Tag Archives: hacking

Leaked NSA Hacking Tools

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/05/leaked_nsa_hack.html

In 2016, a hacker group calling itself the Shadow Brokers released a trove of 2013 NSA hacking tools and related documents. Most people believe it is a front for the Russian government. Since, then the vulnerabilities and tools have been used by both government and criminals, and put the NSA’s ability to secure its own cyberweapons seriously into question.

Now we have learned that the Chinese used the tools fourteen months before the Shadow Brokers released them.

Does this mean that both the Chinese and the Russians stole the same set of NSA tools? Did the Russians steal them from the Chinese, who stole them from us? Did it work the other way? I don’t think anyone has any idea. But this certainly illustrates how dangerous it is for the NSA — or US Cyber Command — to hoard zero-day vulnerabilities.

Defending Democracies Against Information Attacks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/defending_democ.html

To better understand influence attacks, we proposed an approach that models democracy itself as an information system and explains how democracies are vulnerable to certain forms of information attacks that autocracies naturally resist. Our model combines ideas from both international security and computer security, avoiding the limitations of both in explaining how influence attacks may damage democracy as a whole.

Our initial account is necessarily limited. Building a truly comprehensive understanding of democracy as an information system will be a Herculean labor, involving the collective endeavors of political scientists and theorists, computer scientists, scholars of complexity, and others.

In this short paper, we undertake a more modest task: providing policy advice to improve the resilience of democracy against these attacks. Specifically, we can show how policy makers not only need to think about how to strengthen systems against attacks, but also need to consider how these efforts intersect with public beliefs­ — or common political knowledge­ — about these systems, since public beliefs may themselves be an important vector for attacks.

In democracies, many important political decisions are taken by ordinary citizens (typically, in electoral democracies, by voting for political representatives). This means that citizens need to have some shared understandings about their political system, and that the society needs some means of generating shared information regarding who their citizens are and what they want. We call this common political knowledge, and it is largely generated through mechanisms of social aggregation (and the institutions that implement them), such as voting, censuses, and the like. These are imperfect mechanisms, but essential to the proper functioning of democracy. They are often compromised or non-existent in autocratic regimes, since they are potentially threatening to the rulers.

In modern democracies, the most important such mechanism is voting, which aggregates citizens’ choices over competing parties and politicians to determine who is to control executive power for a limited period. Another important mechanism is the census process, which play an important role in the US and in other democracies, in providing broad information about the population, in shaping the electoral system (through the allocation of seats in the House of Representatives), and in policy making (through the allocation of government spending and resources). Of lesser import are public commenting processes, through which individuals and interest groups can comment on significant public policy and regulatory decisions.

All of these systems are vulnerable to attack. Elections are vulnerable to a variety of illegal manipulations, including vote rigging. However, many kinds of manipulation are currently legal in the US, including many forms of gerrymandering, gimmicking voting time, allocating polling booths and resources so as to advantage or disadvantage particular populations, imposing onerous registration and identity requirements, and so on.

Censuses may be manipulated through the provision of bogus information or, more plausibly, through the skewing of policy or resources so that some populations are undercounted. Many of the political battles over the census over the past few decades have been waged over whether the census should undertake statistical measures to counter undersampling bias for populations who are statistically less likely to return census forms, such as minorities and undocumented immigrants. Current efforts to include a question about immigration status may make it less likely that undocumented or recent immigrants will return completed forms.

Finally, public commenting systems too are vulnerable to attacks intended to misrepresent the support for or opposition to specific proposals, including the formation of astroturf (artificial grassroots) groups and the misuse of fake or stolen identities in large-scale mail, fax, email or online commenting systems.

All these attacks are relatively well understood, even if policy choices might be improved by a better understanding of their relationship to shared political knowledge. For example, some voting ID requirements are rationalized through appeals to security concerns about voter fraud. While political scientists have suggested that these concerns are largely unwarranted, we currently lack a framework for evaluating the trade-offs, if any. Computer security concepts such as confidentiality, integrity, and availability could be combined with findings from political science and political theory to provide such a framework.

Even so, the relationship between social aggregation institutions and public beliefs is far less well understood by policy makers. Even when social aggregation mechanisms and institutions are robust against direct attacks, they may be vulnerable to more indirect attacks aimed at destabilizing public beliefs about them.

