Tag Archives: intelligence

Some quick thoughts on the public discussion regarding facial recognition and Amazon Rekognition this past week

Post Syndicated from Dr. Matt Wood original https://aws.amazon.com/blogs/aws/some-quick-thoughts-on-the-public-discussion-regarding-facial-recognition-and-amazon-rekognition-this-past-week/

We have seen a lot of discussion this past week about the role of Amazon Rekognition in facial recognition, surveillance, and civil liberties, and we wanted to share some thoughts.

Amazon Rekognition is a service we announced in 2016. It makes use of new technologies – such as deep learning – and puts them in the hands of developers in an easy-to-use, low-cost way. Since then, we have seen customers use the image and video analysis capabilities of Amazon Rekognition in ways that materially benefit both society (e.g. preventing human trafficking, inhibiting child exploitation, reuniting missing children with their families, and building educational apps for children), and organizations (enhancing security through multi-factor authentication, finding images more easily, or preventing package theft). Amazon Web Services (AWS) is not the only provider of services like these, and we remain excited about how image and video analysis can be a driver for good in the world, including in the public sector and law enforcement.

There have always been and will always be risks with new technology capabilities. Each organization choosing to employ technology must act responsibly or risk legal penalties and public condemnation. AWS takes its responsibilities seriously. But we believe it is the wrong approach to impose a ban on promising new technologies because they might be used by bad actors for nefarious purposes in the future. The world would be a very different place if we had restricted people from buying computers because it was possible to use that computer to do harm. The same can be said of thousands of technologies upon which we all rely each day. Through responsible use, the benefits have far outweighed the risks.

Customers are off to a great start with Amazon Rekognition; the evidence of the positive impact this new technology can provide is strong (and growing by the week), and we’re excited to continue to support our customers in its responsible use.

-Dr. Matt Wood, general manager of artificial intelligence at AWS

New – Pay-per-Session Pricing for Amazon QuickSight, Another Region, and Lots More

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-pay-per-session-pricing-for-amazon-quicksight-another-region-and-lots-more/

Amazon QuickSight is a fully managed cloud business intelligence system that gives you Fast & Easy to Use Business Analytics for Big Data. QuickSight makes business analytics available to organizations of all shapes and sizes, with the ability to access data that is stored in your Amazon Redshift data warehouse, your Amazon Relational Database Service (RDS) relational databases, flat files in S3, and (via connectors) data stored in on-premises MySQL, PostgreSQL, and SQL Server databases. QuickSight scales to accommodate tens, hundreds, or thousands of users per organization.

Today we are launching a new, session-based pricing option for QuickSight, along with additional region support and other important new features. Let’s take a look at each one:

Pay-per-Session Pricing
Our customers are making great use of QuickSight and take full advantage of the power it gives them to connect to data sources, create reports, and and explore visualizations.

However, not everyone in an organization needs or wants such powerful authoring capabilities. Having access to curated data in dashboards and being able to interact with the data by drilling down, filtering, or slicing-and-dicing is more than adequate for their needs. Subscribing them to a monthly or annual plan can be seen as an unwarranted expense, so a lot of such casual users end up not having access to interactive data or BI.

In order to allow customers to provide all of their users with interactive dashboards and reports, the Enterprise Edition of Amazon QuickSight now allows Reader access to dashboards on a Pay-per-Session basis. QuickSight users are now classified as Admins, Authors, or Readers, with distinct capabilities and prices:

Authors have access to the full power of QuickSight; they can establish database connections, upload new data, create ad hoc visualizations, and publish dashboards, all for $9 per month (Standard Edition) or $18 per month (Enterprise Edition).

Readers can view dashboards, slice and dice data using drill downs, filters and on-screen controls, and download data in CSV format, all within the secure QuickSight environment. Readers pay $0.30 for 30 minutes of access, with a monthly maximum of $5 per reader.

Admins have all authoring capabilities, and can manage users and purchase SPICE capacity in the account. The QuickSight admin now has the ability to set the desired option (Author or Reader) when they invite members of their organization to use QuickSight. They can extend Reader invites to their entire user base without incurring any up-front or monthly costs, paying only for the actual usage.

To learn more, visit the QuickSight Pricing page.

A New Region
QuickSight is now available in the Asia Pacific (Tokyo) Region:

The UI is in English, with a localized version in the works.

Hourly Data Refresh
Enterprise Edition SPICE data sets can now be set to refresh as frequently as every hour. In the past, each data set could be refreshed up to 5 times a day. To learn more, read Refreshing Imported Data.

Access to Data in Private VPCs
This feature was launched in preview form late last year, and is now available in production form to users of the Enterprise Edition. As I noted at the time, you can use it to implement secure, private communication with data sources that do not have public connectivity, including on-premises data in Teradata or SQL Server, accessed over an AWS Direct Connect link. To learn more, read Working with AWS VPC.

Parameters with On-Screen Controls
QuickSight dashboards can now include parameters that are set using on-screen dropdown, text box, numeric slider or date picker controls. The default value for each parameter can be set based on the user name (QuickSight calls this a dynamic default). You could, for example, set an appropriate default based on each user’s office location, department, or sales territory. Here’s an example:

To learn more, read about Parameters in QuickSight.

URL Actions for Linked Dashboards
You can now connect your QuickSight dashboards to external applications by defining URL actions on visuals. The actions can include parameters, and become available in the Details menu for the visual. URL actions are defined like this:

You can use this feature to link QuickSight dashboards to third party applications (e.g. Salesforce) or to your own internal applications. Read Custom URL Actions to learn how to use this feature.

Dashboard Sharing
You can now share QuickSight dashboards across every user in an account.

Larger SPICE Tables
The per-data set limit for SPICE tables has been raised from 10 GB to 25 GB.

Upgrade to Enterprise Edition
The QuickSight administrator can now upgrade an account from Standard Edition to Enterprise Edition with a click. This enables provisioning of Readers with pay-per-session pricing, private VPC access, row-level security for dashboards and data sets, and hourly refresh of data sets. Enterprise Edition pricing applies after the upgrade.

Available Now
Everything I listed above is available now and you can start using it today!

You can try QuickSight for 60 days at no charge, and you can also attend our June 20th Webinar.

