Tag Archives: intelligence

Implement continuous integration and delivery of serverless AWS Glue ETL applications using AWS Developer Tools

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/

AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.

AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.

When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:

  • Iterative development with unit tests
  • Continuous integration and build
  • Pushing the ETL pipeline to a test environment
  • Pushing the ETL pipeline to a production environment
  • Testing ETL applications using real data (live test)
  • Exploring and validating data

In this post, I walk you through a solution that implements a CI/CD pipeline for serverless AWS Glue ETL applications supported by AWS Developer Tools (including AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild) and AWS CloudFormation.

Solution overview

The following diagram shows the pipeline workflow:

This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:

1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.

To get the ETL job source code and AWS CloudFormation template, download the gluedemoetl.zip file. This solution is developed based on a previous post, Build a Data Lake Foundation with AWS Glue and Amazon S3.

2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.

The LiveTest stage includes the following actions:

  • Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
  • AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
  • LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
  • LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval

3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.

Try it out

This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).

To get started with this solution, choose Launch Stack:

This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.

In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.

After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.

Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.

In the CodeCommit console, choose Code in the navigation pane to view the solution files.

Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.

At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.

At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.

Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:

Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.

SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";

The following shows the raw data:

The following shows the transformed data:

The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.

Add comments as needed, and choose Approve.

The LiveTestApproval stage now appears as Approved on the console.

After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.

Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.

After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.

Conclusion

In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.

If you have questions or suggestions, please comment below.

 


Additional Reading

If you found this post useful, be sure to check out Implement Continuous Integration and Delivery of Apache Spark Applications using AWS and Build a Data Lake Foundation with AWS Glue and Amazon S3.

 


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

Forty Percent of All Mexican Roku Users are Pirates

Post Syndicated from Ernesto original https://torrentfreak.com/forty-percent-of-all-mexican-roku-users-are-pirates-180332/

In recent years it has become much easier to stream movies and TV-shows over the Internet.

Legal services such as Netflix and HBO are flourishing, but there’s also a darker side to this streaming epidemic.

Millions of people are streaming from unauthorized sources, often paired with perfectly legal streaming platforms and devices. This issue has become particularly problematic for Roku, which sells easy-to-use media players.

Last week federal judges in Mexico City and Torreón decided that Roku sales should remain banned there, keeping last year’s suspension in place. While the ruling can still be appealed, it hurts Roku’s bottom line.

The company has more than a million users in Mexico according to statistics released by the Competitive Intelligence Unit (CIU), a local market research firm. That’s a significant number, but so is the percentage of pirating Roku users in Mexico.

“Roku has 1.1 million users in the country, of which 40 percent use it to watch content illegally,” Gonzalo Rojon, ICU’s director of ICT research, writes.

“There are 575 thousand users who access the illegal content and that is comparable to the number of subscribers a small pay-TV operator has,” he adds.

While this is indeed a significant number, that doesn’t make the Roku boxes illegal by default. There are millions who use Windows to pirate stuff, or web browsers like Chrome and Firefox, but these are generally not seen as problematic.

Still, several Mexican judges have ruled that sales should be banned so for the time being it remains that way.

According to Rojon, these type of measures are imperative to ensure that copyright holders are protected from online piracy, now that more and more content is moving online.

“Although for some people this type of action seems radical, I think it is very important that the shift towards more digitalization is accompanied by copyright and intellectual property protection, so it continues to promote innovation and a healthy competitive environment in the digital world,” he notes.

Roku clearly disagrees and last week the company told us that it will do everything in its power to have the current sales ban overturned.

“While Roku’s devices have always been and remain legal to use in Mexico, the current ban harms consumers, the retail sector and the industry. We will vigorously pursue further legal actions with the aim of restoring sales of Roku devices in Mexico,” the company said.

Meanwhile, Roku is working hard to shake the piracy elements off its platform. Last year it began showing FBI warnings to users of ‘pirate channels’ and just this week removed the entire USTVnow service from its platform.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Facebook and Cambridge Analytica

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/facebook_and_ca.html

In the wake of the Cambridge Analytica scandal, news articles and commentators have focused on what Facebook knows about us. A lot, it turns out. It collects data from our posts, our likes, our photos, things we type and delete without posting, and things we do while not on Facebook and even when we’re offline. It buys data about us from others. And it can infer even more: our sexual orientation, political beliefs, relationship status, drug use, and other personality traits — even if we didn’t take the personality test that Cambridge Analytica developed.

But for every article about Facebook’s creepy stalker behavior, thousands of other companies are breathing a collective sigh of relief that it’s Facebook and not them in the spotlight. Because while Facebook is one of the biggest players in this space, there are thousands of other companies that spy on and manipulate us for profit.

Harvard Business School professor Shoshana Zuboff calls it “surveillance capitalism.” And as creepy as Facebook is turning out to be, the entire industry is far creepier. It has existed in secret far too long, and it’s up to lawmakers to force these companies into the public spotlight, where we can all decide if this is how we want society to operate and — if not — what to do about it.

There are 2,500 to 4,000 data brokers in the United States whose business is buying and selling our personal data. Last year, Equifax was in the news when hackers stole personal information on 150 million people, including Social Security numbers, birth dates, addresses, and driver’s license numbers.

You certainly didn’t give it permission to collect any of that information. Equifax is one of those thousands of data brokers, most of them you’ve never heard of, selling your personal information without your knowledge or consent to pretty much anyone who will pay for it.

Surveillance capitalism takes this one step further. Companies like Facebook and Google offer you free services in exchange for your data. Google’s surveillance isn’t in the news, but it’s startlingly intimate. We never lie to our search engines. Our interests and curiosities, hopes and fears, desires and sexual proclivities, are all collected and saved. Add to that the websites we visit that Google tracks through its advertising network, our Gmail accounts, our movements via Google Maps, and what it can collect from our smartphones.

That phone is probably the most intimate surveillance device ever invented. It tracks our location continuously, so it knows where we live, where we work, and where we spend our time. It’s the first and last thing we check in a day, so it knows when we wake up and when we go to sleep. We all have one, so it knows who we sleep with. Uber used just some of that information to detect one-night stands; your smartphone provider and any app you allow to collect location data knows a lot more.

Surveillance capitalism drives much of the internet. It’s behind most of the “free” services, and many of the paid ones as well. Its goal is psychological manipulation, in the form of personalized advertising to persuade you to buy something or do something, like vote for a candidate. And while the individualized profile-driven manipulation exposed by Cambridge Analytica feels abhorrent, it’s really no different from what every company wants in the end. This is why all your personal information is collected, and this is why it is so valuable. Companies that can understand it can use it against you.

None of this is new. The media has been reporting on surveillance capitalism for years. In 2015, I wrote a book about it. Back in 2010, the Wall Street Journal published an award-winning two-year series about how people are tracked both online and offline, titled “What They Know.”

Surveillance capitalism is deeply embedded in our increasingly computerized society, and if the extent of it came to light there would be broad demands for limits and regulation. But because this industry can largely operate in secret, only occasionally exposed after a data breach or investigative report, we remain mostly ignorant of its reach.

This might change soon. In 2016, the European Union passed the comprehensive General Data Protection Regulation, or GDPR. The details of the law are far too complex to explain here, but some of the things it mandates are that personal data of EU citizens can only be collected and saved for “specific, explicit, and legitimate purposes,” and only with explicit consent of the user. Consent can’t be buried in the terms and conditions, nor can it be assumed unless the user opts in. This law will take effect in May, and companies worldwide are bracing for its enforcement.

Because pretty much all surveillance capitalism companies collect data on Europeans, this will expose the industry like nothing else. Here’s just one example. In preparation for this law, PayPal quietly published a list of over 600 companies it might share your personal data with. What will it be like when every company has to publish this sort of information, and explicitly explain how it’s using your personal data? We’re about to find out.

In the wake of this scandal, even Mark Zuckerberg said that his industry probably should be regulated, although he’s certainly not wishing for the sorts of comprehensive regulation the GDPR is bringing to Europe.

He’s right. Surveillance capitalism has operated without constraints for far too long. And advances in both big data analysis and artificial intelligence will make tomorrow’s applications far creepier than today’s. Regulation is the only answer.

The first step to any regulation is transparency. Who has our data? Is it accurate? What are they doing with it? Who are they selling it to? How are they securing it? Can we delete it? I don’t see any hope of Congress passing a GDPR-like data protection law anytime soon, but it’s not too far-fetched to demand laws requiring these companies to be more transparent in what they’re doing.

One of the responses to the Cambridge Analytica scandal is that people are deleting their Facebook accounts. It’s hard to do right, and doesn’t do anything about the data that Facebook collects about people who don’t use Facebook. But it’s a start. The market can put pressure on these companies to reduce their spying on us, but it can only do that if we force the industry out of its secret shadows.

This essay previously appeared on CNN.com.

EDITED TO ADD (4/2): Slashdot thread.

SoFi, the underwater robotic fish

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robotic-fish/

With the Greenland shark finally caught on video for the very first time, scientists and engineers are discussing the limitations of current marine monitoring technology. One significant advance comes from the CSAIL team at Massachusetts Institute of Technology (MIT): SoFi, the robotic fish.

A Robotic Fish Swims in the Ocean

More info: http://bit.ly/SoFiRobot Paper: http://robert.katzschmann.eu/wp-content/uploads/2018/03/katzschmann2018exploration.pdf

The untethered SoFi robot

Last week, the Computer Science and Artificial Intelligence Laboratory (CSAIL) team at MIT unveiled SoFi, “a soft robotic fish that can independently swim alongside real fish in the ocean.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Directed by a Super Nintendo controller and acoustic signals, SoFi can dive untethered to a maximum of 18 feet for a total of 40 minutes. A Raspberry Pi receives input from the controller and amplifies the ultrasound signals for SoFi via a HiFiBerry. The controller, Raspberry Pi, and HiFiBerry are sealed within a waterproof, cast-moulded silicone membrane filled with non-conductive mineral oil, allowing for underwater equalisation.

MIT CSAIL underwater fish SoFi using Raspberry Pi

The ultrasound signals, received by a modem within SoFi’s head, control everything from direction, tail oscillation, pitch, and depth to the onboard camera.

As explained on MIT’s news blog, “to make the robot swim, the motor pumps water into two balloon-like chambers in the fish’s tail that operate like a set of pistons in an engine. As one chamber expands, it bends and flexes to one side; when the actuators push water to the other channel, that one bends and flexes in the other direction.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Ocean exploration

While we’ve seen many autonomous underwater vehicles (AUVs) using onboard Raspberry Pis, SoFi’s ability to roam untethered with a wireless waterproof controller is an exciting achievement.