Democratic societies are vulnerable to (at least) two kinds of knowledge attacks that autocratic societies are not. First are flooding attacks that create confusion among citizens about what other citizens believe, making it far more difficult for them to organize among themselves. Second are confidence attacks. These attempt to undermine public confidence in the institutions of social aggregation, so that their results are no longer broadly accepted as legitimate representations of the citizenry.

Most obviously, democracies will function poorly when citizens do not believe that voting is fair. This makes democracies vulnerable to attacks aimed at destabilizing public confidence in voting institutions. For example, some of Russia’s hacking efforts against the 2016 presidential election were designed to undermine citizens’ confidence in the result. Russian hacking attacks against Ukraine, which targeted the systems through which election results were reported out, were intended to create confusion among voters about what the outcome actually was. Similarly, the “Guccifer 2.0” hacking identity, which has been attributed to Russian military intelligence, sought to suggest that the US electoral system had been compromised by the Democrats in the days immediately before the presidential vote. If, as expected, Donald Trump had lost the election, these claims could have been combined with the actual evidence of hacking to create the appearance that the election was fundamentally compromised.

Similar attacks against the perception of fairness are likely to be employed against the 2020 US census. Should efforts to include a citizenship question fail, some political actors who are disadvantaged by demographic changes such as increases in foreign-born residents and population shift from rural to urban and suburban areas will mount an effort to delegitimize the census results. Again, the genuine problems with the census, which include not only the citizenship question controversy but also serious underfunding, may help to bolster these efforts.

Mechanisms that allow interested actors and ordinary members of the public to comment on proposed policies are similarly vulnerable. For example, the Federal Communication Commission (FCC) announced in 2017 that it was proposing to repeal its net neutrality ruling. Interest groups backing the FCC rollback correctly anticipated a widespread backlash from a politically active coalition of net neutrality supporters. The result was warfare through public commenting. More than 22 million comments were filed, most of which appeared to be either automatically generated or form letters. Millions of these comments were apparently fake, and attached unsuspecting people’s names and email addresses to comments supporting the FCC’s repeal efforts. The vast majority of comments that were not either form letters or automatically generated opposed the FCC’s proposed ruling. The furor around the commenting process was magnified by claims from inside the FCC (later discredited) that the commenting process had also been subjected to a cyberattack.

We do not yet know the identity and motives of the actors behind the flood of fake comments, although the New York State Attorney-General’s office has issued subpoenas for records from a variety of lobbying and advocacy organizations. However, by demonstrating that the commenting process was readily manipulated, the attack made it less likely that the apparently genuine comments of those opposing the FCC’s proposed ruling would be treated as useful evidence of what the public believed. The furor over purported cyberattacks, and the FCC’s unwillingness itself to investigate the attack, have further undermined confidence in an online commenting system that was intended to make the FCC more open to the US public.

We do not know nearly enough about how democracies function as information systems. Generating a better understanding is itself a major policy challenge, which will require substantial resources and, even more importantly, common understandings and shared efforts across a variety of fields of knowledge that currently don’t really engage with each other.

However, even this basic sketch of democracy’s informational aspects can provide policy makers with some key lessons. The most important is that it may be as important to bolster shared public beliefs about key institutions such as voting, public commenting, and census taking against attack, as to bolster the mechanisms and related institutions themselves.

Specifically, many efforts to mitigate attacks against democratic systems begin with spreading public awareness and alarm about their vulnerabilities. This has the benefit of increasing awareness about real problems, but it may ­ especially if exaggerated for effect ­ damage public confidence in the very social aggregation institutions it means to protect. This may mean, for example, that public awareness efforts about Russian hacking that are based on flawed analytic techniques may themselves damage democracy by exaggerating the consequences of attacks.

More generally, this poses important challenges for policy efforts to secure social aggregation institutions against attacks. How can one best secure the systems themselves without damaging public confidence in them? At a minimum, successful policy measures will not simply identify problems in existing systems, but provide practicable, publicly visible, and readily understandable solutions to mitigate them.

We have focused on the problem of confidence attacks in this short essay, because they are both more poorly understood and more profound than flooding attacks. Given historical experience, democracy can probably survive some amount of disinformation about citizens’ beliefs better than it can survive attacks aimed at its core institutions of aggregation. Policy makers need a better understanding of the relationship between political institutions and social beliefs: specifically, the importance of the social aggregation institutions that allow democracies to understand themselves.