Jeff;

 

The FBI tells everybody to reboot their router

Post Syndicated from corbet original https://lwn.net/Articles/755741/rss

This CERT
advisory
warns of over 500,000 home routers that have been compromised
by the VPNFilter malware and is advising everybody to reboot their routers
to (partially) remove it. This Talos
Intelligence page
has a lot more information about VPNFilter, though a
lot apparently remains unknown. “At the time of this publication, we
do not have definitive proof on how the threat actor is exploiting the
affected devices. However, all of the affected makes/models that we have
uncovered had well-known, public vulnerabilities. Since advanced threat
actors tend to only use the minimum resources necessary to accomplish their
goals, we assess with high confidence that VPNFilter required no zero-day
exploitation techniques.

Japan’s Directorate for Signals Intelligence

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/japans_director.html

The Intercept has a long article on Japan’s equivalent of the NSA: the Directorate for Signals Intelligence. Interesting, but nothing really surprising.

The directorate has a history that dates back to the 1950s; its role is to eavesdrop on communications. But its operations remain so highly classified that the Japanese government has disclosed little about its work ­ even the location of its headquarters. Most Japanese officials, except for a select few of the prime minister’s inner circle, are kept in the dark about the directorate’s activities, which are regulated by a limited legal framework and not subject to any independent oversight.

Now, a new investigation by the Japanese broadcaster NHK — produced in collaboration with The Intercept — reveals for the first time details about the inner workings of Japan’s opaque spy community. Based on classified documents and interviews with current and former officials familiar with the agency’s intelligence work, the investigation shines light on a previously undisclosed internet surveillance program and a spy hub in the south of Japan that is used to monitor phone calls and emails passing across communications satellites.

The article includes some new documents from the Snowden archive.

Sending Inaudible Commands to Voice Assistants

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/sending_inaudib.html

Researchers have demonstrated the ability to send inaudible commands to voice assistants like Alexa, Siri, and Google Assistant.

Over the last two years, researchers in China and the United States have begun demonstrating that they can send hidden commands that are undetectable to the human ear to Apple’s Siri, Amazon’s Alexa and Google’s Assistant. Inside university labs, the researchers have been able to secretly activate the artificial intelligence systems on smartphones and smart speakers, making them dial phone numbers or open websites. In the wrong hands, the technology could be used to unlock doors, wire money or buy stuff online ­– simply with music playing over the radio.

A group of students from University of California, Berkeley, and Georgetown University showed in 2016 that they could hide commands in white noise played over loudspeakers and through YouTube videos to get smart devices to turn on airplane mode or open a website.

This month, some of those Berkeley researchers published a research paper that went further, saying they could embed commands directly into recordings of music or spoken text. So while a human listener hears someone talking or an orchestra playing, Amazon’s Echo speaker might hear an instruction to add something to your shopping list.

Analyze Apache Parquet optimized data using Amazon Kinesis Data Firehose, Amazon Athena, and Amazon Redshift

Post Syndicated from Roy Hasson original https://aws.amazon.com/blogs/big-data/analyzing-apache-parquet-optimized-data-using-amazon-kinesis-data-firehose-amazon-athena-and-amazon-redshift/

Amazon Kinesis Data Firehose is the easiest way to capture and stream data into a data lake built on Amazon S3. This data can be anything—from AWS service logs like AWS CloudTrail log files, Amazon VPC Flow Logs, Application Load Balancer logs, and others. It can also be IoT events, game events, and much more. To efficiently query this data, a time-consuming ETL (extract, transform, and load) process is required to massage and convert the data to an optimal file format, which increases the time to insight. This situation is less than ideal, especially for real-time data that loses its value over time.

To solve this common challenge, Kinesis Data Firehose can now save data to Amazon S3 in Apache Parquet or Apache ORC format. These are optimized columnar formats that are highly recommended for best performance and cost-savings when querying data in S3. This feature directly benefits you if you use Amazon Athena, Amazon Redshift, AWS Glue, Amazon EMR, or any other big data tools that are available from the AWS Partner Network and through the open-source community.

Amazon Connect is a simple-to-use, cloud-based contact center service that makes it easy for any business to provide a great customer experience at a lower cost than common alternatives. Its open platform design enables easy integration with other systems. One of those systems is Amazon Kinesis—in particular, Kinesis Data Streams and Kinesis Data Firehose.

What’s really exciting is that you can now save events from Amazon Connect to S3 in Apache Parquet format. You can then perform analytics using Amazon Athena and Amazon Redshift Spectrum in real time, taking advantage of this key performance and cost optimization. Of course, Amazon Connect is only one example. This new capability opens the door for a great deal of opportunity, especially as organizations continue to build their data lakes.

Amazon Connect includes an array of analytics views in the Administrator dashboard. But you might want to run other types of analysis. In this post, I describe how to set up a data stream from Amazon Connect through Kinesis Data Streams and Kinesis Data Firehose and out to S3, and then perform analytics using Athena and Amazon Redshift Spectrum. I focus primarily on the Kinesis Data Firehose support for Parquet and its integration with the AWS Glue Data Catalog, Amazon Athena, and Amazon Redshift.

Solution overview

Here is how the solution is laid out:

 

 

The following sections walk you through each of these steps to set up the pipeline.

1. Define the schema

When Kinesis Data Firehose processes incoming events and converts the data to Parquet, it needs to know which schema to apply. The reason is that many times, incoming events contain all or some of the expected fields based on which values the producers are advertising. A typical process is to normalize the schema during a batch ETL job so that you end up with a consistent schema that can easily be understood and queried. Doing this introduces latency due to the nature of the batch process. To overcome this issue, Kinesis Data Firehose requires the schema to be defined in advance.

To see the available columns and structures, see Amazon Connect Agent Event Streams. For the purpose of simplicity, I opted to make all the columns of type String rather than create the nested structures. But you can definitely do that if you want.

The simplest way to define the schema is to create a table in the Amazon Athena console. Open the Athena console, and paste the following create table statement, substituting your own S3 bucket and prefix for where your event data will be stored. A Data Catalog database is a logical container that holds the different tables that you can create. The default database name shown here should already exist. If it doesn’t, you can create it or use another database that you’ve already created.

