Tag Archives: Internet of Things

MQTT 5: Introduction to MQTT 5

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/mqtt-5-introduction-to-mqtt-5/

MQTT 5 Introduction

Introduction to MQTT 5

Welcome to our brand new blog post series MQTT 5 – Features and Hidden Gems. Without doubt, the MQTT protocol is the most popular and best received Internet of Things protocol as of today (see the Google Trends Chart below), supporting large scale use cases ranging from Connected Cars, Manufacturing Systems, Logistics, Military Use Cases to Enterprise Chat Applications, Mobile Apps and connecting constrained IoT devices. Of course, with huge amounts of production deployments, the wish list for future versions of the MQTT protocol grew bigger and bigger.

MQTT 5 is by far the most extensive and most feature-rich update to the MQTT protocol specification ever. We are going to explore all hidden gems and protocol features with use case discussion and useful background information – one blog post at a time.

Be sure to read the MQTT Essentials Blog Post series first before diving into our new MQTT 5 series. To get the most out of the new blog posts, it’s important to have a basic understanding of the MQTT 3.1.1 protocol as we are going to highlight key changes as well as all improvements.

Presenting AWS IoT Analytics: Delivering IoT Analytics at Scale and Faster than Ever Before

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-presenting-aws-iot-analytics/

One of the technology areas I thoroughly enjoy is the Internet of Things (IoT). Even as a child I used to infuriate my parents by taking apart the toys they would purchase for me to see how they worked and if I could somehow put them back together. It seems somehow I was destined to end up the tough and ever-changing world of technology. Therefore, it’s no wonder that I am really enjoying learning and tinkering with IoT devices and technologies. It combines my love of development and software engineering with my curiosity around circuits, controllers, and other facets of the electrical engineering discipline; even though an electrical engineer I can not claim to be.

Despite all of the information that is collected by the deployment of IoT devices and solutions, I honestly never really thought about the need to analyze, search, and process this data until I came up against a scenario where it became of the utmost importance to be able to search and query through loads of sensory data for an anomaly occurrence. Of course, I understood the importance of analytics for businesses to make accurate decisions and predictions to drive the organization’s direction. But it didn’t occur to me initially, how important it was to make analytics an integral part of my IoT solutions. Well, I learned my lesson just in time because this re:Invent a service is launching to make it easier for anyone to process and analyze IoT messages and device data.

 

Hello, AWS IoT Analytics!  AWS IoT Analytics is a fully managed service of AWS IoT that provides advanced data analysis of data collected from your IoT devices.  With the AWS IoT Analytics service, you can process messages, gather and store large amounts of device data, as well as, query your data. Also, the new AWS IoT Analytics service feature integrates with Amazon Quicksight for visualization of your data and brings the power of machine learning through integration with Jupyter Notebooks.

Benefits of AWS IoT Analytics

  • Helps with predictive analysis of data by providing access to pre-built analytical functions
  • Provides ability to visualize analytical output from service
  • Provides tools to clean up data
  • Can help identify patterns in the gathered data

Be In the Know: IoT Analytics Concepts

  • Channel: archives the raw, unprocessed messages and collects data from MQTT topics.
  • Pipeline: consumes messages from channels and allows message processing.
    • Activities: perform transformations on your messages including filtering attributes and invoking lambda functions advanced processing.
  • Data Store: Used as a queryable repository for processed messages. Provide ability to have multiple datastores for messages coming from different devices or locations or filtered by message attributes.
  • Data Set: Data retrieval view from a data store, can be generated by a recurring schedule. 

Getting Started with AWS IoT Analytics

First, I’ll create a channel to receive incoming messages.  This channel can be used to ingest data sent to the channel via MQTT or messages directed from the Rules Engine. To create a channel, I’ll select the Channels menu option and then click the Create a channel button.

I’ll name my channel, TaraIoTAnalyticsID and give the Channel a MQTT topic filter of Temperature. To complete the creation of my channel, I will click the Create Channel button.

Now that I have my Channel created, I need to create a Data Store to receive and store the messages received on the Channel from my IoT device. Remember you can set up multiple Data Stores for more complex solution needs, but I’ll just create one Data Store for my example. I’ll select Data Stores from menu panel and click Create a data store.

 

I’ll name my Data Store, TaraDataStoreID, and once I click the Create the data store button and I would have successfully set up a Data Store to house messages coming from my Channel.

Now that I have my Channel and my Data Store, I will need to connect the two using a Pipeline. I’ll create a simple pipeline that just connects my Channel and Data Store, but you can create a more robust pipeline to process and filter messages by adding Pipeline activities like a Lambda activity.

To create a pipeline, I’ll select the Pipelines menu option and then click the Create a pipeline button.

I will not add an Attribute for this pipeline. So I will click Next button.

As we discussed there are additional pipeline activities that I can add to my pipeline for the processing and transformation of messages but I will keep my first pipeline simple and hit the Next button.