There are some low-hanging fruit. Very often, hardening these institutions against attacks on their confidence will go hand in hand with hardening them against attacks more generally. Thus, for example, reforms to voting that require permanent paper ballots and random auditing would not only better secure voting against manipulation, but would have moderately beneficial consequences for public beliefs too.

There are likely broadly similar solutions for public commenting systems. Here, the informational trade-offs are less profound than for voting, since there is no need to balance the requirement for anonymity (so that no-one can tell who voted for who ex post) against other requirements (to ensure that no-one votes twice or more, no votes are changed and so on). Instead, the balance to be struck is between general ease of access and security, making it easier, for example, to leverage secondary sources to validate identity.

Both the robustness of and public confidence in the US census and the other statistical systems that guide the allocation of resources could be improved by insulating them better from political control. For example, a similar system could be used to appoint the director of the census to that for the US Comptroller-General, requiring bipartisan agreement for appointment, and making it hard to exert post-appointment pressure on the official.

Our arguments also illustrate how some well-intentioned efforts to combat social influence operations may have perverse consequences for general social beliefs. The perception of security is at least as important as the reality of security, and any defenses against information attacks need to address both.

However, we need far better developed intellectual tools if we are to properly understand the trade-offs, instead of proposing clearly beneficial policies, and avoiding straightforward mistakes. Forging such tools will require computer security specialists to start thinking systematically about public beliefs as an integral part of the systems that they seek to defend. It will mean that more military oriented cybersecurity specialists need to think deeply about the functioning of democracy and the capacity of internal as well as external actors to disrupt it, rather than reaching for their standard toolkit of state-level deterrence tools. Finally, specialists in the workings of democracy have to learn how to think about democracy and its trade-offs in specifically informational terms.

This essay was written with Henry Farrell, and has previously appeared on Defusing Disinfo.

Stealing Ethereum by Guessing Weak Private Keys

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/stealing_ethere.html

Someone is stealing millions of dollars worth of Ethereum by guessing users’ private keys. Normally this should be impossible, but lots of keys seem to be very weak. Researchers are unsure how those weak keys are being generated and used.

Their paper is here.

G7 Comes Out in Favor of Encryption Backdoors

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/g7_comes_out_in.html

From a G7 meeting of interior ministers in Paris this month, an “outcome document“:

Encourage Internet companies to establish lawful access solutions for their products and services, including data that is encrypted, for law enforcement and competent authorities to access digital evidence, when it is removed or hosted on IT servers located abroad or encrypted, without imposing any particular technology and while ensuring that assistance requested from internet companies is underpinned by the rule law and due process protection. Some G7 countries highlight the importance of not prohibiting, limiting, or weakening encryption;

There is a weird belief amongst policy makers that hacking an encryption system’s key management system is fundamentally different than hacking the system’s encryption algorithm. The difference is only technical; the effect is the same. Both are ways of weakening encryption.

New DNS Hijacking Attacks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/new_dns_hijacki.html

DNS hijacking isn’t new, but this seems to be an attack of unprecedented scale:

Researchers at Cisco’s Talos security division on Wednesday revealed that a hacker group it’s calling Sea Turtle carried out a broad campaign of espionage via DNS hijacking, hitting 40 different organizations. In the process, they went so far as to compromise multiple country-code top-level domains — the suffixes like .co.uk or .ru that end a foreign web address — putting all the traffic of every domain in multiple countries at risk.

The hackers’ victims include telecoms, internet service providers, and domain registrars responsible for implementing the domain name system. But the majority of the victims and the ultimate targets, Cisco believes, were a collection of mostly governmental organizations, including ministries of foreign affairs, intelligence agencies, military targets, and energy-related groups, all based in the Middle East and North Africa. By corrupting the internet’s directory system, hackers were able to silently use “man in the middle” attacks to intercept all internet data from email to web traffic sent to those victim organizations.

[…]

Cisco Talos said it couldn’t determine the nationality of the Sea Turtle hackers, and declined to name the specific targets of their spying operations. But it did provide a list of the countries where victims were located: Albania, Armenia, Cyprus, Egypt, Iraq, Jordan, Lebanon, Libya, Syria, Turkey, and the United Arab Emirates. Cisco’s Craig Williams confirmed that Armenia’s .am top-level domain was one of the “handful” that were compromised, but wouldn’t say which of the other countries’ top-level domains were similarly hijacked.