“To our knowledge, this is the first robotic fish that can swim untethered in three dimensions for extended periods of time. We are excited about the possibility of being able to use a system like this to get closer to marine life than humans can get on their own.” – CSAIL PhD candidate Robert Katzschmann

As the MIT news post notes, SoFi’s simple, lightweight setup of a single camera, a motor, and a smartphone lithium polymer battery set it apart it from existing bulky AUVs that require large motors or support from boats.

For more in-depth information on SoFi and the onboard tech that controls it, find the CSAIL team’s paper here.

The post SoFi, the underwater robotic fish appeared first on Raspberry Pi.

HackSpace magazine 5: Inside Adafruit

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace-5/

There’s a new issue of HackSpace magazine on the shelves today, and as usual it’s full of things to make and do!

HackSpace magazine issue 5 Adafruit

Adafruit

We love making hardware, and we’d also love to turn this hobby into a way to make a living. So in the hope of picking up a few tips, we spoke to the woman behind Adafruit: Limor Fried, aka Ladyada.

HackSpace magazine issue 5 Adafruit

Adafruit has played a massive part in bringing the maker movement into homes and schools, so we’re chuffed to have Limor’s words of wisdom in the magazine.

Raspberry Pi 3B+

As you may have heard, there’s a new Pi in town, and that can only mean one thing for HackSpace magazine: let’s test it to its limits!

HackSpace magazine issue 5 Adafruit

The Raspberry Pi 3 Model B+ is faster, better, and stronger, but what does that mean in practical terms for your projects?

Toys

Kids are amazing! Their curious minds, untouched by mundane adulthood, come up with crazy stuff that no sensible grown-up would think to build. No sensible grown-up, that is, apart from the engineers behind Kids Invent Stuff, the brilliant YouTube channel that takes children’s inventions and makes them real.

So what is Kids Invent Stuff?!

Kids Invent Stuff is the YouTube channel where kids’ invention ideas get made into real working inventions. Learn more about Kids Invent Stuff at www.kidsinventstuff.com Have you seen Connor’s Crazy Car invention? https://youtu.be/4_sF6ZFNzrg Have you seen our Flamethrowing piano?

We spoke to Ruth Amos, entrepreneur, engineer, and one half of the Kids Invent Stuff team.

Buggy!

It shouldn’t just be kids who get to play with fun stuff! This month, in the name of research, we’ve brought a Stirling engine–powered buggy from Shenzhen.

HackSpace magazine issue 5 Adafruit

This ingenious mechanical engine is the closest you’ll get to owning a home-brew steam engine without running the risk of having a boiler explode in your face.

Tutorials

In this issue, turn a Dremel multitool into a workbench saw with some wood, perspex, and a bit of laser cutting; make a Starfleet com-badge and pretend you’re Captain Jean-Luc Picard (shaving your hair off not compulsory); add intelligence to builds the easy way with Node-RED; and get stuck into Cheerlights, one of the world’s biggest IoT project.


All this, plus your ultimate guide to blinkenlights, and the only knot you’ll ever need, in HackSpace magazine issue 5.

Subscribe, save, and get free stuff

Save up to 35% on the retail price by signing up to HackSpace magazine today. When you take out a 12-month subscription, you’ll also get a free Adafruit Circuit Playground Express!

HackSpace magazine issue 5 Adafruit

Individual copies of HackSpace magazine are available in selected stockists across the UK, including Tesco, WHSmith, and Sainsbury’s. They’ll also be making their way across the globe to USA, Canada, Australia, Brazil, Hong Kong, Singapore, and Belgium in the coming weeks, so ask your local retailer whether they’re getting a delivery.

You can also purchase your copy on the Raspberry Pi Press website, and browse our complete collection of other Raspberry Pi publications, such as The MagPi, Hello World, and Raspberry Pi Projects Books.

The post HackSpace magazine 5: Inside Adafruit appeared first on Raspberry Pi.

Artificial Intelligence and the Attack/Defense Balance

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/artificial_inte.html

Artificial intelligence technologies have the potential to upend the longstanding advantage that attack has over defense on the Internet. This has to do with the relative strengths and weaknesses of people and computers, how those all interplay in Internet security, and where AI technologies might change things.

You can divide Internet security tasks into two sets: what humans do well and what computers do well. Traditionally, computers excel at speed, scale, and scope. They can launch attacks in milliseconds and infect millions of computers. They can scan computer code to look for particular kinds of vulnerabilities, and data packets to identify particular kinds of attacks.

Humans, conversely, excel at thinking and reasoning. They can look at the data and distinguish a real attack from a false alarm, understand the attack as it’s happening, and respond to it. They can find new sorts of vulnerabilities in systems. Humans are creative and adaptive, and can understand context.

Computers — so far, at least — are bad at what humans do well. They’re not creative or adaptive. They don’t understand context. They can behave irrationally because of those things.

Humans are slow, and get bored at repetitive tasks. They’re terrible at big data analysis. They use cognitive shortcuts, and can only keep a few data points in their head at a time. They can also behave irrationally because of those things.

AI will allow computers to take over Internet security tasks from humans, and then do them faster and at scale. Here are possible AI capabilities:

  • Discovering new vulnerabilities­ — and, more importantly, new types of vulnerabilities­ in systems, both by the offense to exploit and by the defense to patch, and then automatically exploiting or patching them.
  • Reacting and adapting to an adversary’s actions, again both on the offense and defense sides. This includes reasoning about those actions and what they mean in the context of the attack and the environment.
  • Abstracting lessons from individual incidents, generalizing them across systems and networks, and applying those lessons to increase attack and defense effectiveness elsewhere.
  • Identifying strategic and tactical trends from large datasets and using those trends to adapt attack and defense tactics.

That’s an incomplete list. I don’t think anyone can predict what AI technologies will be capable of. But it’s not unreasonable to look at what humans do today and imagine a future where AIs are doing the same things, only at computer speeds, scale, and scope.

Both attack and defense will benefit from AI technologies, but I believe that AI has the capability to tip the scales more toward defense. There will be better offensive and defensive AI techniques. But here’s the thing: defense is currently in a worse position than offense precisely because of the human components. Present-day attacks pit the relative advantages of computers and humans against the relative weaknesses of computers and humans. Computers moving into what are traditionally human areas will rebalance that equation.

Roy Amara famously said that we overestimate the short-term effects of new technologies, but underestimate their long-term effects. AI is notoriously hard to predict, so many of the details I speculate about are likely to be wrong­ — and AI is likely to introduce new asymmetries that we can’t foresee. But AI is the most promising technology I’ve seen for bringing defense up to par with offense. For Internet security, that will change everything.

This essay previously appeared in the March/April 2018 issue of IEEE Security & Privacy.

Best Practices for Running Apache Kafka on AWS

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-kafka-on-aws/

This post was written in partnership with Intuit to share learnings, best practices, and recommendations for running an Apache Kafka cluster on AWS. Thanks to Vaishak Suresh and his colleagues at Intuit for their contribution and support.

Intuit, in their own words: Intuit, a leading enterprise customer for AWS, is a creator of business and financial management solutions. For more information on how Intuit partners with AWS, see our previous blog post, Real-time Stream Processing Using Apache Spark Streaming and Apache Kafka on AWS. Apache Kafka is an open-source, distributed streaming platform that enables you to build real-time streaming applications.

The best practices described in this post are based on our experience in running and operating large-scale Kafka clusters on AWS for more than two years. Our intent for this post is to help AWS customers who are currently running Kafka on AWS, and also customers who are considering migrating on-premises Kafka deployments to AWS.

AWS offers Amazon Kinesis Data Streams, a Kafka alternative that is fully managed.

Running your Kafka deployment on Amazon EC2 provides a high performance, scalable solution for ingesting streaming data. AWS offers many different instance types and storage option combinations for Kafka deployments. However, given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.

In this blog post, we cover the following aspects of running Kafka clusters on AWS:

  • Deployment considerations and patterns
  • Storage options
  • Instance types
  • Networking
  • Upgrades
  • Performance tuning
  • Monitoring
  • Security
  • Backup and restore

Note: While implementing Kafka clusters in a production environment, make sure also to consider factors like your number of messages, message size, monitoring, failure handling, and any operational issues.

Deployment considerations and patterns

In this section, we discuss various deployment options available for Kafka on AWS, along with pros and cons of each option. A successful deployment starts with thoughtful consideration of these options. Considering availability, consistency, and operational overhead of the deployment helps when choosing the right option.

Single AWS Region, Three Availability Zones, All Active

One typical deployment pattern (all active) is in a single AWS Region with three Availability Zones (AZs). One Kafka cluster is deployed in each AZ along with Apache ZooKeeper and Kafka producer and consumer instances as shown in the illustration following.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers and Kafka cluster are deployed on each AZ.
  • Data is distributed evenly across three Kafka clusters by using Elastic Load Balancer.
  • Kafka consumers aggregate data from all three Kafka clusters.

Kafka cluster failover occurs this way:

  • Mark down all Kafka producers
  • Stop consumers
  • Debug and restack Kafka
  • Restart consumers
  • Restart Kafka producers

Following are the pros and cons of this pattern.

Pros Cons
  • Highly available
  • Can sustain the failure of two AZs
  • No message loss during failover
  • Simple deployment

 

  • Very high operational overhead:
    • All changes need to be deployed three times, one for each Kafka cluster
    • Maintaining and monitoring three Kafka clusters
    • Maintaining and monitoring three consumer clusters

A restart is required for patching and upgrading brokers in a Kafka cluster. In this approach, a rolling upgrade is done separately for each cluster.

Single Region, Three Availability Zones, Active-Standby

Another typical deployment pattern (active-standby) is in a single AWS Region with a single Kafka cluster and Kafka brokers and Zookeepers distributed across three AZs. Another similar Kafka cluster acts as a standby as shown in the illustration following. You can use Kafka mirroring with MirrorMaker to replicate messages between any two clusters.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers are deployed on all three AZs.
  • Only one Kafka cluster is deployed across three AZs (active).
  • ZooKeeper instances are deployed on each AZ.
  • Brokers are spread evenly across all three AZs.
  • Kafka consumers can be deployed across all three AZs.
  • Standby Kafka producers and a Multi-AZ Kafka cluster are part of the deployment.

Kafka cluster failover occurs this way:

  • Switch traffic to standby Kafka producers cluster and Kafka cluster.
  • Restart consumers to consume from standby Kafka cluster.

Following are the pros and cons of this pattern.

