Tag Archives: Internet of Things

TMA Special: Connecting Taza Chocolate’s Legacy Equipment to the Cloud

Post Syndicated from Todd Escalona original https://aws.amazon.com/blogs/architecture/tma-special-connecting-taza-chocolates-legacy-equipment-to-the-cloud/

As a “bean to bar” chocolate manufacturer, Taza Chocolate uses traditional stone ground mills for the production of its famous chocolate discs. The analog, mid-century machines that the company imported from Central America were never built to connect to the cloud.

Along comes Tulip Interfaces, an AWS Industrial Software Competency Partner that makes the human and machine interaction easier by replacing paper processes with digital automation. Tulip retrofitted Taza’s legacy equipment with Internet of Things (IoT) sensors and connected it back to the AWS cloud.

Taza’s AWS cloud integration begins with Tulip’s own physical gateway that connects systems and machinery on the plant floor. Tulip then deploys IoT sensors to the machinery and passes outputs to the AWS cloud using an encrypted web socket where Tulip’s Kubernetes workers, managed by Kops, automatically schedule services across highly available instances and processes requests.

All job completion data is then fed to an Amazon RDS Multi-AZ PostgreSQL database that allows Taza to run visualizations and analytics for more insight using Prometheus and Garfana. In addition, all of the application definition metadata is contained in a MongoDB database service running on Amazon Elastic Cloud Compute (EC2) instances, which in return is VPC-peered with Kubernetes clusters. On top of this backend, Tulip uses a player application to stream metrics in near real-time that are displayed on the dashboard down on the shop floor and can be easily examined in order to help guide their operations and foster continuous improvements efforts to manufacturing operations.

Taza has realized many benefits from monitoring machine availability, performance, ambient conditions as well as overall process enhancements.

In this special, on-site This is My Architecture video, AWS Solutions Architect Evangelist Todd Escalona takes us on his journey through the Taza Chocolate factory where he meets with Taza’s Director of Manufacturing, Rich Moran, and Tulip’s DevOps lead, John Defreitas, to further explore how Tulip enables Taza Chocolate’s legacy equipment for cloud-based plant automation.

*Check out more This Is My Architecture video series.

Building an AWS IoT Core device using AWS Serverless and an ESP32

Post Syndicated from Moheeb Zara original https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device-using-aws-serverless-and-an-esp32/

Using a simple Arduino sketch, an AWS Serverless Application Repository application, and a microcontroller, you can build a basic serverless workflow for communicating with an AWS IoT Core device.

A microcontroller is a programmable chip and acts as the brain of an electronic device. It has input and output pins for reading and writing on digital or analog components. Those components could be sensors, relays, actuators, or various other devices. It can be used to build remote sensors, home automation products, robots, and much more. The ESP32 is a powerful low-cost microcontroller with Wi-Fi and Bluetooth built in and is used this walkthrough.

The Arduino IDE, a lightweight development environment for hardware, now includes support for the ESP32. There is a large collection of community and officially supported libraries, from addressable LED strips to spectral light analysis.

The following walkthrough demonstrates connecting an ESP32 to AWS IoT Core to allow it to publish and subscribe to topics. This means that the device can send any arbitrary information, such as sensor values, into AWS IoT Core while also being able to receive commands.

Solution overview

This post walks through deploying an application from the AWS Serverless Application Repository. This allows an AWS IoT device to be messaged using a REST endpoint powered by Amazon API Gateway and AWS Lambda. The AWS SAR application also configures an AWS IoT rule that forwards any messages published by the device to a Lambda function that updates an Amazon DynamoDB table, demonstrating basic bidirectional communication.

The last section explores how to build an IoT project with real-world application. By connecting a thermal printer module and modifying a few lines of code in the example firmware, the ESP32 device becomes an AWS IoT–connected printer.

All of this can be accomplished within the AWS Free Tier, which is necessary for the following instructions.

An example of an AWS IoT project using an ESP32, AWS IoT Core, and an Arduino thermal printer

An example of an AWS IoT project using an ESP32, AWS IoT Core, and an Arduino thermal printer.

Required steps

To complete the walkthrough, follow these steps:

  • Create an AWS IoT device.
  • Install and configure the Arduino IDE.
  • Configure and flash an ESP32 IoT device.
  • Deploying the lambda-iot-rule AWS SAR application.
  • Monitor and test.
  • Create an IoT thermal printer.

Creating an AWS IoT device

To communicate with the ESP32 device, it must connect to AWS IoT Core with device credentials. You must also specify the topics it has permissions to publish and subscribe on.

  1. In the AWS IoT console, choose Register a new thing, Create a single thing.
  2. Name the new thing. Use this exact name later when configuring the ESP32 IoT device. Leave the remaining fields set to their defaults. Choose Next.
  3.  Choose Create certificate. Only the thing cert, private key, and Amazon Root CA 1 downloads are necessary for the ESP32 to connect. Download and save them somewhere secure, as they are used when programming the ESP32 device.
  4. Choose Activate, Attach a policy.
  5. Skip adding a policy, and choose Register Thing.
  6. In the AWS IoT console side menu, choose Secure, Policies, Create a policy.
  7. Name the policy Esp32Policy. Choose the Advanced tab.
  8. Paste in the following policy template.
    {
      "Version": "2012-10-17",
      "Statement": [
        {
          "Effect": "Allow",
          "Action": "iot:Connect",
          "Resource": "arn:aws:iot:REGION:ACCOUNT_ID:client/THINGNAME"
        },
        {
          "Effect": "Allow",
          "Action": "iot:Subscribe",
          "Resource": "arn:aws:iot:REGION:ACCOUNT_ID:topicfilter/esp32/sub"
        },
    	{
          "Effect": "Allow",
          "Action": "iot:Receive",
          "Resource": "arn:aws:iot:REGION:ACCOUNT_ID:topic/esp32/sub"
        },
        {
          "Effect": "Allow",
          "Action": "iot:Publish",
          "Resource": "arn:aws:iot:REGION:ACCOUNT_ID:topic/esp32/pub"
        }
      ]
    }
  9. Replace REGION with the matching AWS Region you’re currently operating in. This can be found on the top right corner of the AWS console window.
  10.  Replace ACCOUNT_ID with your own, which can be found in Account Settings.
  11. Replace THINGNAME with the name of your device.
  12. Choose Create.
  13. In the AWS IoT console, choose Secure, Certification. Select the one created for your device and choose Actions, Attach policy.
  14. Choose Esp32Policy, Attach.

Your AWS IoT device is now configured to have permission to connect to AWS IoT Core. It can also publish to the topic esp32/pub and subscribe to the topic esp32/sub. For more information on securing devices, see AWS IoT Policies.

Installing and configuring the Arduino IDE

The Arduino IDE is an open-source development environment for programming microcontrollers. It supports a continuously growing number of platforms including most ESP32-based modules. It must be installed along with the ESP32 board definitions, MQTT library, and ArduinoJson library.

  1. Download the Arduino installer for the desired operating system.
  2. Start Arduino and open the Preferences window.
  3. For Additional Board Manager URLs, add
    https://dl.espressif.com/dl/package_esp32_index.json.
  4. Choose Tools, Board, Boards Manager.
  5. Search esp32 and install the latest version.
  6. Choose Sketch, Include Library, Manage Libraries.
  7. Search MQTT, and install the latest version by Joel Gaehwiler.
  8. Repeat the library installation process for ArduinoJson.

The Arduino IDE is now installed and configured with all the board definitions and libraries needed for this walkthrough.

Configuring and flashing an ESP32 IoT device

A collection of various ESP32 development boards.

A collection of various ESP32 development boards.

For this section, you need an ESP32 device. To check if your board is compatible with the Arduino IDE, see the boards.txt file. The following code connects to AWS IoT Core securely using MQTT, a publish and subscribe messaging protocol.

This project has been tested on the following devices:

  1. Install the required serial drivers for your device. Some boards use different USB/FTDI chips for interfacing. Here are the most commonly used with links to drivers.
  2. Open the Arduino IDE and choose File, New to create a new sketch.
  3. Add a new tab and name it secrets.h.
  4. Paste the following into the secrets file.
    #include <pgmspace.h>
    
    #define SECRET
    #define THINGNAME ""
    
    const char WIFI_SSID[] = "";
    const char WIFI_PASSWORD[] = "";
    const char AWS_IOT_ENDPOINT[] = "xxxxx.amazonaws.com";
    
    // Amazon Root CA 1
    static const char AWS_CERT_CA[] PROGMEM = R"EOF(
    -----BEGIN CERTIFICATE-----
    -----END CERTIFICATE-----
    )EOF";
    
    // Device Certificate
    static const char AWS_CERT_CRT[] PROGMEM = R"KEY(
    -----BEGIN CERTIFICATE-----
    -----END CERTIFICATE-----
    )KEY";
    
    // Device Private Key
    static const char AWS_CERT_PRIVATE[] PROGMEM = R"KEY(
    -----BEGIN RSA PRIVATE KEY-----
    -----END RSA PRIVATE KEY-----
    )KEY";
  5. Enter the name of your AWS IoT thing, as it is in the console, in the field THINGNAME.
  6. To connect to Wi-Fi, add the SSID and PASSWORD of the desired network. Note: The network name should not include spaces or special characters.
  7. The AWS_IOT_ENDPOINT can be found from the Settings page in the AWS IoT console.
  8. Copy the Amazon Root CA 1, Device Certificate, and Device Private Key to their respective locations in the secrets.h file.
  9. Choose the tab for the main sketch file, and paste the following.
    #include "secrets.h"
    #include <WiFiClientSecure.h>
    #include <MQTTClient.h>
    #include <ArduinoJson.h>
    #include "WiFi.h"
    
    // The MQTT topics that this device should publish/subscribe
    #define AWS_IOT_PUBLISH_TOPIC   "esp32/pub"
    #define AWS_IOT_SUBSCRIBE_TOPIC "esp32/sub"
    
    WiFiClientSecure net = WiFiClientSecure();
    MQTTClient client = MQTTClient(256);
    
    void connectAWS()
    {
      WiFi.mode(WIFI_STA);
      WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
    
      Serial.println("Connecting to Wi-Fi");
    
      while (WiFi.status() != WL_CONNECTED){
        delay(500);
        Serial.print(".");
      }
    
      // Configure WiFiClientSecure to use the AWS IoT device credentials
      net.setCACert(AWS_CERT_CA);
      net.setCertificate(AWS_CERT_CRT);
      net.setPrivateKey(AWS_CERT_PRIVATE);
    
      // Connect to the MQTT broker on the AWS endpoint we defined earlier
      client.begin(AWS_IOT_ENDPOINT, 8883, net);
    
      // Create a message handler
      client.onMessage(messageHandler);
    
      Serial.print("Connecting to AWS IOT");
    
      while (!client.connect(THINGNAME)) {
        Serial.print(".");
        delay(100);
      }
    
      if(!client.connected()){
        Serial.println("AWS IoT Timeout!");
        return;
      }
    
      // Subscribe to a topic
      client.subscribe(AWS_IOT_SUBSCRIBE_TOPIC);
    
      Serial.println("AWS IoT Connected!");
    }
    
    void publishMessage()
    {
      StaticJsonDocument<200> doc;
      doc["time"] = millis();
      doc["sensor_a0"] = analogRead(0);
      char jsonBuffer[512];
      serializeJson(doc, jsonBuffer); // print to client
    
      client.publish(AWS_IOT_PUBLISH_TOPIC, jsonBuffer);
    }
    
    void messageHandler(String &topic, String &payload) {
      Serial.println("incoming: " + topic + " - " + payload);
    
    //  StaticJsonDocument<200> doc;
    //  deserializeJson(doc, payload);
    //  const char* message = doc["message"];
    }
    
    void setup() {
      Serial.begin(9600);
      connectAWS();
    }
    
    void loop() {
      publishMessage();
      client.loop();
      delay(1000);
    }
  10. Choose File, Save, and give your project a name.

Flashing the ESP32

  1. Plug the ESP32 board into a USB port on the computer running the Arduino IDE.
  2. Choose Tools, Board, and then select the matching type of ESP32 module. In this case, a Sparkfun ESP32 Thing was used.
  3. Choose Tools, Port, and then select the matching port for your device.
  4. Choose Upload. Arduino reads Done uploading when the upload is successful.
  5. Choose the magnifying lens icon to open the Serial Monitor. Set the baud rate to 9600.

Keep the Serial Monitor open. When connected to Wi-Fi and then AWS IoT Core, any messages received on the topic esp32/sub are logged to this console. The device is also now publishing to the topic esp32/pub.

The topics are set at the top of the sketch. When changing or adding topics, remember to add permissions in the device policy.

// The MQTT topics that this device should publish/subscribe
#define AWS_IOT_PUBLISH_TOPIC   "esp32/pub"
#define AWS_IOT_SUBSCRIBE_TOPIC "esp32/sub"

Within this sketch, the relevant functions are publishMessage() and messageHandler().

The publishMessage() function creates a JSON object with the current time in milliseconds and the analog value of pin A0 on the device. It then publishes this JSON object to the topic esp32/pub.

void publishMessage()
{
  StaticJsonDocument<200> doc;
  doc["time"] = millis();
  doc["sensor_a0"] = analogRead(0);
  char jsonBuffer[512];
  serializeJson(doc, jsonBuffer); // print to client

  client.publish(AWS_IOT_PUBLISH_TOPIC, jsonBuffer);
}

The messageHandler() function prints out the topic and payload of any message from a subscribed topic. To see all the ways to parse JSON messages in Arduino, see the deserializeJson() example.

void messageHandler(String &topic, String &payload) {
  Serial.println("incoming: " + topic + " - " + payload);

//  StaticJsonDocument<200> doc;
//  deserializeJson(doc, payload);
//  const char* message = doc["message"];
}

Additional topic subscriptions can be added within the connectAWS() function by adding another line similar to the following.