Another news article.

Maliciously Tampering with Medical Imagery

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/maliciously_tam.html

In what I am sure is only a first in many similar demonstrations, researchers are able to add or remove cancer signs from CT scans. The results easily fool radiologists.

I don’t think the medical device industry has thought at all about data integrity and authentication issues. In a world where sensor data of all kinds is undetectably manipulatable, they’re going to have to start.

Research paper. Slashdot thread.

Unhackable Cryptography?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/unhackable_cryp.html

A recent article overhyped the release of EverCrypt, a cryptography library created using formal methods to prove security against specific attacks.

The Quanta magazine article sets off a series of “snake-oil” alarm bells. The author’s Github README is more measured and accurate, and illustrates what a cool project this really is. But it’s not “hacker-proof cryptographic code.”

Cybersecurity Insurance Not Paying for NotPetya Losses

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/cybersecurity_i_2.html

This will complicate things:

To complicate matters, having cyber insurance might not cover everyone’s losses. Zurich American Insurance Company refused to pay out a $100 million claim from Mondelez, saying that since the U.S. and other governments labeled the NotPetya attack as an action by the Russian military their claim was excluded under the “hostile or warlike action in time of peace or war” exemption.

I get that $100 million is real money, but the insurance industry needs to figure out how to properly insure commercial networks against this sort of thing.

Japanese Government Will Hack Citizens’ IoT Devices

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/japanese_govern.html

The Japanese government is going to run penetration tests against all the IoT devices in their country, in an effort to (1) figure out what’s insecure, and (2) help consumers secure them:

The survey is scheduled to kick off next month, when authorities plan to test the password security of over 200 million IoT devices, beginning with routers and web cameras. Devices in people’s homes and on enterprise networks will be tested alike.

[…]

The Japanese government’s decision to log into users’ IoT devices has sparked outrage in Japan. Many have argued that this is an unnecessary step, as the same results could be achieved by just sending a security alert to all users, as there’s no guarantee that the users found to be using default or easy-to-guess passwords would change their passwords after being notified in private.

However, the government’s plan has its technical merits. Many of today’s IoT and router botnets are being built by hackers who take over devices with default or easy-to-guess passwords.

Hackers can also build botnets with the help of exploits and vulnerabilities in router firmware, but the easiest way to assemble a botnet is by collecting the ones that users have failed to secure with custom passwords.

Securing these devices is often a pain, as some expose Telnet or SSH ports online without the users’ knowledge, and for which very few users know how to change passwords. Further, other devices also come with secret backdoor accounts that in some cases can’t be removed without a firmware update.

I am interested in the results of this survey. Japan isn’t very different from other industrialized nations in this regard, so their findings will be general. I am less optimistic about the country’s ability to secure all of this stuff — especially before the 2020 Summer Olympics.

Hacking the GCHQ Backdoor

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/hacking_the_gch.html

Last week, I evaluated the security of a recent GCHQ backdoor proposal for communications systems. Furthering the debate, Nate Cardozo and Seth Schoen of EFF explain how this sort of backdoor can be detected:

In fact, we think when the ghost feature is active­ — silently inserting a secret eavesdropping member into an otherwise end-to-end encrypted conversation in the manner described by the GCHQ authors­ — it could be detected (by the target as well as certain third parties) with at least four different techniques: binary reverse engineering, cryptographic side channels, network-traffic analysis, and crash log analysis. Further, crash log analysis could lead unrelated third parties to find evidence of the ghost in use, and it’s even possible that binary reverse engineering could lead researchers to find ways to disable the ghost capability on the client side. It should be obvious that none of these possibilities are desirable for law enforcement or society as a whole. And while we’ve theorized some types of mitigations that might make the ghost less detectable by particular techniques, they could also impose considerable costs to the network when deployed at the necessary scale, as well as creating new potential security risks or detection methods.

Other critiques of the system were written by Susan Landau and Matthew Green.

EDITED TO ADD (1/26): Good commentary on how to defeat the backdoor detection.

Hacking Construction Cranes

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/hacking_constru.html

Construction cranes are vulnerable to hacking:

In our research and vulnerability discoveries, we found that weaknesses in the controllers can be (easily) taken advantage of to move full-sized machines such as cranes used in construction sites and factories. In the different attack classes that we’ve outlined, we were able to perform the attacks quickly and even switch on the controlled machine despite an operator’s having issued an emergency stop (e-stop).

