypt the phone number using the private key:
    1. In the CloudFormation stack Outputs, locate DecryptFunction and click the URL to open the Lambda console.
    2. Configure a test event using the “Hello World” template.
    3. Choose the Test button.
  4. View the encrypted and decrypted phone number data.
    Screenshot of the encrypted and decrypted phone number data

Summary

In this blog post, we showed you how to use CloudFront field-level encryption to encrypt sensitive data at edge locations and help prevent access from unauthorized systems. The source code for this solution is available on GitHub. For additional information about field-level encryption, see the documentation.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing this solution, please start a new thread on the CloudFront forum.

– Alex and Cameron

CoderDojo: 2000 Dojos ever

Post Syndicated from Giustina Mizzoni original https://www.raspberrypi.org/blog/2000-dojos-ever/

Every day of the week, we verify new Dojos all around the world, and each Dojo is championed by passionate volunteers. Last week, a huge milestone for the CoderDojo community went by relatively unnoticed: in the history of the movement, more than 2000 Dojos have now been verified!

CoderDojo banner — 2000 Dojos

2000 Dojos

This is a phenomenal achievement for a movement that’s just six years old and powered by volunteers. Presently, there are more than 1650 active Dojos running weekly, fortnightly, or monthly, and all of them are free for participants — for example, the Dojos run by Joel Bayubasire in Kampala, Uganda:

Joel Bayubasire with Ninjas at his Ugandan Dojo — 2000 Dojos

Empowering refugee children

This week, Joel set up his second Dojo and verified it on our global map. Joel is a Congolese refugee living in Kampala, Uganda, where he is currently completing his PhD in Economics at Madison International Institute and Business School.

Joel understands first-hand the challenges faced by refugees who were forced to leave their country due to war or conflict. Uganda is currently hosting more than 1.2 million refugees, 60% of which are children (World Bank, 2017). As refugees, children are only allowed to attend local schools until the age of 12. This results in lower educational attainment, which will likely affect their future employment prospects.

Two girls at a laptop. Joel Bayubasire CoderDojo — 2000 Dojos

Joel has the motivation to overcome these challenges, because he understands the power of education. Therefore, he initiated a number of community-based activities to provide educational opportunities for refugee children. As part of this, he founded his first Dojo earlier in the year, with the aim of giving these children a chance to compete in today’s global knowledge-based economy.

Two boys at a laptop. Joel Bayubasire CoderDojo — 2000 Dojos

Aware that securing volunteer mentors would be a challenge, Joel trained eight young people from the community to become youth mentors to their peers. He explains:

I believe that the mastery of computer coding allows talented young people to thrive professionally and enables them to not only be consumers but creators of the interconnected world of today!

Based on the success of Joel’s first Dojo, he has now expanded the CoderDojo initiative in his community; his plan is to provide computer science training for more than 300 refugee youths in Kampala by 2019. If you’d like to learn more about Joel’s efforts, head to this website.

Join the movement

If you are interested in creating opportunities for the young people in your community, then join the growing CoderDojo movement — you can volunteer to start a Dojo or to support an existing one today!

The post CoderDojo: 2000 Dojos ever appeared first on Raspberry Pi.

Is blockchain a security topic? (Opensource.com)

Post Syndicated from jake original https://lwn.net/Articles/740929/rss

At Opensource.com, Mike Bursell looks at blockchain security from the angle of trust. Unlike cryptocurrencies, which are pseudonymous typically, other kinds of blockchains will require mapping users to real-life identities; that raises the trust issue.

What’s really interesting is that, if you’re thinking about moving to a permissioned blockchain or distributed ledger with permissioned actors, then you’re going to have to spend some time thinking about trust. You’re unlikely to be using a proof-of-work system for making blocks—there’s little point in a permissioned system—so who decides what comprises a “valid” block that the rest of the system should agree on? Well, you can rotate around some (or all) of the entities, or you can have a random choice, or you can elect a small number of über-trusted entities. Combinations of these schemes may also work.

If these entities all exist within one trust domain, which you control, then fine, but what if they’re distributors, or customers, or partners, or other banks, or manufacturers, or semi-autonomous drones, or vehicles in a commercial fleet? You really need to ensure that the trust relationships that you’re encoding into your implementation/deployment truly reflect the legal and IRL [in real life] trust relationships that you have with the entities that are being represented in your system.

And the problem is that, once you’ve deployed that system, it’s likely to be very difficult to backtrack, adjust, or reset the trust relationships that you’ve designed.”

The Raspberry Pi Christmas shopping list 2017

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/christmas-shopping-list-2017/

Looking for the perfect Christmas gift for a beloved maker in your life? Maybe you’d like to give a relative or friend a taste of the world of coding and Raspberry Pi? Whatever you’re looking for, the Raspberry Pi Christmas shopping list will point you in the right direction.

An ice-skating Raspberry Pi - The Raspberry Pi Christmas Shopping List 2017

For those getting started

Thinking about introducing someone special to the wonders of Raspberry Pi during the holidays? Although you can set up your Pi with peripherals from around your home, such as a mobile phone charger, your PC’s keyboard, and the old mouse dwelling in an office drawer, a starter kit is a nice all-in-one package for the budding coder.



Check out the starter kits from Raspberry Pi Approved Resellers such as Pimoroni, The Pi Hut, ModMyPi, Adafruit, CanaKit…the list is pretty long. Our products page will direct you to your closest reseller, or you can head to element14 to pick up the official Raspberry Pi Starter Kit.



You can also buy the Raspberry Pi Press’s brand-new Raspberry Pi Beginners Book, which includes a Raspberry Pi Zero W, a case, a ready-made SD card, and adapter cables.

Once you’ve presented a lucky person with their first Raspberry Pi, it’s time for them to spread their maker wings and learn some new skills.

MagPi Essentials books - The Raspberry Pi Christmas Shopping List 2017

To help them along, you could pick your favourite from among the Official Projects Book volume 3, The MagPi Essentials guides, and the brand-new third edition of Carrie Anne Philbin’s Adventures in Raspberry Pi. (She is super excited about this new edition!)

And you can always add a link to our free resources on the gift tag.

For the maker in your life

If you’re looking for something for a confident digital maker, you can’t go wrong with adding to their arsenal of electric and electronic bits and bobs that are no doubt cluttering drawers and boxes throughout their house.



Components such as servomotors, displays, and sensors are staples of the maker world. And when it comes to jumper wires, buttons, and LEDs, one can never have enough.



You could also consider getting your person a soldering iron, some helpings hands, or small tools such as a Dremel or screwdriver set.

And to make their life a little less messy, pop it all inside a Really Useful Box…because they’re really useful.



For kit makers

While some people like to dive into making head-first and to build whatever comes to mind, others enjoy working with kits.



The Naturebytes kit allows you to record the animal visitors of your garden with the help of a camera and a motion sensor. Footage of your local badgers, birds, deer, and more will be saved to an SD card, or tweeted or emailed to you if it’s in range of WiFi.

Cortec Tiny 4WD - The Raspberry Pi Christmas Shopping List 2017

Coretec’s Tiny 4WD is a kit for assembling a Pi Zero–powered remote-controlled robot at home. Not only is the robot adorable, building it also a great introduction to motors and wireless control.



Bare Conductive’s Touch Board Pro Kit offers everything you need to create interactive electronics projects using conductive paint.