// Subscribe to a topic
  client.subscribe(AWS_IOT_SUBSCRIBE_TOPIC);

  Serial.println("AWS IoT Connected!");

Deploying the lambda-iot-rule AWS SAR application

Now that an ESP32 device has been connected to AWS IoT, the following steps walk through deploying an AWS Serverless Application Repository application. This is a base for building serverless integration with a physical device.

  1. On the lambda-iot-rule AWS Serverless Application Repository application page, make sure that the Region is the same as the AWS IoT device.
  2. Choose Deploy.
  3. Under Application settings, for PublishTopic, enter esp32/sub. This is the topic to which the ESP32 device is subscribed. It receives messages published to this topic. Likewise, set SubscribeTopic to esp32/pub, the topic on which the device publishes.
  4. Choose Deploy.
  5. When creation of the application is complete, choose Test app to navigate to the application page. Keep this page open for the next section.

Monitoring and testing

At this stage, two Lambda functions, a DynamoDB table, and an AWS IoT rule have been deployed. The IoT rule forwards messages on topic esp32/pub to TopicSubscriber, a Lambda function, which inserts the messages on to the DynamoDB table.

  1. On the application page, under Resources, choose MyTable. This is the DynamoDB table that the TopicSubscriber Lambda function updates.
  2. Choose Items. If the ESP32 device is still active and connected, messages that it has published appear here.

The TopicPublisher Lambda function is invoked by the API Gateway endpoint and publishes to the AWS IoT topic esp32/sub.

1.     On the application page, find the Application endpoint.

2.     To test that the TopicPublisher function is working, enter the following into a terminal or command-line utility, replacing ENDPOINT with the URL from above.

curl -d '{"text":"Hello world!"}' -H "Content-Type: application/json" -X POST https://ENDPOINT/publish

Upon success, the request returns a copy of the message.

Back in the Serial Monitor, the message published to the topic esp32/sub prints out.

Creating an IoT thermal printer

With the completion of the previous steps, the ESP32 device currently logs incoming messages to the serial console.

The following steps demonstrate how the code can be modified to use incoming messages to interact with a peripheral component. This is done by wiring a thermal printer to the ESP32 in order to physically print messages. The REST endpoint from the previous section can be used as a webhook in third-party applications to interact with this device.

A wiring diagram depicting an ESP32 connected to a thermal printer.

A wiring diagram depicting an ESP32 connected to a thermal printer.

  1. Follow the product instructions for powering, wiring, and installing the correct Arduino library.
  2. Ensure that the thermal printer is working by holding the power button on the printer while connecting the power. A sample receipt prints. On that receipt, the default baud rate is specified as either 9600 or 19200.
  3. In the Arduino code from earlier, include the following lines at the top of the main sketch file. The second line defines what interface the thermal printer is connected to. &Serial2 is used to set the third hardware serial interface on the ESP32. For this example, the pins on the Sparkfun ESP32 Thing, GPIO16/GPIO17, are used for RX/TX respectively.
    #include "Adafruit_Thermal.h"
    
    Adafruit_Thermal printer(&Serial2);
  4. Replace the setup() function with the following to initialize the printer on device bootup. Change the baud rate of Serial2.begin() to match what is specified in the test print. The default is 19200.
    void setup() {
      Serial.begin(9600);
    
      // Start the thermal printer
      Serial2.begin(19200);
      printer.begin();
      printer.setSize('S');
    
      connectAWS();
    }
    
  5. Replace the messageHandler() function with the following. On any incoming message, it parses the JSON and prints the message on the thermal printer.
    void messageHandler(String &topic, String &payload) {
      Serial.println("incoming: " + topic + " - " + payload);
    
      // deserialize json
      StaticJsonDocument<200> doc;
      deserializeJson(doc, payload);
      String message = doc["message"];
    
      // Print the message on the thermal printer
      printer.println(message);
      printer.feed(2);
    }
  6. Choose Upload.
  7. After the firmware has successfully uploaded, open the Serial Monitor to confirm that the board has connected to AWS IoT.
  8. Enter the following into a command-line utility, replacing ENDPOINT, as in the previous section.
    curl -d '{"message": "Hello World!"}' -H "Content-Type: application/json" -X POST https://ENDPOINT/publish

If successful, the device prints out the message “Hello World” from the attached thermal printer. This is a fully serverless IoT printer that can be triggered remotely from a webhook. As an example, this can be used with GitHub Webhooks to print a physical readout of events.

Conclusion

Using a simple Arduino sketch, an AWS Serverless Application Repository application, and a microcontroller, this post demonstrated how to build a basic serverless workflow for communicating with a physical device. It also showed how to expand that into an IoT thermal printer with real-world applications.

With the use of AWS serverless, advanced compute and extensibility can be added to an IoT device, from machine learning to translation services and beyond. By using the Arduino programming environment, the vast collection of open-source libraries, projects, and code examples open up a world of possibilities. The next step is to explore what can be done with an Arduino and the capabilities of AWS serverless. The sample Arduino code for this project and more can be found at this GitHub repository.

re:Invent 2019: Introducing the Amazon Builders’ Library (Part I)

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/reinvent-2019-introducing-the-amazon-builders-library-part-i/

Today, I’m going to tell you about a new site we launched at re:Invent, the Amazon Builders’ Library, a collection of living articles covering topics across architecture, software delivery, and operations. You get to peek under the hood of how Amazon architects, releases, and operates the software underpinning Amazon.com and AWS.

Want to know how Amazon.com does what it does? This is for you. In this two-part series (the next one coming December 23), I’ll highlight some of the best architecture articles written by Amazon’s senior technical leaders and engineers.

Avoiding insurmountable queue backlogs

Avoiding insurmountable queue backlogs

In queueing theory, the behavior of queues when they are short is relatively uninteresting. After all, when a queue is short, everyone is happy. It’s only when the queue is backlogged, when the line to an event goes out the door and around the corner, that people start thinking about throughput and prioritization.

In this article, I discuss strategies we use at Amazon to deal with queue backlog scenarios – design approaches we take to drain queues quickly and to prioritize workloads. Most importantly, I describe how to prevent queue backlogs from building up in the first place. In the first half, I describe scenarios that lead to backlogs, and in the second half, I describe many approaches used at Amazon to avoid backlogs or deal with them gracefully.

Read the full article by David Yanacek – Principal Engineer

Timeouts, retries, and backoff with jitter

Timeouts, retries and backoff with jitter

Whenever one service or system calls another, failures can happen. These failures can come from a variety of factors. They include servers, networks, load balancers, software, operating systems, or even mistakes from system operators. We design our systems to reduce the probability of failure, but impossible to build systems that never fail. So in Amazon, we design our systems to tolerate and reduce the probability of failure, and avoid magnifying a small percentage of failures into a complete outage. To build resilient systems, we employ three essential tools: timeouts, retries, and backoff.

Read the full article by Marc Brooker, Senior Principal Engineer

Challenges with distributed systems

Challenges with distributed systems

The moment we added our second server, distributed systems became the way of life at Amazon. When I started at Amazon in 1999, we had so few servers that we could give some of them recognizable names like “fishy” or “online-01”. However, even in 1999, distributed computing was not easy. Then as now, challenges with distributed systems involved latency, scaling, understanding networking APIs, marshalling and unmarshalling data, and the complexity of algorithms such as Paxos. As the systems quickly grew larger and more distributed, what had been theoretical edge cases turned into regular occurrences.

Developing distributed utility computing services, such as reliable long-distance telephone networks, or Amazon Web Services (AWS) services, is hard. Distributed computing is also weirder and less intuitive than other forms of computing because of two interrelated problems. Independent failures and nondeterminism cause the most impactful issues in distributed systems. In addition to the typical computing failures most engineers are used to, failures in distributed systems can occur in many other ways. What’s worse, it’s impossible always to know whether something failed.

Read the full article by Jacob Gabrielson, Senior Principal Engineer

Static stability using Availability Zones

Static stability using availability zones

At Amazon, the services we build must meet extremely high availability targets. This means that we need to think carefully about the dependencies that our systems take. We design our systems to stay resilient even when those dependencies are impaired. In this article, we’ll define a pattern that we use called static stability to achieve this level of resilience. We’ll show you how we apply this concept to Availability Zones, a key infrastructure building block in AWS and therefore a bedrock dependency on which all of our services are built.

Read the full article by Becky Weiss, Senior Principal Engineer, and Mike Furr, Principal Engineer

Check back in two weeks to read about some other architecture-based expert articles that let you in on how Amazon does what it does.

AWS Architecture Monthly Magazine: Manufacturing

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/aws-architecture-monthly-magazine-manufacturing/

Architecture Monthly Magazine - Nov-Dec 2019

For more than 25 years, Amazon has designed and manufactured smart products and distributed billions of products through its globally connected distribution network using cutting edge automation, machine learning and AI, and robotics, with AWS at its core. From product design to smart factory and smart products, AWS helps leading manufacturers transform their manufacturing operations with the most comprehensive and advanced set of cloud solutions available today, while taking advantage of the highest level of security.

In this Manufacturing-themed end-of-year issue of the AWS Architecture Monthly magazine, Steve Blackwell, AWS Manufacturing Tech Leader, talks about how manufacturers can experiment with and take advantage of emerging technologies using three main architectural patterns: demand forecasting, smart factories, and extending the manufacturing value chain with smart products.

In This Issue

We’ve assembled architectural best practices about Manufacturing from all over AWS, and we’ve made sure that a broad audience can appreciate it. Note that this will be our last issue of the year. We’ll be back in January with highlights and insights about AWS re:Invent 2019 (December 2-6 in Las Vegas).

  • Case Study: iRobot Ready to Unlock the Next Generation of Smart Homes Using the AWS Cloud
  • Ask an Expert: Steve Blackwell, Manufacturing Tech Leader
  • Blog Post: Reinventing the IoT Platform for Discrete Manufacturers
  • Solution: Smart Product Solution
  • AWS Coffee Break: IoT Helps Manufacturing Hit the Right Note
  • Whitepaper: Practical Ways To Achieve Smarter, Faster, and More Responsive Operations
  • Reference Architecture: EDA on AWS with IBM Spectrum LSF

How to Access the Magazine

We hope you’re enjoying Architecture Monthly, and we’d like to hear from you—leave us star rating and comment on the Amazon Kindle Newsstand page or contact us anytime at [email protected].

Welcome to AWS IoT Day – Eight Powerful New Features

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/welcome-to-aws-iot-day/

Just as we did for the recent AWS Storage Day, we are making several pre-re:Invent announcements related to AWS IoT. Here’s what I’ve got for you today:

Secure Tunneling – You can set up and use secure tunnels between devices, even if they are behind restrictive network firewalls.

Configurable Endpoints – You can create multiple AWS IoT endpoints within a single AWS account, and set up a unique feature configuration on each one.

Custom Domains for Configurable Endpoints – You can register your own domains and server certificates and use them to create custom AWS IoT Core endpoints.

Enhanced Custom Authorizers – You can now use callbacks to invoke your own authentication and authorization code for MQTT connections.

Fleet Provisioning – You can onboard large numbers of IoT devices to the cloud, providing each one with a unique digital identity and any required configuration on its first connection to AWS IoT Core.

Alexa Voice Service (AVS) Integration – You can reduce the cost of producing an Alexa built-in device by up to 50% and bring Alexa to devices that have very limited amounts of local processing power and storage.

Container Support for AWS IoT Greengrass – You can now deploy, run, and manage Docker containers and applications on your AWS IoT Greengrass-enabled devices. You can deploy containers and Lambda functions on the same device, and you can use your existing build tools and processes for your IoT work. To learn more, read about the Docker Application Deployment Connector.

Stream Manager for AWS IoT Greengrass – You can now build AWS IoT Greengrass applications that collect, process, and export streams of data from IoT devices. Your applications can do first-tier processing at the edge, and then route all or selected data to an Amazon Kinesis Data Stream or AWS IoT Analytics for cloud-based, second-tier processing. To learn more, read AWS IoT Greengrass Adds Docker Support and Streams Management at the Edge and Manage Data Streams on the AWS IoT Greengrass Core.

Let’s dive into these powerful new features!

Secure Tunneling
This feature addresses a very common customer request: the need to access, troubleshoot, and fix IoT devices that are behind a restrictive firewall. This feature is of special relevance to medical devices, utility meters, and specialized hardware with an IoT aspect.

You can set up a secure tunnel on port 443 that uses TLS 1.2 encryption, and then use a local proxy to move commands and data across the tunnel. There are three elements to this feature:

Management APIs – A new set of APIs allow you to open (OpenTunnel), close (CloseTunnel), list (ListTunnels), and describe (DescribeTunnels) secure tunnels. Opening a tunnel generates a tunnel id and a pair of client access tokens: one for the source device and another for the destination device.

Local Proxy – A proxy that runs on both ends of the connection, available [[here]] in open source form. For IoT-registered devices, the client access token is passed via MQTT to the device, which launches a local proxy on each device to initiate a connection to the tunneling service. The client access token and tunnel id are used to authenticate the connection for each source and destination device to the tunneling service.

Tunneling Service – This service implements the tunnel, and connects the source and destination devices.

I can use the AWS IoT Console to create and manage tunnels. I click on Manage and Tunnels, then Open New:

I give my tunnel a description, select a thing, configure a timeout, add a tag, and click Open New:

Then I download the client access tokens for the source and destination:

Custom Domains for Configurable Endpoints
This feature gives you the ability to create custom AWS IoT Core endpoints, each with their own DNS CNAME and server certificate. This allows you to keep your brand identity without any software updates.

To learn more, read Custom Domains.