The final step in creating my pipeline is for me to select my previously created Data Store and click Create Pipeline.

All that is left for me to take advantage of the AWS IoT Analytics service is to create an IoT rule that sends data to an AWS IoT Analytics channel.  Wow, that was a super easy process to set up analytics for IoT devices.

If I wanted to create a Data Set as a result of queries run against my data for visualization with Amazon Quicksight or integrate with Jupyter Notebooks to perform more advanced analytical functions, I can choose the Analyze menu option to bring up the screens to create data sets and access the Juypter Notebook instances.

Summary

As you can see, it was a very simple process to set up the advanced data analysis for AWS IoT. With AWS IoT Analytics, you have the ability to collect, visualize, process, query and store large amounts of data generated from your AWS IoT connected device. Additionally, you can access the AWS IoT Analytics service in a myriad of different ways; the AWS Command Line Interface (AWS CLI), the AWS IoT API, language-specific AWS SDKs, and AWS IoT Device SDKs.

AWS IoT Analytics is available today for you to dig into the analysis of your IoT data. To learn more about AWS IoT and AWS IoT Analytics go to the AWS IoT Analytics product page and/or the AWS IoT documentation.

Tara

In the Works – AWS IoT Device Defender – Secure Your IoT Fleet

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/in-the-works-aws-sepio-secure-your-iot-fleet/

Scale takes on a whole new meaning when it comes to IoT. Last year I was lucky enough to tour a gigantic factory that had, on average, one environment sensor per square meter. The sensors measured temperature, humidity, and air purity several times per second, and served as an early warning system for contaminants. I’ve heard customers express interest in deploying IoT-enabled consumer devices in the millions or tens of millions.

With powerful, long-lived devices deployed in a geographically distributed fashion, managing security challenges is crucial. However, the limited amount of local compute power and memory can sometimes limit the ability to use encryption and other forms of data protection.

To address these challenges and to allow our customers to confidently deploy IoT devices at scale, we are working on IoT Device Defender. While the details might change before release, AWS IoT Device Defender is designed to offer these benefits:

Continuous AuditingAWS IoT Device Defender monitors the policies related to your devices to ensure that the desired security settings are in place. It looks for drifts away from best practices and supports custom audit rules so that you can check for conditions that are specific to your deployment. For example, you could check to see if a compromised device has subscribed to sensor data from another device. You can run audits on a schedule or on an as-needed basis.

Real-Time Detection and AlertingAWS IoT Device Defender looks for and quickly alerts you to unusual behavior that could be coming from a compromised device. It does this by monitoring the behavior of similar devices over time, looking for unauthorized access attempts, changes in connection patterns, and changes in traffic patterns (either inbound or outbound).

Fast Investigation and Mitigation – In the event that you get an alert that something unusual is happening, AWS IoT Device Defender gives you the tools, including contextual information, to help you to investigate and mitigate the problem. Device information, device statistics, diagnostic logs, and previous alerts are all at your fingertips. You have the option to reboot the device, revoke its permissions, reset it to factory defaults, or push a security fix.

Stay Tuned
I’ll have more info (and a hands-on post) as soon as possible, so stay tuned!

Jeff;

New- AWS IoT Device Management

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-iot-device-management/

AWS IoT and AWS Greengrass give you a solid foundation and programming environment for your IoT devices and applications.

The nature of IoT means that an at-scale device deployment often encompasses millions or even tens of millions of devices deployed at hundreds or thousands of locations. At that scale, treating each device individually is impossible. You need to be able to set up, monitor, update, and eventually retire devices in bulk, collective fashion while also retaining the flexibility to accommodate varying deployment configurations, device models, and so forth.

New AWS IoT Device Management
Today we are launching AWS IoT Device Management to help address this challenge. It will help you through each phase of the device lifecycle, from manufacturing to retirement. Here’s what you get:

Onboarding – Starting with devices in their as-manufactured state, you can control the provisioning workflow. You can use IoT Device Management templates to quickly onboard entire fleets of devices with a few clicks. The templates can include information about device certificates and access policies.

Organization – In order to deal with massive numbers of devices, AWS IoT Device Management extends the existing IoT Device Registry and allows you to create a hierarchical model of your fleet and to set policies on a hierarchical basis. You can drill-down through the hierarchy in order to locate individual devices. You can also query your fleet on attributes such as device type or firmware version.

Monitoring – Telemetry from the devices is used to gather real-time connection, authentication, and status metrics, which are published to Amazon CloudWatch. You can examine the metrics and locate outliers for further investigation. IoT Device Management lets you configure the log level for each device group, and you can also publish change events for the Registry and Jobs for monitoring purposes.

Remote ManagementAWS IoT Device Management lets you remotely manage your devices. You can push new software and firmware to them, reset to factory defaults, reboot, and set up bulk updates at the desired velocity.