CREATE EXTERNAL TABLE default.kfhconnectblog (
  awsaccountid string,
  agentarn string,
  currentagentsnapshot string,
  eventid string,
  eventtimestamp string,
  eventtype string,
  instancearn string,
  previousagentsnapshot string,
  version string
)
STORED AS parquet
LOCATION 's3://your_bucket/kfhconnectblog/'
TBLPROPERTIES ("parquet.compression"="SNAPPY")

That’s all you have to do to prepare the schema for Kinesis Data Firehose.

2. Define the data streams

Next, you need to define the Kinesis data streams that will be used to stream the Amazon Connect events.  Open the Kinesis Data Streams console and create two streams.  You can configure them with only one shard each because you don’t have a lot of data right now.

3. Define the Kinesis Data Firehose delivery stream for Parquet

Let’s configure the Data Firehose delivery stream using the data stream as the source and Amazon S3 as the output. Start by opening the Kinesis Data Firehose console and creating a new data delivery stream. Give it a name, and associate it with the Kinesis data stream that you created in Step 2.

As shown in the following screenshot, enable Record format conversion (1) and choose Apache Parquet (2). As you can see, Apache ORC is also supported. Scroll down and provide the AWS Glue Data Catalog database name (3) and table names (4) that you created in Step 1. Choose Next.

To make things easier, the output S3 bucket and prefix fields are automatically populated using the values that you defined in the LOCATION parameter of the create table statement from Step 1. Pretty cool. Additionally, you have the option to save the raw events into another location as defined in the Source record S3 backup section. Don’t forget to add a trailing forward slash “ / “ so that Data Firehose creates the date partitions inside that prefix.

On the next page, in the S3 buffer conditions section, there is a note about configuring a large buffer size. The Parquet file format is highly efficient in how it stores and compresses data. Increasing the buffer size allows you to pack more rows into each output file, which is preferred and gives you the most benefit from Parquet.

Compression using Snappy is automatically enabled for both Parquet and ORC. You can modify the compression algorithm by using the Kinesis Data Firehose API and update the OutputFormatConfiguration.

Be sure to also enable Amazon CloudWatch Logs so that you can debug any issues that you might run into.

Lastly, finalize the creation of the Firehose delivery stream, and continue on to the next section.

4. Set up the Amazon Connect contact center

After setting up the Kinesis pipeline, you now need to set up a simple contact center in Amazon Connect. The Getting Started page provides clear instructions on how to set up your environment, acquire a phone number, and create an agent to accept calls.

After setting up the contact center, in the Amazon Connect console, choose your Instance Alias, and then choose Data Streaming. Under Agent Event, choose the Kinesis data stream that you created in Step 2, and then choose Save.

At this point, your pipeline is complete.  Agent events from Amazon Connect are generated as agents go about their day. Events are sent via Kinesis Data Streams to Kinesis Data Firehose, which converts the event data from JSON to Parquet and stores it in S3. Athena and Amazon Redshift Spectrum can simply query the data without any additional work.

So let’s generate some data. Go back into the Administrator console for your Amazon Connect contact center, and create an agent to handle incoming calls. In this example, I creatively named mine Agent One. After it is created, Agent One can get to work and log into their console and set their availability to Available so that they are ready to receive calls.

To make the data a bit more interesting, I also created a second agent, Agent Two. I then made some incoming and outgoing calls and caused some failures to occur, so I now have enough data available to analyze.

5. Analyze the data with Athena

Let’s open the Athena console and run some queries. One thing you’ll notice is that when we created the schema for the dataset, we defined some of the fields as Strings even though in the documentation they were complex structures.  The reason for doing that was simply to show some of the flexibility of Athena to be able to parse JSON data. However, you can define nested structures in your table schema so that Kinesis Data Firehose applies the appropriate schema to the Parquet file.

Let’s run the first query to see which agents have logged into the system.

The query might look complex, but it’s fairly straightforward:

WITH dataset AS (
  SELECT 
    from_iso8601_timestamp(eventtimestamp) AS event_ts,
    eventtype,
    -- CURRENT STATE
    json_extract_scalar(
      currentagentsnapshot,
      '$.agentstatus.name') AS current_status,
    from_iso8601_timestamp(
      json_extract_scalar(
        currentagentsnapshot,
        '$.agentstatus.starttimestamp')) AS current_starttimestamp,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.firstname') AS current_firstname,
    json_extract_scalar(
      currentagentsnapshot,
      '$.configuration.lastname') AS current_lastname,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.username') AS current_username,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.routingprofile.defaultoutboundqueue.name') AS               current_outboundqueue,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.routingprofile.inboundqueues[0].name') as current_inboundqueue,
    -- PREVIOUS STATE
    json_extract_scalar(
      previousagentsnapshot, 
      '$.agentstatus.name') as prev_status,
    from_iso8601_timestamp(
      json_extract_scalar(
        previousagentsnapshot, 
       '$.agentstatus.starttimestamp')) as prev_starttimestamp,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.firstname') as prev_firstname,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.lastname') as prev_lastname,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.username') as prev_username,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.routingprofile.defaultoutboundqueue.name') as current_outboundqueue,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.routingprofile.inboundqueues[0].name') as prev_inboundqueue
  from kfhconnectblog
  where eventtype <> 'HEART_BEAT'
)
SELECT
  current_status as status,
  current_username as username,
  event_ts
FROM dataset
WHERE eventtype = 'LOGIN' AND current_username <> ''
ORDER BY event_ts DESC

The query output looks something like this:

Here is another query that shows the sessions each of the agents engaged with. It tells us where they were incoming or outgoing, if they were completed, and where there were missed or failed calls.