Configurable Endpoints
This feature gives you additional control of your AWS IoT Endpoints by enabling you to customize aspects such as domain and authentication mechanism as well as create multiple endpoints in the same account. This allows you to migrate to AWS IoT while keeping your existing endpoints (perhaps hardwired into devices already out in the field) unchanged and maintaining backwards compatibility with hard-to-update devices in the field.

To learn more, read Configurable Endpoints.

Enhanced Custom Authorizers
This feature allows you to use our own identity and access management implementation to authenticate and authorize traffic to and from your IoT devices. It works with all protocols supported by AWS IoT Core, with support for identities based on a bearer token or on a username/password pair. The enhancement supports custom authentication & authorization over MQTT connections, and also includes simplified token passing for HTTP and WSS connections.

To learn more, read Custom Authorizers.

Fleet Provisioning
This feature makes it easy for you to onboard large fleets of IoT devices to AWS IoT Core. Instead of spending time and resources to uniquely configure each IoT devices at the time of manufacturing, you can now use AWS IoT Core’s fleet provisioning feature to get your generic devices uniquely configured when the device makes its first connection to AWS IoT Core. The configuration can include X.509 certificates, MQTT client identity, serial numbers, and so forth. Fleet Provisioning uses JSON templates that contain device-side configuration, cloud-side configuration, and a proof-of-trust criterion. Trust can be based on an attestable entity such as a bootstrap X.509 certificate, or a local connection to a branded mobile app or onboarding beacon.

To learn more, read the Fleet Provisioning Developer Guide.

Alexa Voice Service (AVS) Integration
This feature lowers the cost of producing an Alexa built-in device up to 50% by offloading compute & memory intensive audio workloads from a physical device to a new virtual Alexa built-in device in the cloud. This lets you integrate AVS on devices with less than 1 MB of RAM and ARM Cortex ‘M’ class microcontrollers (including the new NXP MCU-Based Solution for Alexa Voice Service) and brings Alexa to products such as light switches, thermostats, and small appliances. The devices can take advantage of the new AWS IoT Core features listed above, as well as existing AWS IoT features such as Over the Air (OTA) updates.

To learn more, read Introducing Alexa Voice Service (AVS) Integration for AWS IoT Core.

Jeff;

New – AWS IoT Greengrass Adds Container Support and Management of Data Streams at the Edge

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/new-aws-iot-greengrass-adds-docker-support-and-streams-management-at-the-edge/

AWS IoT Greengrass extends cloud capabilities to edge devices, so that they can respond to local events in near real-time, even with intermittent connectivity.

Today, we are adding two features that make it easier to build IoT solutions:

  • Container support to deploy applications using the Greengrass Docker application deployment connector.
  • Collect, process, and export data streams from edge devices and manage the lifecycle of that data with the Stream Manager for AWS IoT Greengrass.

Let’s see how these new features work and how to use them.

Deploying a Container-Based Application to a Greengrass Core Device
You can now run AWS Lambda functions and container-based applications in your AWS IoT Greengrass core device. In this way it is easier to migrate applications from on-premises, or build new applications that include dependencies such as libraries, other binaries, and configuration files, using container images. This provides a consistent deployment environment for your applications that enables portability across development environments and edge locations. You can easily deploy legacy and third-party applications by packaging the code or executables into the container images.

To use this feature, I describe my container-based application using a Docker Compose file. I can reference container images in public or private repositories, such as Amazon Elastic Container Registry (ECR) or Docker Hub. To start, I create a simple web app using Python and Flask that counts the number of times it is visualized.

from flask import Flask

app = Flask(__name__)

counter = 0

@app.route('/')
def hello():
    global counter
    counter += 1
    return 'Hello World! I have been seen {} times.\n'.format(counter)

My requirements.txt file contains a single dependency, flask.

I build the container image using this Dockerfile and push it to ECR.

FROM python:3.7-alpine
WORKDIR /code
ENV FLASK_APP app.py
ENV FLASK_RUN_HOST 0.0.0.0
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["flask", "run"]

Here is the docker-compose.yml file referencing the container image in my ECR repository. Docker Compose files can describe applications using multiple containers, but for this example I am using just one.

version: '3'
services:
  web:
    image: "123412341234.dkr.ecr.us-east-1.amazonaws.com/hello-world-counter:latest"
    ports:
      - "80:5000"

I upload the docker-compose.yml file to an Amazon Simple Storage Service (S3) bucket.

Now I create an AWS IoT Greengrass group using an Amazon Elastic Compute Cloud (EC2) instance as core device. Usually your core device is outside of the AWS cloud, but using an EC2 instance can be a good way to set up and automate a dev & test environment for your deployments at the edge.

When the group is ready, I run an “empty” deployment, just to check that everything is working as expected. After a few seconds, my first deployment has completed and I start adding a connector.

In the connector section of the AWS IoT Greengrass group, I select Add a connector and search for “Docker”. I select Docker Application Deployment and hit Next.

Now I configure the parameters for the connector. I select my docker-compose.yml file on S3. The AWS Identity and Access Management (IAM) role used by the AWS IoT Greengrass group needs permissions to get the file from S3 and to get the authorization token and download the image from ECR. If you use a private repository such as Docker Hub, you can leverage the integration with the AWS Secret Manager to make it easy for your connectors and Lambda functions to use local secrets to interact with services and applications.

I deploy my changes, similarly to what I did before. This time, the new container-based application is installed and started on the AWS IoT Greengrass core device.

To test the web app that I deployed, I open access to the HTTP port on the Security Group of the EC2 instance I am using as core device. When I connect with my browser, I see the Flask app starting to count the visits. My container-based application is running on the AWS IoT Greengrass core device!

You can deploy much more complex applications than what I did in this example. Let’s see that as we go through the other feature released today.

Using the Stream Manager for AWS IoT Greengrass
For common use cases like video processing, image recognition, or high-volume data collection from sensors at the edge, you often need to build your own data stream management capabilities. The new Stream Manager simplifies this process by adding a standardized mechanism to the Greengrass Core SDK that you can use to process data streams from IoT devices, manage local data retention policies based on cache size or data age, and automatically transmit data directly into AWS cloud services such as Amazon Kinesis and AWS IoT Analytics.

The Stream Manager also handles disconnected or intermittent connectivity scenarios by adding configurable prioritization, caching policies, bandwidth utilization, and time-outs on a per-stream basis. In situations where connectivity is unpredictable or bandwidth is constrained, this new functionality enables you to define the behavior of your applications’ data management while disconnected, reconnecting, or connected, allowing you to prioritize important data’s path to the cloud and make efficient use of a connection when it is available. Using this feature, you can focus on your specific application use cases rather than building data retention and connection management functionality.

Let’s see now how the Stream Manager works with a practical use case. For example, my AWS IoT Greengrass core device is receiving lots of data from multiple devices. I want to do two things with the data I am collecting:

  • Upload all row data with low priority to AWS IoT Analytics, where I use Amazon QuickSight to visualize and understand my data.
  • Aggregate data locally based on time and location of the devices, and send the aggregated data with high priority to a Kinesis Data Stream that is processed by a business application for predictive maintenance.

Using the Stream Manager in the Greengrass Core SDK, I create two local data streams:

  • The first local data stream has a configured low-priority export to IoT Analytics and can use up to 256MB of local disk (yes, it’s a constrained device). You can use memory to store the local data stream if you prefer speed to resilience. When local space is filled up, for example because I lost connectivity to the cloud and I continue to cache locally, I can choose to either reject new data or overwrite the oldest data.
  • The second local data stream is exporting data with high priority to a Kinesis Data Stream and can use up to 128MB of local disk (it’s aggregated data, I need less space for the same amount of time).

 

Here’s how the data flows in this architecture:

  • Sensor data is collected by a Producer Lambda function that is writing to the first local data stream.
  • A second Aggregator Lambda function is reading from the first local data stream, performing the aggregation, and writing its output to the second local data stream.
  • A Reader container-based app (deployed using the Docker application deployment connector) is rendering the aggregated data in real-time for a display panel.
  • The Stream Manager takes care of the ingestion to the cloud, based on the configuration and the policies of the local data streams, so that developers can focus their efforts on the logic on the device.

The use of Lambda functions or container-based apps in the previous architecture is just an example. You can mix and match, or standardize to one or the other, depending on your development best practices.

Available Now
The Docker application deployment connector and the Stream Manager are available with Greengrass version 1.10. The Stream Manager is available in the Greengrass Core SDK for Java and Python. We are adding support for other platforms based on customer feedback.

These new features are independent from each other, but can be used together as in my example. They can simplify the way you build and deploy applications on edge devices, making it easier to process data locally and be integrated with streaming and analytics services in the backend. Let me know what you are going to use these features for!

Danilo

FogHorn: Edge-to-Edge Communication and Deep Learning

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/foghorn-edge-to-edge-communication-and-deep-learning/

FogHorn is an intelligent Internet of Things ( IoT) edge solution that delivers data processing and real-time inference where data is created. Referring to itself as “the only ‘real’ edge intelligence solution in the market today,”  FogHorn is powered by a hyper-efficient Complex Event Processor (CEP) and delivers comprehensive data enrichment and real-time analytics on high volumes, varieties, and velocities of streaming sensor data, and is optimized for constrained compute footprints and limited connectivity.

Andrea Sabet, AWS Solutions Architect speaks with Ramya Ravichandar, Vice President of Products at Foghorn to talk about how FogHorn integrates with IoT MQTT for edge-to-edge communication as well as Amazon SageMaker for deep learning model deployment. The edgefication process involves running inference with real-time streaming data against a trained deep learning model. Drifts in the model accuracy trigger a callback to SageMaker for retraining.

*Check out more This Is My Architecture video series.

 

Tracking the Brecon Beacons ultramarathon with a Raspberry Pi Zero

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/tracking-the-brecon-beacons-ultramarathon-with-a-raspberry-pi-zero/

On my holidays this year I enjoyed a walk in the Brecon Beacons. We set out nice and early, walked 22km through some of the best scenery in Britain, got a cup of tea from the snack van on the A470, and caught our bus home. “I enjoyed that walk,” I thought, “and I’d like to do one like it again.” What I DIDN’T think was, “I’d like to do that walk again, only I’d like it to be nearly three times as long, and it definitely ought to have about three times more ascent, or else why bother?”

Alan Peaty is a bit more hardcore than me, so, a couple of weekends ago, he set out on the Brecon Beacons 10 Peaks Ultramarathon: “10 peaks; 58 kilometres; 3000m of ascent; 24 hours”. He went with his friend Neil and a Raspberry Pi Zero in an eyecatching 3D-printed case.

A green 3D-printed case with a Raspberry Pi sticker on it, on a black backpack leaning against a cairn. In the background are a sunny mountain top, distant peaks, and a blue sky with white clouds.

“The brick”, nestling on a backpack, with sunlit Corn Du and Pen y Fan in the background

The Raspberry Pi Zero ensemble – lovingly known as the brick or, to give it its longer name, the Rosie IoT Brick or RIoT Brick – is equipped with a u-blox Neo-6 GPS module, and it also receives GPS tracking info from some smaller trackers built using ESP32 microcontrollers. The whole lot is powered by a “rather weighty” 20,000mAh battery pack. Both the Raspberry Pi and the ESP32s were equipped with “all manner of additional sensors” to track location, temperature, humidity, pressure, altitude, and light level readings along the route.

Charts showing temperature, humidity & pressure, altitude, and light levels along the route, together with a route map

Where the route crosses over itself is the most fervently appreciated snack van in Wales

Via LoRa and occasional 3G/4G from the many, many peaks along the route, all this data ends up on Amazon Web Services. AWS, among other things, hosts an informative website where family members were able to keep track of Alan’s progress along windswept ridges and up 1:2 gradients, presumably the better to appreciate their cups of tea and central heating. Here’s a big diagram of how the kit that completed the ultramarathon fits together; it’s full of arrows, dotted lines, and acronyms.

Alan, Neil, the brick, and the rest of their gear completed the event in an impressive 18 hours and one minute, for which they got a medal.

The brick, a small plastic box full of coloured jumper leads and other electronics; the lid of the box; and a medal consisting of the number 10 in large plastic characters on a green ribbon

Well earned

You can follow the adventures of this project, its antecedents, and the further evolutions that are doubtless to come, on the Rosie the Red Robot Twitter feed. And you can find everything to do with the project in this GitHub repository, so you can complete ultramarathons while weighed down with hefty power bricks and bristling with homemade tracking devices, too, if you like. Alan is raising money for Alzheimer’s Research UK with this event, and you can find his Brecon Beacons 10 Peaks JustGiving page here.

The post Tracking the Brecon Beacons ultramarathon with a Raspberry Pi Zero appeared first on Raspberry Pi.

Visualizing Sensor Data in Amazon QuickSight

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/visualizing-sensor-data-in-amazon-quicksight/

This post is courtesy of Moheeb Zara, Developer Advocate, AWS Serverless

The Internet of Things (IoT) is a term used wherever physical devices are networked in some meaningful connected way. Often, this takes the form of sensor data collection and analysis. As the number of devices and size of data scales, it can become costly and difficult to keep up with demand.

Using AWS Serverless Application Model (AWS SAM), you can reduce the cost and time to market of an IoT solution. This guide demonstrates how to collect and visualize data from a low-cost, Wi-Fi connected IoT device using a variety of AWS services. Much of this can be accomplished within the AWS Free Usage Tier, which is necessary for the following instructions.

Services used

The following services are used in this example:

What’s covered in this post?

This post covers:

  • Connecting an Arduino MKR 1010 Wi-Fi device to AWS IoT Core.
  • Forwarding messages from an AWS IoT Core topic stream to a Lambda function.
  • Using a Kinesis Data Firehose delivery stream to store data in S3.
  • Analyzing and visualizing data stored in S3 using Amazon QuickSight.