Exploring AWS IoT Device Management
The AWS IoT Device Management Console took me on a tour and pointed out how to access each of the features of the service:

I already have a large set of devices (pressure gauges):

These gauges were created using the new template-driven bulk registration feature. Here’s how I create a template:

The gauges are organized into groups (by US state in this case):

Here are the gauges in Colorado:

AWS IoT group policies allow you to control access to specific IoT resources and actions for all members of a group. The policies are structured very much like IAM policies, and can be created in the console:

Jobs are used to selectively update devices. Here’s how I create one:

As indicated by the Job type above, jobs can run either once or continuously. Here’s how I choose the devices to be updated:

I can create custom authorizers that make use of a Lambda function:

I’ve shown you a medium-sized subset of AWS IoT Device Management in this post. Check it out for yourself to learn more!

Jeff;

 

Warrant Protections against Police Searches of Our Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/warrant_protect.html

The cell phones we carry with us constantly are the most perfect surveillance device ever invented, and our laws haven’t caught up to that reality. That might change soon.

This week, the Supreme Court will hear a case with profound implications on your security and privacy in the coming years. The Fourth Amendment’s prohibition of unlawful search and seizure is a vital right that protects us all from police overreach, and the way the courts interpret it is increasingly nonsensical in our computerized and networked world. The Supreme Court can either update current law to reflect the world, or it can further solidify an unnecessary and dangerous police power.

The case centers on cell phone location data and whether the police need a warrant to get it, or if they can use a simple subpoena, which is easier to obtain. Current Fourth Amendment doctrine holds that you lose all privacy protections over any data you willingly share with a third party. Your cellular provider, under this interpretation, is a third party with whom you’ve willingly shared your movements, 24 hours a day, going back months — even though you don’t really have any choice about whether to share with them. So police can request records of where you’ve been from cell carriers without any judicial oversight. The case before the court, Carpenter v. United States, could change that.

Traditionally, information that was most precious to us was physically close to us. It was on our bodies, in our homes and offices, in our cars. Because of that, the courts gave that information extra protections. Information that we stored far away from us, or gave to other people, afforded fewer protections. Police searches have been governed by the “third-party doctrine,” which explicitly says that information we share with others is not considered private.

The Internet has turned that thinking upside-down. Our cell phones know who we talk to and, if we’re talking via text or e-mail, what we say. They track our location constantly, so they know where we live and work. Because they’re the first and last thing we check every day, they know when we go to sleep and when we wake up. Because everyone has one, they know whom we sleep with. And because of how those phones work, all that information is naturally shared with third parties.

More generally, all our data is literally stored on computers belonging to other people. It’s our e-mail, text messages, photos, Google docs, and more ­ all in the cloud. We store it there not because it’s unimportant, but precisely because it is important. And as the Internet of Things computerizes the rest our lives, even more data will be collected by other people: data from our health trackers and medical devices, data from our home sensors and appliances, data from Internet-connected “listeners” like Alexa, Siri, and your voice-activated television.

All this data will be collected and saved by third parties, sometimes for years. The result is a detailed dossier of your activities more complete than any private investigator –­ or police officer –­ could possibly collect by following you around.

The issue here is not whether the police should be allowed to use that data to help solve crimes. Of course they should. The issue is whether that information should be protected by the warrant process that requires the police to have probable cause to investigate you and get approval by a court.

Warrants are a security mechanism. They prevent the police from abusing their authority to investigate someone they have no reason to suspect of a crime. They prevent the police from going on “fishing expeditions.” They protect our rights and liberties, even as we willingly give up our privacy to the legitimate needs of law enforcement.

The third-party doctrine never made a lot of sense. Just because I share an intimate secret with my spouse, friend, or doctor doesn’t mean that I no longer consider it private. It makes even less sense in today’s hyper-connected world. It’s long past time the Supreme Court recognized that a months’-long history of my movements is private, and my e-mails and other personal data deserve the same protections, whether they’re on my laptop or on Google’s servers.

This essay previously appeared in the Washington Post.

Details on the case. Two opinion pieces.

I signed on to two amicus briefs on the case.

EDITED TO ADD (12/1): Good commentary on the Supreme Court oral arguments.

Presenting Amazon Sumerian: An easy way to create VR, AR, and 3D experiences

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-presenting-amazon-sumerian/

If you have had an opportunity to read any of my blog posts or attended any session I’ve conducted at various conferences, you are probably aware that I am definitively a geek girl. I am absolutely enamored with all of the latest advancements that have been made in technology areas like cloud, artificial intelligence, internet of things and the maker space, as well as, with virtual reality and augmented reality. In my opinion, it is a wonderful time to be a geek. All the things that we dreamed about building while we sweated through our algorithms and discrete mathematics classes or the technology we marveled at when watching Star Wars and Star Trek are now coming to fruition.  So hopefully this means it will only be a matter of time before I can hyperdrive to other galaxies in space, but until then I can at least build the 3D virtual reality and augmented reality characters and images like those featured in some of my favorite shows.