WITH src AS (
  SELECT
     eventid,
     json_extract_scalar(currentagentsnapshot, '$.configuration.username') as username,
     cast(json_extract(currentagentsnapshot, '$.contacts') AS ARRAY(JSON)) as c,
     cast(json_extract(previousagentsnapshot, '$.contacts') AS ARRAY(JSON)) as p
  from kfhconnectblog
),
src2 AS (
  SELECT *
  FROM src CROSS JOIN UNNEST (c, p) AS contacts(c_item, p_item)
),
dataset AS (
SELECT 
  eventid,
  username,
  json_extract_scalar(c_item, '$.contactid') as c_contactid,
  json_extract_scalar(c_item, '$.channel') as c_channel,
  json_extract_scalar(c_item, '$.initiationmethod') as c_direction,
  json_extract_scalar(c_item, '$.queue.name') as c_queue,
  json_extract_scalar(c_item, '$.state') as c_state,
  from_iso8601_timestamp(json_extract_scalar(c_item, '$.statestarttimestamp')) as c_ts,
  
  json_extract_scalar(p_item, '$.contactid') as p_contactid,
  json_extract_scalar(p_item, '$.channel') as p_channel,
  json_extract_scalar(p_item, '$.initiationmethod') as p_direction,
  json_extract_scalar(p_item, '$.queue.name') as p_queue,
  json_extract_scalar(p_item, '$.state') as p_state,
  from_iso8601_timestamp(json_extract_scalar(p_item, '$.statestarttimestamp')) as p_ts
FROM src2
)
SELECT 
  username,
  c_channel as channel,
  c_direction as direction,
  p_state as prev_state,
  c_state as current_state,
  c_ts as current_ts,
  c_contactid as id
FROM dataset
WHERE c_contactid = p_contactid
ORDER BY id DESC, current_ts ASC

The query output looks similar to the following:

6. Analyze the data with Amazon Redshift Spectrum

With Amazon Redshift Spectrum, you can query data directly in S3 using your existing Amazon Redshift data warehouse cluster. Because the data is already in Parquet format, Redshift Spectrum gets the same great benefits that Athena does.

Here is a simple query to show querying the same data from Amazon Redshift. Note that to do this, you need to first create an external schema in Amazon Redshift that points to the AWS Glue Data Catalog.

SELECT 
  eventtype,
  json_extract_path_text(currentagentsnapshot,'agentstatus','name') AS current_status,
  json_extract_path_text(currentagentsnapshot, 'configuration','firstname') AS current_firstname,
  json_extract_path_text(currentagentsnapshot, 'configuration','lastname') AS current_lastname,
  json_extract_path_text(
    currentagentsnapshot,
    'configuration','routingprofile','defaultoutboundqueue','name') AS current_outboundqueue,
FROM default_schema.kfhconnectblog

The following shows the query output:

Summary

In this post, I showed you how to use Kinesis Data Firehose to ingest and convert data to columnar file format, enabling real-time analysis using Athena and Amazon Redshift. This great feature enables a level of optimization in both cost and performance that you need when storing and analyzing large amounts of data. This feature is equally important if you are investing in building data lakes on AWS.

 


Additional Reading

If you found this post useful, be sure to check out Analyzing VPC Flow Logs with Amazon Kinesis Firehose, Amazon Athena, and Amazon QuickSight and Work with partitioned data in AWS Glue.


About the Author

Roy Hasson is a Global Business Development Manager for AWS Analytics. He works with customers around the globe to design solutions to meet their data processing, analytics and business intelligence needs. Roy is big Manchester United fan cheering his team on and hanging out with his family.

 

 

 

Supply-Chain Security

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/supply-chain_se.html

Earlier this month, the Pentagon stopped selling phones made by the Chinese companies ZTE and Huawei on military bases because they might be used to spy on their users.

It’s a legitimate fear, and perhaps a prudent action. But it’s just one instance of the much larger issue of securing our supply chains.

All of our computerized systems are deeply international, and we have no choice but to trust the companies and governments that touch those systems. And while we can ban a few specific products, services or companies, no country can isolate itself from potential foreign interference.

In this specific case, the Pentagon is concerned that the Chinese government demanded that ZTE and Huawei add “backdoors” to their phones that could be surreptitiously turned on by government spies or cause them to fail during some future political conflict. This tampering is possible because the software in these phones is incredibly complex. It’s relatively easy for programmers to hide these capabilities, and correspondingly difficult to detect them.

This isn’t the first time the United States has taken action against foreign software suspected to contain hidden features that can be used against us. Last December, President Trump signed into law a bill banning software from the Russian company Kaspersky from being used within the US government. In 2012, the focus was on Chinese-made Internet routers. Then, the House Intelligence Committee concluded: “Based on available classified and unclassified information, Huawei and ZTE cannot be trusted to be free of foreign state influence and thus pose a security threat to the United States and to our systems.”

Nor is the United States the only country worried about these threats. In 2014, China reportedly banned antivirus products from both Kaspersky and the US company Symantec, based on similar fears. In 2017, the Indian government identified 42 smartphone apps that China subverted. Back in 1997, the Israeli company Check Point was dogged by rumors that its government added backdoors into its products; other of that country’s tech companies have been suspected of the same thing. Even al-Qaeda was concerned; ten years ago, a sympathizer released the encryption software Mujahedeen Secrets, claimed to be free of Western influence and backdoors. If a country doesn’t trust another country, then it can’t trust that country’s computer products.

But this trust isn’t limited to the country where the company is based. We have to trust the country where the software is written — and the countries where all the components are manufactured. In 2016, researchers discovered that many different models of cheap Android phones were sending information back to China. The phones might be American-made, but the software was from China. In 2016, researchers demonstrated an even more devious technique, where a backdoor could be added at the computer chip level in the factory that made the chips ­ without the knowledge of, and undetectable by, the engineers who designed the chips in the first place. Pretty much every US technology company manufactures its hardware in countries such as Malaysia, Indonesia, China and Taiwan.

We also have to trust the programmers. Today’s large software programs are written by teams of hundreds of programmers scattered around the globe. Backdoors, put there by we-have-no-idea-who, have been discovered in Juniper firewalls and D-Link routers, both of which are US companies. In 2003, someone almost slipped a very clever backdoor into Linux. Think of how many countries’ citizens are writing software for Apple or Microsoft or Google.

We can go even farther down the rabbit hole. We have to trust the distribution systems for our hardware and software. Documents disclosed by Edward Snowden showed the National Security Agency installing backdoors into Cisco routers being shipped to the Syrian telephone company. There are fake apps in the Google Play store that eavesdrop on you. Russian hackers subverted the update mechanism of a popular brand of Ukrainian accounting software to spread the NotPetya malware.

In 2017, researchers demonstrated that a smartphone can be subverted by installing a malicious replacement screen.