Pros Cons
  • Less operational overhead when compared to the first option
  • Only one Kafka cluster to manage and consume data from
  • Can handle single AZ failures without activating a standby Kafka cluster
  • Added latency due to cross-AZ data transfer among Kafka brokers
  • For Kafka versions before 0.10, replicas for topic partitions have to be assigned so they’re distributed to the brokers on different AZs (rack-awareness)
  • The cluster can become unavailable in case of a network glitch, where ZooKeeper does not see Kafka brokers
  • Possibility of in-transit message loss during failover

Intuit recommends using a single Kafka cluster in one AWS Region, with brokers distributing across three AZs (single region, three AZs). This approach offers stronger fault tolerance than otherwise, because a failed AZ won’t cause Kafka downtime.

Storage options

There are two storage options for file storage in Amazon EC2:

Ephemeral storage is local to the Amazon EC2 instance. It can provide high IOPS based on the instance type. On the other hand, Amazon EBS volumes offer higher resiliency and you can configure IOPS based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. Your choice of storage is closely related to the type of workload supported by your Kafka cluster.

Kafka provides built-in fault tolerance by replicating data partitions across a configurable number of instances. If a broker fails, you can recover it by fetching all the data from other brokers in the cluster that host the other replicas. Depending on the size of the data transfer, it can affect recovery process and network traffic. These in turn eventually affect the cluster’s performance.

The following table contrasts the benefits of using an instance store versus using EBS for storage.

Instance store EBS
  • Instance storage is recommended for large- and medium-sized Kafka clusters. For a large cluster, read/write traffic is distributed across a high number of brokers, so the loss of a broker has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important, but a failed broker takes longer and requires more network traffic for a smaller Kafka cluster.
  • Storage-optimized instances like h1, i3, and d2 are an ideal choice for distributed applications like Kafka.

 

  • The primary advantage of using EBS in a Kafka deployment is that it significantly reduces data-transfer traffic when a broker fails or must be replaced. The replacement broker joins the cluster much faster.
  • Data stored on EBS is persisted in case of an instance failure or termination. The broker’s data stored on an EBS volume remains intact, and you can mount the EBS volume to a new EC2 instance. Most of the replicated data for the replacement broker is already available in the EBS volume and need not be copied over the network from another broker. Only the changes made after the original broker failure need to be transferred across the network. That makes this process much faster.

 

 

Intuit chose EBS because of their frequent instance restacking requirements and also other benefits provided by EBS.

Generally, Kafka deployments use a replication factor of three. EBS offers replication within their service, so Intuit chose a replication factor of two instead of three.

Instance types

The choice of instance types is generally driven by the type of storage required for your streaming applications on a Kafka cluster. If your application requires ephemeral storage, h1, i3, and d2 instances are your best option.

Intuit used r3.xlarge instances for their brokers and r3.large for ZooKeeper, with ST1 (throughput optimized HDD) EBS for their Kafka cluster.

Here are sample benchmark numbers from Intuit tests.

Configuration Broker bytes (MB/s)
  • r3.xlarge
  • ST1 EBS
  • 12 brokers
  • 12 partitions

 

Aggregate 346.9

If you need EBS storage, then AWS has a newer-generation r4 instance. The r4 instance is superior to R3 in many ways:

  • It has a faster processor (Broadwell).
  • EBS is optimized by default.
  • It features networking based on Elastic Network Adapter (ENA), with up to 10 Gbps on smaller sizes.
  • It costs 20 percent less than R3.

Note: It’s always best practice to check for the latest changes in instance types.

Networking

The network plays a very important role in a distributed system like Kafka. A fast and reliable network ensures that nodes can communicate with each other easily. The available network throughput controls the maximum amount of traffic that Kafka can handle. Network throughput, combined with disk storage, is often the governing factor for cluster sizing.

If you expect your cluster to receive high read/write traffic, select an instance type that offers 10-Gb/s performance.

In addition, choose an option that keeps interbroker network traffic on the private subnet, because this approach allows clients to connect to the brokers. Communication between brokers and clients uses the same network interface and port. For more details, see the documentation about IP addressing for EC2 instances.

If you are deploying in more than one AWS Region, you can connect the two VPCs in the two AWS Regions using cross-region VPC peering. However, be aware of the networking costs associated with cross-AZ deployments.

Upgrades

Kafka has a history of not being backward compatible, but its support of backward compatibility is getting better. During a Kafka upgrade, you should keep your producer and consumer clients on a version equal to or lower than the version you are upgrading from. After the upgrade is finished, you can start using a new protocol version and any new features it supports. There are three upgrade approaches available, discussed following.

Rolling or in-place upgrade

In a rolling or in-place upgrade scenario, upgrade one Kafka broker at a time. Take into consideration the recommendations for doing rolling restarts to avoid downtime for end users.

Downtime upgrade

If you can afford the downtime, you can take your entire cluster down, upgrade each Kafka broker, and then restart the cluster.

Blue/green upgrade

Intuit followed the blue/green deployment model for their workloads, as described following.

If you can afford to create a separate Kafka cluster and upgrade it, we highly recommend the blue/green upgrade scenario. In this scenario, we recommend that you keep your clusters up-to-date with the latest Kafka version. For additional details on Kafka version upgrades or more details, see the Kafka upgrade documentation.

The following illustration shows a blue/green upgrade.

In this scenario, the upgrade plan works like this:

  • Create a new Kafka cluster on AWS.
  • Create a new Kafka producers stack to point to the new Kafka cluster.
  • Create topics on the new Kafka cluster.
  • Test the green deployment end to end (sanity check).
  • Using Amazon Route 53, change the new Kafka producers stack on AWS to point to the new green Kafka environment that you have created.

The roll-back plan works like this:

  • Switch Amazon Route 53 to the old Kafka producers stack on AWS to point to the old Kafka environment.

For additional details on blue/green deployment architecture using Kafka, see the re:Invent presentation Leveraging the Cloud with a Blue-Green Deployment Architecture.

Performance tuning

You can tune Kafka performance in multiple dimensions. Following are some best practices for performance tuning.

 These are some general performance tuning techniques:

  • If throughput is less than network capacity, try the following:
    • Add more threads
    • Increase batch size
    • Add more producer instances
    • Add more partitions
  • To improve latency when acks =-1, increase your num.replica.fetches value.
  • For cross-AZ data transfer, tune your buffer settings for sockets and for OS TCP.
  • Make sure that num.io.threads is greater than the number of disks dedicated for Kafka.
  • Adjust num.network.threads based on the number of producers plus the number of consumers plus the replication factor.
  • Your message size affects your network bandwidth. To get higher performance from a Kafka cluster, select an instance type that offers 10 Gb/s performance.

For Java and JVM tuning, try the following:

  • Minimize GC pauses by using the Oracle JDK, which uses the new G1 garbage-first collector.
  • Try to keep the Kafka heap size below 4 GB.

Monitoring

Knowing whether a Kafka cluster is working correctly in a production environment is critical. Sometimes, just knowing that the cluster is up is enough, but Kafka applications have many moving parts to monitor. In fact, it can easily become confusing to understand what’s important to watch and what you can set aside. Items to monitor range from simple metrics about the overall rate of traffic, to producers, consumers, brokers, controller, ZooKeeper, topics, partitions, messages, and so on.

For monitoring, Intuit used several tools, including Newrelec, Wavefront, Amazon CloudWatch, and AWS CloudTrail. Our recommended monitoring approach follows.

For system metrics, we recommend that you monitor:

  • CPU load
  • Network metrics
  • File handle usage
  • Disk space
  • Disk I/O performance
  • Garbage collection
  • ZooKeeper

For producers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

For consumers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

Security

Like most distributed systems, Kafka provides the mechanisms to transfer data with relatively high security across the components involved. Depending on your setup, security might involve different services such as encryption, Kerberos, Transport Layer Security (TLS) certificates, and advanced access control list (ACL) setup in brokers and ZooKeeper. The following tells you more about the Intuit approach. For details on Kafka security not covered in this section, see the Kafka documentation.

Encryption at rest

For EBS-backed EC2 instances, you can enable encryption at rest by using Amazon EBS volumes with encryption enabled. Amazon EBS uses AWS Key Management Service (AWS KMS) for encryption. For more details, see Amazon EBS Encryption in the EBS documentation. For instance store–backed EC2 instances, you can enable encryption at rest by using Amazon EC2 instance store encryption.

Encryption in transit

Kafka uses TLS for client and internode communications.

Authentication

Authentication of connections to brokers from clients (producers and consumers) to other brokers and tools uses either Secure Sockets Layer (SSL) or Simple Authentication and Security Layer (SASL).

Kafka supports Kerberos authentication. If you already have a Kerberos server, you can add Kafka to your current configuration.

Authorization

In Kafka, authorization is pluggable and integration with external authorization services is supported.

Backup and restore

The type of storage used in your deployment dictates your backup and restore strategy.

The best way to back up a Kafka cluster based on instance storage is to set up a second cluster and replicate messages using MirrorMaker. Kafka’s mirroring feature makes it possible to maintain a replica of an existing Kafka cluster. Depending on your setup and requirements, your backup cluster might be in the same AWS Region as your main cluster or in a different one.

For EBS-based deployments, you can enable automatic snapshots of EBS volumes to back up volumes. You can easily create new EBS volumes from these snapshots to restore. We recommend storing backup files in Amazon S3.

For more information on how to back up in Kafka, see the Kafka documentation.

Conclusion

In this post, we discussed several patterns for running Kafka in the AWS Cloud. AWS also provides an alternative managed solution with Amazon Kinesis Data Streams, there are no servers to manage or scaling cliffs to worry about, you can scale the size of your streaming pipeline in seconds without downtime, data replication across availability zones is automatic, you benefit from security out of the box, Kinesis Data Streams is tightly integrated with a wide variety of AWS services like Lambda, Redshift, Elasticsearch and it supports open source frameworks like Storm, Spark, Flink, and more. You may refer to kafka-kinesis connector.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Implement Serverless Log Analytics Using Amazon Kinesis Analytics and Real-time Clickstream Anomaly Detection with Amazon Kinesis Analytics.


About the Author

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 

 

AskRob: Does Tor let government peek at vuln info?

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/askrob-does-tor-let-government-peek-at.html

On Twitter, somebody asked this question:

The question is about a blog post that claims Tor privately tips off the government about vulnerabilities, using as proof a “vulnerability” from October 2007 that wasn’t made public until 2011.
The tl;dr is that it’s bunk. There was no vulnerability, it was a feature request. The details were already public. There was no spy agency involved, but the agency that does Voice of America, and which tries to protect activists under foreign repressive regimes.