Pi Hut Arcade Kit - The Raspberry Pi Christmas Shopping List 2017

Finally, why not help your favourite maker create their own gaming arcade using the Arcade Building Kit from The Pi Hut?

For the reader

For those who like to curl up with a good read, or spend too much of their day on public transport, a book or magazine subscription is the perfect treat.

For makers, hackers, and those interested in new technologies, our brand-new HackSpace magazine and the ever popular community magazine The MagPi are ideal. Both are available via a physical or digital subscription, and new subscribers to The MagPi also receive a free Raspberry Pi Zero W plus case.

Cover of CoderDojo Nano Make your own game

Marc Scott Beginner's Guide to Coding Book

You can also check out other publications from the Raspberry Pi family, including CoderDojo’s new CoderDojo Nano: Make Your Own Game, Eben Upton and Gareth Halfacree’s Raspberry Pi User Guide, and Marc Scott’s A Beginner’s Guide to Coding. And have I mentioned Carrie Anne’s Adventures in Raspberry Pi yet?

Stocking fillers for everyone

Looking for something small to keep your loved ones occupied on Christmas morning? Or do you have to buy a Secret Santa gift for the office tech? Here are some wonderful stocking fillers to fill your boots with this season.

Pi Hut 3D Christmas Tree - The Raspberry Pi Christmas Shopping List 2017

The Pi Hut 3D Xmas Tree: available as both a pre-soldered and a DIY version, this gadget will work with any 40-pin Raspberry Pi and allows you to create your own mini light show.



Google AIY Voice kit: build your own home assistant using a Raspberry Pi, the MagPi Essentials guide, and this brand-new kit. “Google, play Mariah Carey again…”



Pimoroni’s Raspberry Pi Zero W Project Kits offer everything you need, including the Pi, to make your own time-lapse cameras, music players, and more.



The official Raspberry Pi Sense HAT, Camera Module, and cases for the Pi 3 and Pi Zero will complete the collection of any Raspberry Pi owner, while also opening up exciting project opportunities.

STEAM gifts that everyone will love

Awesome Astronauts | Building LEGO’s Women of NASA!

LEGO Idea’s bought out this amazing ‘Women of NASA’ set, and I thought it would be fun to build, play and learn from these inspiring women! First up, let’s discover a little more about Sally Ride and Mae Jemison, two AWESOME ASTRONAUTS!

Treat the kids, and big kids, in your life to the newest LEGO Ideas set, the Women of NASA — starring Nancy Grace Roman, Margaret Hamilton, Sally Ride, and Mae Jemison!



Explore the world of wearables with Pimoroni’s sewable, hackable, wearable, adorable Bearables kits.



Add lights and motors to paper creations with the Activating Origami Kit, available from The Pi Hut.




We all loved Hidden Figures, and the STEAM enthusiast you know will do too. The film’s available on DVD, and you can also buy the original book, along with other fascinating non-fiction such as Rebecca Skloot’s The Immortal Life of Henrietta Lacks, Rachel Ignotofsky’s Women in Science, and Sydney Padua’s (mostly true) The Thrilling Adventures of Lovelace and Babbage.

Have we missed anything?

With so many amazing kits, HATs, and books available from members of the Raspberry Pi community, it’s hard to only pick a few. Have you found something splendid for the maker in your life? Maybe you’ve created your own kit that uses the Raspberry Pi? Share your favourites with us in the comments below or via our social media accounts.

The post The Raspberry Pi Christmas shopping list 2017 appeared first on Raspberry Pi.

Announcing Amazon FreeRTOS – Enabling Billions of Devices to Securely Benefit from the Cloud

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-amazon-freertos/

I was recently reading an article on ReadWrite.com titled “IoT devices go forth and multiply, to increase 200% by 2021“, and while the article noted the benefit for consumers and the industry of this growth, two things in the article stuck with me. The first was the specific statement that read “researchers warned that the proliferation of IoT technology will create a new bevvy of challenges. Particularly troublesome will be IoT deployments at scale for both end-users and providers.” Not only was that sentence a mouthful, but it really addressed some of the challenges that can come building solutions and deployment of this exciting new technology area. The second sentiment in the article that stayed with me was that Security issues could grow.

So the article got me thinking, how can we create these cool IoT solutions using low-cost efficient microcontrollers with a secure operating system that can easily connect to the cloud. Luckily the answer came to me by way of an exciting new open-source based offering coming from AWS that I am happy to announce to you all today. Let’s all welcome, Amazon FreeRTOS to the technology stage.

Amazon FreeRTOS is an IoT microcontroller operating system that simplifies development, security, deployment, and maintenance of microcontroller-based edge devices. Amazon FreeRTOS extends the FreeRTOS kernel, a popular real-time operating system, with libraries that enable local and cloud connectivity, security, and (coming soon) over-the-air updates.

So what are some of the great benefits of this new exciting offering, you ask. They are as follows:

  • Easily to create solutions for Low Power Connected Devices: provides a common operating system (OS) and libraries that make the development of common IoT capabilities easy for devices. For example; over-the-air (OTA) updates (coming soon) and device configuration.
  • Secure Data and Device Connections: devices only run trusted software using the Code Signing service, Amazon FreeRTOS provides a secure connection to the AWS using TLS, as well as, the ability to securely store keys and sensitive data on the device.
  • Extensive Ecosystem: contains an extensive hardware and technology ecosystem that allows you to choose a variety of qualified chipsets, including Texas Instruments, Microchip, NXP Semiconductors, and STMicroelectronics.
  • Cloud or Local Connections:  Devices can connect directly to the AWS Cloud or via AWS Greengrass.

 

What’s cool is that it is easy to get started. 

The Amazon FreeRTOS console allows you to select and download the software that you need for your solution.

There is a Qualification Program that helps to assure you that the microcontroller you choose will run consistently across several hardware options.

Finally, Amazon FreeRTOS kernel is an open-source FreeRTOS operating system that is freely available on GitHub for download.

But I couldn’t leave you without at least showing you a few snapshots of the Amazon FreeRTOS Console.

Within the Amazon FreeRTOS Console, I can select a predefined software configuration that I would like to use.

If I want to have a more customized software configuration, Amazon FreeRTOS allows you to customize a solution that is targeted for your use by adding or removing libraries.

Summary

Thanks for checking out the new Amazon FreeRTOS offering. To learn more go to the Amazon FreeRTOS product page or review the information provided about this exciting IoT device targeted operating system in the AWS documentation.

Can’t wait to see what great new IoT systems are will be enabled and created with it! Happy Coding.

Tara

 

Introducing AWS AppSync – Build data-driven apps with real-time and off-line capabilities

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/introducing-amazon-appsync/

In this day and age, it is almost impossible to do without our mobile devices and the applications that help make our lives easier. As our dependency on our mobile phone grows, the mobile application market has exploded with millions of apps vying for our attention. For mobile developers, this means that we must ensure that we build applications that provide the quality, real-time experiences that app users desire.  Therefore, it has become essential that mobile applications are developed to include features such as multi-user data synchronization, offline network support, and data discovery, just to name a few.  According to several articles, I read recently about mobile development trends on publications like InfoQ, DZone, and the mobile development blog AlleviateTech, one of the key elements in of delivering the aforementioned capabilities is with cloud-driven mobile applications.  It seems that this is especially true, as it related to mobile data synchronization and data storage.