I could go on. Supply-chain security is an incredibly complex problem. US-only design and manufacturing isn’t an option; the tech world is far too internationally interdependent for that. We can’t trust anyone, yet we have no choice but to trust everyone. Our phones, computers, software and cloud systems are touched by citizens of dozens of different countries, any one of whom could subvert them at the demand of their government. And just as Russia is penetrating the US power grid so they have that capability in the event of hostilities, many countries are almost certainly doing the same thing at the consumer level.

We don’t know whether the risk of Huawei and ZTE equipment is great enough to warrant the ban. We don’t know what classified intelligence the United States has, and what it implies. But we do know that this is just a minor fix for a much larger problem. It’s doubtful that this ban will have any real effect. Members of the military, and everyone else, can still buy the phones. They just can’t buy them on US military bases. And while the US might block the occasional merger or acquisition, or ban the occasional hardware or software product, we’re largely ignoring that larger issue. Solving it borders on somewhere between incredibly expensive and realistically impossible.

Perhaps someday, global norms and international treaties will render this sort of device-level tampering off-limits. But until then, all we can do is hope that this particular arms race doesn’t get too far out of control.

This essay previously appeared in the Washington Post.

Ray Ozzie’s Encryption Backdoor

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/ray_ozzies_encr.html

Last month, Wired published a long article about Ray Ozzie and his supposed new scheme for adding a backdoor in encrypted devices. It’s a weird article. It paints Ozzie’s proposal as something that “attains the impossible” and “satisfies both law enforcement and privacy purists,” when (1) it’s barely a proposal, and (2) it’s essentially the same key escrow scheme we’ve been hearing about for decades.

Basically, each device has a unique public/private key pair and a secure processor. The public key goes into the processor and the device, and is used to encrypt whatever user key encrypts the data. The private key is stored in a secure database, available to law enforcement on demand. The only other trick is that for law enforcement to use that key, they have to put the device in some sort of irreversible recovery mode, which means it can never be used again. That’s basically it.

I have no idea why anyone is talking as if this were anything new. Several cryptographers have already explained why this key escrow scheme is no better than any other key escrow scheme. The short answer is (1) we won’t be able to secure that database of backdoor keys, (2) we don’t know how to build the secure coprocessor the scheme requires, and (3) it solves none of the policy problems around the whole system. This is the typical mistake non-cryptographers make when they approach this problem: they think that the hard part is the cryptography to create the backdoor. That’s actually the easy part. The hard part is ensuring that it’s only used by the good guys, and there’s nothing in Ozzie’s proposal that addresses any of that.

I worry that this kind of thing is damaging in the long run. There should be some rule that any backdoor or key escrow proposal be a fully specified proposal, not just some cryptography and hand-waving notions about how it will be used in practice. And before it is analyzed and debated, it should have to satisfy some sort of basic security analysis. Otherwise, we’ll be swatting pseudo-proposals like this one, while those on the other side of this debate become increasingly convinced that it’s possible to design one of these things securely.

Already people are using the National Academies report on backdoors for law enforcement as evidence that engineers are developing workable and secure backdoors. Writing in Lawfare, Alan Z. Rozenshtein claims that the report — and a related New York Times story — “undermine the argument that secure third-party access systems are so implausible that it’s not even worth trying to develop them.” Susan Landau effectively corrects this misconception, but the damage is done.

Here’s the thing: it’s not hard to design and build a backdoor. What’s hard is building the systems — both technical and procedural — around them. Here’s Rob Graham:

He’s only solving the part we already know how to solve. He’s deliberately ignoring the stuff we don’t know how to solve. We know how to make backdoors, we just don’t know how to secure them.

A bunch of us cryptographers have already explained why we don’t think this sort of thing will work in the foreseeable future. We write:

Exceptional access would force Internet system developers to reverse “forward secrecy” design practices that seek to minimize the impact on user privacy when systems are breached. The complexity of today’s Internet environment, with millions of apps and globally connected services, means that new law enforcement requirements are likely to introduce unanticipated, hard to detect security flaws. Beyond these and other technical vulnerabilities, the prospect of globally deployed exceptional access systems raises difficult problems about how such an environment would be governed and how to ensure that such systems would respect human rights and the rule of law.

Finally, Matthew Green:

The reason so few of us are willing to bet on massive-scale key escrow systems is that we’ve thought about it and we don’t think it will work. We’ve looked at the threat model, the usage model, and the quality of hardware and software that exists today. Our informed opinion is that there’s no detection system for key theft, there’s no renewability system, HSMs are terrifically vulnerable (and the companies largely staffed with ex-intelligence employees), and insiders can be suborned. We’re not going to put the data of a few billion people on the line an environment where we believe with high probability that the system will fail.

EDITED TO ADD (5/14): An analysis of the proposal.

Own your own working Pokémon Pokédex!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-pokedex/

Squeal with delight as your inner Pokémon trainer witnesses the wonder of Adrian Rosebrock’s deep learning Pokédex.

Creating a real-life Pokedex with a Raspberry Pi, Python, and Deep Learning

This video demos a real-like Pokedex, complete with visual recognition, that I created using a Raspberry Pi, Python, and Deep Learning. You can find the entire blog post, including code, using this link: https://www.pyimagesearch.com/2018/04/30/a-fun-hands-on-deep-learning-project-for-beginners-students-and-hobbyists/ Music credit to YouTube user “No Copyright” for providing royalty free music: https://www.youtube.com/watch?v=PXpjqURczn8

The history of Pokémon in 30 seconds

The Pokémon franchise was created by video game designer Satoshi Tajiri in 1995. In the fictional world of Pokémon, Pokémon Trainers explore the vast landscape, catching and training small creatures called Pokémon. To date, there are 802 different types of Pokémon. They range from the ever recognisable Pikachu, a bright yellow electric Pokémon, to the highly sought-after Shiny Charizard, a metallic, playing-card-shaped Pokémon that your mate Alex claims she has in mint condition, but refuses to show you.

Pokemon GIF

In the world of Pokémon, children as young as ten-year-old protagonist and all-round annoyance Ash Ketchum are allowed to leave home and wander the wilderness. There, they hunt vicious, deadly creatures in the hope of becoming a Pokémon Master.