Discussion

The issue is that Tor traffic looks like Tor traffic, making it easy to block/censor, or worse, identify users. Over the years, Tor has added features to make it look more and more like normal traffic, like the encrypted traffic used by Facebook, Google, and Apple. Tors improves this bit-by-bit over time, but short of actually piggybacking on website traffic, it will always leave some telltale signature.
An example showing how we can distinguish Tor traffic is the packet below, from the latest version of the Tor server:
Had this been Google or Facebook, the names would be something like “www.google.com” or “facebook.com”. Or, had this been a normal “self-signed” certificate, the names would still be recognizable. But Tor creates randomized names, with letters and numbers, making it distinctive. It’s hard to automate detection of this, because it’s only probably Tor (other self-signed certificates look like this, too), which means you’ll have occasional “false-positives”. But still, if you compare this to the pattern of traffic, you can reliably detect that Tor is happening on your network.
This has always been a known issue, since the earliest days. Google the search term “detect tor traffic”, and set your advanced search dates to before 2007, and you’ll see lots of discussion about this, such as this post for writing intrusion-detection signatures for Tor.
Among the things you’ll find is this presentation from 2006 where its creator (Roger Dingledine) talks about how Tor can be identified on the network with its unique network fingerprint. For a “vulnerability” they supposedly kept private until 2011, they were awfully darn public about it.
The above blogpost claims Tor kept this vulnerability secret until 2011 by citing this message. It’s because Levine doesn’t understand the terminology and is just blindly searching for an exact match for “TLS normalization”. Here’s an earlier proposed change for the long term goal of to “make our connection handshake look closer to a regular HTTPS [TLS] connection”, from February 2007. Here is another proposal from October 2007 on changing TLS certificates, from days after the email discussion (after they shipped the feature, presumably).
What we see here is here is a known problem from the very beginning of the project, a long term effort to fix that problem, and a slow dribble of features added over time to preserve backwards compatibility.
Now let’s talk about the original train of emails cited in the blogpost. It’s hard to see the full context here, but it sounds like BBG made a feature request to make Tor look even more like normal TLS, which is hinted with the phrase “make our funders happy”. Of course the people giving Tor money are going to ask for improvements, and of course Tor would in turn discuss those improvements with the donor before implementing them. It’s common in project management: somebody sends you a feature request, you then send the proposal back to them to verify what you are building is what they asked for.
As for the subsequent salacious paragraph about “secrecy”, that too is normal. When improving a problem, you don’t want to talk about the details until after you have a fix. But note that this is largely more for PR than anything else. The details on how to detect Tor are available to anybody who looks for them — they just aren’t readily accessible to the layman. For example, Tenable Networks announced the previous month exactly this ability to detect Tor’s traffic, because any techy wanting to would’ve found the secrets how to. Indeed, Teneble’s announcement may have been the impetus for BBG’s request to Tor: “can you fix it so that this new Tenable feature no longer works”.
To be clear, there are zero secret “vulnerability details” here that some secret spy agency could use to detect Tor. They were already known, and in the Teneble product, and within the grasp of any techy who wanted to discover them. A spy agency could just buy Teneble, or copy it, instead of going through this intricate conspiracy.

Conclusion

The issue isn’t a “vulnerability”. Tor traffic is recognizable on the network, and over time, they make it less and less recognizable. Eventually they’ll just piggyback on true HTTPS and convince CloudFlare to host ingress nodes, or something, making it completely undetectable. In the meanwhile, it leaves behind fingerprints, as I showed above.
What we see in the email exchanges is the normal interaction of a donor asking for a feature, not a private “tip off”. It’s likely the donor is the one who tipped off Tor, pointing out Tenable’s product to detect Tor.
Whatever secrets Tor could have tipped off to the “secret spy agency” were no more than what Tenable was already doing in a shipping product.

Update: People are trying to make it look like Voice of America is some sort of intelligence agency. That’s a conspiracy theory. It’s not a member of the American intelligence community. You’d have to come up with a solid reason explaining why the United States is hiding VoA’s membership in the intelligence community, or you’d have to believe that everything in the U.S. government is really just some arm of the C.I.A.

Best Practices for Running Apache Cassandra on Amazon EC2

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-cassandra-on-amazon-ec2/

Apache Cassandra is a commonly used, high performance NoSQL database. AWS customers that currently maintain Cassandra on-premises may want to take advantage of the scalability, reliability, security, and economic benefits of running Cassandra on Amazon EC2.

Amazon EC2 and Amazon Elastic Block Store (Amazon EBS) provide secure, resizable compute capacity and storage in the AWS Cloud. When combined, you can deploy Cassandra, allowing you to scale capacity according to your requirements. Given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.

In this post, we outline three Cassandra deployment options, as well as provide guidance about determining the best practices for your use case in the following areas:

  • Cassandra resource overview
  • Deployment considerations
  • Storage options
  • Networking
  • High availability and resiliency
  • Maintenance
  • Security

Before we jump into best practices for running Cassandra on AWS, we should mention that we have many customers who decided to use DynamoDB instead of managing their own Cassandra cluster. DynamoDB is fully managed, serverless, and provides multi-master cross-region replication, encryption at rest, and managed backup and restore. Integration with AWS Identity and Access Management (IAM) enables DynamoDB customers to implement fine-grained access control for their data security needs.

Several customers who have been using large Cassandra clusters for many years have moved to DynamoDB to eliminate the complications of administering Cassandra clusters and maintaining high availability and durability themselves. Gumgum.com is one customer who migrated to DynamoDB and observed significant savings. For more information, see Moving to Amazon DynamoDB from Hosted Cassandra: A Leap Towards 60% Cost Saving per Year.

AWS provides options, so you’re covered whether you want to run your own NoSQL Cassandra database, or move to a fully managed, serverless DynamoDB database.

Cassandra resource overview

Here’s a short introduction to standard Cassandra resources and how they are implemented with AWS infrastructure. If you’re already familiar with Cassandra or AWS deployments, this can serve as a refresher.

Resource Cassandra AWS
Cluster

A single Cassandra deployment.

 

This typically consists of multiple physical locations, keyspaces, and physical servers.

A logical deployment construct in AWS that maps to an AWS CloudFormation StackSet, which consists of one or many CloudFormation stacks to deploy Cassandra.
Datacenter A group of nodes configured as a single replication group.

A logical deployment construct in AWS.

 

A datacenter is deployed with a single CloudFormation stack consisting of Amazon EC2 instances, networking, storage, and security resources.

Rack

A collection of servers.

 

A datacenter consists of at least one rack. Cassandra tries to place the replicas on different racks.

A single Availability Zone.
Server/node A physical virtual machine running Cassandra software. An EC2 instance.
Token Conceptually, the data managed by a cluster is represented as a ring. The ring is then divided into ranges equal to the number of nodes. Each node being responsible for one or more ranges of the data. Each node gets assigned with a token, which is essentially a random number from the range. The token value determines the node’s position in the ring and its range of data. Managed within Cassandra.
Virtual node (vnode) Responsible for storing a range of data. Each vnode receives one token in the ring. A cluster (by default) consists of 256 tokens, which are uniformly distributed across all servers in the Cassandra datacenter. Managed within Cassandra.
Replication factor The total number of replicas across the cluster. Managed within Cassandra.

Deployment considerations

One of the many benefits of deploying Cassandra on Amazon EC2 is that you can automate many deployment tasks. In addition, AWS includes services, such as CloudFormation, that allow you to describe and provision all your infrastructure resources in your cloud environment.

We recommend orchestrating each Cassandra ring with one CloudFormation template. If you are deploying in multiple AWS Regions, you can use a CloudFormation StackSet to manage those stacks. All the maintenance actions (scaling, upgrading, and backing up) should be scripted with an AWS SDK. These may live as standalone AWS Lambda functions that can be invoked on demand during maintenance.

You can get started by following the Cassandra Quick Start deployment guide. Keep in mind that this guide does not address the requirements to operate a production deployment and should be used only for learning more about Cassandra.

Deployment patterns

In this section, we discuss various deployment options available for Cassandra in Amazon EC2. A successful deployment starts with thoughtful consideration of these options. Consider the amount of data, network environment, throughput, and availability.

  • Single AWS Region, 3 Availability Zones
  • Active-active, multi-Region
  • Active-standby, multi-Region

Single region, 3 Availability Zones

In this pattern, you deploy the Cassandra cluster in one AWS Region and three Availability Zones. There is only one ring in the cluster. By using EC2 instances in three zones, you ensure that the replicas are distributed uniformly in all zones.

To ensure the even distribution of data across all Availability Zones, we recommend that you distribute the EC2 instances evenly in all three Availability Zones. The number of EC2 instances in the cluster is a multiple of three (the replication factor).

This pattern is suitable in situations where the application is deployed in one Region or where deployments in different Regions should be constrained to the same Region because of data privacy or other legal requirements.

Pros Cons

●     Highly available, can sustain failure of one Availability Zone.

●     Simple deployment

●     Does not protect in a situation when many of the resources in a Region are experiencing intermittent failure.

 

Active-active, multi-Region

In this pattern, you deploy two rings in two different Regions and link them. The VPCs in the two Regions are peered so that data can be replicated between two rings.

We recommend that the two rings in the two Regions be identical in nature, having the same number of nodes, instance types, and storage configuration.

This pattern is most suitable when the applications using the Cassandra cluster are deployed in more than one Region.

Pros Cons

●     No data loss during failover.

●     Highly available, can sustain when many of the resources in a Region are experiencing intermittent failures.

●     Read/write traffic can be localized to the closest Region for the user for lower latency and higher performance.

●     High operational overhead

●     The second Region effectively doubles the cost

 

Active-standby, multi-region

In this pattern, you deploy two rings in two different Regions and link them. The VPCs in the two Regions are peered so that data can be replicated between two rings.

However, the second Region does not receive traffic from the applications. It only functions as a secondary location for disaster recovery reasons. If the primary Region is not available, the second Region receives traffic.

We recommend that the two rings in the two Regions be identical in nature, having the same number of nodes, instance types, and storage configuration.

This pattern is most suitable when the applications using the Cassandra cluster require low recovery point objective (RPO) and recovery time objective (RTO).

Pros Cons

●     No data loss during failover.

●     Highly available, can sustain failure or partitioning of one whole Region.

●     High operational overhead.

●     High latency for writes for eventual consistency.

●     The second Region effectively doubles the cost.

Storage options

In on-premises deployments, Cassandra deployments use local disks to store data. There are two storage options for EC2 instances:

Your choice of storage is closely related to the type of workload supported by the Cassandra cluster. Instance store works best for most general purpose Cassandra deployments. However, in certain read-heavy clusters, Amazon EBS is a better choice.

The choice of instance type is generally driven by the type of storage:

  • If ephemeral storage is required for your application, a storage-optimized (I3) instance is the best option.
  • If your workload requires Amazon EBS, it is best to go with compute-optimized (C5) instances.
  • Burstable instance types (T2) don’t offer good performance for Cassandra deployments.