Amazon Sumerian provides tools and resources that allows anyone to create and run augmented reality (AR), virtual reality (VR), and 3D applications with ease.  With Sumerian, you can build multi-platform experiences that run on hardware like the Oculus, HTC Vive, and iOS devices using WebVR compatible browsers and with support for ARCore on Android devices coming soon.

This exciting new service, currently in preview, delivers features to allow you to design highly immersive and interactive 3D experiences from your browser. Some of these features are:

  • Editor: A web-based editor for constructing 3D scenes, importing assets, scripting interactions and special effects, with cross-platform publishing.
  • Object Library: a library of pre-built objects and templates.
  • Asset Import: Upload 3D assets to use in your scene. Sumerian supports importing FBX, OBJ, and coming soon Unity projects.
  • Scripting Library: provides a JavaScript scripting library via its 3D engine for advanced scripting capabilities.
  • Hosts: animated, lifelike 3D characters that can be customized for gender, voice, and language.
  • AWS Services Integration: baked in integration with Amazon Polly and Amazon Lex to add speech and natural language to into Sumerian hosts. Additionally, the scripting library can be used with AWS Lambda allowing use of the full range of AWS services.

Since Amazon Sumerian doesn’t require you to have 3D graphics or programming experience to build rich, interactive VR and AR scenes, let’s take a quick run to the Sumerian Dashboard and check it out.

From the Sumerian Dashboard, I can easily create a new scene with a push of a button.

A default view of the new scene opens and is displayed in the Sumerian Editor. With the Tara Blog Scene opened in the editor, I can easily import assets into my scene.

I’ll click the Import Asset button and pick an asset, View Room, to import into the scene. With the desired asset selected, I’ll click the Add button to import it.

Excellent, my asset was successfully imported into the Sumerian Editor and is shown in the Asset panel.  Now, I have the option to add the View Room object into my scene by selecting it in the Asset panel and then dragging it onto the editor’s canvas.

I’ll repeat the import asset process and this time I will add the Mannequin asset to the scene.

Additionally, with Sumerian, I can add scripting to Entity assets to make my scene even more exciting by adding a ScriptComponent to an entity and creating a script.  I can use the provided built-in scripts or create my own custom scripts. If I create a new custom script, I will get a blank script with some base JavaScript code that looks similar to the code below.

'use strict';
/* global sumerian */
//This is Me-- trying out the custom scripts - Tara

var setup = function (args, ctx) {
// Called when play mode starts.
};
var fixedUpdate = function (args, ctx) {
// Called on every physics update, after setup().
};
var update = function (args, ctx) {
// Called on every render frame, after setup().
};
var lateUpdate = function (args, ctx) {
// Called after all script "update" methods in the scene has been called.
};
var cleanup = function (args, ctx) {
// Called when play mode stops.
};
var parameters = [];

Very cool, I just created a 3D scene using Amazon Sumerian in a matter of minutes and I have only scratched the surface.

Summary

The Amazon Sumerian service enables you to create, build, and run virtual reality (VR), augmented reality (AR), and 3D applications with ease.  You don’t need any 3D graphics or specialized programming knowledge to get started building scenes and immersive experiences.  You can import FBX, OBJ, and Unity projects in Sumerian, as well as upload your own 3D assets for use in your scene. In addition, you can create digital characters to narrate your scene and with these digital assets, you have choices for the character’s appearance, speech and behavior.

You can learn more about Amazon Sumerian and sign up for the preview to get started with the new service on the product page.  I can’t wait to see what rich experiences you all will build.

Tara

 

HackSpace: a new magazine for makers

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace/

HackSpace is the new monthly magazine for people who love to make things and those who want to learn. Grab some duct tape, fire up a microcontroller, ready a 3D printer and hack the world around you!

This is HackSpace magazine!

HackSpace is the new monthly magazine for the modern maker. Learn more at http://hsmag.cc. Launching on the 23rd November the magazine will be packed with projects for fixers and tinkerers of all abilities. We’ll teach you new techniques and give you refreshers on familiar ones, from 3D printing, laser cutting, and woodworking to electronics and Internet of Things.

HackSpace magazine

Each month, HackSpace will feature tutorials and projects to help you build and learn. Whether you’re into 3D printing, woodworking, or weird and wonderful IoT projects, HackSpace will help you get more out of hardware hacking by giving you the ideas and skills to take your builds to the next level.

HackSpace is a community magazine written by makers for makers, and we want your input. So if there’s something you want to see in the magazine, tell us about it. And if you have a great project that you believe deserves a place within a future issue, then show it to us.

The front cover of HackSpace magazine issue 1

Get your free copy

Eager to get your hands on HackSpace? Sign up for a free copy of issue 1 by visiting the website! You have until 17 November to do so. Moreover, if you’re the manager of a hack- and makerspace, you can also sign up for a whole box of free copies for your members to enjoy by filling in the details of your venue here.