Connect the device to AWS IoT Core using MQTT

The Arduino MKR 1010 is a low-cost, Wi-Fi enabled, IoT device, shown in the following image.

An Arduino MKR 1010 Wi-Fi microcontroller

Its analog and digital input and output pins can be used to read sensors or to write to actuators. Arduino provides a detailed guide on how to securely connect this device to AWS IoT Core. The following steps build upon it to push arbitrary sensor data to a topic stream and ultimately visualize that data using Amazon QuickSight.

  1. Start by following this comprehensive guide to using an Arduino MKR 1010 with AWS IoT Core. Upon completion, your device is connected to AWS IoT Core using MQTT (Message Queuing Telemetry Transport), a protocol for publishing and subscribing to messages using topics.
  2. In the Arduino IDE, choose File, Sketch, Include Library, and Manage Libraries.
  3. In the window that opens, search for ArduinoJson and select the library by Benoit Blanchon. Choose install.

4. Add #include <ArduinoJson.h> to the top of your sketch from the Arduino guide.

5. Modify the publishMessage() function with this code. It publishes a JSON message with two keys: time (ms) and the current value read from the first analog pin.

void publishMessage() {  
  Serial.println("Publishing message");

  // send message, the Print interface can be used to set the message contents
  mqttClient.beginMessage("arduino/outgoing");
  
  // create json message to send
  StaticJsonDocument<200> doc;
  doc["time"] = millis();
  doc["sensor_a0"] = analogRead(0);
  serializeJson(doc, mqttClient); // print to client
  
  mqttClient.endMessage();
}

6. Save and upload the sketch to your board.

Create a Kinesis Firehose delivery stream

Amazon Kinesis Data Firehose is a service that reliably loads streaming data into data stores, data lakes, and analytics tools. Amazon QuickSight requires a data store to create visualizations of the sensor data. This simple Kinesis Data Firehose delivery stream continuously uploads data to an S3 storage bucket. The next sections cover how to add records to this stream using a Lambda function.

  1. In the Kinesis Data Firehose console, create a new delivery stream, called SensorDataStream.
  2. Leave the default source as a Direct PUT or other sources and choose Next.
  3. On the next screen, leave all the default values and choose Next.
  4. Select Amazon S3 as the destination and create a new bucket with a unique name. This is where records are continuously uploaded so that they can be used by Amazon QuickSight.
  5. On the next screen, choose Create New IAM Role, Allow. This gives the Firehose delivery stream permission to upload to S3.
  6. Review and then choose Create Delivery Stream.

It can take some time to fully create the stream. In the meantime, continue on to the next section.

Invoking Lambda using AWS IoT Core rules

Using AWS IoT Core rules, you can forward messages from devices to a Lambda function, which can perform actions such as uploading to an Amazon DynamoDB table or an S3 bucket, or running data against various Amazon Machine Learning services. In this case, the function transforms and adds a message to the Kinesis Data Firehose delivery stream, which then adds that data to S3.

AWS IoT Core rules use the MQTT topic stream to trigger interactions with other AWS services. An AWS IoT Core rule is created by using an SQL statement, a topic filter, and a rule action. The Arduino example publishes messages every five seconds on the topic arduino/outgoing. The following instructions show how to consume those messages with a Lambda function.

Create a Lambda function

Before creating an AWS IoT Core rule, you need a Lambda function to consume forwarded messages.

  1. In the AWS Lambda console, choose Create function.
  2. Name the function ArduinoConsumeMessage.
  3. For Runtime, choose Author From Scratch, Node.js10.x. For Execution role, choose Create a new role with basic Lambda permissions. Choose Create.
  4. On the Execution role card, choose View the ArduinoConsumeMessage-role-xxxx on the IAM console.
  5. Choose Attach Policies. Then, search for and select AmazonKinesisFirehoseFullAccess.
  6. Choose Attach Policy. This applies the necessary permissions to add records to the Firehose delivery stream.
  7. In the Lambda console, in the Designer card, select the function name.
  8. Paste the following in the code editor, replacing SensorDataStream with the name of your own Firehose delivery stream. Choose Save.
const AWS = require('aws-sdk')

const firehose = new AWS.Firehose()
const StreamName = "SensorDataStream"

exports.handler = async (event) => {
    
    console.log('Received IoT event:', JSON.stringify(event, null, 2))
    
    let payload = {
        time: new Date(event.time),
        sensor_value: event.sensor_a0
    }
    
    let params = {
            DeliveryStreamName: StreamName,
            Record: { 
                Data: JSON.stringify(payload)
            }
        }
        
    return await firehose.putRecord(params).promise()

}

Create an AWS IoT Core rule

To create an AWS IoT Core rule, follow these steps.

  1. In the AWS IoT console, choose Act.
  2. Choose Create.
  3. For Rule query statement, copy and paste SELECT * FROM 'arduino/outgoing’. This subscribes to the outgoing message topic used in the Arduino example.
  4. Choose Add action, Send a message to a Lambda function, Configure action.
  5. Select the function created in the last set of instructions.
  6. Choose Create rule.

At this stage, any message published to the arduino/outgoing topic forwards to the ArduinoConsumeMessage Lambda function, which transforms and puts the payload on the Kinesis Data Firehose stream and also logs the message to Amazon CloudWatch. If you’ve connected an Arduino device to AWS IoT Core, it publishes to that topic every five seconds.

The following steps show how to test functionality using the AWS IoT console.

  1. In the AWS IoT console, choose Test.
  2. For Publish, enter the topic arduino/outgoing .
  3. Enter the following test payload:
    {
      “time”: 1567023375013,  
      “sensor_a0”: 456
    }
  4. Choose Publish to topic.
  5. Navigate back to your Lambda function.
  6. Choose Monitoring, View logs in CloudWatch.
  7. Select a log item to view the message contents, as shown in the following screenshot.

Visualizing data with Amazon QuickSight

To visualize data with Amazon QuickSight, follow these steps.

  1. In the Amazon QuickSight console, sign up.
  2. Choose Manage Data, New Data Set. Select S3 as the data source.
  3. A manifest file is necessary for Amazon QuickSight to be able to fetch data from your S3 bucket. Copy the following into a file named manifest.json. Replace YOUR-BUCKET-NAME with the name of the bucket created for the Firehose delivery stream.
    {
       "fileLocations":[
          {
             "URIPrefixes":[
                "s3://YOUR-BUCKET-NAME/"
             ]
          }
       ],
       "globalUploadSettings":{
          "format":"JSON"
       }
    }
  4. Upload the manifest.json file.
  5. Choose Connect, then Visualize. You may have to give Amazon QuickSight explicit permissions to your S3 bucket.
  6. Finally, design the Amazon QuickSight visualizations in the drag and drop editor. Drag the two available fields into the center card to generate a Sum of Sensor_value by Time visual.

Conclusion

This post demonstrated visualizing data from a securely connected remote IoT device. This was achieved by connecting an Arduino to AWS IoT Core using MQTT, forwarding messages from the topic stream to Lambda using IoT Core rules, putting records on an Amazon Kinesis Data Firehose delivery stream, and using Amazon QuickSight to visualize the data stored within an S3 bucket.

With these building blocks, it is possible to implement highly scalable and customizable IoT data collection, analysis, and visualization. With the use of other AWS services, you can build a full end-to-end platform for an IoT product that can reliably handle volume. To further explore how hardware and AWS Serverless can work together, visit the Amazon Web Services page on Hackster.

Learn about AWS Services & Solutions – September AWS Online Tech Talks

Post Syndicated from Jenny Hang original https://aws.amazon.com/blogs/aws/learn-about-aws-services-solutions-september-aws-online-tech-talks/

Learn about AWS Services & Solutions – September AWS Online Tech Talks

AWS Tech Talks

Join us this September to learn about AWS services and solutions. The AWS Online Tech Talks are live, online presentations that cover a broad range of topics at varying technical levels. These tech talks, led by AWS solutions architects and engineers, feature technical deep dives, live demonstrations, customer examples, and Q&A with AWS experts. Register Now!

Note – All sessions are free and in Pacific Time.

Tech talks this month:

 

Compute:

September 23, 2019 | 11:00 AM – 12:00 PM PTBuild Your Hybrid Cloud Architecture with AWS – Learn about the extensive range of services AWS offers to help you build a hybrid cloud architecture best suited for your use case.

September 26, 2019 | 1:00 PM – 2:00 PM PTSelf-Hosted WordPress: It’s Easier Than You Think – Learn how you can easily build a fault-tolerant WordPress site using Amazon Lightsail.

October 3, 2019 | 11:00 AM – 12:00 PM PTLower Costs by Right Sizing Your Instance with Amazon EC2 T3 General Purpose Burstable Instances – Get an overview of T3 instances, understand what workloads are ideal for them, and understand how the T3 credit system works so that you can lower your EC2 instance costs today.

 

Containers:

September 26, 2019 | 11:00 AM – 12:00 PM PTDevelop a Web App Using Amazon ECS and AWS Cloud Development Kit (CDK) – Learn how to build your first app using CDK and AWS container services.

 

Data Lakes & Analytics:

September 26, 2019 | 9:00 AM – 10:00 AM PTBest Practices for Provisioning Amazon MSK Clusters and Using Popular Apache Kafka-Compatible Tooling – Learn best practices on running Apache Kafka production workloads at a lower cost on Amazon MSK.

 

Databases:

September 25, 2019 | 1:00 PM – 2:00 PM PTWhat’s New in Amazon DocumentDB (with MongoDB compatibility) – Learn what’s new in Amazon DocumentDB, a fully managed MongoDB compatible database service designed from the ground up to be fast, scalable, and highly available.

October 3, 2019 | 9:00 AM – 10:00 AM PTBest Practices for Enterprise-Class Security, High-Availability, and Scalability with Amazon ElastiCache – Learn about new enterprise-friendly Amazon ElastiCache enhancements like customer managed key and online scaling up or down to make your critical workloads more secure, scalable and available.

 

DevOps:

October 1, 2019 | 9:00 AM – 10:00 AM PT – CI/CD for Containers: A Way Forward for Your DevOps Pipeline – Learn how to build CI/CD pipelines using AWS services to get the most out of the agility afforded by containers.

 

Enterprise & Hybrid:

September 24, 2019 | 1:00 PM – 2:30 PM PT Virtual Workshop: How to Monitor and Manage Your AWS Costs – Learn how to visualize and manage your AWS cost and usage in this virtual hands-on workshop.

October 2, 2019 | 1:00 PM – 2:00 PM PT – Accelerate Cloud Adoption and Reduce Operational Risk with AWS Managed Services – Learn how AMS accelerates your migration to AWS, reduces your operating costs, improves security and compliance, and enables you to focus on your differentiating business priorities.

 

IoT:

September 25, 2019 | 9:00 AM – 10:00 AM PTComplex Monitoring for Industrial with AWS IoT Data Services – Learn how to solve your complex event monitoring challenges with AWS IoT Data Services.

 

Machine Learning:

September 23, 2019 | 9:00 AM – 10:00 AM PTTraining Machine Learning Models Faster – Learn how to train machine learning models quickly and with a single click using Amazon SageMaker.

September 30, 2019 | 11:00 AM – 12:00 PM PTUsing Containers for Deep Learning Workflows – Learn how containers can help address challenges in deploying deep learning environments.

October 3, 2019 | 1:00 PM – 2:30 PM PTVirtual Workshop: Getting Hands-On with Machine Learning and Ready to Race in the AWS DeepRacer League – Join DeClercq Wentzel, Senior Product Manager for AWS DeepRacer, for a presentation on the basics of machine learning and how to build a reinforcement learning model that you can use to join the AWS DeepRacer League.

 

AWS Marketplace:

September 30, 2019 | 9:00 AM – 10:00 AM PTAdvancing Software Procurement in a Containerized World – Learn how to deploy applications faster with third-party container products.

 

Migration:

September 24, 2019 | 11:00 AM – 12:00 PM PTApplication Migrations Using AWS Server Migration Service (SMS) – Learn how to use AWS Server Migration Service (SMS) for automating application migration and scheduling continuous replication, from your on-premises data centers or Microsoft Azure to AWS.

 

Networking & Content Delivery:

September 25, 2019 | 11:00 AM – 12:00 PM PTBuilding Highly Available and Performant Applications using AWS Global Accelerator – Learn how to build highly available and performant architectures for your applications with AWS Global Accelerator, now with source IP preservation.

September 30, 2019 | 1:00 PM – 2:00 PM PTAWS Office Hours: Amazon CloudFront – Just getting started with Amazon CloudFront and [email protected]? Get answers directly from our experts during AWS Office Hours.

 

Robotics:

October 1, 2019 | 11:00 AM – 12:00 PM PTRobots and STEM: AWS RoboMaker and AWS Educate Unite! – Come join members of the AWS RoboMaker and AWS Educate teams as we provide an overview of our education initiatives and walk you through the newly launched RoboMaker Badge.

 

Security, Identity & Compliance:

October 1, 2019 | 1:00 PM – 2:00 PM PTDeep Dive on Running Active Directory on AWS – Learn how to deploy Active Directory on AWS and start migrating your windows workloads.

 

Serverless:

October 2, 2019 | 9:00 AM – 10:00 AM PTDeep Dive on Amazon EventBridge – Learn how to optimize event-driven applications, and use rules and policies to route, transform, and control access to these events that react to data from SaaS apps.

 

Storage:

September 24, 2019 | 9:00 AM – 10:00 AM PTOptimize Your Amazon S3 Data Lake with S3 Storage Classes and Management Tools – Learn how to use the Amazon S3 Storage Classes and management tools to better manage your data lake at scale and to optimize storage costs and resources.

October 2, 2019 | 11:00 AM – 12:00 PM PTThe Great Migration to Cloud Storage: Choosing the Right Storage Solution for Your Workload – Learn more about AWS storage services and identify which service is the right fit for your business.