That being the case, it is a perfect time for me to announce a new service for building innovative mobile applications that are driven by data-intensive services in the cloud; AWS AppSync. AWS AppSync is a fully managed serverless GraphQL service for real-time data queries, synchronization, communications and offline programming features. For those not familiar, let me briefly share some information about the open GraphQL specification. GraphQL is a responsive data query language and server-side runtime for querying data sources that allow for real-time data retrieval and dynamic query execution. You can use GraphQL to build a responsive API for use in when building client applications. GraphQL works at the application layer and provides a type system for defining schemas. These schemas serve as specifications to define how operations should be performed on the data and how the data should be structured when retrieved. Additionally, GraphQL has a declarative coding model which is supported by many client libraries and frameworks including React, React Native, iOS, and Android.

Now the power of the GraphQL open standard query language is being brought to you in a rich managed service with AWS AppSync.  With AppSync developers can simplify the retrieval and manipulation of data across multiple data sources with ease, allowing them to quickly prototype, build and create robust, collaborative, multi-user applications. AppSync keeps data updated when devices are connected, but enables developers to build solutions that work offline by caching data locally and synchronizing local data when connections become available.

Let’s discuss some key concepts of AWS AppSync and how the service works.

AppSync Concepts

  • AWS AppSync Client: service client that defines operations, wraps authorization details of requests, and manage offline logic.
  • Data Source: the data storage system or a trigger housing data
  • Identity: a set of credentials with permissions and identification context provided with requests to GraphQL proxy
  • GraphQL Proxy: the GraphQL engine component for processing and mapping requests, handling conflict resolution, and managing Fine Grained Access Control
  • Operation: one of three GraphQL operations supported in AppSync
    • Query: a read-only fetch call to the data
    • Mutation: a write of the data followed by a fetch,
    • Subscription: long-lived connections that receive data in response to events.
  • Action: a notification to connected subscribers from a GraphQL subscription.
  • Resolver: function using request and response mapping templates that converts and executes payload against data source

How It Works

A schema is created to define types and capabilities of the desired GraphQL API and tied to a Resolver function.  The schema can be created to mirror existing data sources or AWS AppSync can create tables automatically based the schema definition. Developers can also use GraphQL features for data discovery without having knowledge of the backend data sources. After a schema definition is established, an AWS AppSync client can be configured with an operation request, like a Query operation. The client submits the operation request to GraphQL Proxy along with an identity context and credentials. The GraphQL Proxy passes this request to the Resolver which maps and executes the request payload against pre-configured AWS data services like an Amazon DynamoDB table, an AWS Lambda function, or a search capability using Amazon Elasticsearch. The Resolver executes calls to one or all of these services within a single network call minimizing CPU cycles and bandwidth needs and returns the response to the client. Additionally, the client application can change data requirements in code on demand and the AppSync GraphQL API will dynamically map requests for data accordingly, allowing prototyping and faster development.

In order to take a quick peek at the service, I’ll go to the AWS AppSync console. I’ll click the Create API button to get started.

 

When the Create new API screen opens, I’ll give my new API a name, TarasTestApp, and since I am just exploring the new service I will select the Sample schema option.  You may notice from the informational dialog box on the screen that in using the sample schema, AWS AppSync will automatically create the DynamoDB tables and the IAM roles for me.It will also deploy the TarasTestApp API on my behalf.  After review of the sample schema provided by the console, I’ll click the Create button to create my test API.

After the TaraTestApp API has been created and the associated AWS resources provisioned on my behalf, I can make updates to the schema, data source, or connect my data source(s) to a resolver. I also can integrate my GraphQL API into an iOS, Android, Web, or React Native application by cloning the sample repo from GitHub and downloading the accompanying GraphQL schema.  These application samples are great to help get you started and they are pre-configured to function in offline scenarios.

If I select the Schema menu option on the console, I can update and view the TarasTestApp GraphQL API schema.


Additionally, if I select the Data Sources menu option in the console, I can see the existing data sources.  Within this screen, I can update, delete, or add data sources if I so desire.

Next, I will select the Query menu option which takes me to the console tool for writing and testing queries. Since I chose the sample schema and the AWS AppSync service did most of the heavy lifting for me, I’ll try a query against my new GraphQL API.

I’ll use a mutation to add data for the event type in my schema. Since this is a mutation and it first writes data and then does a read of the data, I want the query to return values for name and where.

If I go to the DynamoDB table created for the event type in the schema, I will see that the values from my query have been successfully written into the table. Now that was a pretty simple task to write and retrieve data based on a GraphQL API schema from a data source, don’t you think.


 Summary

AWS AppSync is currently in AWS AppSync is in Public Preview and you can sign up today. It supports development for iOS, Android, and JavaScript applications. You can take advantage of this managed GraphQL service by going to the AWS AppSync console or learn more by reviewing more details about the service by reading a tutorial in the AWS documentation for the service or checking out our AWS AppSync Developer Guide.

Tara

 

AWS Media Services – Process, Store, and Monetize Cloud-Based Video

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-media-services-process-store-and-monetize-cloud-based-video/

Do you remember what web video was like in the early days? Standalone players, video no larger than a postage stamp, slow & cantankerous connections, overloaded servers, and the ever-present buffering messages were the norm less than two decades ago.

Today, thanks to technological progress and a broad array of standards, things are a lot better. Video consumers are now in control. They use devices of all shapes, sizes, and vintages to enjoy live and recorded content that is broadcast, streamed, or sent over-the-top (OTT, as they say), and expect immediate access to content that captures and then holds their attention. Meeting these expectations presents a challenge for content creators and distributors. Instead of generating video in a one-size-fits-all format, they (or their media servers) must be prepared to produce video that spans a broad range of sizes, formats, and bit rates, taking care to be ready to deal with planned or unplanned surges in demand. In the face of all of this complexity, they must backstop their content with a monetization model that supports the content and the infrastructure to deliver it.

New AWS Media Services
Today we are launching an array of broadcast-quality media services, each designed to address one or more aspects of the challenge that I outlined above. You can use them together to build a complete end-to-end video solution or you can use one or more in building-block style. In true AWS fashion, you can spend more time innovating and less time setting up and running infrastructure, leaving you ready to focus on creating, delivering, and monetizing your content. The services are all elastic, allowing you to ramp up processing power, connections, and storage and giving you the ability to handle million-user (and beyond) spikes with ease.

Here are the services (all accessible from a set of interactive consoles as well as through a comprehensive set of APIs):

AWS Elemental MediaConvert – File-based transcoding for OTT, broadcast, or archiving, with support for a long list of formats and codecs. Features include multi-channel audio, graphic overlays, closed captioning, and several DRM options.

AWS Elemental MediaLive – Live encoding to deliver video streams in real time to both televisions and multiscreen devices. Allows you to deploy highly reliable live channels in minutes, with full control over encoding parameters. It supports ad insertion, multi-channel audio, graphic overlays, and closed captioning.

AWS Elemental MediaPackage – Video origination and just-in-time packaging. Starting from a single input, produces output for multiple devices representing a long list of current and legacy formats. Supports multiple monetization models, time-shifted live streaming, ad insertion, DRM, and blackout management.

AWS Elemental MediaStore – Media-optimized storage that enables high performance and low latency applications such as live streaming, while taking advantage of the scale and durability of Amazon Simple Storage Service (S3).