We want HackSpace magazine to be available to as many people as possible, so we’ll be releasing a free PDF of every monthly issue alongside the print version. You won’t have to wait for us to release articles online — everything will be available free of charge from day one!

The front cover of HackSpace magazine issue 1

Get your monthly copy

For those who’d rather have the hard copy of HackSpace for their home library, garden shed, or coffee table, subscriptions start at just £4.00 a month for a rolling subscription, and even less than that if you’re already a subscriber to The MagPi magazine.

You will also be able to purchase this new magazine from selected newsagents in the UK from 23 November onward, and in the USA and Australia a few weeks later.

The post HackSpace: a new magazine for makers appeared first on Raspberry Pi.

IoT Cybersecurity: What’s Plan B?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/iot_cybersecuri.html

In August, four US Senators introduced a bill designed to improve Internet of Things (IoT) security. The IoT Cybersecurity Improvement Act of 2017 is a modest piece of legislation. It doesn’t regulate the IoT market. It doesn’t single out any industries for particular attention, or force any companies to do anything. It doesn’t even modify the liability laws for embedded software. Companies can continue to sell IoT devices with whatever lousy security they want.

What the bill does do is leverage the government’s buying power to nudge the market: any IoT product that the government buys must meet minimum security standards. It requires vendors to ensure that devices can not only be patched, but are patched in an authenticated and timely manner; don’t have unchangeable default passwords; and are free from known vulnerabilities. It’s about as low a security bar as you can set, and that it will considerably improve security speaks volumes about the current state of IoT security. (Full disclosure: I helped draft some of the bill’s security requirements.)

The bill would also modify the Computer Fraud and Abuse and the Digital Millennium Copyright Acts to allow security researchers to study the security of IoT devices purchased by the government. It’s a far narrower exemption than our industry needs. But it’s a good first step, which is probably the best thing you can say about this legislation.

However, it’s unlikely this first step will even be taken. I am writing this column in August, and have no doubt that the bill will have gone nowhere by the time you read it in October or later. If hearings are held, they won’t matter. The bill won’t have been voted on by any committee, and it won’t be on any legislative calendar. The odds of this bill becoming law are zero. And that’s not just because of current politics — I’d be equally pessimistic under the Obama administration.

But the situation is critical. The Internet is dangerous — and the IoT gives it not just eyes and ears, but also hands and feet. Security vulnerabilities, exploits, and attacks that once affected only bits and bytes now affect flesh and blood.

Markets, as we’ve repeatedly learned over the past century, are terrible mechanisms for improving the safety of products and services. It was true for automobile, food, restaurant, airplane, fire, and financial-instrument safety. The reasons are complicated, but basically, sellers don’t compete on safety features because buyers can’t efficiently differentiate products based on safety considerations. The race-to-the-bottom mechanism that markets use to minimize prices also minimizes quality. Without government intervention, the IoT remains dangerously insecure.

The US government has no appetite for intervention, so we won’t see serious safety and security regulations, a new federal agency, or better liability laws. We might have a better chance in the EU. Depending on how the General Data Protection Regulation on data privacy pans out, the EU might pass a similar security law in 5 years. No other country has a large enough market share to make a difference.

Sometimes we can opt out of the IoT, but that option is becoming increasingly rare. Last year, I tried and failed to purchase a new car without an Internet connection. In a few years, it’s going to be nearly impossible to not be multiply connected to the IoT. And our biggest IoT security risks will stem not from devices we have a market relationship with, but from everyone else’s cars, cameras, routers, drones, and so on.

We can try to shop our ideals and demand more security, but companies don’t compete on IoT safety — and we security experts aren’t a large enough market force to make a difference.

We need a Plan B, although I’m not sure what that is. E-mail me if you have any ideas.

This essay previously appeared in the September/October issue of IEEE Security & Privacy.

My Blogging

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/my_blogging.html

Blog regulars will notice that I haven’t been posting as much lately as I have in the past. There are two reasons. One, it feels harder to find things to write about. So often it’s the same stories over and over. I don’t like repeating myself. Two, I am busy writing a book. The title is still: Click Here to Kill Everybody: Peril and Promise in a Hyper-Connected World. The book is a year late, and as a very different table of contents than it had in 2016. I have been writing steadily since mid-August. The book is due to the publisher at the end of March 2018, and will be published in the beginning of September.