 

 

Improve clinical trial outcomes by using AWS technologies

Post Syndicated from Mayank Thakkar original https://aws.amazon.com/blogs/big-data/improve-clinical-trial-outcomes-by-using-aws-technologies/

We are living in a golden age of innovation, where personalized medicine is making it possible to cure diseases that we never thought curable. Digital medicine is helping people with diseases get healthier, and we are constantly discovering how to use the body’s immune system to target and eradicate cancer cells. According to a report published by ClinicalTrials.gov, the number of registered studies hit 293,000 in 2018, representing a 250x growth since 2000.

However, an internal rate of return (IRR) analysis by Endpoints News, using data from EvaluatePharma, highlights some interesting trends. A flourishing trend in pharma innovation is supported by strong growth in registered studies. However, the IRR shows a rapidly declining trend, from around 17 percent in 2000 to below the cost of capital in 2017 and projected to go to 0 percent by 2020.

This blog post is the first installment in a series that focuses on the end-to-end workflow of collecting, storing, processing, visualizing, and acting on clinical trials data in a compliant and secure manner. The series also discusses the application of artificial intelligence and machine learning technologies to the world of clinical trials. In this post, we highlight common architectural patterns that AWS customers use to modernize their clinical trials. These incorporate mobile technologies for better evidence generation, cost reduction, increasing quality, improving access, and making medicine more personalized for patients.

Improving the outcomes of clinical trials and reducing costs

Biotech and pharma organizations are feeling the pressure to use resources as efficiently as possible. This pressure forces them to search for any opportunity to streamline processes, get faster, and stay more secure, all while decreasing costs. More and more life sciences companies are targeting biologics, CAR-T, and precision medicine therapeutics, with focus shifting towards smaller, geographically distributed patient segments. This shift has resulted in an increasing mandate to capture data from previously unavailable, nontraditional sources. These sources include mobile devices, IoT devices, and in-home and clinical devices. Life sciences companies merge data from these sources with data from traditional clinical trials to build robust evidence around the safety and efficacy of a drug.

Early last year, the Clinical Trials Transformation Initiative (CTTI) provided recommendations about using mobile technologies for capturing holistic, high quality, attributable, real-world data from patients and for submission to the U.S. Food and Drug Administration (FDA). By using mobile technologies, life sciences companies can reduce barriers to trial participation and lower costs associated with conducting clinical trials. Global regulatory groups such as the FDA, Health Canada, and Medicines and Healthcare products Regulatory Agency (MHRA), among others, are also in favor of using mobile technologies. Mobile technologies can make patient recruitment more efficient, reach endpoints faster, and reduce the cost and time required to conduct clinical trials.

Improvised data ingestion using mobile technologies can speed up outcomes, reduce costs, and improve the accuracy of clinical trials. This is especially true when mobile data ingestion is supplemented with artificial intelligence and machine learning (AI/ML) technologies.

Together, they can usher in a new age of smart clinical trials.

At the same time, traditional clinical trial processes and technology designed for mass-marketed blockbuster drugs can’t effectively meet emerging industry needs. This leaves life sciences and pharmaceutical companies in need of assistance for evolving their clinical trial operations. These circumstances result in making clinical trials one of the largest areas of investment for bringing a new drug to market.

Using mobile technologies with traditional technologies in clinical trials can improve the outcomes of the trials and simultaneously reduce costs. Some of the use cases that the integration of various technologies enables include these:

  • Identifying and tracking participants in clinical trials
    • Identifying participants for clinical trials recruitment
    • Educating and informing patients participating in clinical trials
    • Implementing standardized protocols and sharing associated information to trial participants
    • Tracking adverse events and safety profiles
  • Integrating genomic and phenotypic data for identifying novel biomarkers
  • Integrating mobile data into clinical trials for better clinical trial management
  • Creation of a patient-control arm based on historical data
  • Stratifying cohorts based on treatment, claims, and registry datasets
  • Building a collaborative, interoperable network for data sharing and knowledge creation
  • Building compliance-ready infrastructure for clinical trial management

The AWS Cloud provides HIPAA eligible services and solutions. As an AWS customer, you can use these to build solutions for global implementation of mobile devices and sensors in trials, secure capture of streaming Internet of Things (IoT) data, and advanced analytics through visualization tools or AI/ML capabilities. Some of the use cases these services and solutions enable are finding and recruiting patients using smart analytics, facilitating global data management, and remote or in-patient site monitoring. Others include predicting lack of adherence, detecting adverse events, and accelerating trial outcomes along with optimizing trial costs.

Clinical Trials 2.0 (CT2.0) at AWS is geared toward facilitating wider adoption of cloud-native services to enable data ingestion from disparate sources, cost-optimized and reliable storage, and holistic analytics. At the same time, CT2.0 provides the granular access control, end-to-end security, and global scalability needed to conduct clinical trials more efficiently.

Reference architecture

One of the typical architectures for managing a clinical trial using mobile technologies is shown following. This architecture focuses on capturing real-time data from mobile sources and providing a way to process it.

* – Additional considerations such as data security, access control, and compliance need to be incorporated into the architecture and are discussed in the remainder of this post.

Managing a trial by using this architecture consists of the following five major steps.

Step 1: Collect data

Mobile devices, personal wearables, instruments, and smart-devices are extensively being used (or being considered) by global pharmaceutical companies in patient care and clinical trials to provide data for activity tracking, vital signs monitoring, and so on, in real-time. Devices like infusion pumps, personal use dialysis machines, and so on require tracking and alerting of device consumables and calibration status. Remote settings management is also a major use case for these kinds of devices. The end-user mobile devices used in the clinical trial emit a lot of telemetry data that requires real-time data capture, data cleansing, transformation, and analysis.

Typically, these devices are connected to an edge node or a smart phone. Such a connection provides sufficient computing resources to stream data to AWS IoT Core. AWS IoT Core can then be configured to write data to Amazon Kinesis Data Firehose in near real time. Kinesis Data Firehose is a fully managed service for delivering real-time streaming data to destinations such as Amazon S3. S3 provides online, flexible, cost efficient, pay-as-you-go storage that can replicate your data on three Availability Zones within an AWS Region. The edge node or smart phone can use the AWS IoT SDKs to publish and subscribe device data to AWS IoT Core with MQTT. This process uses the AWS method of authentication (called ‘SigV4’), X.509 certificate–based authentication, and customer-created token-based authentication (through custom authorizers). This authenticated approach enables you to map your choice of policies to each certificate and remotely control device or application access. You can also use the Kinesis Data Firehose encryption feature to enable server-side data encryption.

You can also capture additional data such as Case Report Forms (CRF), Electronic Medical Records (EMR), and medical images using Picture Archiving and Communication Systems (PACS). In addition, you can capture laboratory data (Labs) and other Patient Reported Outcomes data (ePRO). AWS provides multiple tools and services to effectively and securely connect to these data sources, enabling you to ingest data in various volumes, variety, and velocities. For more information about creating a HealthCare Data Hub and ingesting Digital Imaging and Communications in Medicine (DICOM) data, see the AWS Big Data Blog post Create a Healthcare Data Hub with AWS and Mirth Connect.

Step 2: Store data

After data is ingested from the devices and wearables used in the clinical trial, Kinesis Data Firehose is used to store the data on Amazon S3. This stored data serves as a raw copy and can later be used for historical analysis and pattern prediction. Using Amazon S3’s lifecycle policies, you can periodically move your data to reduced cost storage such as Amazon S3 Glacier for further optimizing their storage costs. Using Amazon S3 Intelligent Tiering can automatically optimize costs when data access patterns change, without performance impact or operational overhead by moving data between two access tiers—frequent access and infrequent access. You can also choose to encrypt data at rest and in motion using various encryption options available on S3.

Amazon S3 offers an extremely durable, highly available, and infinitely scalable data storage infrastructure, simplifying most data processing, backup, and replication tasks.

Step 3: Data processingfast lane

After collecting and storing a raw copy of the data, Amazon S3 is configured to publish events to AWS Lambda and invoke a Lambda function by passing the event data as a parameter. The Lambda function is used to extract the key performance indicators (KPIs) such as adverse event notifications, medication adherence, and treatment schedule management from the incoming data. You can use Lambda to process these KPIs and store them in Amazon DynamoDB, along with encryption at rest, which powers a near-real-time clinical trial status dashboard. This alerts clinical trial coordinators in real time so that appropriate interventions can take place.

In addition to this, using a data warehouse full of medical records, you can train and implement a machine learning model. This model can predict which patients are about to switch medications or might exhibit adherence challenges in the future. Such prediction can enable clinical trial coordinators to narrow in on those patients with mitigation strategies.

Step 4: Data processing—batch

For historical analysis and pattern prediction, the staged data (stored in S3) is processed in batches. A Lambda function is used to trigger the extract, transform, and load (ETL) process every time new data is added to the raw data S3 bucket. This Lambda function triggers an ETL process using AWS Glue, a fully managed ETL service that makes it easy for you to prepare and load your data for analytics. This approach helps in mining current and historical data to derive actionable insights, which is stored on Amazon S3.

From there, data is loaded on to Amazon Redshift, a cost-effective, petabyte-scale data warehouse offering from AWS. You can also use Amazon Redshift Spectrum to extend data warehousing out to exabytes without loading any data to Amazon Redshift, as detailed in the Big Data blog post Amazon Redshift Spectrum Extends Data Warehousing Out to Exabytes—No Loading Required. This enables you to provide an all-encompassing picture of the entire clinical trial to your clinical trial coordinators, enabling you to react and respond faster.

In addition to this, you can train and implement a machine learning model to identify patients who might be at risk for adherence challenges. This enables clinical trial coordinators to reinforce patient education and support.

Step 5: Visualize and act on data

After the data is processed and ready to be consumed, you can use Amazon QuickSight, a cloud-native business intelligence service from AWS that offers native Amazon Redshift connectivity. Amazon QuickSight is serverless and so can be rolled out to your audiences in hours. You can also use a host of third-party reporting tools, which can use AWS-supplied JDBC or ODBC drivers or open-source PostgreSQL drivers to connect with Amazon Redshift. These tools include TIBCO Spotfire Analytics, Tableau Server, Qlik Sense Enterprise, Looker, and others. Real-time data processing (step 3 preceding) combines with historical-view batch processing (step 4). Together, they empower contract research organizations (CROs), study managers, trial coordinators, and other entities involved in the clinical trial journey to make effective and informed decisions at a speed and frequency that was previously unavailable. Using Amazon QuickSight’s unique Pay-per-Session pricing model, you can optimize costs for your bursty usage models by paying only when users access the dashboards.

Using Amazon Simple Notification Service (Amazon SNS), real-time feedback based on incoming data and telemetry is sent to patients by using text messages, mobile push, and emails. In addition, study managers and coordinators can send Amazon SNS notifications to patients. Amazon SNS provides a fully managed pub/sub messaging for micro services, distributed systems, and serverless applications. It’s designed for high-throughput, push-based, many-to-many messaging. Alerts and notifications can be based on current data or a combination of current and historical data.

To encrypt messages published to Amazon SNS, you can follow the steps listed in the post Encrypting messages published to Amazon SNS with AWS KMS, on the AWS Compute Blog.   

Data security, data privacy, data integrity, and compliance considerations

At AWS, customer trust is our top priority. We deliver services to millions of active customers, including enterprises, educational institutions, and government agencies in over 190 countries. Our customers include financial services providers, healthcare providers, and governmental agencies, who trust us with some of their most sensitive information.

To facilitate this, along with the services mentioned earlier, you should also use AWS Identity and Access Management (IAM) service. IAM enables you to maintain segregation of access, fine-grained access control, and securing end user mobile and web applications. You can also use AWS Security Token Service (AWS STS) to provide secure, self-expiring, time-boxed, temporary security credentials to third-party administrators and service providers, greatly strengthening your security posture. You can use AWS CloudTrail to log IAM and STS API calls. Additionally, AWS IoT Device Management makes it easy to securely onboard, organize, monitor, and remotely manage IoT devices at scale.

With AWS, you can add an additional layer of security to your data at rest in the cloud. AWS provides scalable and efficient encryption features for services like Amazon EBS, Amazon S3, Amazon Redshift, Amazon SNSAWS Glue, and many more. Flexible key management options, including AWS Key Management Service, enable you to choose whether to have AWS manage the encryption keys or to keep complete control over their keys. In addition, AWS provides APIs for you to integrate encryption and data protection with any of the services that you develop or deploy in an AWS environment.

As a customer, you maintain ownership of your data, and select which AWS services can process, store, and host the content. Generally speaking, AWS doesn’t access or use customers’ content for any purpose without their consent. AWS never uses customer data to derive information for marketing or advertising.

When evaluating the security of a cloud solution, it’s important that you understand and distinguish between the security of the cloud and security in the cloud. The AWS Shared Responsibility Model details this relationship.

To assist you with your compliance efforts, AWS continues to add more services to the various compliance regulations, attestations, certifications, and programs across the world. To decide which services are suitable for you, see the services in scope page.

You can also use various services like, but not limited to, AWS CloudTrail, AWS Config, Amazon GuardDuty, and AWS Key Management Service (AWS KMS) to enhance your compliance and auditing efforts. Find more details in the AWS Compliance Solutions Guide.

Final thoughts

With the ever-growing interconnectivity and technological advances in the field of medical devices, mobile devices and sensors can improve numerous aspects of clinical trials. They can help in recruitment, informed consent, patient counseling, and patient communication management. They can also improve protocol and medication adherence, clinical endpoints measurement, and the process of alerting participants on adverse events. Smart sensors, smart mobile devices, and robust interconnecting systems can be central in conducting clinical trials.