Instance store

Ephemeral storage is local to the EC2 instance. It may provide high input/output operations per second (IOPs) based on the instance type. An SSD-based instance store can support up to 3.3M IOPS in I3 instances. This high performance makes it an ideal choice for transactional or write-intensive applications such as Cassandra.

In general, instance storage is recommended for transactional, large, and medium-size Cassandra clusters. For a large cluster, read/write traffic is distributed across a higher number of nodes, so the loss of one node has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important.

As an example, for a cluster with 100 nodes, the loss of 1 node is 3.33% loss (with a replication factor of 3). Similarly, for a cluster with 10 nodes, the loss of 1 node is 33% less capacity (with a replication factor of 3).

  Ephemeral storage Amazon EBS Comments

IOPS

(translates to higher query performance)

Up to 3.3M on I3

80K/instance

10K/gp2/volume

32K/io1/volume

This results in a higher query performance on each host. However, Cassandra implicitly scales well in terms of horizontal scale. In general, we recommend scaling horizontally first. Then, scale vertically to mitigate specific issues.

 

Note: 3.3M IOPS is observed with 100% random read with a 4-KB block size on Amazon Linux.

AWS instance types I3 Compute optimized, C5 Being able to choose between different instance types is an advantage in terms of CPU, memory, etc., for horizontal and vertical scaling.
Backup/ recovery Custom Basic building blocks are available from AWS.

Amazon EBS offers distinct advantage here. It is small engineering effort to establish a backup/restore strategy.

a) In case of an instance failure, the EBS volumes from the failing instance are attached to a new instance.

b) In case of an EBS volume failure, the data is restored by creating a new EBS volume from last snapshot.

Amazon EBS

EBS volumes offer higher resiliency, and IOPs can be configured based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. EBS volumes can support up to 32K IOPS per volume and up to 80K IOPS per instance in RAID configuration. They have an annualized failure rate (AFR) of 0.1–0.2%, which makes EBS volumes 20 times more reliable than typical commodity disk drives.

The primary advantage of using Amazon EBS in a Cassandra deployment is that it reduces data-transfer traffic significantly when a node fails or must be replaced. The replacement node joins the cluster much faster. However, Amazon EBS could be more expensive, depending on your data storage needs.

Cassandra has built-in fault tolerance by replicating data to partitions across a configurable number of nodes. It can not only withstand node failures but if a node fails, it can also recover by copying data from other replicas into a new node. Depending on your application, this could mean copying tens of gigabytes of data. This adds additional delay to the recovery process, increases network traffic, and could possibly impact the performance of the Cassandra cluster during recovery.

Data stored on Amazon EBS is persisted in case of an instance failure or termination. The node’s data stored on an EBS volume remains intact and the EBS volume can be mounted to a new EC2 instance. Most of the replicated data for the replacement node is already available in the EBS volume and won’t need to be copied over the network from another node. Only the changes made after the original node failed need to be transferred across the network. That makes this process much faster.

EBS volumes are snapshotted periodically. So, if a volume fails, a new volume can be created from the last known good snapshot and be attached to a new instance. This is faster than creating a new volume and coping all the data to it.

Most Cassandra deployments use a replication factor of three. However, Amazon EBS does its own replication under the covers for fault tolerance. In practice, EBS volumes are about 20 times more reliable than typical disk drives. So, it is possible to go with a replication factor of two. This not only saves cost, but also enables deployments in a region that has two Availability Zones.

EBS volumes are recommended in case of read-heavy, small clusters (fewer nodes) that require storage of a large amount of data. Keep in mind that the Amazon EBS provisioned IOPS could get expensive. General purpose EBS volumes work best when sized for required performance.

Networking

If your cluster is expected to receive high read/write traffic, select an instance type that offers 10–Gb/s performance. As an example, i3.8xlarge and c5.9xlarge both offer 10–Gb/s networking performance. A smaller instance type in the same family leads to a relatively lower networking throughput.

Cassandra generates a universal unique identifier (UUID) for each node based on IP address for the instance. This UUID is used for distributing vnodes on the ring.

In the case of an AWS deployment, IP addresses are assigned automatically to the instance when an EC2 instance is created. With the new IP address, the data distribution changes and the whole ring has to be rebalanced. This is not desirable.

To preserve the assigned IP address, use a secondary elastic network interface with a fixed IP address. Before swapping an EC2 instance with a new one, detach the secondary network interface from the old instance and attach it to the new one. This way, the UUID remains same and there is no change in the way that data is distributed in the cluster.

If you are deploying in more than one region, you can connect the two VPCs in two regions using cross-region VPC peering.

High availability and resiliency

Cassandra is designed to be fault-tolerant and highly available during multiple node failures. In the patterns described earlier in this post, you deploy Cassandra to three Availability Zones with a replication factor of three. Even though it limits the AWS Region choices to the Regions with three or more Availability Zones, it offers protection for the cases of one-zone failure and network partitioning within a single Region. The multi-Region deployments described earlier in this post protect when many of the resources in a Region are experiencing intermittent failure.

Resiliency is ensured through infrastructure automation. The deployment patterns all require a quick replacement of the failing nodes. In the case of a regionwide failure, when you deploy with the multi-Region option, traffic can be directed to the other active Region while the infrastructure is recovering in the failing Region. In the case of unforeseen data corruption, the standby cluster can be restored with point-in-time backups stored in Amazon S3.

Maintenance

In this section, we look at ways to ensure that your Cassandra cluster is healthy:

  • Scaling
  • Upgrades
  • Backup and restore

Scaling

Cassandra is horizontally scaled by adding more instances to the ring. We recommend doubling the number of nodes in a cluster to scale up in one scale operation. This leaves the data homogeneously distributed across Availability Zones. Similarly, when scaling down, it’s best to halve the number of instances to keep the data homogeneously distributed.

Cassandra is vertically scaled by increasing the compute power of each node. Larger instance types have proportionally bigger memory. Use deployment automation to swap instances for bigger instances without downtime or data loss.

Upgrades

All three types of upgrades (Cassandra, operating system patching, and instance type changes) follow the same rolling upgrade pattern.

In this process, you start with a new EC2 instance and install software and patches on it. Thereafter, remove one node from the ring. For more information, see Cassandra cluster Rolling upgrade. Then, you detach the secondary network interface from one of the EC2 instances in the ring and attach it to the new EC2 instance. Restart the Cassandra service and wait for it to sync. Repeat this process for all nodes in the cluster.

Backup and restore

Your backup and restore strategy is dependent on the type of storage used in the deployment. Cassandra supports snapshots and incremental backups. When using instance store, a file-based backup tool works best. Customers use rsync or other third-party products to copy data backups from the instance to long-term storage. For more information, see Backing up and restoring data in the DataStax documentation. This process has to be repeated for all instances in the cluster for a complete backup. These backup files are copied back to new instances to restore. We recommend using S3 to durably store backup files for long-term storage.

For Amazon EBS based deployments, you can enable automated snapshots of EBS volumes to back up volumes. New EBS volumes can be easily created from these snapshots for restoration.

Security

We recommend that you think about security in all aspects of deployment. The first step is to ensure that the data is encrypted at rest and in transit. The second step is to restrict access to unauthorized users. For more information about security, see the Cassandra documentation.

Encryption at rest

Encryption at rest can be achieved by using EBS volumes with encryption enabled. Amazon EBS uses AWS KMS for encryption. For more information, see Amazon EBS Encryption.

Instance store–based deployments require using an encrypted file system or an AWS partner solution. If you are using DataStax Enterprise, it supports transparent data encryption.

Encryption in transit

Cassandra uses Transport Layer Security (TLS) for client and internode communications.

Authentication

The security mechanism is pluggable, which means that you can easily swap out one authentication method for another. You can also provide your own method of authenticating to Cassandra, such as a Kerberos ticket, or if you want to store passwords in a different location, such as an LDAP directory.

Authorization

The authorizer that’s plugged in by default is org.apache.cassandra.auth.Allow AllAuthorizer. Cassandra also provides a role-based access control (RBAC) capability, which allows you to create roles and assign permissions to these roles.

Conclusion

In this post, we discussed several patterns for running Cassandra in the AWS Cloud. This post describes how you can manage Cassandra databases running on Amazon EC2. AWS also provides managed offerings for a number of databases. To learn more, see Purpose-built databases for all your application needs.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Analyze Your Data on Amazon DynamoDB with Apache Spark and Analysis of Top-N DynamoDB Objects using Amazon Athena and Amazon QuickSight.


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 

 

 

Provanshu Dey is a Senior IoT Consultant with AWS Professional Services. He works on highly scalable and reliable IoT, data and machine learning solutions with our customers. In his spare time, he enjoys spending time with his family and tinkering with electronics & gadgets.

 

 

 

Tech wishes for 2018

Post Syndicated from Eevee original https://eev.ee/blog/2018/02/18/tech-wishes-for-2018/

Anonymous asks, via money:

What would you like to see happen in tech in 2018?

(answer can be technical, social, political, combination, whatever)

Hmm.

Less of this

I’m not really qualified to speak in depth about either of these things, but let me put my foot in my mouth anyway:

The Blockchain™

Bitcoin was a neat idea. No, really! Decentralization is cool. Overhauling our terrible financial infrastructure is cool. Hash functions are cool.

Unfortunately, it seems to have devolved into mostly a get-rich-quick scheme for nerds, and by nearly any measure it’s turning into a spectacular catastrophe. Its “success” is measured in how much a bitcoin is worth in US dollars, which is pretty close to an admission from its own investors that its only value is in converting back to “real” money — all while that same “success” is making it less useful as a distinct currency.

Blah, blah, everyone already knows this.

What concerns me slightly more is the gold rush hype cycle, which is putting cryptocurrency and “blockchain” in the news and lending it all legitimacy. People have raked in millions of dollars on ICOs of novel coins I’ve never heard mentioned again. (Note: again, that value is measured in dollars.) Most likely, none of the investors will see any return whatsoever on that money. They can’t, really, unless a coin actually takes off as a currency, and that seems at odds with speculative investing since everyone either wants to hoard or ditch their coins. When the coins have no value themselves, the money can only come from other investors, and eventually the hype winds down and you run out of other investors.

I fear this will hurt a lot of people before it’s over, so I’d like for it to be over as soon as possible.


That said, the hype itself has gotten way out of hand too. First it was the obsession with “blockchain” like it’s a revolutionary technology, but hey, Git is a fucking blockchain. The novel part is the way it handles distributed consensus (which in Git is basically left for you to figure out), and that’s uniquely important to currency because you want to be pretty sure that money doesn’t get duplicated or lost when moved around.