Adrian’s deep learning Pokédex

Adrian is a bit of a deep learning pro, as demonstrated by his Santa/Not Santa detector, which we wrote about last year. For that project, he also provided a great explanation of what deep learning actually is. In a nutshell:

…a subfield of machine learning, which is, in turn, a subfield of artificial intelligence (AI).While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

As with his earlier Raspberry Pi project, Adrian uses the Keras deep learning model and the TensorFlow backend, plus a few other packages such as Adrian’s own imutils functions and OpenCV.

Adrian trained a Convolutional Neural Network using Keras on a dataset of 1191 Pokémon images, obtaining 96.84% accuracy. As Adrian explains, this model is able to identify Pokémon via still image and video. It’s perfect for creating a Pokédex – an interactive Pokémon catalogue that should, according to the franchise, be able to identify and read out information on any known Pokémon when captured by camera. More information on model training can be found on Adrian’s blog.

Adrian Rosebeck deep learning pokemon pokedex

For the physical build, a Raspberry Pi 3 with camera module is paired with the Raspberry Pi 7″ touch display to create a portable Pokédex. And while Adrian comments that the same result can be achieved using your home computer and a webcam, that’s not how Adrian rolls as a Raspberry Pi fan.

Adrian Rosebeck deep learning pokemon pokedex

Plus, the smaller size of the Pi is perfect for one of you to incorporate this deep learning model into a 3D-printed Pokédex for ultimate Pokémon glory, pretty please, thank you.

Adrian Rosebeck deep learning pokemon pokedex

Adrian has gone into impressive detail about how the project works and how you can create your own on his blog, pyimagesearch. So if you’re interested in learning more about deep learning, and making your own Pokédex, be sure to visit.

The post Own your own working Pokémon Pokédex! appeared first on Raspberry Pi.

Security Vulnerabilities in VingCard Electronic Locks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/security_vulner_14.html

Researchers have disclosed a massive vulnerability in the VingCard eletronic lock system, used in hotel rooms around the world:

With a $300 Proxmark RFID card reading and writing tool, any expired keycard pulled from the trash of a target hotel, and a set of cryptographic tricks developed over close to 15 years of on-and-off analysis of the codes Vingcard electronically writes to its keycards, they found a method to vastly narrow down a hotel’s possible master key code. They can use that handheld Proxmark device to cycle through all the remaining possible codes on any lock at the hotel, identify the correct one in about 20 tries, and then write that master code to a card that gives the hacker free reign to roam any room in the building. The whole process takes about a minute.

[…]

The two researchers say that their attack works only on Vingcard’s previous-generation Vision locks, not the company’s newer Visionline product. But they estimate that it nonetheless affects 140,000 hotels in more than 160 countries around the world; the researchers say that Vingcard’s Swedish parent company, Assa Abloy, admitted to them that the problem affects millions of locks in total. When WIRED reached out to Assa Abloy, however, the company put the total number of vulnerable locks somewhat lower, between 500,000 and a million.

Patching is a nightmare. It requires updating the firmware on every lock individually.

And the researchers speculate whether or not others knew of this hack:

The F-Secure researchers admit they don’t know if their Vinguard attack has occurred in the real world. But the American firm LSI, which trains law enforcement agencies in bypassing locks, advertises Vingcard’s products among those it promises to teach students to unlock. And the F-Secure researchers point to a 2010 assassination of a Palestinian Hamas official in a Dubai hotel, widely believed to have been carried out by the Israeli intelligence agency Mossad. The assassins in that case seemingly used a vulnerability in Vingcard locks to enter their target’s room, albeit one that required re-programming the lock. “Most probably Mossad has a capability to do something like this,” Tuominen says.

Slashdot post.

Implement continuous integration and delivery of serverless AWS Glue ETL applications using AWS Developer Tools

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/

AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.

AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.

When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:

  • Iterative development with unit tests
  • Continuous integration and build
  • Pushing the ETL pipeline to a test environment
  • Pushing the ETL pipeline to a production environment
  • Testing ETL applications using real data (live test)
  • Exploring and validating data

In this post, I walk you through a solution that implements a CI/CD pipeline for serverless AWS Glue ETL applications supported by AWS Developer Tools (including AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild) and AWS CloudFormation.

Solution overview

The following diagram shows the pipeline workflow:

This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:

1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.

To get the ETL job source code and AWS CloudFormation template, download the gluedemoetl.zip file. This solution is developed based on a previous post, Build a Data Lake Foundation with AWS Glue and Amazon S3.

2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.

The LiveTest stage includes the following actions:

  • Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
  • AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
  • LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
  • LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval

3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.

Try it out

This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).

To get started with this solution, choose Launch Stack:

This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.

In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.

After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.

Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.

In the CodeCommit console, choose Code in the navigation pane to view the solution files.

Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.

At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.

At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.

Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:

Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.

SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";

The following shows the raw data:

The following shows the transformed data:

The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.

Add comments as needed, and choose Approve.

The LiveTestApproval stage now appears as Approved on the console.

After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.

Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.

After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.

Conclusion

In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.

If you have questions or suggestions, please comment below.

 


Additional Reading

If you found this post useful, be sure to check out Implement Continuous Integration and Delivery of Apache Spark Applications using AWS and Build a Data Lake Foundation with AWS Glue and Amazon S3.

 


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

Facebook and Cambridge Analytica

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/facebook_and_ca.html

In the wake of the Cambridge Analytica scandal, news articles and commentators have focused on what Facebook knows about us. A lot, it turns out. It collects data from our posts, our likes, our photos, things we type and delete without posting, and things we do while not on Facebook and even when we’re offline. It buys data about us from others. And it can infer even more: our sexual orientation, political beliefs, relationship status, drug use, and other personality traits — even if we didn’t take the personality test that Cambridge Analytica developed.

But for every article about Facebook’s creepy stalker behavior, thousands of other companies are breathing a collective sigh of relief that it’s Facebook and not them in the spotlight. Because while Facebook is one of the biggest players in this space, there are thousands of other companies that spy on and manipulate us for profit.

Harvard Business School professor Shoshana Zuboff calls it “surveillance capitalism.” And as creepy as Facebook is turning out to be, the entire industry is far creepier. It has existed in secret far too long, and it’s up to lawmakers to force these companies into the public spotlight, where we can all decide if this is how we want society to operate and — if not — what to do about it.