This is the current table of contents:

  • Introduction: Everything is Becoming a Computer
  • Part 1: The Trends
    • 1. Capitalism Continues to Drive the Internet
    • 2. Customer/User Control is Next
    • 3. Government Surveillance and Control is Also Increasing
    • 4. Cybercrime is More Profitable Than Ever
    • 5. Cyberwar is the New Normal
    • 6. Algorithms, Automation, and Autonomy Bring New Dangers
    • 7. What We Know About Computer Security
    • 8. Agile is Failing as a Security Paradigm
    • 9. Authentication and Identification are Getting Harder
    • 10. Risks are Becoming Catastrophic
  • Part 2: The Solutions
    • 11. We Need to Regulate the Internet of Things
    • 12. We Need to Defend Critical Infrastructure
    • 13. We Need to Prioritize Defense Over Offence
    • 14. We Need to Make Smarter Decisions About Connecting
    • 15. What’s Likely to Happen, and What We Can Do in Response
    • 16. Where Policy Can Go Wrong
  • Conclusion: Technology and Policy, Together

So that’s what’s been happening.

[$] The NumWorks graphing calculator

Post Syndicated from jake original https://lwn.net/Articles/734766/rss

As the Internet of Things (IoT) becomes
ever more populous, there is no shortage of people warning us that the
continual infusion into our lives of hard-to-patch
proprietary devices running hard-to-maintain proprietary code is a bit
of a problem. It is an act of faith for some, myself included,
that open devices running free software (whether IoT devices or not) are
easier to
maintain than
proprietary, closed ones. So it’s always of interest when freedom (or
something close to it) makes
its way into a class of devices that were not previously so blessed.

Subscribers can click below for a look at the NumWorks graphing calculator
by guest author Tom Yates.

[$] Antipatterns in IoT security

Post Syndicated from jake original https://lwn.net/Articles/733512/rss

Security for Internet of Things (IoT) devices is something of a hot topic
over the last year or more. Marti Bolivar presented an overview of some of
the antipatterns that are leading to the lack of security for
these devices at a session at the 2017 Open Source Summit North America in
Los Angeles. He also had some specific recommendations for IoT developers
on how to think about these problems and where to turn for help in making
security a part of the normal development process.

IoT Sleepbuddy, the robotic babysitter

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sleepbuddy-robotic-babysitter/

You’re watching the new episode of Game of Thrones, and suddenly you hear your children, up and about after their bedtime! Now you’ll probably miss a crucial moment of the show because you have to put them to bed again. Or you’re out to dinner with friends and longing for the sight of your sleeping small humans. What do you do? Text the babysitter to check on them? Well, luckily for you these issues could soon be things of the past, thanks to Bert Vuylsteke and his Pi-powered Sleepbuddy. This IoT-controlled social robot could fulfil all your remote babysitting needs!

IoT Sleepbuddy – babyphone – Design concept

This is the actual concept of my robot and in what context it can be used.

A social robot?

A social robot fulfils a role normally played by a person, and interacts with humans via human language, gestures, and facial expressions. This is what Bert says about the role of the Sleepbuddy:

[For children, it] is a friend or safeguard from nightmares, but it is so much more for the babysitters or parents. The babysitters or parents connect their smartphone/tablet/PC to the Sleepbuddy. This will give them access to control all his emotions, gestures, microphone, speaker and camera. In the eye is a hidden camera to see the kids sleeping. The speaker and microphone allow communication with the kids through WiFi.

The roots of the Sleepbuddy

As a student at Ghent University, Bert had to build a social robot using OPSORO, the university’s open-source robotics platform. The developers of this platform create social robots for research purposes. They are also making all software, as well as hardware design plans, available on GitHub. In addition, you will soon be able to purchase their robot kits via a Kickstarter. OPSORO robots are designed around the Raspberry Pi, and controlled via a web interface. The interface allows you to customise your robot’s behaviour, using visual or text-based programming languages.

Sleepbuddy Bert Vuylsteke components

The Sleepbuddy’s components

Building the Sleepbuddy

Bert has provided a detailed Instructable describing the process of putting the Sleepbuddy together, complete with video walk-throughs. However, the making techniques he has used include thermoforming, laser cutting, and 3D printing. If you want to recreate this build, you may need to contact your local makerspace to find out whether they have the necessary equipment.

Sleepbuddy Bert Vuylsteke assembly

Assembling the Sleepbuddy

Finally, Bert added an especially cute touch to this project by covering the Sleepbuddy in blackboard paint. Therefore, kids can draw on the robot to really make it their own!

So many robots!

At Pi Towers we are partial to all kinds of robots, be they ones that test medical devices, play chess or Connect 4, or fight other robots. If they twerk, or are cute, tiny, or shoddy, we maybe even like them a tiny bit more.

Do you share our love of robots? Would you like to make your own? Then check out our resource for building a simple robot buggy. Maybe it will kick-start your career as the general of a robot army. A robot army that does good, of course! Let us know your benevolent robot overlord plans in the comments.

The post IoT Sleepbuddy, the robotic babysitter appeared first on Raspberry Pi.

timeShift(GrafanaBuzz, 1w) Issue 5

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/07/21/timeshiftgrafanabuzz-1w-issue-5/

We cover a lot of ground in this week’s timeShift. From diving into building your own plugin, finding the right dashboard, configuration options in the alerting feature, to monitoring your local weather, there’s something for everyone. Are you writing an article about Grafana, or have you come across an article you found interesting? Please get in touch, we’ll add it to our roundup.