But now we have startups trying to use blockchains for website backends and file storage and who knows what else? Why? What advantage does this have? When you say “blockchain”, I hear “single Git repository” — so when you say “email on the blockchain”, I have an aneurysm.

Bitcoin seems to have sparked imagination in large part because it’s decentralized, but I’d argue it’s actually a pretty bad example of a decentralized network, since people keep forking it. The ability to fork is a feature, sure, but the trouble here is that the Bitcoin family has no notion of federation — there is one canonical Bitcoin ledger and it has no notion of communication with any other. That’s what you want for currency, not necessarily other applications. (Bitcoin also incentivizes frivolous forking by giving the creator an initial pile of coins to keep and sell.)

And federation is much more interesting than decentralization! Federation gives us email and the web. Federation means I can set up my own instance with my own rules and still be able to meaningfully communicate with the rest of the network. Federation has some amount of tolerance for changes to the protocol, so such changes are more flexible and rely more heavily on consensus.

Federation is fantastic, and it feels like a massive tragedy that this rekindled interest in decentralization is mostly focused on peer-to-peer networks, which do little to address our current problems with centralized platforms.

And hey, you know what else is federated? Banks.

AI

Again, the tech is cool and all, but the marketing hype is getting way out of hand.

Maybe what I really want from 2018 is less marketing?

For one, I’ve seen a huge uptick in uncritically referring to any software that creates or classifies creative work as “AI”. Can we… can we not. It’s not AI. Yes, yes, nerds, I don’t care about the hair-splitting about the nature of intelligence — you know that when we hear “AI” we think of a human-like self-aware intelligence. But we’re applying it to stuff like a weird dog generator. Or to whatever neural network a website threw into production this week.

And this is dangerously misleading — we already had massive tech companies scapegoating The Algorithm™ for the poor behavior of their software, and now we’re talking about those algorithms as though they were self-aware, untouchable, untameable, unknowable entities of pure chaos whose decisions we are arbitrarily bound to. Ancient, powerful gods who exist just outside human comprehension or law.

It’s weird to see this stuff appear in consumer products so quickly, too. It feels quick, anyway. The latest iPhone can unlock via facial recognition, right? I’m sure a lot of effort was put into ensuring that the same person’s face would always be recognized… but how confident are we that other faces won’t be recognized? I admit I don’t follow all this super closely, so I may be imagining a non-problem, but I do know that humans are remarkably bad at checking for negative cases.

Hell, take the recurring problem of major platforms like Twitter and YouTube classifying anything mentioning “bisexual” as pornographic — because the word is also used as a porn genre, and someone threw a list of porn terms into a filter without thinking too hard about it. That’s just a word list, a fairly simple thing that any human can review; but suddenly we’re confident in opaque networks of inferred details?

I don’t know. “Traditional” classification and generation are much more comforting, since they’re a set of fairly abstract rules that can be examined and followed. Machine learning, as I understand it, is less about rules and much more about pattern-matching; it’s built out of the fingerprints of the stuff it’s trained on. Surely that’s just begging for tons of edge cases. They’re practically made of edge cases.


I’m reminded of a point I saw made a few days ago on Twitter, something I’d never thought about but should have. TurnItIn is a service for universities that checks whether students’ papers match any others, in order to detect cheating. But this is a paid service, one that fundamentally hinges on its corpus: a large collection of existing student papers. So students pay money to attend school, where they’re required to let their work be given to a third-party company, which then profits off of it? What kind of a goofy business model is this?

And my thoughts turn to machine learning, which is fundamentally different from an algorithm you can simply copy from a paper, because it’s all about the training data. And to get good results, you need a lot of training data. Where is that all coming from? How many for-profit companies are setting a neural network loose on the web — on millions of people’s work — and then turning around and selling the result as a product?

This is really a question of how intellectual property works in the internet era, and it continues our proud decades-long tradition of just kinda doing whatever we want without thinking about it too much. Nothing if not consistent.

More of this

A bit tougher, since computers are pretty alright now and everything continues to chug along. Maybe we should just quit while we’re ahead. There’s some real pie-in-the-sky stuff that would be nice, but it certainly won’t happen within a year, and may never happen except in some horrific Algorithmic™ form designed by people that don’t know anything about the problem space and only works 60% of the time but is treated as though it were bulletproof.

Federation

The giants are getting more giant. Maybe too giant? Granted, it could be much worse than Google and Amazon — it could be Apple!

Amazon has its own delivery service and brick-and-mortar stores now, as well as providing the plumbing for vast amounts of the web. They’re not doing anything particularly outrageous, but they kind of loom.

Ad company Google just put ad blocking in its majority-share browser — albeit for the ambiguously-noble goal of only blocking obnoxious ads so that people will be less inclined to install a blanket ad blocker.

Twitter is kind of a nightmare but no one wants to leave. I keep trying to use Mastodon as well, but I always forget about it after a day, whoops.

Facebook sounds like a total nightmare but no one wants to leave that either, because normies don’t use anything else, which is itself direly concerning.

IRC is rapidly bleeding mindshare to Slack and Discord, both of which are far better at the things IRC sadly never tried to do and absolutely terrible at the exact things IRC excels at.

The problem is the same as ever: there’s no incentive to interoperate. There’s no fundamental technical reason why Twitter and Tumblr and MySpace and Facebook can’t intermingle their posts; they just don’t, because why would they bother? It’s extra work that makes it easier for people to not use your ecosystem.

I don’t know what can be done about that, except that hope for a really big player to decide to play nice out of the kindness of their heart. The really big federated success stories — say, the web — mostly won out because they came along first. At this point, how does a federated social network take over? I don’t know.

Social progress

I… don’t really have a solid grasp on what’s happening in tech socially at the moment. I’ve drifted a bit away from the industry part, which is where that all tends to come up. I have the vague sense that things are improving, but that might just be because the Rust community is the one I hear the most about, and it puts a lot of effort into being inclusive and welcoming.

So… more projects should be like Rust? Do whatever Rust is doing? And not so much what Linus is doing.

Open source funding

I haven’t heard this brought up much lately, but it would still be nice to see. The Bay Area runs on open source and is raking in zillions of dollars on its back; pump some of that cash back into the ecosystem, somehow.

I’ve seen a couple open source projects on Patreon, which is fantastic, but feels like a very small solution given how much money is flowing through the commercial tech industry.

Ad blocking

Nice. Fuck ads.

One might wonder where the money to host a website comes from, then? I don’t know. Maybe we should loop this in with the above thing and find a more informal way to pay people for the stuff they make when we find it useful, without the financial and cognitive overhead of A Transaction or Giving Someone My Damn Credit Card Number. You know, something like Bitco— ah, fuck.

Year of the Linux Desktop

I don’t know. What are we working on at the moment? Wayland? Do Wayland, I guess. Oh, and hi-DPI, which I hear sucks. And please fix my sound drivers so PulseAudio stops blaming them when it fucks up.

Kim Dotcom Begins New Fight to Avoid Extradition to United States

Post Syndicated from Andy original https://torrentfreak.com/kim-dotcom-begins-new-fight-to-avoid-extradition-to-united-states-180212/

More than six years ago in January 2012, file-hosting site Megaupload was shut down by the United States government and founder Kim Dotcom and his associates were arrested in New Zealand.

What followed was an epic legal battle to extradite Dotcom, Mathias Ortmann, Finn Batato, and Bram van der Kolk to the United States to face several counts including copyright infringement, racketeering, and money laundering. Dotcom has battled the US government every inch of the way.

The most significant matters include the validity of the search warrants used to raid Dotcom’s Coatesville home on January 20, 2012. Despite a prolonged trip through the legal system, in 2014 the Supreme Court dismissed Dotcom’s appeals that the search warrants weren’t valid.

In 2015, the District Court later ruled that Dotcom and his associates are eligible for extradition. A subsequent appeal to the High Court failed when in February 2017 – and despite a finding that communicating copyright-protected works to the public is not a criminal offense in New Zealand – a judge also ruled in favor.

Of course, Dotcom and his associates immediately filed appeals and today in the Court of Appeal in Wellington, their hearing got underway.

Lawyer Grant Illingworth, representing Van der Kolk and Ortmann, told the Court that the case had “gone off the rails” during the initial 10-week extradition hearing in 2015, arguing that the case had merited “meaningful” consideration by a judge, something which failed to happen.

“It all went wrong. It went absolutely, totally wrong,” Mr. Illingworth said. “We were not heard.”

As expected, Illingworth underlined the belief that under New Zealand law, a person may only be extradited for an offense that could be tried in a criminal court locally. His clients’ cases do not meet that standard, the lawyer argued.

Turning back the clocks more than six years, Illingworth again raised the thorny issue of the warrants used to authorize the raids on the Megaupload defendants.

It had previously been established that New Zealand’s GCSB intelligence service had illegally spied on Dotcom and his associates in the lead up to their arrests. However, that fact was not disclosed to the District Court judge who authorized the raids.

“We say that there was misleading conduct at this stage because there was no reference to the fact that information had been gathered illegally by the GCSB,” he said.

But according to Justice Forrest Miller, even if this defense argument holds up the High Court had already found there was a prima facie case to answer “with bells on”.

“The difficulty that you face here ultimately is whether the judicial process that has been followed in both of the courts below was meaningful, to use the Canadian standard,” Justice Miller said.

“You’re going to have to persuade us that what Justice Gilbert [in the High Court] ended up with, even assuming your interpretation of the legislation is correct, was wrong.”

Although the US seeks to extradite Dotcom and his associates on 13 charges, including racketeering, copyright infringement, money laundering and wire fraud, the Court of Appeal previously confirmed that extradition could be granted based on just some of the charges.

The stakes couldn’t be much higher. The FBI says that the “Megaupload Conspiracy” earned the quartet $175m and if extradited to the US, they could face decades in jail.

While Dotcom was not in court today, he has been active on Twitter.

“The court process went ‘off the rails’ when the only copyright expert Judge in NZ was >removed< from my case and replaced by a non-tech Judge who asked if Mega was ‘cow storage’. He then simply copy/pasted 85% of the US submissions into his judgment," Dotcom wrote.

Dotcom also appeared to question the suitability of judges at both the High Court and Court of Appeal for the task in hand.

“Justice Miller and Justice Gilbert (he wrote that High Court judgment) were business partners at the law firm Chapman Tripp which represents the Hollywood Studios in my case. Both Judges are now at the Court of Appeal. Gilbert was promoted shortly after ruling against me,” Dotcom added.

Dotcom is currently suing the New Zealand government for billions of dollars in damages over the warrant which triggered his arrest and the demise of Megaupload.