AWS Elemental MediaTailor – Monetization service that supports ad serving and server-side ad insertion, a broad range of devices, transcoding, and accurate reporting of server-side and client-side ad insertion.

Instead of listing out all of the features in the sections below, I’ve simply included as many screen shots as possible with the expectation that this will give you a better sense of the rich set of features, parameters, and settings that you get with this set of services.

AWS Elemental MediaConvert
MediaConvert allows you to transcode content that is stored in files. You can process individual files or entire media libraries, or anything in-between. You simply create a conversion job that specifies the content and the desired outputs, and submit it to MediaConvert. There’s no software to install or patch and the service scales to meet your needs without affecting turnaround time or performance.

The MediaConvert Console lets you manage Output presets, Job templates, Queues, and Jobs:

You can use a built-in system preset or you can make one of your own. You have full control over the settings when you make your own:

Jobs templates are named, and produce one or more output groups. You can add a new group to a template with a click:

When everything is ready to go, you create a job and make some final selections, then click on Create:

Each account starts with a default queue for jobs, where incoming work is processed in parallel using all processing resources available to the account. Adding queues does not add processing resources, but does cause them to be apportioned across queues. You can temporarily pause one queue in order to devote more resources to the others. You can submit jobs to paused queues and you can also cancel any that have yet to start.

Pricing for this service is based on the amount of video that you process and the features that you use.

AWS Elemental MediaLive
This service is for live encoding, and can be run 24×7. MediaLive channels are deployed on redundant resources distributed in two physically separated Availability Zones in order to provide the reliability expected by our customers in the broadcast industry. You can specify your inputs and define your channels in the MediaLive Console:

After you create an Input, you create a Channel and attach it to the Input:

You have full control over the settings for each channel:

 

AWS Elemental MediaPackage
This service lets you deliver video to many devices from a single source. It focuses on protection and just-in-time packaging, giving you the ability to provide your users with the desired content on the device of their choice. You simply create a channel to get started:

Then you add one or more endpoints. Once again, plenty of options and full control, including a startover window and a time delay:

You find the input URL, user name, and password for your channel and route your live video stream to it for packaging:

AWS Elemental MediaStore
MediaStore offers the performance, consistency, and latency required for live and on-demand media delivery. Objects are written and read into a new “temporal” tier of object storage for a limited amount of time, then move silently into S3 for long-lived durability. You simply create a storage container to group your media content:

The container is available within a minute or so:

Like S3 buckets, MediaStore containers have access policies and no limits on the number of objects or storage capacity.

MediaStore helps you to take full advantage of S3 by managing the object key names so as to maximize storage and retrieval throughput, in accord with the Request Rate and Performance Considerations.

AWS Elemental MediaTailor
This service takes care of server-side ad insertion while providing a broadcast-quality viewer experience by transcoding ad assets on the fly. Your customer’s video player asks MediaTailor for a playlist. MediaTailor, in turn, calls your Ad Decision Server and returns a playlist that references the origin server for your original video and the ads recommended by the Ad Decision Server. The video player makes all of its requests to a single endpoint in order to ensure that client-side ad-blocking is ineffective. You simply create a MediaTailor Configuration:

Context information is passed to the Ad Decision Server in the URL:

Despite the length of this post I have barely scratched the surface of the AWS Media Services. Once AWS re:Invent is in the rear view mirror I hope to do a deep dive and show you how to use each of these services.

Available Now
The entire set of AWS Media Services is available now and you can start using them today! Pricing varies by service, but is built around a pay-as-you-go model.

Jeff;

Prepare to run a Code Club on FutureLearn

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/code-club-futurelearn/

Prepare to run a Code Club with our newest free online course, available now on FutureLearn!

FutureLearn: Prepare to Run a Code Club

Ready to launch! Our free FutureLearn course ‘Prepare to Run a Code Club’ starts next week and you can sign up now: https://www.futurelearn.com/courses/code-club

Code Club

As of today, more than 10000 Code Clubs run in 130 countries, delivering free coding opportunities to approximately 150000 children across the globe.

A child absorbed in a task at a Code Club

As an organisation, Code Club provides free learning resources and training materials to supports the ever-growing and truly inspiring community of volunteers and educators who set up and run Code Clubs.

FutureLearn

Today we’re launching our latest free online course on FutureLearn, dedicated to training and supporting new Code Club volunteers. It will give you practical guidance on all things Code Club, as well as a taste of beginner programming!

Split over three weeks and running for 3–4 hours in total, the course provides hands-on advice and tips on everything you need to know to run a successful, fun, and educational club.

“Week 1 kicks off with advice on how to prepare to start a Code Club, for example which hardware and software are needed. Week 2 focusses on how to deliver Code Club sessions, with practical tips on helping young people learn and an easy taster coding project to try out. In the final week, the course looks at interesting ideas to enrich and extend club sessions.”
— Sarah Sherman-Chase, Code Club Participation Manager

The course is available wherever you live, and it is completely free — sign up now!

If you’re already a volunteer, the course will be a great refresher, and a chance to share your insights with newcomers. Moreover, it is also useful for parents and guardians who wish to learn more about Code Club.

Your next step

Interested in learning more? You can start the course today by visiting FutureLearn. And to find out more about Code Clubs in your country, visit Code Club UK or Code Club International.

Code Club partners from across the globe gathered together for a group photo at the International Meetup

We love hearing your Code Club stories! If you’re a volunteer, are in the process of setting up a club, or are inspired to learn more, share your story in the comments below or via social media, making sure to tag @CodeClub and @CodeClubWorld.

You might also be interested in our other free courses on the FutureLearn platform, including Teaching Physical Computing with Raspberry Pi and Python and Teaching Programming in Primary Schools.

 

The post Prepare to run a Code Club on FutureLearn appeared first on Raspberry Pi.

Kodi-Addon Developer Launches Fundraiser to Fight “Copyright Bullies”

Post Syndicated from Ernesto original https://torrentfreak.com/kodi-addon-developer-launches-fundraiser-to-fight-copyright-bullies-171120/

Earlier this year, American satellite and broadcast provider Dish Network targeted two well-known players in the third-party Kodi add-on ecosystem.

In a complaint filed in a federal court in Texas, add-on ZemTV and the TVAddons library were accused of copyright infringement. As a result, both are facing up to $150,000 for each offense.

While the case was filed in Texas, neither of the defendants live there, or even in the United States. The owner and operator of TVAddons is Adam Lackman, who resides in Montreal, Canada. ZemTV’s developer Shahjahan Durrani is even further away in London, UK.

Over the past few months, Lackman has spoken out in public on several occasions, but little was known about the man behind ZemTV. Today, however, he also decided to open up, asking for support in his legal battle against the Dish Network.

Shahjahan Durrani, Shani for short, doesn’t hide the fact that he was the driving force behind the Kodi-addons ZemTV, LiveStreamsPro, and F4MProxy. While the developer has never set foot in Texas, he is willing to defend himself. Problem is, he lacks the funds to do so.

“I’ve never been to Texas in my life, I’m from London, England,” Shani explains. “Somehow a normal chap like me is expected to defend himself against a billion dollar media giant. I don’t have the money to fight this on my own, and hope my friends will help support my fight against the expansion of copyright liability.”

Shani’s fundraiser went live a few hours ago and the first donations are now starting to come in. He has set a target of $8,500 set for his defense fund so there is still a long way to go.