From the Blogosphere

  • Going open-source in monitoring, part III: 10 most useful Grafana dashboards to monitor Kubernetes and services: We have hundreds of pre-made dashboards ready for you to install into your on-prem or hosted Grafana, but not every one will fit your specific monitoring needs. In part three of the series, Sergey discusses is experiences with finding useful dashboards and shows off ten of the best dashboards you can install for monitoring Kubernetes clusters and the services deployed on them.

  • Using AWS Lambda and API gateway for server-less Grafana adapters: Sometimes you’ll want to visualize metrics from a data source that may not yet be supported in Grafana natively. With the plugin functionality introduced in Grafana 3.0, anyone can create their own data sources. Using the SimpleJson data source, Jonas describes how he used AWS Lambda and AWS API gateway to write data source adapters for Grafana.

  • How to Use Grafana to Monitor JMeter Non-GUI Results – Part 2: A few issues ago we listed an article for using Grafana to monitor JMeter Non-GUI results, which required a number of non-trivial steps to complete. This article shows of an easier way to accomplish this that doesn’t require any additional configuration of InfluxDB.

  • Programming your Personal Weather Chart: It’s always great to see Grafana used outside of the typical dev-ops usecase. This article runs you through the steps to create your own weather chart and show off your local weather stats in Grafana. BONUS: Rob shows off a magic mirror he created, which can display this data.

  • vSphere Performance data – Part 6 – The Dashboard(s): This 6-part series goes into a ton of detail and walks you through the various methods of retrieving vSphere performance data, storing the data in a TSDB, and creating dashboards for the metrics. Part 6 deals specifically with Grafana, but I highly recommend reading all of the articles, as it chronicles the journey of metrics exploration, storage, and visualization from someone who had no prior experience with time series data.

  • Alerting in Grafana: Alerting in Grafana is a fairly new feature and one that we’re continuing to iterate on. We’re soon adding additional data source support, new notification channels, clustering, silencing rules, and more. This article steps you through all the configuration options to get you to your first alert.


Plugins and Dashboards

It can seem like work slows during July and August, but we’re still seeing a lot of activity in the community. This week we have a new graph panel to show off that gives you some unique looking dashboards, and an update to the Zabbix data source, which adds some really great features. You can install both of the plugins now on your on-prem Grafana via our cli, or with one-click on GrafanaCloud.

NEW PLUGIN

Bubble Chart Panel This super-cool looking panel groups your tag values into clusters of circles. The size of the circle represents the aggregated value of the time series data. There are also multiple color schemes to make those bubbles POP (pun intended)! Currently it works against OpenTSDB and Bosun, so give it a try!

Install Now

UPDATED PLUGIN

Zabbix Alex has been hard at work, making improvements on the Zabbix App for Grafana. This update adds annotations, template variables, alerting and more. Thanks Alex! If you’d like to try out the app, head over to http://play.grafana-zabbix.org/dashboard/db/zabbix-db-mysql?orgId=2

Install 3.5.1 Now


This week’s MVC (Most Valuable Contributor)

Open source software can’t thrive without the contributions from the community. Each week we’ll recognize a Grafana contributor and thank them for all of their PRs, bug reports and feedback.

mk-dhia (Dhia)
Thank you so much for your improvements to the Elasticsearch data source!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

This week’s tweet comes from @geek_dave

Great looking dashboard Dave! And thank you for adding new features and keeping it updated. It’s creators like you who make the dashboard repository so awesome!


Upcoming Events

We love when people talk about Grafana at meetups and conferences.

Monday, July 24, 2017 – 7:30pm | Google Campus Warsaw


Ząbkowska 27/31, Warsaw, Poland

Iot & HOME AUTOMATION #3 openHAB, InfluxDB, Grafana:
If you are interested in topics of the internet of things and home automation, this might be a good occasion to meet people similar to you. If you are into it, we will also show you how we can all work together on our common projects.

RSVP


Tell us how we’re Doing.

We’d love your feedback on what kind of content you like, length, format, etc – so please keep the comments coming! You can submit a comment on this article below, or post something at our community forum. Help us make this better.

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Is Continuing to Patch Windows XP a Mistake?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/is_continuing_t.html

Last week, Microsoft issued a security patch for Windows XP, a 16-year-old operating system that Microsoft officially no longer supports. Last month, Microsoft issued a Windows XP patch for the vulnerability used in WannaCry.

Is this a good idea? This 2014 essay argues that it’s not:

The zero-day flaw and its exploitation is unfortunate, and Microsoft is likely smarting from government calls for people to stop using Internet Explorer. The company had three ways it could respond. It could have done nothing­ — stuck to its guns, maintained that the end of support means the end of support, and encouraged people to move to a different platform. It could also have relented entirely, extended Windows XP’s support life cycle for another few years and waited for attrition to shrink Windows XP’s userbase to irrelevant levels. Or it could have claimed that this case is somehow “special,” releasing a patch while still claiming that Windows XP isn’t supported.