Every biopharma organization conducting or sponsoring a clinical trial activity faces the conundrum of advancing their approach to trials while maintaining overall trial performance and data consistency. The AWS Cloud enables a new dimension for how data is collected, stored, and used for clinical trials. It thus addresses that conundrum as we march towards a new reality of how drugs are brought to market. The AWS Cloud abstracts away technical challenges such as scaling, security, and establishing a cost-efficient IT infrastructure. In doing so, it allows biopharma organizations to focus on their core mission of improving patent lives through the development of effective, groundbreaking treatments.

 


About the Author

Mayank Thakkar – Global Solutions Architect, AWS HealthCare and Life Sciences

 

 

 

 

Deven Atnoor, Ph.D. – Industry Specialist, AWS HealthCare and Life Sciences

 

 

 

 

AWS Security releases IoT security whitepaper

Post Syndicated from Momena Cheema original https://aws.amazon.com/blogs/security/aws-security-releases-iot-security-whitepaper/

We’ve published a whitepaper, Securing Internet of Things (IoT) with AWS, to help you understand and address data security as it relates to your IoT devices and the data generated by them. The whitepaper is intended for a broad audience who is interested in learning about AWS IoT security capabilities at a service-specific level and for compliance, security, and public policy professionals.

IoT technologies connect devices and people in a multitude of ways and are used across industries. For example, IoT can help manage thermostats remotely across buildings in a city, efficiently control hundreds of wind turbines, or operate autonomous vehicles more safely. With all of the different types of devices and the data they transmit, security is a top concern.

The specific challenges using IoT technologies present has piqued the interest of governments worldwide who are currently assessing what, if any, new regulatory requirements should take shape to keep pace with IoT innovation and the general problem of securing data. This whitepaper uses a specific example to cover recent developments published by the National Institute of Standards and Technology (NIST) and the United Kingdom’s Code of Practice that are specific to IoT.

If you have questions or want to learn more, contact your account executive, or leave a comment below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author photo

Momena Cheema

Momena is passionate about evangelizing the security and privacy capabilities of AWS services through the lens of global emerging technology and trends, such as Internet of Things, artificial intelligence, and machine learning through written content, workshops, talks, and educational campaigns. Her goal is to bring the security and privacy benefits of the cloud to customers across industries in both public and private sectors.

Introducing AWS Solutions: Expert architectures on demand

Post Syndicated from AWS Admin original https://aws.amazon.com/blogs/architecture/introducing-aws-solutions-expert-architectures-on-demand/

AWS Solutions Architects are on the front line of helping customers succeed using our technologies. Our team members leverage their deep knowledge of AWS technologies to build custom solutions that solve specific problems for clients. But many customers want to solve common technical problems that don’t require custom solutions, or they want a general solution they can use as a reference to build their own custom solution. For these customers, we offer AWS Solutions: vetted, technical reference implementations built by AWS Solutions Architects and AWS Partner Network partners. AWS Solutions are designed to help customers solve common business and technical problems, or they can be customized for specific use cases.

AWS Solutions are built to be operationally effective, performant, reliable, secure, and cost-effective; and incorporate architectural frameworks such as the Well-Architected Framework. Every AWS Solution comes with a detailed architecture diagram, a deployment guide, and instructions for both manual and automated deployment.

Here are some Solutions we are particularly excited about.

Media2Cloud

We released the Media2Cloud solution in January 2019. This solution helps customers migrate their existing video archives to the cloud. Media2Cloud sets up a serverless end-to-end workflow to ingest your videos and establish metadata, proxy videos, and image thumbnails.

Because it can be a challenging and slow process to migrate your existing video archives to the cloud, the Media2Cloud solution builds the following architecture.

Media2Cloud architecture

The solution leverages the Media Analysis Solution to analyze and extract valuable metadata from your video archives using Amazon Rekognition, Amazon Transcribe, and Amazon Comprehend.

The solution also includes a simple web interface that helps make it easier to get started ingesting your videos to the AWS Cloud. This solution is set up to integrate with AWS Partner Network partners to help customers migrate their video archives to the cloud.

AWS Instance Scheduler

In October 2018, we updated the AWS Instance Scheduler, a solution that enables customers to easily configure custom start and stop schedules for their Amazon EC2 and Amazon RDS instances.

When you deploy the solution’s template, the solution builds the following architecture.

AWS Instance Scheduler

 

For customers who leave all of their instances running at full utilization, this solution can result in up to 70% cost savings for those instances that are only necessary during regular business.

The Instance Scheduler solution gives you the flexibility to automatically manage multiple schedules as necessary, configure multiple start and stop schedules by either deploying multiple Instance Schedulers or modifying individual resource tags, and review Instance Scheduler metrics to better assess your Instance capacity and usage, and to calculate your cost savings.

AWS Connected Vehicle Solution

In January 2018, we updated the AWS Connected Vehicle Solution, a solution that provides secure vehicle connectivity to the AWS Cloud. This solution includes capabilities for local computing within vehicles, sophisticated event rules, and data processing and storage. The solution also allows you to implement a core framework for connected vehicle services that allows you to focus on developing new functionality rather than managing infrastructure.

When you deploy the solution’s template, the solution builds the following architecture.

Connected Vehicle solution

You can build upon this framework to address a variety of use cases such as voice interaction, navigation and other location-based services, remote vehicle diagnostics and health monitoring, predictive analytics and required maintenance alerts, media streaming services, vehicle safety and security services, head unit applications, and mobile applications.

These are just some of our current offerings. Other notable Solutions include AWS WAF Security Automations, Machine Learning for Telecommunication, and AWS Landing Zone. In the coming months, we plan to continue expanding our portfolio of AWS Solutions to address common business and technical problems that our customers face. Visit our homepage to keep up to date with the latest AWS Solutions.

Learn about AWS Services & Solutions – February 2019 AWS Online Tech Talks

Post Syndicated from Robin Park original https://aws.amazon.com/blogs/aws/learn-about-aws-services-solutions-february-2019-aws-online-tech-talks/

AWS Tech Talks

Join us this February to learn about AWS services and solutions. The AWS Online Tech Talks are live, online presentations that cover a broad range of topics at varying technical levels. These tech talks, led by AWS solutions architects and engineers, feature technical deep dives, live demonstrations, customer examples, and Q&A with AWS experts. Register Now!

Note – All sessions are free and in Pacific Time.

Tech talks this month:

Application Integration

February 20, 2019 | 11:00 AM – 12:00 PM PTCustomer Showcase: Migration & Messaging for Mission Critical Apps with S&P Global Ratings – Learn how S&P Global Ratings meets the high availability and fault tolerance requirements of their mission critical applications using the Amazon MQ.

AR/VR

February 28, 2019 | 1:00 PM – 2:00 PM PTBuild AR/VR Apps with AWS: Creating a Multiplayer Game with Amazon Sumerian – Learn how to build real-world augmented reality, virtual reality and 3D applications with Amazon Sumerian.

Blockchain

February 18, 2019 | 11:00 AM – 12:00 PM PTDeep Dive on Amazon Managed Blockchain – Explore the components of blockchain technology, discuss use cases, and do a deep dive into capabilities, performance, and key innovations in Amazon Managed Blockchain.

Compute

February 25, 2019 | 9:00 AM – 10:00 AM PTWhat’s New in Amazon EC2 – Learn about the latest innovations in Amazon EC2, including new instances types, related technologies, and consumption options that help you optimize running your workloads for performance and cost.

February 27, 2019 | 1:00 PM – 2:00 PM PTDeploy and Scale Your First Cloud Application with Amazon Lightsail – Learn how to quickly deploy and scale your first multi-tier cloud application using Amazon Lightsail.

Containers

February 19, 2019 | 9:00 AM – 10:00 AM PTSecuring Container Workloads on AWS Fargate – Explore the security controls and best practices for securing containers running on AWS Fargate.

Data Lakes & Analytics

February 18, 2019 | 1:00 PM – 2:00 PM PTAmazon Redshift Tips & Tricks: Scaling Storage and Compute Resources – Learn about the tools and best practices Amazon Redshift customers can use to scale storage and compute resources on-demand and automatically to handle growing data volume and analytical demand.

Databases

February 18, 2019 | 9:00 AM – 10:00 AM PTBuilding Real-Time Applications with Redis – Learn about Amazon’s fully managed Redis service and how it makes it easier, simpler, and faster to build real-time applications.

February 21, 2019 | 1:00 PM – 2:00 PM PT – Introduction to Amazon DocumentDB (with MongoDB Compatibility) – Get an introduction to Amazon DocumentDB (with MongoDB compatibility), a fast, scalable, and highly available document database that makes it easy to run, manage & scale MongoDB-workloads.

DevOps

February 20, 2019 | 1:00 PM – 2:00 PM PTFireside Chat: DevOps at Amazon with Ken Exner, GM of AWS Developer Tools – Join our fireside chat with Ken Exner, GM of Developer Tools, to learn about Amazon’s DevOps transformation journey and latest practices and tools that support the current DevOps model.

End-User Computing

February 28, 2019 | 9:00 AM – 10:00 AM PTEnable Your Remote and Mobile Workforce with Amazon WorkLink – Learn about Amazon WorkLink, a new, fully-managed service that provides your employees secure, one-click access to internal corporate websites and web apps using their mobile phones.

Enterprise & Hybrid

February 26, 2019 | 1:00 PM – 2:00 PM PTThe Amazon S3 Storage Classes – For cloud ops professionals, by cloud ops professionals. Wallace and Orion will tackle your toughest AWS hybrid cloud operations questions in this live Office Hours tech talk.

IoT

February 26, 2019 | 9:00 AM – 10:00 AM PTBring IoT and AI Together – Learn how to bring intelligence to your devices with the intersection of IoT and AI.

Machine Learning

February 19, 2019 | 1:00 PM – 2:00 PM PTGetting Started with AWS DeepRacer – Learn about the basics of reinforcement learning, what’s under the hood and opportunities to get hands on with AWS DeepRacer and how to participate in the AWS DeepRacer League.

February 20, 2019 | 9:00 AM – 10:00 AM PTBuild and Train Reinforcement Models with Amazon SageMaker RL – Learn about Amazon SageMaker RL to use reinforcement learning and build intelligent applications for your businesses.

February 21, 2019 | 11:00 AM – 12:00 PM PTTrain ML Models Once, Run Anywhere in the Cloud & at the Edge with Amazon SageMaker Neo – Learn about Amazon SageMaker Neo where you can train ML models once and run them anywhere in the cloud and at the edge.

February 28, 2019 | 11:00 AM – 12:00 PM PTBuild your Machine Learning Datasets with Amazon SageMaker Ground Truth – Learn how customers are using Amazon SageMaker Ground Truth to build highly accurate training datasets for machine learning quickly and reduce data labeling costs by up to 70%.

Migration

February 27, 2019 | 11:00 AM – 12:00 PM PTMaximize the Benefits of Migrating to the Cloud – Learn how to group and rationalize applications and plan migration waves in order to realize the full set of benefits that cloud migration offers.

Networking

February 27, 2019 | 9:00 AM – 10:00 AM PTSimplifying DNS for Hybrid Cloud with Route 53 Resolver – Learn how to enable DNS resolution in hybrid cloud environments using Amazon Route 53 Resolver.

Productivity & Business Solutions

February 26, 2019 | 11:00 AM – 12:00 PM PTTransform the Modern Contact Center Using Machine Learning and Analytics – Learn how to integrate Amazon Connect and AWS machine learning services, such Amazon Lex, Amazon Transcribe, and Amazon Comprehend, to quickly process and analyze thousands of customer conversations and gain valuable insights.

Serverless

February 19, 2019 | 11:00 AM – 12:00 PM PTBest Practices for Serverless Queue Processing – Learn the best practices of serverless queue processing, using Amazon SQS as an event source for AWS Lambda.

Storage

February 25, 2019 | 11:00 AM – 12:00 PM PT Introducing AWS Backup: Automate and Centralize Data Protection in the AWS Cloud – Learn about this new, fully managed backup service that makes it easy to centralize and automate the backup of data across AWS services in the cloud as well as on-premises.

Learn about AWS Services & Solutions – January AWS Online Tech Talks

Post Syndicated from Robin Park original https://aws.amazon.com/blogs/aws/learn-about-aws-services-solutions-january-aws-online-tech-talks/

AWS Tech Talks

Happy New Year! Join us this January to learn about AWS services and solutions. The AWS Online Tech Talks are live, online presentations that cover a broad range of topics at varying technical levels. These tech talks, led by AWS solutions architects and engineers, feature technical deep dives, live demonstrations, customer examples, and Q&A with AWS experts. Register Now!

Note – All sessions are free and in Pacific Time.

Tech talks this month:

Containers

January 22, 2019 | 9:00 AM – 10:00 AM PTDeep Dive Into AWS Cloud Map: Service Discovery for All Your Cloud Resources – Learn how to increase your application availability with AWS Cloud Map, a new service that lets you discover all your cloud resources.

Data Lakes & Analytics

January 22, 2019 | 1:00 PM – 2:00 PM PT– Increase Your Data Engineering Productivity Using Amazon EMR Notebooks – Learn how to develop analytics and data processing applications faster with Amazon EMR Notebooks.

Enterprise & Hybrid

January 29, 2019 | 1:00 PM – 2:00 PM PTBuild Better Workloads with the AWS Well-Architected Framework and Tool – Learn how to apply architectural best practices to guide your cloud migration.

IoT

January 29, 2019 | 9:00 AM – 10:00 AM PTHow To Visually Develop IoT Applications with AWS IoT Things Graph – See how easy it is to build IoT applications by visually connecting devices & web services.

Mobile

January 21, 2019 | 11:00 AM – 12:00 PM PTBuild Secure, Offline, and Real Time Enabled Mobile Apps Using AWS AppSync and AWS Amplify – Learn how to easily build secure, cloud-connected data-driven mobile apps using AWS Amplify, GraphQL, and mobile-optimized AWS services.