Speaking with TorrentFreak, Shani explains that he got into Kodi addon development to broaden his coding skills and learn Python. ZemTV was a tool to watch recorded shows from zemtv.com, which he always assumed were perfectly legal, on his Apple TV. Then, he decided to help others to do the same.

“The reason why I published the addon was that I saw it as a community helping each other out, and this was my way to give back. I never received any money from anybody and I wanted to keep it pure and free,” Shani tells us.

ZemTV was a passive service, simply scraping content from a third party source, he explains. The addon provided an interface but did not host or control any allegedly infringing content directly.

“I had no involvement nor control over any of the websites or content sources that were allegedly accessible through ZemTV. I did not host nor take part in the sharing of any form of streaming media. As an open source developer, I should not be held liable for the potential abuse of my code,” the developer stresses.

Dish Network sees things differently, of course. In its complaint, the company accused Shani of illegally retransmitting their copyright protected channels while asking for donations to maintain the project.

The case is perhaps not as straightforward as either side presents it. However, it is in the best interests of the general public that both sides are properly heard. This is the first case against a Kodi-addon developer and the outcome will set an important precedent.

“This lawsuit is part of a targeted effort to destroy the Kodi addon community. The fight is rigged against the little guy, they are trying to make something illegal that shouldn’t be illegal. They tried to do it with the VCR, and now years and years later they are trying to do it with Kodi.

“Since I am the only addon developer to date who is actually fighting the wrath of big media bullies, it is crucial that I win my case,” Shani adds.

Going forward, the ZemTV developer believes that copyright holders are better off going after the content providers directly. If the sources are down, any problematic addons will also stop working. Rightholders can even work with addon developers and use addons to find infringing content providers.

“I think the copyright holders should target the sources, it’s as simple as that,” Shani tells us.

The fundraiser campaign is now public on Generosity.com. At the time of writing the ticker sits at $50, so there is still a long way to go before the developer can organize a proper defense.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Pip: digital creation in your pocket from Curious Chip

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pip-curious-chip/

Get your hands on Pip, the handheld Raspberry Pi–based device for aspiring young coders and hackers from Curious Chip.

A GIF of Pip - Curious Chip - Pip handheld device - Raspberry Pi

Pip is a handheld gaming console from Curios Chip which you can now back on Kickstarter. Using the Raspberry Pi Compute Module 3, Pip allows users to code, hack, and play wherever they are.

We created Pip so that anyone can tinker with technology. From beginners to those who know more — Pip makes it easy, simple, and fun!

For gaming

Pip’s smart design may well remind you of a certain handheld gaming console released earlier this year. With its central screen and detachable side controllers, Pip has a size and shape ideal for gaming.

A GIF of Pip - Curious Chip - Pip handheld device - Raspberry Pi

Those who have used a Raspberry Pi with the Raspbian OS might be familiar with Minecraft Pi, a variant of the popular Minecraft game created specifically for Pi users to play and hack for free. Users of Pip will be able to access Minecraft Pi from the portable device and take their block-shaped creations with them wherever they go.

And if that’s not enough, Pip’s Pi brain allows coders to create their own games using Scratch, in addition to giving access a growing library of games in Curious Chip’s online arcade.

Digital making

Pip’s GPIO pins are easily accessible, so that you can expand upon your digital making skills with physical computing projects. Grab your Pip and a handful of jumper leads, and you will be able to connect and control components such as lights, buttons, servomotors, and more!

A smiling girl with Pip and a laptop

You can also attach any of the range of HAT add-on boards available on the market, such as our own Sense HAT, or ones created by Pimoroni, Adafruit, and others. And if you’re looking to learn a new coding language, you’re in luck: Pip supports Python, HTML/CSS, JavaScript, Lua, and PHP.

Maker Pack and add-ons

Backers can also pledge their funds for additional hardware, such as the Maker Pack, an integrated camera, or a Pip Breadboard Kit.

PipHAT and Breadboard add-ons - Curious Chip - Pip handheld device - Raspberry Pi

The breadboard and the optional PipHAT are also compatible with any Raspberry Pi 2 and 3. Nice!

Curiosity from Curious Chip

Users of Pip can program their device via Curiosity, a tool designed specifically for this handheld device.

Pip’s programming tool is called Curiosity, and it’s hosted on Pip itself and accessed via WiFi from any modern web browser, so there’s no software to download and install. Curiosity allows Pip to be programmed using a number of popular programming languages, including JavaScript, Python, Lua, PHP, and HTML5. Scratch-inspired drag-and-drop block programming is also supported with our own Google Blockly–based editor, making it really easy to access all of Pip’s built-in functionality from a simple, visual programming language.

Back the project

If you’d like to back Curious Chip and bag your own Pip, you can check out their Kickstarter page here. And if you watch their promo video closely, you may see a familiar face from the Raspberry Pi community.

Are you planning on starting your own Raspberry Pi-inspired crowd-funded campaign? Then be sure to tag us on social media. We love to see what the community is creating for our little green (or sometimes blue) computer.

The post Pip: digital creation in your pocket from Curious Chip appeared first on Raspberry Pi.

Event-Driven Computing with Amazon SNS and AWS Compute, Storage, Database, and Networking Services

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/

Contributed by Otavio Ferreira, Manager, Software Development, AWS Messaging

Like other developers around the world, you may be tackling increasingly complex business problems. A key success factor, in that case, is the ability to break down a large project scope into smaller, more manageable components. A service-oriented architecture guides you toward designing systems as a collection of loosely coupled, independently scaled, and highly reusable services. Microservices take this even further. To improve performance and scalability, they promote fine-grained interfaces and lightweight protocols.

However, the communication among isolated microservices can be challenging. Services are often deployed onto independent servers and don’t share any compute or storage resources. Also, you should avoid hard dependencies among microservices, to preserve maintainability and reusability.

If you apply the pub/sub design pattern, you can effortlessly decouple and independently scale out your microservices and serverless architectures. A pub/sub messaging service, such as Amazon SNS, promotes event-driven computing that statically decouples event publishers from subscribers, while dynamically allowing for the exchange of messages between them. An event-driven architecture also introduces the responsiveness needed to deal with complex problems, which are often unpredictable and asynchronous.

What is event-driven computing?

Given the context of microservices, event-driven computing is a model in which subscriber services automatically perform work in response to events triggered by publisher services. This paradigm can be applied to automate workflows while decoupling the services that collectively and independently work to fulfil these workflows. Amazon SNS is an event-driven computing hub, in the AWS Cloud, that has native integration with several AWS publisher and subscriber services.

Which AWS services publish events to SNS natively?

Several AWS services have been integrated as SNS publishers and, therefore, can natively trigger event-driven computing for a variety of use cases. In this post, I specifically cover AWS compute, storage, database, and networking services, as depicted below.

Compute services

  • Auto Scaling: Helps you ensure that you have the correct number of Amazon EC2 instances available to handle the load for your application. You can configure Auto Scaling lifecycle hooks to trigger events, as Auto Scaling resizes your EC2 cluster.As an example, you may want to warm up the local cache store on newly launched EC2 instances, and also download log files from other EC2 instances that are about to be terminated. To make this happen, set an SNS topic as your Auto Scaling group’s notification target, then subscribe two Lambda functions to this SNS topic. The first function is responsible for handling scale-out events (to warm up cache upon provisioning), whereas the second is in charge of handling scale-in events (to download logs upon termination).