None of these options is perfect. A hard-line approach to the end-of-life means that there are people being exploited that Microsoft refuses to help. A complete about-turn means that Windows XP will take even longer to flush out of the market, making it a continued headache for developers and administrators alike.

But the option Microsoft took is the worst of all worlds. It undermines efforts by IT staff to ditch the ancient operating system and undermines Microsoft’s assertion that Windows XP isn’t supported, while doing nothing to meaningfully improve the security of Windows XP users. The upside? It buys those users at best a few extra days of improved security. It’s hard to say how that was possibly worth it.

This is a hard trade-off, and it’s going to get much worse with the Internet of Things. Here’s me:

The security of our computers and phones also comes from the fact that we replace them regularly. We buy new laptops every few years. We get new phones even more frequently. This isn’t true for all of the embedded IoT systems. They last for years, even decades. We might buy a new DVR every five or ten years. We replace our refrigerator every 25 years. We replace our thermostat approximately never. Already the banking industry is dealing with the security problems of Windows 95 embedded in ATMs. This same problem is going to occur all over the Internet of Things.

At least Microsoft has security engineers on staff that can write a patch for Windows XP. There will be no one able to write patches for your 16-year-old thermostat and refrigerator, even assuming those devices can accept security patches.

Safety and Security and the Internet of Things

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/safety_and_secu.html

Ross Anderson blogged about his new paper on security and safety concerns about the Internet of Things. (See also this short video.)

It’s very much along the lines of what I’ve been writing.

Ransomware and the Internet of Things

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/05/ransomware_and_.html

As devastating as the latest widespread ransomware attacks have been, it’s a problem with a solution. If your copy of Windows is relatively current and you’ve kept it updated, your laptop is immune. It’s only older unpatched systems on your computer that are vulnerable.

Patching is how the computer industry maintains security in the face of rampant Internet insecurity. Microsoft, Apple and Google have teams of engineers who quickly write, test and distribute these patches, updates to the codes that fix vulnerabilities in software. Most people have set up their computers and phones to automatically apply these patches, and the whole thing works seamlessly. It isn’t a perfect system, but it’s the best we have.

But it is a system that’s going to fail in the “Internet of things”: everyday devices like smart speakers, household appliances, toys, lighting systems, even cars, that are connected to the web. Many of the embedded networked systems in these devices that will pervade our lives don’t have engineering teams on hand to write patches and may well last far longer than the companies that are supposed to keep the software safe from criminals. Some of them don’t even have the ability to be patched.

Fast forward five to 10 years, and the world is going to be filled with literally tens of billions of devices that hackers can attack. We’re going to see ransomware against our cars. Our digital video recorders and web cameras will be taken over by botnets. The data that these devices collect about us will be stolen and used to commit fraud. And we’re not going to be able to secure these devices.

Like every other instance of product safety, this problem will never be solved without considerable government involvement.

For years, I have been calling for more regulation to improve security in the face of this market failure. In the short term, the government can mandate that these devices have more secure default configurations and the ability to be patched. It can issue best-practice regulations for critical software and make software manufacturers liable for vulnerabilities. It’ll be expensive, but it will go a long way toward improved security.

But it won’t be enough to focus only on the devices, because these things are going to be around and on the Internet much longer than the two to three years we use our phones and computers before we upgrade them. I expect to keep my car for 15 years, and my refrigerator for at least 20 years. Cities will expect the networks they’re putting in place to last at least that long. I don’t want to replace my digital thermostat ever again. Nor, if I ever need one, do I want a surgeon to ever have to go back in to replace my computerized heart defibrillator in order to fix a software bug.

No amount of regulation can force companies to maintain old products, and it certainly can’t prevent companies from going out of business. The future will contain billions of orphaned devices connected to the web that simply have no engineers able to patch them.

Imagine this: The company that made your Internet-enabled door lock is long out of business. You have no way to secure yourself against the ransomware attack on that lock. Your only option, other than paying, and paying again when it’s reinfected, is to throw it away and buy a new one.

Ultimately, we will also need the network to block these attacks before they get to the devices, but there again the market will not fix the problem on its own. We need additional government intervention to mandate these sorts of solutions.

None of this is welcome news to a government that prides itself on minimal intervention and maximal market forces, but national security is often an exception to this rule. Last week’s cyberattacks have laid bare some fundamental vulnerabilities in our computer infrastructure and serve as a harbinger. There’s a lot of good research into robust solutions, but the economic incentives are all misaligned. As politically untenable as it is, we need government to step in to create the market forces that will get us out of this mess.

This essay previously appeared in the New York Times. Yes, I know I’m repeating myself.