The core of the problem lies in how, instead of depending on wireless, standard technologies, these industrial remote controllers rely on proprietary RF protocols, which are decades old and are primarily focused on safety at the expense of security. It wasn’t until the arrival of Industry 4.0, as well as the continuing adoption of the industrial internet of things (IIoT), that industries began to acknowledge the pressing need for security.

News article. Report.

New Attack Against Electrum Bitcoin Wallets

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/new_attack_agai_3.html

This is clever:

How the attack works:

  • Attacker added tens of malicious servers to the Electrum wallet network.
  • Users of legitimate Electrum wallets initiate a Bitcoin transaction.
  • If the transaction reaches one of the malicious servers, these servers reply with an error message that urges users to download a wallet app update from a malicious website (GitHub repo).
  • User clicks the link and downloads the malicious update.
  • When the user opens the malicious Electrum wallet, the app asks the user for a two-factor authentication (2FA) code. This is a red flag, as these 2FA codes are only requested before sending funds, and not at wallet startup.
  • The malicious Electrum wallet uses the 2FA code to steal the user’s funds and transfer them to the attacker’s Bitcoin addresses.

The problem here is that Electrum servers are allowed to trigger popups with custom text inside users’ wallets.

Marriott Hack Reported as Chinese State-Sponsored

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/12/marriott_hack_r.html

The New York Times and Reuters are reporting that China was behind the recent hack of Marriott Hotels. Note that this is still uncomfirmed, but interesting if it is true.

Reuters:

Private investigators looking into the breach have found hacking tools, techniques and procedures previously used in attacks attributed to Chinese hackers, said three sources who were not authorized to discuss the company’s private probe into the attack.

That suggests that Chinese hackers may have been behind a campaign designed to collect information for use in Beijing’s espionage efforts and not for financial gain, two of the sources said.

While China has emerged as the lead suspect in the case, the sources cautioned it was possible somebody else was behind the hack because other parties had access to the same hacking tools, some of which have previously been posted online.

Identifying the culprit is further complicated by the fact that investigators suspect multiple hacking groups may have simultaneously been inside Starwood’s computer networks since 2014, said one of the sources.

I used to have opinions about whether these attributions are true or not. These days, I tend to wait and see.

Banks Attacked through Malicious Hardware Connected to the Local Network

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/12/banks_attacked_.html

Kaspersky is reporting on a series of bank hacks — called DarkVishnya — perpetrated through malicious hardware being surreptitiously installed into the target network:

In 2017-2018, Kaspersky Lab specialists were invited to research a series of cybertheft incidents. Each attack had a common springboard: an unknown device directly connected to the company’s local network. In some cases, it was the central office, in others a regional office, sometimes located in another country. At least eight banks in Eastern Europe were the targets of the attacks (collectively nicknamed DarkVishnya), which caused damage estimated in the tens of millions of dollars.

Each attack can be divided into several identical stages. At the first stage, a cybercriminal entered the organization’s building under the guise of a courier, job seeker, etc., and connected a device to the local network, for example, in one of the meeting rooms. Where possible, the device was hidden or blended into the surroundings, so as not to arouse suspicion.

The devices used in the DarkVishnya attacks varied in accordance with the cybercriminals’ abilities and personal preferences. In the cases we researched, it was one of three tools:

  • netbook or inexpensive laptop
  • Raspberry Pi computer
  • Bash Bunny, a special tool for carrying out USB attacks

Inside the local network, the device appeared as an unknown computer, an external flash drive, or even a keyboard. Combined with the fact that Bash Bunny is comparable in size to a USB flash drive, this seriously complicated the search for the entry point. Remote access to the planted device was via a built-in or USB-connected GPRS/3G/LTE modem.

Slashdot thread.

That Bloomberg Supply-Chain-Hack Story

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/11/that_bloomberg_.html

Back in October, Bloomberg reported that China has managed to install backdoors into server equipment that ended up in networks belonging to — among others — Apple and Amazon. Pretty much everybody has denied it (including the US DHS and the UK NCSC). Bloomberg has stood by its story — and is still standing by it.

I don’t think it’s real. Yes, it’s plausible. But first of all, if someone actually surreptitiously put malicious chips onto motherboards en masse, we would have seen a photo of the alleged chip already. And second, there are easier, more effective, and less obvious ways of adding backdoors to networking equipment.