  • AWS Elastic Beanstalk: An easy-to-use service for deploying and scaling web applications and web services developed in a number of programming languages. You can configure event notifications for your Elastic Beanstalk environment so that notable events can be automatically published to an SNS topic, then pushed to topic subscribers.As an example, you may use this event-driven architecture to coordinate your continuous integration pipeline (such as Jenkins CI). That way, whenever an environment is created, Elastic Beanstalk publishes this event to an SNS topic, which triggers a subscribing Lambda function, which then kicks off a CI job against your newly created Elastic Beanstalk environment.

  • Elastic Load Balancing: Automatically distributes incoming application traffic across Amazon EC2 instances, containers, or other resources identified by IP addresses.You can configure CloudWatch alarms on Elastic Load Balancing metrics, to automate the handling of events derived from Classic Load Balancers. As an example, you may leverage this event-driven design to automate latency profiling in an Amazon ECS cluster behind a Classic Load Balancer. In this example, whenever your ECS cluster breaches your load balancer latency threshold, an event is posted by CloudWatch to an SNS topic, which then triggers a subscribing Lambda function. This function runs a task on your ECS cluster to trigger a latency profiling tool, hosted on the cluster itself. This can enhance your latency troubleshooting exercise by making it timely.

Storage services

  • Amazon S3: Object storage built to store and retrieve any amount of data.You can enable S3 event notifications, and automatically get them posted to SNS topics, to automate a variety of workflows. For instance, imagine that you have an S3 bucket to store incoming resumes from candidates, and a fleet of EC2 instances to encode these resumes from their original format (such as Word or text) into a portable format (such as PDF).In this example, whenever new files are uploaded to your input bucket, S3 publishes these events to an SNS topic, which in turn pushes these messages into subscribing SQS queues. Then, encoding workers running on EC2 instances poll these messages from the SQS queues; retrieve the original files from the input S3 bucket; encode them into PDF; and finally store them in an output S3 bucket.

  • Amazon EFS: Provides simple and scalable file storage, for use with Amazon EC2 instances, in the AWS Cloud.You can configure CloudWatch alarms on EFS metrics, to automate the management of your EFS systems. For example, consider a highly parallelized genomics analysis application that runs against an EFS system. By default, this file system is instantiated on the “General Purpose” performance mode. Although this performance mode allows for lower latency, it might eventually impose a scaling bottleneck. Therefore, you may leverage an event-driven design to handle it automatically.Basically, as soon as the EFS metric “Percent I/O Limit” breaches 95%, CloudWatch could post this event to an SNS topic, which in turn would push this message into a subscribing Lambda function. This function automatically creates a new file system, this time on the “Max I/O” performance mode, then switches the genomics analysis application to this new file system. As a result, your application starts experiencing higher I/O throughput rates.

  • Amazon Glacier: A secure, durable, and low-cost cloud storage service for data archiving and long-term backup.You can set a notification configuration on an Amazon Glacier vault so that when a job completes, a message is published to an SNS topic. Retrieving an archive from Amazon Glacier is a two-step asynchronous operation, in which you first initiate a job, and then download the output after the job completes. Therefore, SNS helps you eliminate polling your Amazon Glacier vault to check whether your job has been completed, or not. As usual, you may subscribe SQS queues, Lambda functions, and HTTP endpoints to your SNS topic, to be notified when your Amazon Glacier job is done.

  • AWS Snowball: A petabyte-scale data transport solution that uses secure appliances to transfer large amounts of data.You can leverage Snowball notifications to automate workflows related to importing data into and exporting data from AWS. More specifically, whenever your Snowball job status changes, Snowball can publish this event to an SNS topic, which in turn can broadcast the event to all its subscribers.As an example, imagine a Geographic Information System (GIS) that distributes high-resolution satellite images to users via Web browser. In this example, the GIS vendor could capture up to 80 TB of satellite images; create a Snowball job to import these files from an on-premises system to an S3 bucket; and provide an SNS topic ARN to be notified upon job status changes in Snowball. After Snowball changes the job status from “Importing” to “Completed”, Snowball publishes this event to the specified SNS topic, which delivers this message to a subscribing Lambda function, which finally creates a CloudFront web distribution for the target S3 bucket, to serve the images to end users.

Database services

  • Amazon RDS: Makes it easy to set up, operate, and scale a relational database in the cloud.RDS leverages SNS to broadcast notifications when RDS events occur. As usual, these notifications can be delivered via any protocol supported by SNS, including SQS queues, Lambda functions, and HTTP endpoints.As an example, imagine that you own a social network website that has experienced organic growth, and needs to scale its compute and database resources on demand. In this case, you could provide an SNS topic to listen to RDS DB instance events. When the “Low Storage” event is published to the topic, SNS pushes this event to a subscribing Lambda function, which in turn leverages the RDS API to increase the storage capacity allocated to your DB instance. The provisioning itself takes place within the specified DB maintenance window.

  • Amazon ElastiCache: A web service that makes it easy to deploy, operate, and scale an in-memory data store or cache in the cloud.ElastiCache can publish messages using Amazon SNS when significant events happen on your cache cluster. This feature can be used to refresh the list of servers on client machines connected to individual cache node endpoints of a cache cluster. For instance, an ecommerce website fetches product details from a cache cluster, with the goal of offloading a relational database and speeding up page load times. Ideally, you want to make sure that each web server always has an updated list of cache servers to which to connect.To automate this node discovery process, you can get your ElastiCache cluster to publish events to an SNS topic. Thus, when ElastiCache event “AddCacheNodeComplete” is published, your topic then pushes this event to all subscribing HTTP endpoints that serve your ecommerce website, so that these HTTP servers can update their list of cache nodes.

  • Amazon Redshift: A fully managed data warehouse that makes it simple to analyze data using standard SQL and BI (Business Intelligence) tools.Amazon Redshift uses SNS to broadcast relevant events so that data warehouse workflows can be automated. As an example, imagine a news website that sends clickstream data to a Kinesis Firehose stream, which then loads the data into Amazon Redshift, so that popular news and reading preferences might be surfaced on a BI tool. At some point though, this Amazon Redshift cluster might need to be resized, and the cluster enters a ready-only mode. Hence, this Amazon Redshift event is published to an SNS topic, which delivers this event to a subscribing Lambda function, which finally deletes the corresponding Kinesis Firehose delivery stream, so that clickstream data uploads can be put on hold.At a later point, after Amazon Redshift publishes the event that the maintenance window has been closed, SNS notifies a subscribing Lambda function accordingly, so that this function can re-create the Kinesis Firehose delivery stream, and resume clickstream data uploads to Amazon Redshift.

  • AWS DMS: Helps you migrate databases to AWS quickly and securely. The source database remains fully operational during the migration, minimizing downtime to applications that rely on the database.DMS also uses SNS to provide notifications when DMS events occur, which can automate database migration workflows. As an example, you might create data replication tasks to migrate an on-premises MS SQL database, composed of multiple tables, to MySQL. Thus, if replication tasks fail due to incompatible data encoding in the source tables, these events can be published to an SNS topic, which can push these messages into a subscribing SQS queue. Then, encoders running on EC2 can poll these messages from the SQS queue, encode the source tables into a compatible character set, and restart the corresponding replication tasks in DMS. This is an event-driven approach to a self-healing database migration process.