Networking

January 30, 2019 | 9:00 AM – 10:00 AM PTImprove Your Application’s Availability and Performance with AWS Global Accelerator – Learn how to accelerate your global latency-sensitive applications by routing traffic across AWS Regions.

Robotics

January 29, 2019 | 11:00 AM – 12:00 PM PTUsing AWS RoboMaker Simulation for Real World Applications – Learn how AWS RoboMaker simulation works and how you can get started with your own projects.

Security, Identity & Compliance

January 23, 2019 | 1:00 PM – 2:00 PM PTCustomer Showcase: How Dow Jones Uses AWS to Create a Secure Perimeter Around Its Web Properties – Learn tips and tricks from a real-life example on how to be in control of your cloud security and automate it on AWS.

January 30, 2019 | 11:00 AM – 12:00 PM PTIntroducing AWS Key Management Service Custom Key Store – Learn how you can generate, store, and use your KMS keys in hardware security modules (HSMs) that you control.

Serverless

January 31, 2019 | 9:00 AM – 10:00 AM PT Nested Applications: Accelerate Serverless Development Using AWS SAM and the AWS Serverless Application Repository – Learn how to compose nested applications using the AWS Serverless Application Model (SAM), SAM CLI, and the AWS Serverless Application Repository.

January 31, 2019 | 11:00 AM – 12:00 PM PTDeep Dive Into Lambda Layers and the Lambda Runtime API – Learn how to use Lambda Layers to enable re-use and sharing of code, and how you can build and test Layers locally using the AWS Serverless Application Model (SAM).

Storage

January 28, 2019 | 11:00 AM – 12:00 PM PTThe Amazon S3 Storage Classes – Learn about the Amazon S3 Storage Classes and how to use them to optimize your storage resources.

January 30, 2019 | 1:00 PM – 2:00 PM PTDeep Dive on Amazon FSx for Windows File Server: Running Windows on AWS – Learn how to deploy Amazon FSx for Windows File Server in some of the most common use cases.

Just-in-time VPN access with an AWS IoT button

Post Syndicated from Teri Radichel original https://aws.amazon.com/blogs/aws/just-in-time-vpn-access-with-an-aws-iot-button/

Guest post by AWS Community Hero Teri Radichel. Teri Radichel provides cyber security assessments, pen testing, and research services through her company, 2nd Sight Lab. She is also the founder of the AWS Architects Seattle Meetup.

While traveling to deliver cloud security training, I connect to Wi-Fi networks, both in my hotel room and in the classroom using a VPN. Most companies expose a remote VPN endpoint to the entire internet. I came up with a hypothesis that I could use an AWS IoT button to allow network access only to required locations. What if a VPN user could click to get access, which would trigger opening a network rule, and double-click to disallow network traffic again? I tested it out this idea, and you can see the results below.

You might be wondering why you might want to use a VPN for remote cloud administration. Why an AWS IoT button instead of a laptop or mobile application? More on that in my cloud security blog.

Initially, I wanted to use the AWS IoT Enterprise Button because it allows an organization to have control over the certificates used on the devices. It also uses Wi-Fi, and I was hoping to capture the button IP address to grant network access. To do that, I had to be able to prove that the button received the same IP address from the Wi-Fi network as my laptop. Unfortunately, due to captive portals used by some wireless networks, I had problems connecting the button at some locations.

Next, I tried the AT&T LTE-M Button. I was able to get this button to work for my use case, but with a few less than user-friendly requirements. Because this button is on a cellular network rather than the Wi-Fi I use to connect to my VPN in a hotel room, I can’t auto-magically determine the IP address. I must manually set it using the AWS IoT mobile application.

The other issue I had is that some networks change the public IP addresses of the Wi-Fi client after the VPN connection. The before and after IP addresses are always in the same network block but are not consistent. Instead of using a single IP address, the user has to understand how to figure out what IP range to pass into the button. This proof of concept implementation works well but would not be an ideal solution for non-network-savvy users.

The good news is that I don’t have to log into my AWS account with administrative privileges to change the network settings and allow access to the VPN endpoint from my location. The AWS IoT button user has limited permissions, as does the role for the AWS Lambda function that grants access. The AWS IoT button is a form of multi-factor authentication.

Configure the button with a Lambda function

Caveat: This is not a fully tested or production-ready solution, but it is a starting point to give you some ideas for the implementation of on-demand network access to administrative endpoints. The roles for the button and the Lambda function can be much more restrictive than the ones I used in my proof-of-concept implementation.

1. Set up your VPN endpoint (the instructions are beyond the scope of this post). You can use something like OpenVPN or any of the AWS Marketplace options that allow you to create VPNs for remote access.

2. Jeff Barr has already written a most excellent post on how to set up your AWS IoT button with a Lambda function. The process is straight-forward.

3. To allow your button to change the network, add the ability for your Lambda role to replace network ACL entries. This role enables the assigned resource to update any rule in the account—not recommended! Limit this further to specific network ACLs. Also, make sure that users can only edit the placement attributes of their own assigned buttons.

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditor0",
"Effect": "Allow",
"Action": "ec2:ReplaceNetworkAclEntry",
"Resource": "*"
}
]
}

4. Write the code.

For my test, I edited the default code that comes with the button to prove that what I was trying to do would work. I left in the lines that send a text message, but after the network change. That way, if there’s an error, the user doesn’t get the SNS message.

Additionally, you always, always, always want to validate any inputs sent into any application from a client. I added log lines to show where you can add that. Change these variables to match your environment: vpcid, nacl, rule. The rule parameter is the rule in your network ACL that is updated to use the IP address provided with the button application.

from __future__ import print_function

import boto3
import json
import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

sns = boto3.client('sns')

def lambda_handler(event, context):

    logger.info('Received event: ' + json.dumps(event))

    attributes = event['placementInfo']['attributes']

    phone_number = attributes['phoneNumber']
message = attributes['message']
ip = attributes['ip']

    logger.info("Need code here to validate this is a valid IP address")
logger.info("Need code here to validate the message")
logger.info("Need code here to validate the phone number")

    for key in attributes.keys():
message = message.replace('{{%s}}' % (key), attributes[key])
message = message.replace('{{*}}', json.dumps(attributes))

    dsn = event['deviceInfo']['deviceId']
click_type = event['deviceEvent']['buttonClicked']['clickType']

    vpcid = 'vpc-xxxxxxxxxxxxxxxx'
nacl = 'acl-xxxxxxxxxxxxxxx'
rule = 200

    cidr = ip + '/32'

    message = message + " " + cidr

    client = boto3.client('ec2')

    response = client.replace_network_acl_entry(
NetworkAclId=nacl,
CidrBlock=cidr,
DryRun=False,
Egress=False,
PortRange={
'From': 500,
'To': 500
},
Protocol="17",
RuleAction="allow",
RuleNumber=rule
)

    sns.publish(PhoneNumber=phone_number, Message=message)

    logger.info('SMS has been sent to ' + phone_number)

5. Write the double-click code to remove network access. I left this code as an exercise for the reader. If you understand how to edit the network ACL in the previous step, you should be able to write the double-click function to disallow traffic by changing the line RuleAction=”allow” to RuleAction=”deny”. You have now blocked access to the network port that allows remote users to connect to the VPN.

Test the button

1. Get the public IP address for your current network by going to a site like https://whatismyip.com.

For this post, assume that you only need a single IP address. However, you could easily change the code above to allow for an IP range instead (or in other words, a CIDR block).

2. Log in to the phone app for the button.

3. Choose Projects and select your button project. Mine is named vpn2.

4. The project associated with the Lambda function that you assigned to the button requires the following placement attributes:
message: Network updated!
phoneNumber: The phone number to receive the text.
ip: The IP address from whatismyip.com.

5. Select an existing attribute to change it or choose + Add Placement Attribute to add a new one.

6. Press your AWS IoT button to trigger the Lambda function. If it runs without error, you get the text message with the IP address that you entered.

7. Check your VPC network ACL rule to verify the change to the correct IP address.

8. Verify that you can connect to the VPN.

9. Assuming you implemented the double-click function to disable access, double-click the button to change the network ACL rule to “deny” instead of “allow”.

Now you know how to use an AWS IoT button to change a network rule on demand. Hopefully, this post sparks some ideas for adding additional layers of security to your AWS VPN and administrative endpoints!

Learn about New AWS re:Invent Launches – December AWS Online Tech Talks

Post Syndicated from Robin Park original https://aws.amazon.com/blogs/aws/learn-about-new-aws-reinvent-launches-december-aws-online-tech-talks/

AWS Tech Talks

Join us in the next couple weeks to learn about some of the new service and feature launches from re:Invent 2018. Learn about features and benefits, watch live demos and ask questions! We’ll have AWS experts online to answer any questions you may have. Register today!

Note – All sessions are free and in Pacific Time.

Tech talks this month:

Compute

December 19, 2018 | 01:00 PM – 02:00 PM PTDeveloping Deep Learning Models for Computer Vision with Amazon EC2 P3 Instances – Learn about the different steps required to build, train, and deploy a machine learning model for computer vision.

Containers

December 11, 2018 | 01:00 PM – 02:00 PM PTIntroduction to AWS App Mesh – Learn about using AWS App Mesh to monitor and control microservices on AWS.

Data Lakes & Analytics

December 10, 2018 | 11:00 AM – 12:00 PM PTIntroduction to AWS Lake Formation – Build a Secure Data Lake in Days – AWS Lake Formation (coming soon) will make it easy to set up a secure data lake in days. With AWS Lake Formation, you will be able to ingest, catalog, clean, transform, and secure your data, and make it available for analysis and machine learning.

December 12, 2018 | 11:00 AM – 12:00 PM PTIntroduction to Amazon Managed Streaming for Kafka (MSK) – Learn about features and benefits, use cases and how to get started with Amazon MSK.

Databases

December 10, 2018 | 01:00 PM – 02:00 PM PTIntroduction to Amazon RDS on VMware – Learn how Amazon RDS on VMware can be used to automate on-premises database administration, enable hybrid cloud backups and read scaling for on-premises databases, and simplify database migration to AWS.

December 13, 2018 | 09:00 AM – 10:00 AM PTServerless Databases with Amazon Aurora and Amazon DynamoDB – Learn about the new serverless features and benefits in Amazon Aurora and DynamoDB, use cases and how to get started.

Enterprise & Hybrid

December 19, 2018 | 11:00 AM – 12:00 PM PTHow to Use “Minimum Viable Refactoring” to Achieve Post-Migration Operational Excellence – Learn how to improve the security and compliance of your applications in two weeks with “minimum viable refactoring”.

IoT

December 17, 2018 | 11:00 AM – 12:00 PM PTIntroduction to New AWS IoT Services – Dive deep into the AWS IoT service announcements from re:Invent 2018, including AWS IoT Things Graph, AWS IoT Events, and AWS IoT SiteWise.

Machine Learning

December 10, 2018 | 09:00 AM – 10:00 AM PTIntroducing Amazon SageMaker Ground Truth – Learn how to build highly accurate training datasets with machine learning and reduce data labeling costs by up to 70%.

December 11, 2018 | 09:00 AM – 10:00 AM PTIntroduction to AWS DeepRacer – AWS DeepRacer is the fastest way to get rolling with machine learning, literally. Get hands-on with a fully autonomous 1/18th scale race car driven by reinforcement learning, 3D racing simulator, and a global racing league.

December 12, 2018 | 01:00 PM – 02:00 PM PTIntroduction to Amazon Forecast and Amazon Personalize – Learn about Amazon Forecast and Amazon Personalize – what are the key features and benefits of these managed ML services, common use cases and how you can get started.

December 13, 2018 | 01:00 PM – 02:00 PM PTIntroduction to Amazon Textract: Now in Preview – Learn how Amazon Textract, now in preview, enables companies to easily extract text and data from virtually any document.

Networking

December 17, 2018 | 01:00 PM – 02:00 PM PTIntroduction to AWS Transit Gateway – Learn how AWS Transit Gateway significantly simplifies management and reduces operational costs with a hub and spoke architecture.

Robotics

December 18, 2018 | 11:00 AM – 12:00 PM PTIntroduction to AWS RoboMaker, a New Cloud Robotics Service – Learn about AWS RoboMaker, a service that makes it easy to develop, test, and deploy intelligent robotics applications at scale.

Security, Identity & Compliance

December 17, 2018 | 09:00 AM – 10:00 AM PTIntroduction to AWS Security Hub – Learn about AWS Security Hub, and how it gives you a comprehensive view of high-priority security alerts and your compliance status across AWS accounts.

Serverless

December 11, 2018 | 11:00 AM – 12:00 PM PTWhat’s New with Serverless at AWS – In this tech talk, we’ll catch you up on our ever-growing collection of natively supported languages, console updates, and re:Invent launches.

December 13, 2018 | 11:00 AM – 12:00 PM PTBuilding Real Time Applications using WebSocket APIs Supported by Amazon API Gateway – Learn how to build, deploy and manage APIs with API Gateway.

Storage

December 12, 2018 | 09:00 AM – 10:00 AM PTIntroduction to Amazon FSx for Windows File Server – Learn about Amazon FSx for Windows File Server, a new fully managed native Windows file system that makes it easy to move Windows-based applications that require file storage to AWS.

December 14, 2018 | 01:00 PM – 02:00 PM PTWhat’s New with AWS Storage – A Recap of re:Invent 2018 Announcements – Learn about the key AWS storage announcements that occurred prior to and at re:Invent 2018. With 15+ new service, feature, and device launches in object, file, block, and data transfer storage services, you will be able to start designing the foundation of your cloud IT environment for any application and easily migrate data to AWS.