The hearing is expected to last up to two-and-a-half weeks.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Anti-Piracy Video Scares Kids With ‘Fake’ Malware Info

Post Syndicated from Ernesto original https://torrentfreak.com/anti-piracy-video-scares-kids-with-fake-malware-info-180206/

Today is Safer Internet Day, a global awareness campaign to educate the public on all sorts of threats that people face online.

It is a laudable initiative supported by the Industry Trust for IP Awareness which, together with the children’s charity Into Film, has released an informative video and associated course materials.

The organizations have created a British version of an animation previously released as part of the Australian “Price of Piracy” campaign. While the video includes an informative description of the various types of malware, there appears to be a secondary agenda.

Strangely enough, the video itself contains no advice on how to avoid malware at all, other than to avoid pirate sites. In that sense, it looks more like an indirect anti-piracy ad.

While there’s no denying that kids might run into malware if they randomly click on pirate site ads, this problem is certainly not exclusive to these sites. Email and social media are frequently used to link to malware too, and YouTube comments can pose the same risk. The problem is everywhere.

What really caught our eye, however, is the statement that pirate sites are the most used propagation method for malware. “Did you know, the number one way we infect your device is via illegal pirate sites,” an animated piece of malware claims in the video.

Forget about email attachments, spam links, compromised servers, or even network attacks. Pirate sites are the number one spot through which malware spreads. According to the video at least. But where do they get this knowledge?

Meet the malwares

When we asked the Industry Trust for IP Awareness for further details, the organization checked with their Australian colleagues, who pointed us to a working paper (pdf) from 2014. This paper includes the following line: “Illegal streaming websites are now the number one propagation mechanism for malicious software as 97% of them contain malware.”

Unfortunately, there’s a lot wrong with this claim.

Through another citation, the 97% figure points to this unpublished study of which only the highlights were shared. This “malware” research looked at the prevalence of malware and other unwanted software linked to pirate sites. Not just streaming sites as the other paper said, but let’s ignore that last bit.

What the study actually found is that of the 30 researched pirate sites, “90% contained malware or other ‘Potentially Unwanted Programmes’.” Note that this is not the earlier mentioned 97%, and that this broad category not only includes malware but also popup ads, which were most popular. This means that the percentage of actual malware on these sites can be anywhere from 0.1% to 90%.

Importantly, none of the malware found in this research was installed without an action performed by the user, such as clicking on a flashy download button or installing a mysterious .exe file.

Aside from clearly erroneous references, the more worrying issue is that even the original incorrect statement that “97% of all pirate sites contain malware” provides no evidence for the claim in the video that pirate sites are “the number one way” through which malware spreads.

Even if 100% of all pirate sites link to malware, that’s no proof that it’s the most used propagation method.

The malware issue has been a popular talking point for a while, but after searching for answers for days, we couldn’t find a grain of evidence. There are a lot of malware propagation methods, including email, which traditionally is a very popular choice.

Even more confusingly, the same paper that was cited as a source for the pirate site malware claim notes that 80% of all web-based malware is hosted on “innocent” but compromised websites.

As the provided evidence gave no answers, we asked the experts to chime in. Luckily, security company Malwarebytes was willing to share its assessment. As leaders in the anti-malware industry, they should know better than researchers who have their numbers and terminology mixed up.

“These days, most common infections come from malicious spam campaigns and drive-by exploit attacks,” Adam Kujawa, Director of Malware Intelligence at Malwarebytes informs us.

“Torrent sites are still frequently used by criminals to host malware disguised as something the user wants, like an application, movie, etc. However they are really only a threat to people who use torrent sites regularly and those people have likely learned how to avoid malicious torrents,” he adds.

In other words, most people who regularly visit pirate sites know how to avoid these dangers. That doesn’t mean that they are not a threat to unsuspecting kids who visit them for the first time of course.

“Now, if users who were not familiar with torrent and pirate sites started using these services, there is a high probability that they could encounter some kind of malware. However, many of these sites have user review processes to let other users know if a particular torrent or download is likely malicious.

“So, unless a user is completely new to this process and ignores all the warning signs, they could walk away from a pirate site without getting infected,” Kujawa says.

Overall, the experts at Malwarebytes see no evidence for the claim that pirate sites are the number one propagation method for malware.

“So in summary, I don’t think the claim that ‘pirate sites’ are the number one way to infect users is accurate at all,” Kujawa concludes.

While it’s always a good idea to avoid places that can have a high prevalence of malware, including pirate sites, the claims in the video are not backed up by real evidence. There are tens of thousands of non-pirate sites that pose similar or worse risks, so it’s always a good idea to have anti-malware and virus software installed.

The organizations and people involved in the British “Meet the Malwares” video might not have been aware of the doubtful claims, but it’s unfortunate that they didn’t opt for a broader campaign instead of the focused anti-piracy message.

Finally, since it’s still Safer Internet Day, we encourage kids to take a close look at the various guides on how to avoid “fake news” while engaging in critical thinking.

Be safe!

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Blame privacy activists for the Memo??

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/02/blame-privacy-activists-for-memo.html

Former FBI agent Asha Rangappa @AshaRangappa_ has a smart post debunking the Nunes Memo, then takes it all back again with an op-ed on the NYTimes blaming us privacy activists. She presents an obviously false narrative that the FBI and FISA courts are above suspicion.

I know from first hand experience the FBI is corrupt. In 2007, they threatened me, trying to get me to cancel a talk that revealed security vulnerabilities in a large corporation’s product. Such abuses occur because there is no transparency and oversight. FBI agents write down our conversation in their little notebooks instead of recording it, so that they can control the narrative of what happened, presenting their version of the converstion (leaving out the threats). In this day and age of recording devices, this is indefensible.

She writes “I know firsthand that it’s difficult to get a FISA warrant“. Yes, the process was difficult for her, an underling, to get a FISA warrant. The process is different when a leader tries to do the same thing.

I know this first hand having casually worked as an outsider with intelligence agencies. I saw two processes in place: one for the flunkies, and one for those above the system. The flunkies constantly complained about how there is too many process in place oppressing them, preventing them from getting their jobs done. The leaders understood the system and how to sidestep those processes.

That’s not to say the Nunes Memo has merit, but it does point out that privacy advocates have a point in wanting more oversight and transparency in such surveillance of American citizens.

Blaming us privacy advocates isn’t the way to go. It’s not going to succeed in tarnishing us, but will push us more into Trump’s camp, causing us to reiterate that we believe the FBI and FISA are corrupt.

After Section 702 Reauthorization

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/after_section_7.html

For over a decade, civil libertarians have been fighting government mass surveillance of innocent Americans over the Internet. We’ve just lost an important battle. On January 18, President Trump signed the renewal of Section 702, domestic mass surveillance became effectively a permanent part of US law.

Section 702 was initially passed in 2008, as an amendment to the Foreign Intelligence Surveillance Act of 1978. As the title of that law says, it was billed as a way for the NSA to spy on non-Americans located outside the United States. It was supposed to be an efficiency and cost-saving measure: the NSA was already permitted to tap communications cables located outside the country, and it was already permitted to tap communications cables from one foreign country to another that passed through the United States. Section 702 allowed it to tap those cables from inside the United States, where it was easier. It also allowed the NSA to request surveillance data directly from Internet companies under a program called PRISM.

The problem is that this authority also gave the NSA the ability to collect foreign communications and data in a way that inherently and intentionally also swept up Americans’ communications as well, without a warrant. Other law enforcement agencies are allowed to ask the NSA to search those communications, give their contents to the FBI and other agencies and then lie about their origins in court.

In 1978, after Watergate had revealed the Nixon administration’s abuses of power, we erected a wall between intelligence and law enforcement that prevented precisely this kind of sharing of surveillance data under any authority less restrictive than the Fourth Amendment. Weakening that wall is incredibly dangerous, and the NSA should never have been given this authority in the first place.

Arguably, it never was. The NSA had been doing this type of surveillance illegally for years, something that was first made public in 2006. Section 702 was secretly used as a way to paper over that illegal collection, but nothing in the text of the later amendment gives the NSA this authority. We didn’t know that the NSA was using this law as the statutory basis for this surveillance until Edward Snowden showed us in 2013.

Civil libertarians have been battling this law in both Congress and the courts ever since it was proposed, and the NSA’s domestic surveillance activities even longer. What this most recent vote tells me is that we’ve lost that fight.

Section 702 was passed under George W. Bush in 2008, reauthorized under Barack Obama in 2012, and now reauthorized again under Trump. In all three cases, congressional support was bipartisan. It has survived multiple lawsuits by the Electronic Frontier Foundation, the ACLU, and others. It has survived the revelations by Snowden that it was being used far more extensively than Congress or the public believed, and numerous public reports of violations of the law. It has even survived Trump’s belief that he was being personally spied on by the intelligence community, as well as any congressional fears that Trump could abuse the authority in the coming years. And though this extension lasts only six years, it’s inconceivable to me that it will ever be repealed at this point.

So what do we do? If we can’t fight this particular statutory authority, where’s the new front on surveillance? There are, it turns out, reasonable modifications that target surveillance more generally, and not in terms of any particular statutory authority. We need to look at US surveillance law more generally.

First, we need to strengthen the minimization procedures to limit incidental collection. Since the Internet was developed, all the world’s communications travel around in a single global network. It’s impossible to collect only foreign communications, because they’re invariably mixed in with domestic communications. This is called “incidental” collection, but that’s a misleading name. It’s collected knowingly, and searched regularly. The intelligence community needs much stronger restrictions on which American communications channels it can access without a court order, and rules that require they delete the data if they inadvertently collect it. More importantly, “collection” is defined as the point the NSA takes a copy of the communications, and not later when they search their databases.

Second, we need to limit how other law enforcement agencies can use incidentally collected information. Today, those agencies can query a database of incidental collection on Americans. The NSA can legally pass information to those other agencies. This has to stop. Data collected by the NSA under its foreign surveillance authority should not be used as a vehicle for domestic surveillance.

The most recent reauthorization modified this lightly, forcing the FBI to obtain a court order when querying the 702 data for a criminal investigation. There are still exceptions and loopholes, though.

Third, we need to end what’s called “parallel construction.” Today, when a law enforcement agency uses evidence found in this NSA database to arrest someone, it doesn’t have to disclose that fact in court. It can reconstruct the evidence in some other manner once it knows about it, and then pretend it learned of it that way. This right to lie to the judge and the defense is corrosive to liberty, and it must end.