Networking services

  • Amazon Route 53: A highly available and scalable cloud-based DNS (Domain Name System). Route 53 health checks monitor the health and performance of your web applications, web servers, and other resources.You can set CloudWatch alarms and get automated Amazon SNS notifications when the status of your Route 53 health check changes. As an example, imagine an online payment gateway that reports the health of its platform to merchants worldwide, via a status page. This page is hosted on EC2 and fetches platform health data from DynamoDB. In this case, you could configure a CloudWatch alarm for your Route 53 health check, so that when the alarm threshold is breached, and the payment gateway is no longer considered healthy, then CloudWatch publishes this event to an SNS topic, which pushes this message to a subscribing Lambda function, which finally updates the DynamoDB table that populates the status page. This event-driven approach avoids any kind of manual update to the status page visited by merchants.

  • AWS Direct Connect (AWS DX): Makes it easy to establish a dedicated network connection from your premises to AWS, which can reduce your network costs, increase bandwidth throughput, and provide a more consistent network experience than Internet-based connections.You can monitor physical DX connections using CloudWatch alarms, and send SNS messages when alarms change their status. As an example, when a DX connection state shifts to 0 (zero), indicating that the connection is down, this event can be published to an SNS topic, which can fan out this message to impacted servers through HTTP endpoints, so that they might reroute their traffic through a different connection instead. This is an event-driven approach to connectivity resilience.

More event-driven computing on AWS

In addition to SNS, event-driven computing is also addressed by Amazon CloudWatch Events, which delivers a near real-time stream of system events that describe changes in AWS resources. With CloudWatch Events, you can route each event type to one or more targets, including:

Many AWS services publish events to CloudWatch. As an example, you can get CloudWatch Events to capture events on your ETL (Extract, Transform, Load) jobs running on AWS Glue and push failed ones to an SQS queue, so that you can retry them later.

Conclusion

Amazon SNS is a pub/sub messaging service that can be used as an event-driven computing hub to AWS customers worldwide. By capturing events natively triggered by AWS services, such as EC2, S3 and RDS, you can automate and optimize all kinds of workflows, namely scaling, testing, encoding, profiling, broadcasting, discovery, failover, and much more. Business use cases presented in this post ranged from recruiting websites, to scientific research, geographic systems, social networks, retail websites, and news portals.

Start now by visiting Amazon SNS in the AWS Management Console, or by trying the AWS 10-Minute Tutorial, Send Fan-out Event Notifications with Amazon SNS and Amazon SQS.

 

Physical computing blocks at Maker Faire New York

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/physical-computing-blocks/

At events like Maker Faire New York, we love offering visitors the chance to try out easy, inviting, and hands-on activities, so we teamed up with maker Ben Light to create interactive physical computing blocks.

Raspberry Blocks FINAL

In response to the need for hands-on, easy and inviting activities at events such as Maker Faire New York, we teamed up with maker Ben Light to create our interactive physical computing blocks.

Getting hands-on experience at events

At the Raspberry Pi Foundation, we often have the opportunity to engage with families and young people at events such as Maker Faires and STEAM festivals. When we set up a booth, it’s really important to us that we provide an educational, fun experience for everyone who visits us. But there are a few reasons why this can be a challenge.

Girls use the physical computing blocks at Maker Faire New York

For one, you have a broad audience of people with differing levels of experience with computers. Moreover, some people want to take the time to learn a lot, others just want to try something quick and move on. And on top of that, the environment is often loud, crowded, and chaotic…in a good way!

Creating our physical computing blocks

We were up against these challenges when we set out to create a new physical computing experience for our World Maker Faire New York booth. Our goal was to give people the opportunity to try a little bit of circuit making and a little bit of coding — and they should be able to get hands-on with the activity right away.




Inspired by Exploratorium’s Tinkering Studio, we sketched out physical computing blocks which let visitors use the Raspberry Pi’s GPIO pins without needing to work with tiny components or needing to understand how a breadboard works. We turned the sketches over to our friend Ben Light in New York City, and he brought the project to life.

Father and infant child clip crocodile leads to the Raspberry Pi physical computing blocks at Maker Faire New York

As you can see, the activity turned out really well, so we hope to bring it to more events in the future. Thank you, Ben Light, for collaborating with us on it!

The post Physical computing blocks at Maker Faire New York appeared first on Raspberry Pi.

B2 Cloud Storage Roundup

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/b2-cloud-storage-roundup/

B2 Integrations
Over the past several months, B2 Cloud Storage has continued to grow like we planted magic beans. During that time we have added a B2 Java SDK, and certified integrations with GoodSync, Arq, Panic, UpdraftPlus, Morro Data, QNAP, Archiware, Restic, and more. In addition, B2 customers like Panna Cooking, Sermon Audio, and Fellowship Church are happy they chose B2 as their cloud storage provider. If any of that sounds interesting, read on.

The B2 Java SDK

While the Backblaze B2 API is well documented and straight-forward to implement, we were asked by a few of our Integration Partners if we had an SDK they could use. So we developed one as an open-course project on GitHub, where we hope interested parties will not only use our Java SDK, but make it better for everyone else.

There are different reasons one might use the Java SDK, but a couple of areas where the SDK can simplify the coding process are:

Expiring Authorization — B2 requires an application key for a given account be reissued once a day when using the API. If the application key expires while you are in the middle of transferring files or some other B2 activity (bucket list, etc.), the SDK can be used to detect and then update the application key on the fly. Your B2 related activities will continue without incident and without having to capture and code your own exception case.

Error Handling — There are different types of error codes B2 will return, from expired application keys to detecting malformed requests to command time-outs. The SDK can dramatically simplify the coding needed to capture and account for the various things that can happen.

While Backblaze has created the Java SDK, developers in the GitHub community have also created other SDKs for B2, for example, for PHP (https://github.com/cwhite92/b2-sdk-php,) and Go (https://github.com/kurin/blazer.) Let us know in the comments about other SDKs you’d like to see or perhaps start your own GitHub project. We will publish any updates in our next B2 roundup.

What You Can Do with Affordable and Available Cloud Storage

You’re probably aware that B2 is up to 75% less expensive than other similar cloud storage services like Amazon S3 and Microsoft Azure. Businesses and organizations are finding that projects that previously weren’t economically feasible with other Cloud Storage services are now not only possible, but a reality with B2. Here are a few recent examples:

SermonAudio logo SermonAudio wanted their media files to be readily available, but didn’t want to build and manage their own internal storage farm. Until B2, cloud storage was just too expensive to use. Now they use B2 to store their audio and video files, and also as the primary source of downloads and streaming requests from their subscribers.
Fellowship Church logo Fellowship Church wanted to escape from the ever increasing amount of time they were spending saving their data to their LTO-based system. Using B2 saved countless hours of personnel time versus LTO, fit easily into their video processing workflow, and provided instant access at any time to their media library.
Panna logo Panna Cooking replaced their closet full of archive hard drives with a cost-efficient hybrid-storage solution combining 45Drives and Backblaze B2 Cloud Storage. Archived media files that used to take hours to locate are now readily available regardless of whether they reside in local storage or in the B2 Cloud.

B2 Integrations

Leading companies in backup, archive, and sync continue to add B2 Cloud Storage as a storage destination for their customers. These companies realize that by offering B2 as an option, they can dramatically lower the total cost of ownership for their customers — and that’s always a good thing.