More Spectre/Meltdown-Like Attacks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/11/more_spectremel.html

Back in January, we learned about a class of vulnerabilities against microprocessors that leverages various performance and efficiency shortcuts for attack. I wrote that the first two attacks would be just the start:

It shouldn’t be surprising that microprocessor designers have been building insecure hardware for 20 years. What’s surprising is that it took 20 years to discover it. In their rush to make computers faster, they weren’t thinking about security. They didn’t have the expertise to find these vulnerabilities. And those who did were too busy finding normal software vulnerabilities to examine microprocessors. Security researchers are starting to look more closely at these systems, so expect to hear about more vulnerabilities along these lines.

Spectre and Meltdown are pretty catastrophic vulnerabilities, but they only affect the confidentiality of data. Now that they — and the research into the Intel ME vulnerability — have shown researchers where to look, more is coming — and what they’ll find will be worse than either Spectre or Meltdown. There will be vulnerabilities that will allow attackers to manipulate or delete data across processes, potentially fatal in the computers controlling our cars or implanted medical devices. These will be similarly impossible to fix, and the only strategy will be to throw our devices away and buy new ones.

We saw several variants over the year. And now researchers have discovered seven more.

Researchers say they’ve discovered the seven new CPU attacks while performing “a sound and extensible systematization of transient execution attacks” — a catch-all term the research team used to describe attacks on the various internal mechanisms that a CPU uses to process data, such as the speculative execution process, the CPU’s internal caches, and other internal execution stages.

The research team says they’ve successfully demonstrated all seven attacks with proof-of-concept code. Experiments to confirm six other Meltdown-attacks did not succeed, according to a graph published by researchers.

Microprocessor designers have spent the year rethinking the security of their architectures. My guess is that they have a lot more rethinking to do.

How to Punish Cybercriminals

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/11/how_to_punish_c.html

Interesting policy paper by Third Way: “To Catch a Hacker: Toward a comprehensive strategy to identify, pursue, and punish malicious cyber actors“:

In this paper, we argue that the United States currently lacks a comprehensive overarching strategic approach to identify, stop and punish cyberattackers. We show that:

  • There is a burgeoning cybercrime wave: A rising and often unseen crime wave is mushrooming in America. There are approximately 300,000 reported malicious cyber incidents per year, including up to 194,000 that could credibly be called individual or system-wide breaches or attempted breaches. This is likely a vast undercount since many victims don’t report break-ins to begin with. Attacks cost the US economy anywhere from $57 billion to $109 billion annually and these costs are increasing.
  • There is a stunning cyber enforcement gap: Our analysis of publicly available data shows that cybercriminals can operate with near impunity compared to their real-world counterparts. We estimate that cyber enforcement efforts are so scattered that less than 1% of malicious cyber incidents see an enforcement action taken against the attackers.

  • There is no comprehensive US cyber enforcement strategy aimed at the human attacker: Despite the recent release of a National Cyber Strategy, the United States still lacks a comprehensive strategic approach to how it identifies, pursues, and punishes malicious human cyberattackers and the organizations and countries often behind them. We believe that the United States is as far from this human attacker strategy as the nation was toward a strategic approach to countering terrorism in the weeks and months before 9/11.

In order to close the cyber enforcement gap, we argue for a comprehensive enforcement strategy that makes a fundamental rebalance in US cybersecurity policies: from a heavy focus on building better cyber defenses against intrusion to also waging a more robust effort at going after human attackers. We call for ten US policy actions that could form the contours of a comprehensive enforcement strategy to better identify, pursue and bring to justice malicious cyber actors that include building up law enforcement, enhancing diplomatic efforts, and developing a measurable strategic plan to do so.

China’s Hacking of the Border Gateway Protocol

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/10/chinas_hacking_.html

This is a long — and somewhat technical — paper by Chris C. Demchak and Yuval Shavitt about China’s repeated hacking of the Internet Border Gateway Protocol (BGP): “China’s Maxim ­ Leave No Access Point Unexploited: The Hidden Story of China Telecom’s BGP Hijacking.”

BGP hacking is how large intelligence agencies manipulate Internet routing to make certain traffic easier to intercept. The NSA calls it “network shaping” or “traffic shaping.” Here’s a document from the Snowden archives outlining how the technique works with Yemen.

EDITED TO ADD (10/27): BoingBoing post.