Pressure to reform the NSA will probably first come from Europe. Already, European Union courts have pointed to warrantless NSA surveillance as a reason to keep Europeans’ data out of US hands. Right now, there is a fragile agreement between the EU and the United States ­– called “Privacy Shield” — ­that requires Americans to maintain certain safeguards for international data flows. NSA surveillance goes against that, and it’s only a matter of time before EU courts start ruling this way. That’ll have significant effects on both government and corporate surveillance of Europeans and, by extension, the entire world.

Further pressure will come from the increased surveillance coming from the Internet of Things. When your home, car, and body are awash in sensors, privacy from both governments and corporations will become increasingly important. Sooner or later, society will reach a tipping point where it’s all too much. When that happens, we’re going to see significant pushback against surveillance of all kinds. That’s when we’ll get new laws that revise all government authorities in this area: a clean sweep for a new world, one with new norms and new fears.

It’s possible that a federal court will rule on Section 702. Although there have been many lawsuits challenging the legality of what the NSA is doing and the constitutionality of the 702 program, no court has ever ruled on those questions. The Bush and Obama administrations successfully argued that defendants don’t have legal standing to sue. That is, they have no right to sue because they don’t know they’re being targeted. If any of the lawsuits can get past that, things might change dramatically.

Meanwhile, much of this is the responsibility of the tech sector. This problem exists primarily because Internet companies collect and retain so much personal data and allow it to be sent across the network with minimal security. Since the government has abdicated its responsibility to protect our privacy and security, these companies need to step up: Minimize data collection. Don’t save data longer than absolutely necessary. Encrypt what has to be saved. Well-designed Internet services will safeguard users, regardless of government surveillance authority.

For the rest of us concerned about this, it’s important not to give up hope. Everything we do to keep the issue in the public eye ­– and not just when the authority comes up for reauthorization again in 2024 — hastens the day when we will reaffirm our rights to privacy in the digital age.

This essay previously appeared in the Washington Post.

The problematic Wannacry North Korea attribution

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/the-problematic-wannacry-north-korea.html

Last month, the US government officially “attributed” the Wannacry ransomware worm to North Korea. This attribution has three flaws, which are a good lesson for attribution in general.

It was an accident

The most important fact about Wannacry is that it was an accident. We’ve had 30 years of experience with Internet worms teaching us that worms are always accidents. While launching worms may be intentional, their effects cannot be predicted. While they appear to have targets, like Slammer against South Korea, or Witty against the Pentagon, further analysis shows this was just a random effect that was impossible to predict ahead of time. Only in hindsight are these effects explainable.
We should hold those causing accidents accountable, too, but it’s a different accountability. The U.S. has caused more civilian deaths in its War on Terror than the terrorists caused triggering that war. But we hold these to be morally different: the terrorists targeted the innocent, whereas the U.S. takes great pains to avoid civilian casualties. 
Since we are talking about blaming those responsible for accidents, we also must include the NSA in that mix. The NSA created, then allowed the release of, weaponized exploits. That’s like accidentally dropping a load of unexploded bombs near a village. When those bombs are then used, those having lost the weapons are held guilty along with those using them. Yes, while we should blame the hacker who added ETERNAL BLUE to their ransomware, we should also blame the NSA for losing control of ETERNAL BLUE.

A country and its assets are different

Was it North Korea, or hackers affilliated with North Korea? These aren’t the same.

It’s hard for North Korea to have hackers of its own. It doesn’t have citizens who grow up with computers to pick from. Moreover, an internal hacking corps would create tainted citizens exposed to dangerous outside ideas. Update: Some people have pointed out that Kim Il-sung University in the capital does have some contact with the outside world, with academics granted limited Internet access, so I guess some tainting is allowed. Still, what we know of North Korea hacking efforts largley comes from hackers they employ outside North Korea. It was the Lazurus Group, outside North Korea, that did Wannacry.
Instead, North Korea develops external hacking “assets”, supporting several external hacking groups in China, Japan, and South Korea. This is similar to how intelligence agencies develop human “assets” in foreign countries. While these assets do things for their handlers, they also have normal day jobs, and do many things that are wholly independent and even sometimes against their handler’s interests.
For example, this Muckrock FOIA dump shows how “CIA assets” independently worked for Castro and assassinated a Panamanian president. That they also worked for the CIA does not make the CIA responsible for the Panamanian assassination.
That CIA/intelligence assets work this way is well-known and uncontroversial. The fact that countries use hacker assets like this is the controversial part. These hackers do act independently, yet we refuse to consider this when we want to “attribute” attacks.

Attribution is political

We have far better attribution for the nPetya attacks. It was less accidental (they clearly desired to disrupt Ukraine), and the hackers were much closer to the Russian government (Russian citizens). Yet, the Trump administration isn’t fighting Russia, they are fighting North Korea, so they don’t officially attribute nPetya to Russia, but do attribute Wannacry to North Korea.
Trump is in conflict with North Korea. He is looking for ways to escalate the conflict. Attributing Wannacry helps achieve his political objectives.
That it was blatantly politics is demonstrated by the way it was released to the press. It wasn’t released in the normal way, where the administration can stand behind it, and get challenged on the particulars. Instead, it was pre-released through the normal system of “anonymous government officials” to the NYTimes, and then backed up with op-ed in the Wall Street Journal. The government leaks information like this when it’s weak, not when its strong.

The proper way is to release the evidence upon which the decision was made, so that the public can challenge it. Among the questions the public would ask is whether it they believe it was North Korea’s intention to cause precisely this effect, such as disabling the British NHS. Or, whether it was merely hackers “affiliated” with North Korea, or hackers carrying out North Korea’s orders. We cannot challenge the government this way because the government intentionally holds itself above such accountability.

Conclusion

We believe hacking groups tied to North Korea are responsible for Wannacry. Yet, even if that’s true, we still have three attribution problems. We still don’t know if that was intentional, in pursuit of some political goal, or an accident. We still don’t know if it was at the direction of North Korea, or whether their hacker assets acted independently. We still don’t know if the government has answers to these questions, or whether it’s exploiting this doubt to achieve political support for actions against North Korea.

The Effects of the Spectre and Meltdown Vulnerabilities

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/the_effects_of_3.html

On January 3, the world learned about a series of major security vulnerabilities in modern microprocessors. Called Spectre and Meltdown, these vulnerabilities were discovered by several different researchers last summer, disclosed to the microprocessors’ manufacturers, and patched­ — at least to the extent possible.

This news isn’t really any different from the usual endless stream of security vulnerabilities and patches, but it’s also a harbinger of the sorts of security problems we’re going to be seeing in the coming years. These are vulnerabilities in computer hardware, not software. They affect virtually all high-end microprocessors produced in the last 20 years. Patching them requires large-scale coordination across the industry, and in some cases drastically affects the performance of the computers. And sometimes patching isn’t possible; the vulnerability will remain until the computer is discarded.

Spectre and Meltdown aren’t anomalies. They represent a new area to look for vulnerabilities and a new avenue of attack. They’re the future of security­ — and it doesn’t look good for the defenders.

Modern computers do lots of things at the same time. Your computer and your phone simultaneously run several applications — ­or apps. Your browser has several windows open. A cloud computer runs applications for many different computers. All of those applications need to be isolated from each other. For security, one application isn’t supposed to be able to peek at what another one is doing, except in very controlled circumstances. Otherwise, a malicious advertisement on a website you’re visiting could eavesdrop on your banking details, or the cloud service purchased by some foreign intelligence organization could eavesdrop on every other cloud customer, and so on. The companies that write browsers, operating systems, and cloud infrastructure spend a lot of time making sure this isolation works.

Both Spectre and Meltdown break that isolation, deep down at the microprocessor level, by exploiting performance optimizations that have been implemented for the past decade or so. Basically, microprocessors have become so fast that they spend a lot of time waiting for data to move in and out of memory. To increase performance, these processors guess what data they’re going to receive and execute instructions based on that. If the guess turns out to be correct, it’s a performance win. If it’s wrong, the microprocessors throw away what they’ve done without losing any time. This feature is called speculative execution.

Spectre and Meltdown attack speculative execution in different ways. Meltdown is more of a conventional vulnerability; the designers of the speculative-execution process made a mistake, so they just needed to fix it. Spectre is worse; it’s a flaw in the very concept of speculative execution. There’s no way to patch that vulnerability; the chips need to be redesigned in such a way as to eliminate it.

Since the announcement, manufacturers have been rolling out patches to these vulnerabilities to the extent possible. Operating systems have been patched so that attackers can’t make use of the vulnerabilities. Web browsers have been patched. Chips have been patched. From the user’s perspective, these are routine fixes. But several aspects of these vulnerabilities illustrate the sorts of security problems we’re only going to be seeing more of.

First, attacks against hardware, as opposed to software, will become more common. Last fall, vulnerabilities were discovered in Intel’s Management Engine, a remote-administration feature on its microprocessors. Like Spectre and Meltdown, they affected how the chips operate. Looking for vulnerabilities on computer chips is new. Now that researchers know this is a fruitful area to explore, security researchers, foreign intelligence agencies, and criminals will be on the hunt.

Second, because microprocessors are fundamental parts of computers, patching requires coordination between many companies. Even when manufacturers like Intel and AMD can write a patch for a vulnerability, computer makers and application vendors still have to customize and push the patch out to the users. This makes it much harder to keep vulnerabilities secret while patches are being written. Spectre and Meltdown were announced prematurely because details were leaking and rumors were swirling. Situations like this give malicious actors more opportunity to attack systems before they’re guarded.

Third, these vulnerabilities will affect computers’ functionality. In some cases, the patches for Spectre and Meltdown result in significant reductions in speed. The press initially reported 30%, but that only seems true for certain servers running in the cloud. For your personal computer or phone, the performance hit from the patch is minimal. But as more vulnerabilities are discovered in hardware, patches will affect performance in noticeable ways.

And then there are the unpatchable vulnerabilities. For decades, the computer industry has kept things secure by finding vulnerabilities in fielded products and quickly patching them. Now there are cases where that doesn’t work. Sometimes it’s because computers are in cheap products that don’t have a patch mechanism, like many of the DVRs and webcams that are vulnerable to the Mirai (and other) botnets — ­groups of Internet-connected devices sabotaged for coordinated digital attacks. Sometimes it’s because a computer chip’s functionality is so core to a computer’s design that patching it effectively means turning the computer off. This, too, is becoming more common.

Increasingly, everything is a computer: not just your laptop and phone, but your car, your appliances, your medical devices, and global infrastructure. These computers are and always will be vulnerable, but Spectre and Meltdown represent a new class of vulnerability. Unpatchable vulnerabilities in the deepest recesses of the world’s computer hardware is the new normal. It’s going to leave us all much more vulnerable in the future.

This essay previously appeared on TheAtlantic.com.