If your favorite application is not integrated to B2, you can do something about it. One integration partner told us they received over 200 customer requests for a B2 integration. The partner got the message and the integration is currently in beta test.

Below are some of the partner integrations completed in the past few months. You can check the B2 Partner Integrations page for a complete list.

Archiware — Both P5 Archive and P5 Backup can now store data in the B2 Cloud making your offsite media files readily available while keeping your off-site storage costs predictable and affordable.

Arq — Combine Arq and B2 for amazingly affordable backup of external drives, network drives, NAS devices, Windows PCs, Windows Servers, and Macs to the cloud.

GoodSync — Automatically synchronize and back up all your photos, music, email, and other important files between all your desktops, laptops, servers, external drives, and sync, or back up to B2 Cloud Storage for off-site storage.

QNAP — QNAP Hybrid Backup Sync consolidates backup, restoration, and synchronization functions into a single QTS application to easily transfer your data to local, remote, and cloud storage.

Morro Data — Their CloudNAS solution stores files in the cloud, caches them locally as needed, and syncs files globally among other CloudNAS systems in an organization.

Restic – Restic is a fast, secure, multi-platform command line backup program. Files are uploaded to a B2 bucket as de-duplicated, encrypted chunks. Each backup is a snapshot of only the data that has changed, making restores of a specific date or time easy.

Transmit 5 by Panic — Transmit 5, the gold standard for macOS file transfer apps, now supports B2. Upload, download, and manage files on tons of servers with an easy, familiar, and powerful UI.

UpdraftPlus — WordPress developers and admins can now use the UpdraftPlus Premium WordPress plugin to affordably back up their data to the B2 Cloud.

Getting Started with B2 Cloud Storage

If you’re using B2 today, thank you. If you’d like to try B2, but don’t know where to start, here’s a guide to getting started with the B2 Web Interface — no programming or scripting is required. You get 10 gigabytes of free storage and 1 gigabyte a day in free downloads. Give it a try.

The post B2 Cloud Storage Roundup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Now Available – Compute-Intensive C5 Instances for Amazon EC2

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-available-compute-intensive-c5-instances-for-amazon-ec2/

I’m thrilled to announce that the new compute-intensive C5 instances are available today in six sizes for launch in three AWS regions!

These instances designed for compute-heavy applications like batch processing, distributed analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. The new instances offer a 25% price/performance improvement over the C4 instances, with over 50% for some workloads. They also have additional memory per vCPU, and (for code that can make use of the new AVX-512 instructions), twice the performance for vector and floating point workloads.

Over the years we have been working non-stop to provide our customers with the best possible networking, storage, and compute performance, with a long-term focus on offloading many types of work to dedicated hardware designed and built by AWS. The C5 instance type incorporates the latest generation of our hardware offloads, and also takes another big step forward with the addition of a new hypervisor that runs hand-in-glove with our hardware. The new hypervisor allows us to give you access to all of the processing power provided by the host hardware, while also making performance even more consistent and further raising the bar on security. We’ll be sharing many technical details about it at AWS re:Invent.

The New Instances
The C5 instances are available in six sizes:

Instance Name vCPUs
RAM
EBS Bandwidth Network Bandwidth
c5.large 2 4 GiB Up to 2.25 Gbps Up to 10 Gbps
c5.xlarge 4 8 GiB Up to 2.25 Gbps Up to 10 Gbps
c5.2xlarge 8 16 GiB Up to 2.25 Gbps Up to 10 Gbps
c5.4xlarge 16 32 GiB 2.25 Gbps Up to 10 Gbps
c5.9xlarge 36 72 GiB 4.5 Gbps 10 Gbps
c5.18xlarge 72 144 GiB 9 Gbps 25 Gbps

Each vCPU is a hardware hyperthread on a 3.0 GHz Intel Xeon Platinum 8000-series processor. This custom processor, optimized for EC2, allows you have full control over the C-states on the two largest sizes, allowing you to run a single core at up to 3.5 GHz using Intel Turbo Boost Technology.

As you can see from the table, the four smallest instance sizes offer substantially more EBS and network bandwidth than the previous generation of compute-intensive instances.

Because all networking and storage functionality is implemented in hardware, C5 instances require HVM AMIs that include drivers for the Elastic Network Adapter (ENA) and NVMe. The latest Amazon Linux, Microsoft Windows, Ubuntu, RHEL, CentOS, SLES, Debian, and FreeBSD AMIs all support C5 instances. If you are doing machine learning inferencing, or other compute-intensive work, be sure to check out the most recent version of the Intel Math Kernel Library. It has been optimized for the Intel® Xeon® Platinum processor and has the potential to greatly accelerate your work.

In order to remain compatible with instances that use the Xen hypervisor, the device names for EBS volumes will continue to use the existing /dev/sd and /dev/xvd prefixes. The device name that you provide when you attach a volume to an instance is not used because the NVMe driver assigns its own device name (read Amazon EBS and NVMe to learn more):

The nvme command displays additional information about each volume (install it using sudo yum -y install nvme-cli if necessary):

The SN field in the output can be mapped to an EBS volume ID by inserting a “-” after the “vol” prefix (sadly, the NVMe SN field is not long enough to store the entire ID). Here’s a simple script that uses this information to create an EBS snapshot of each attached volume:

$ sudo nvme list | \
  awk '/dev/ {print(gensub("vol", "vol-", 1, $2))}' | \
  xargs -n 1 aws ec2 create-snapshot --volume-id

With a little more work (and a lot of testing), you could create a script that expands EBS volumes that are getting full.

Getting to C5
As I mentioned earlier, our effort to offload work to hardware accelerators has been underway for quite some time. Here’s a recap:

CC1 – Launched in 2010, the CC1 was designed to support scale-out HPC applications. It was the first EC2 instance to support 10 Gbps networking and one of the first to support HVM virtualization. The network fabric that we designed for the CC1 (based on our own switch hardware) has become the standard for all AWS data centers.

C3 – Launched in 2013, the C3 introduced Enhanced Networking and uses dedicated hardware accelerators to support the software defined network inside of each Virtual Private Cloud (VPC). Hardware virtualization removes the I/O stack from the hypervisor in favor of direct access by the guest OS, resulting in higher performance and reduced variability.

C4 – Launched in 2015, the C4 instances are EBS Optimized by default via a dedicated network connection, and also offload EBS processing (including CPU-intensive crypto operations for encrypted EBS volumes) to a hardware accelerator.

C5 – Launched today, the hypervisor that powers the C5 instances allow practically all of the resources of the host CPU to be devoted to customer instances. The ENA networking and the NVMe interface to EBS are both powered by hardware accelerators. The instances do not require (or support) the Xen paravirtual networking or block device drivers, both of which have been removed in order to increase efficiency.

Going forward, we’ll use this hypervisor to power other instance types and plan to share additional technical details in a set of AWS re:Invent sessions.

Launch a C5 Today
You can launch C5 instances today in the US East (Northern Virginia), US West (Oregon), and EU (Ireland) Regions in On-Demand and Spot form (Reserved Instances are also available), with additional Regions in the works.

One quick note before I go: The current NVMe driver is not optimized for high-performance sequential workloads and we don’t recommend the use of C5 instances in conjunction with sc1 or st1 volumes. We are aware of this issue and have been working to optimize the driver for this important use case.

Jeff;