There are 2,500 to 4,000 data brokers in the United States whose business is buying and selling our personal data. Last year, Equifax was in the news when hackers stole personal information on 150 million people, including Social Security numbers, birth dates, addresses, and driver’s license numbers.

You certainly didn’t give it permission to collect any of that information. Equifax is one of those thousands of data brokers, most of them you’ve never heard of, selling your personal information without your knowledge or consent to pretty much anyone who will pay for it.

Surveillance capitalism takes this one step further. Companies like Facebook and Google offer you free services in exchange for your data. Google’s surveillance isn’t in the news, but it’s startlingly intimate. We never lie to our search engines. Our interests and curiosities, hopes and fears, desires and sexual proclivities, are all collected and saved. Add to that the websites we visit that Google tracks through its advertising network, our Gmail accounts, our movements via Google Maps, and what it can collect from our smartphones.

That phone is probably the most intimate surveillance device ever invented. It tracks our location continuously, so it knows where we live, where we work, and where we spend our time. It’s the first and last thing we check in a day, so it knows when we wake up and when we go to sleep. We all have one, so it knows who we sleep with. Uber used just some of that information to detect one-night stands; your smartphone provider and any app you allow to collect location data knows a lot more.

Surveillance capitalism drives much of the internet. It’s behind most of the “free” services, and many of the paid ones as well. Its goal is psychological manipulation, in the form of personalized advertising to persuade you to buy something or do something, like vote for a candidate. And while the individualized profile-driven manipulation exposed by Cambridge Analytica feels abhorrent, it’s really no different from what every company wants in the end. This is why all your personal information is collected, and this is why it is so valuable. Companies that can understand it can use it against you.

None of this is new. The media has been reporting on surveillance capitalism for years. In 2015, I wrote a book about it. Back in 2010, the Wall Street Journal published an award-winning two-year series about how people are tracked both online and offline, titled “What They Know.”

Surveillance capitalism is deeply embedded in our increasingly computerized society, and if the extent of it came to light there would be broad demands for limits and regulation. But because this industry can largely operate in secret, only occasionally exposed after a data breach or investigative report, we remain mostly ignorant of its reach.

This might change soon. In 2016, the European Union passed the comprehensive General Data Protection Regulation, or GDPR. The details of the law are far too complex to explain here, but some of the things it mandates are that personal data of EU citizens can only be collected and saved for “specific, explicit, and legitimate purposes,” and only with explicit consent of the user. Consent can’t be buried in the terms and conditions, nor can it be assumed unless the user opts in. This law will take effect in May, and companies worldwide are bracing for its enforcement.

Because pretty much all surveillance capitalism companies collect data on Europeans, this will expose the industry like nothing else. Here’s just one example. In preparation for this law, PayPal quietly published a list of over 600 companies it might share your personal data with. What will it be like when every company has to publish this sort of information, and explicitly explain how it’s using your personal data? We’re about to find out.

In the wake of this scandal, even Mark Zuckerberg said that his industry probably should be regulated, although he’s certainly not wishing for the sorts of comprehensive regulation the GDPR is bringing to Europe.

He’s right. Surveillance capitalism has operated without constraints for far too long. And advances in both big data analysis and artificial intelligence will make tomorrow’s applications far creepier than today’s. Regulation is the only answer.

The first step to any regulation is transparency. Who has our data? Is it accurate? What are they doing with it? Who are they selling it to? How are they securing it? Can we delete it? I don’t see any hope of Congress passing a GDPR-like data protection law anytime soon, but it’s not too far-fetched to demand laws requiring these companies to be more transparent in what they’re doing.

One of the responses to the Cambridge Analytica scandal is that people are deleting their Facebook accounts. It’s hard to do right, and doesn’t do anything about the data that Facebook collects about people who don’t use Facebook. But it’s a start. The market can put pressure on these companies to reduce their spying on us, but it can only do that if we force the industry out of its secret shadows.

This essay previously appeared on CNN.com.

EDITED TO ADD (4/2): Slashdot thread.

SoFi, the underwater robotic fish

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robotic-fish/

With the Greenland shark finally caught on video for the very first time, scientists and engineers are discussing the limitations of current marine monitoring technology. One significant advance comes from the CSAIL team at Massachusetts Institute of Technology (MIT): SoFi, the robotic fish.

A Robotic Fish Swims in the Ocean

More info: http://bit.ly/SoFiRobot Paper: http://robert.katzschmann.eu/wp-content/uploads/2018/03/katzschmann2018exploration.pdf

The untethered SoFi robot

Last week, the Computer Science and Artificial Intelligence Laboratory (CSAIL) team at MIT unveiled SoFi, “a soft robotic fish that can independently swim alongside real fish in the ocean.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Directed by a Super Nintendo controller and acoustic signals, SoFi can dive untethered to a maximum of 18 feet for a total of 40 minutes. A Raspberry Pi receives input from the controller and amplifies the ultrasound signals for SoFi via a HiFiBerry. The controller, Raspberry Pi, and HiFiBerry are sealed within a waterproof, cast-moulded silicone membrane filled with non-conductive mineral oil, allowing for underwater equalisation.

MIT CSAIL underwater fish SoFi using Raspberry Pi

The ultrasound signals, received by a modem within SoFi’s head, control everything from direction, tail oscillation, pitch, and depth to the onboard camera.

As explained on MIT’s news blog, “to make the robot swim, the motor pumps water into two balloon-like chambers in the fish’s tail that operate like a set of pistons in an engine. As one chamber expands, it bends and flexes to one side; when the actuators push water to the other channel, that one bends and flexes in the other direction.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Ocean exploration

While we’ve seen many autonomous underwater vehicles (AUVs) using onboard Raspberry Pis, SoFi’s ability to roam untethered with a wireless waterproof controller is an exciting achievement.

“To our knowledge, this is the first robotic fish that can swim untethered in three dimensions for extended periods of time. We are excited about the possibility of being able to use a system like this to get closer to marine life than humans can get on their own.” – CSAIL PhD candidate Robert Katzschmann

As the MIT news post notes, SoFi’s simple, lightweight setup of a single camera, a motor, and a smartphone lithium polymer battery set it apart it from existing bulky AUVs that require large motors or support from boats.

For more in-depth information on SoFi and the onboard tech that controls it, find the CSAIL team’s paper here.

The post SoFi, the underwater robotic fish appeared first on Raspberry Pi.

HackSpace magazine 5: Inside Adafruit

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace-5/

There’s a new issue of HackSpace magazine on the shelves today, and as usual it’s full of things to make and do!

HackSpace magazine issue 5 Adafruit

Adafruit

We love making hardware, and we’d also love to turn this hobby into a way to make a living. So in the hope of picking up a few tips, we spoke to the woman behind Adafruit: Limor Fried, aka Ladyada.

HackSpace magazine issue 5 Adafruit

Adafruit has played a massive part in bringing the maker movement into homes and schools, so we’re chuffed to have Limor’s words of wisdom in the magazine.

Raspberry Pi 3B+

As you may have heard, there’s a new Pi in town, and that can only mean one thing for HackSpace magazine: let’s test it to its limits!

HackSpace magazine issue 5 Adafruit

The Raspberry Pi 3 Model B+ is faster, better, and stronger, but what does that mean in practical terms for your projects?

Toys

Kids are amazing! Their curious minds, untouched by mundane adulthood, come up with crazy stuff that no sensible grown-up would think to build. No sensible grown-up, that is, apart from the engineers behind Kids Invent Stuff, the brilliant YouTube channel that takes children’s inventions and makes them real.

So what is Kids Invent Stuff?!

Kids Invent Stuff is the YouTube channel where kids’ invention ideas get made into real working inventions. Learn more about Kids Invent Stuff at www.kidsinventstuff.com Have you seen Connor’s Crazy Car invention? https://youtu.be/4_sF6ZFNzrg Have you seen our Flamethrowing piano?

We spoke to Ruth Amos, entrepreneur, engineer, and one half of the Kids Invent Stuff team.

Buggy!

It shouldn’t just be kids who get to play with fun stuff! This month, in the name of research, we’ve brought a Stirling engine–powered buggy from Shenzhen.

HackSpace magazine issue 5 Adafruit

This ingenious mechanical engine is the closest you’ll get to owning a home-brew steam engine without running the risk of having a boiler explode in your face.

Tutorials

In this issue, turn a Dremel multitool into a workbench saw with some wood, perspex, and a bit of laser cutting; make a Starfleet com-badge and pretend you’re Captain Jean-Luc Picard (shaving your hair off not compulsory); add intelligence to builds the easy way with Node-RED; and get stuck into Cheerlights, one of the world’s biggest IoT project.


All this, plus your ultimate guide to blinkenlights, and the only knot you’ll ever need, in HackSpace magazine issue 5.

Subscribe, save, and get free stuff

Save up to 35% on the retail price by signing up to HackSpace magazine today. When you take out a 12-month subscription, you’ll also get a free Adafruit Circuit Playground Express!

HackSpace magazine issue 5 Adafruit

Individual copies of HackSpace magazine are available in selected stockists across the UK, including Tesco, WHSmith, and Sainsbury’s. They’ll also be making their way across the globe to USA, Canada, Australia, Brazil, Hong Kong, Singapore, and Belgium in the coming weeks, so ask your local retailer whether they’re getting a delivery.

You can also purchase your copy on the Raspberry Pi Press website, and browse our complete collection of other Raspberry Pi publications, such as The MagPi, Hello World, and Raspberry Pi Projects Books.

The post HackSpace magazine 5: Inside Adafruit appeared first on Raspberry Pi.

Artificial Intelligence and the Attack/Defense Balance

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/artificial_inte.html

Artificial intelligence technologies have the potential to upend the longstanding advantage that attack has over defense on the Internet. This has to do with the relative strengths and weaknesses of people and computers, how those all interplay in Internet security, and where AI technologies might change things.

You can divide Internet security tasks into two sets: what humans do well and what computers do well. Traditionally, computers excel at speed, scale, and scope. They can launch attacks in milliseconds and infect millions of computers. They can scan computer code to look for particular kinds of vulnerabilities, and data packets to identify particular kinds of attacks.

Humans, conversely, excel at thinking and reasoning. They can look at the data and distinguish a real attack from a false alarm, understand the attack as it’s happening, and respond to it. They can find new sorts of vulnerabilities in systems. Humans are creative and adaptive, and can understand context.

Computers — so far, at least — are bad at what humans do well. They’re not creative or adaptive. They don’t understand context. They can behave irrationally because of those things.

Humans are slow, and get bored at repetitive tasks. They’re terrible at big data analysis. They use cognitive shortcuts, and can only keep a few data points in their head at a time. They can also behave irrationally because of those things.

AI will allow computers to take over Internet security tasks from humans, and then do them faster and at scale. Here are possible AI capabilities:

  • Discovering new vulnerabilities­ — and, more importantly, new types of vulnerabilities­ in systems, both by the offense to exploit and by the defense to patch, and then automatically exploiting or patching them.
  • Reacting and adapting to an adversary’s actions, again both on the offense and defense sides. This includes reasoning about those actions and what they mean in the context of the attack and the environment.
  • Abstracting lessons from individual incidents, generalizing them across systems and networks, and applying those lessons to increase attack and defense effectiveness elsewhere.
  • Identifying strategic and tactical trends from large datasets and using those trends to adapt attack and defense tactics.

That’s an incomplete list. I don’t think anyone can predict what AI technologies will be capable of. But it’s not unreasonable to look at what humans do today and imagine a future where AIs are doing the same things, only at computer speeds, scale, and scope.

Both attack and defense will benefit from AI technologies, but I believe that AI has the capability to tip the scales more toward defense. There will be better offensive and defensive AI techniques. But here’s the thing: defense is currently in a worse position than offense precisely because of the human components. Present-day attacks pit the relative advantages of computers and humans against the relative weaknesses of computers and humans. Computers moving into what are traditionally human areas will rebalance that equation.

Roy Amara famously said that we overestimate the short-term effects of new technologies, but underestimate their long-term effects. AI is notoriously hard to predict, so many of the details I speculate about are likely to be wrong­ — and AI is likely to introduce new asymmetries that we can’t foresee. But AI is the most promising technology I’ve seen for bringing defense up to par with offense. For Internet security, that will change everything.

This essay previously appeared in the March/April 2018 issue of IEEE Security & Privacy.