December 18, 2018 | 09:00 AM – 10:00 AM PTIntroduction to Amazon FSx for Lustre – Learn about Amazon FSx for Lustre, a fully managed file system for compute-intensive workloads. Process files from S3 or data stores, with throughput up to hundreds of GBps and sub-millisecond latencies.

December 18, 2018 | 01:00 PM – 02:00 PM PTIntroduction to New AWS Services for Data Transfer – Learn about new AWS data transfer services, and which might best fit your requirements for data migration or ongoing hybrid workloads.

Amazon SageMaker Neo – Train Your Machine Learning Models Once, Run Them Anywhere

Post Syndicated from Julien Simon original https://aws.amazon.com/blogs/aws/amazon-sagemaker-neo-train-your-machine-learning-models-once-run-them-anywhere/

Machine learning (ML) is split in two distinct phases: training and inference. Training deals with building the model, i.e. running a ML algorithm on a dataset in order to identify meaningful patterns. This often requires large amounts of storage and computing power, making the cloud a natural place to train ML jobs with services such as Amazon SageMaker and the AWS Deep Learning AMIs.

Inference deals with using the model, i.e. predicting results for data samples that the model has never seen. Here, the requirements are different: developers are typically concerned with optimizing latency (how long does a single prediction take?) and throughput (how many predictions can I run in parallel?). Of course, the hardware architecture of your prediction environment has a very significant impact on such metrics, especially if you’re dealing with resource-constrained devices: as a Raspberry Pi enthusiast, I often wish the little fellow packed a little more punch to speed up my inference code.

Tuning a model for a specific hardware architecture is possible, but the lack of tooling makes this an error-prone and time-consuming process. Minor changes to the ML framework or the model itself usually require the user to start all over again. Unfortunately, this forces most ML developers to deploy the same model everywhere regardless of the underlying hardware, thus missing out on significant performance gains.

Well, no more. Today, I’m very happy to announce Amazon SageMaker Neo, a new capability of Amazon SageMaker that enables machine learning models to train once and run anywhere in the cloud and at the edge with optimal performance.

Introducing Amazon SageMaker Neo

Without any manual intervention, Amazon SageMaker Neo optimizes models deployed on Amazon EC2 instances, Amazon SageMaker endpoints and devices managed by AWS Greengrass.

Here are the supported configurations:

  • Frameworks and algorithms: TensorFlow, Apache MXNet, PyTorch, ONNX, and XGBoost.
  • Hardware architectures: ARM, Intel, and NVIDIA starting today, with support for Cadence, Qualcomm, and Xilinx hardware coming soon. In addition, Amazon SageMaker Neo is released as open source code under the Apache Software License, enabling hardware vendors to customize it for their processors and devices.

The Amazon SageMaker Neo compiler converts models into an efficient common format, which is executed on the device by a compact runtime that uses less than one-hundredth of the resources that a generic framework would traditionally consume. The Amazon SageMaker Neo runtime is optimized for the underlying hardware, using specific instruction sets that help speed up ML inference.

This has three main benefits:

  • Converted models perform at up to twice the speed, with no loss of accuracy.
  • Sophisticated models can now run on virtually any resource-limited device, unlocking innovative use cases like autonomous vehicles, automated video security, and anomaly detection in manufacturing.
  • Developers can run models on the target hardware without dependencies on the framework.

Under the hood

Most machine learning frameworks represent a model as a computational graph: a vertex represents an operation on data arrays (tensors) and an edge represents data dependencies between operations. The Amazon SageMaker Neo compiler exploits patterns in the computational graph to apply high-level optimizations including operator fusion, which fuses multiple small operations together; constant-folding, which statically pre-computes portions of the graph to save execution costs; a static memory planning pass, which pre-allocates memory to hold each intermediate tensor; and data layout transformations, which transform internal data layouts into hardware-friendly forms. The compiler then produces efficient code for each operator.

Once a model has been compiled, it can be run by the Amazon SageMaker Neo runtime. This runtime takes about 1MB of disk space, compared to the 500MB-1GB required by popular deep learning libraries. An application invokes a model by first loading the runtime, which then loads the model definition, model parameters, and precompiled operations.

I can’t wait to try this on my Raspberry Pi. Let’s get to work.

Downloading a pre-trained model

Plenty of pre-trained models are available in the Apache MXNet, Gluon CV or TensorFlow model zoos: here, I’m using a 50-layer model based on the ResNet architecture, pre-trained with Apache MXNet on the ImageNet dataset.

First, I’m downloading the 227MB model as well as the JSON file defining its different layers. This file is particularly important: it tells me that the input symbol is called ‘data’ and that its shape is [1, 3, 224, 224], i.e. 1 image, 3 channels (red, green and blue), 224×224 pixels. I’ll need to make sure that images passed to the model have this exact shape. The output shape is [1, 1000], i.e. a vector containing the probability for each one of the 1,000 classes present in the ImageNet dataset.

To define a performance baseline, I use this model and a vanilla unoptimized version of Apache MXNet 1.2 to predict a few images: on average, inference takes about 6.5 seconds and requires about 306 MB of RAM.

That’s pretty slow: let’s compile the model and see how fast it gets.

Compiling the model for the Raspberry Pi

First, let’s store both model files in a compressed TAR archive and upload it to an Amazon S3 bucket.

$ tar cvfz model.tar.gz resnet50_v1-symbol.json resnet50_v1-0000.params
a resnet50_v1-symbol.json
a resnet50_v1-0000.paramsresnet50_v1-0000.params
$ aws s3 cp model.tar.gz s3://jsimon-neo/
upload: ./model.tar.gz to s3://jsimon-neo/model.tar.gz

Then, I just have to write a simple configuration file for my compilation job. If you’re curious about other frameworks and hardware targets, ‘aws sagemaker create-compilation-job help‘ will give you the exact syntax to use.

{
    "CompilationJobName": "resnet50-mxnet-raspberrypi",
    "RoleArn": $SAGEMAKER_ROLE_ARN,
    "InputConfig": {
        "S3Uri": "s3://jsimon-neo/model.tar.gz",
        "DataInputConfig": "{\"data\": [1, 3, 224, 224]}",
        "Framework": "MXNET"
    },
    "OutputConfig": {
        "S3OutputLocation": "s3://jsimon-neo/",
        "TargetDevice": "rasp3b"
    },
    "StoppingCondition": {
        "MaxRuntimeInSeconds": 300
    }
}

Launching the compilation process takes a single command.

$ aws sagemaker create-compilation-job --cli-input-json file://job.json

Compilation is complete in seconds. Let’s figure out the name of the compilation artifact, fetch it from Amazon S3 and extract it locally

$ aws sagemaker describe-compilation-job \
--compilation-job-name resnet50-mxnet-raspberrypi \
--query "ModelArtifacts"
{
"S3ModelArtifacts": "s3://jsimon-neo/model-rasp3b.tar.gz"
}
$ aws s3 cp s3://jsimon-neo/model-rasp3b.tar.gz .
$ tar xvfz model-rasp3b.tar.gz
x compiled.params
x compiled_model.json
x compiled.so

As you can see, the artifact contains:

  • The original model and symbol files.
  • A shared object file storing compiled, hardware-optimized, operators used by the model.

For convenience, let’s rename them to ‘model.params’, ‘model.json’ and ‘model.so’, and then copy them on the Raspberry pi in a ‘resnet50’ directory.

$ mkdir resnet50
$ mv compiled.params resnet50/model.params
$ mv compiled_model.json resnet50/model.json
$ mv compiled.so resnet50/model.so
$ scp -r resnet50 [email protected]:~

Setting up the inference environment on the Raspberry Pi

Before I can predict images with the model, I need to install the appropriate runtime on my Raspberry Pi. Pre-built packages are available [neopackages]: I just have to download the one for ‘armv7l’ architectures and to install it on my Pi with the provided script. Please note that I don’t need to install any additional deep learning framework (Apache MXNet in this case), saving up to 1GB of persistent storage.

$ scp -r dlr-1.0-py2.py3-armv7l [email protected]:~
<ssh to the Pi>
$ cd dlr-1.0-py2.py3-armv7l
$ sh ./install-py3.sh

We’re all set. Time to predict images!

Using the Amazon SageMaker Neo runtime

On the Pi, the runtime is available as a Python package named ‘dlr’ (deep learning runtime). Using it to predict images is what you would expect:

  • Load the model, defining its input and output symbols.
  • Load an image.
  • Predict!

Here’s the corresponding Python code.

import os
import numpy as np
from dlr import DLRModel

# Load the compiled model
input_shape = {'data': [1, 3, 224, 224]} # A single RGB 224x224 image
output_shape = [1, 1000]                 # The probability for each one of the 1,000 classes
device = 'cpu'                           # Go, Raspberry Pi, go!
model = DLRModel('resnet50', input_shape, output_shape, device)

# Load names for ImageNet classes
synset_path = os.path.join(model_path, 'synset.txt')
with open(synset_path, 'r') as f:
    synset = eval(f.read())

# Load an image stored as a numpy array
image = np.load('dog.npy').astype(np.float32)
print(image.shape)
input_data = {'data': image}

# Predict 
out = model.run(input_data)
top1 = np.argmax(out[0])
prob = np.max(out)
print("Class: %s, probability: %f" % (synset[top1], prob))

Let’s give it a try on this image. Aren’t chihuahuas and Raspberry Pis made for one another?



(1, 3, 224, 224)
Class: Chihuahua, probability: 0.901803

The prediction is correct, but what about speed and memory consumption? Well, this prediction takes about 0.85 second and requires about 260MB of RAM: with Amazon SageMaker Neo, it’s now 5 times faster and 15% more RAM-efficient than with a vanilla model.

This impressive performance gain didn’t require any complex and time-consuming work: all we had to do was to compile the model. Of course, your mileage will vary depending on models and hardware architectures, but you should see significant improvements across the board, including on Amazon EC2 instances such as the C5 or P3 families.

Now available

I hope this post was informative. Compiling models with Amazon SageMaker Neo is free of charge, you will only pay for the underlying resource using the model (Amazon EC2 instances, Amazon SageMaker instances and devices managed by AWS Greengrass).

The service is generally available today in US-East (N. Virginia), US-West (Oregon) and Europe (Ireland). Please start exploring and let us know what you think. We can’t wait to see what you will build!

Julien;

Learn about AWS – November AWS Online Tech Talks

Post Syndicated from Robin Park original https://aws.amazon.com/blogs/aws/learn-about-aws-november-aws-online-tech-talks/

AWS Tech Talks

AWS Online Tech Talks are live, online presentations that cover a broad range of topics at varying technical levels. Join us this month to learn about AWS services and solutions. We’ll have experts online to help answer any questions you may have.

Featured this month! Check out the tech talks: Virtual Hands-On Workshop: Amazon Elasticsearch Service – Analyze Your CloudTrail Logs, AWS re:Invent: Know Before You Go and AWS Office Hours: Amazon GuardDuty Tips and Tricks.

Register today!

Note – All sessions are free and in Pacific Time.

Tech talks this month:

AR/VR

November 13, 2018 | 11:00 AM – 12:00 PM PTHow to Create a Chatbot Using Amazon Sumerian and Sumerian Hosts – Learn how to quickly and easily create a chatbot using Amazon Sumerian & Sumerian Hosts.

Compute

November 19, 2018 | 11:00 AM – 12:00 PM PTUsing Amazon Lightsail to Create a Database – Learn how to set up a database on your Amazon Lightsail instance for your applications or stand-alone websites.

November 21, 2018 | 09:00 AM – 10:00 AM PTSave up to 90% on CI/CD Workloads with Amazon EC2 Spot Instances – Learn how to automatically scale a fleet of Spot Instances with Jenkins and EC2 Spot Plug-In.

Containers

November 13, 2018 | 09:00 AM – 10:00 AM PTCustomer Showcase: How Portal Finance Scaled Their Containerized Application Seamlessly with AWS Fargate – Learn how to scale your containerized applications without managing servers and cluster, using AWS Fargate.

November 14, 2018 | 11:00 AM – 12:00 PM PTCustomer Showcase: How 99designs Used AWS Fargate and Datadog to Manage their Containerized Application – Learn how 99designs scales their containerized applications using AWS Fargate.

November 21, 2018 | 11:00 AM – 12:00 PM PTMonitor the World: Meaningful Metrics for Containerized Apps and Clusters – Learn about metrics and tools you need to monitor your Kubernetes applications on AWS.

Data Lakes & Analytics

November 12, 2018 | 01:00 PM – 01:45 PM PTSearch Your DynamoDB Data with Amazon Elasticsearch Service – Learn the joint power of Amazon Elasticsearch Service and DynamoDB and how to set up your DynamoDB tables and streams to replicate your data to Amazon Elasticsearch Service.

November 13, 2018 | 01:00 PM – 01:45 PM PTVirtual Hands-On Workshop: Amazon Elasticsearch Service – Analyze Your CloudTrail Logs – Get hands-on experience and learn how to ingest and analyze CloudTrail logs using Amazon Elasticsearch Service.

November 14, 2018 | 01:00 PM – 01:45 PM PTBest Practices for Migrating Big Data Workloads to AWS – Learn how to migrate analytics, data processing (ETL), and data science workloads running on Apache Hadoop, Spark, and data warehouse appliances from on-premises deployments to AWS.

November 15, 2018 | 11:00 AM – 11:45 AM PTBest Practices for Scaling Amazon Redshift – Learn about the most common scalability pain points with analytics platforms and see how Amazon Redshift can quickly scale to fulfill growing analytical needs and data volume.

Databases

November 12, 2018 | 11:00 AM – 11:45 AM PTModernize your SQL Server 2008/R2 Databases with AWS Database Services – As end of extended Support for SQL Server 2008/ R2 nears, learn how AWS’s portfolio of fully managed, cost effective databases, and easy-to-use migration tools can help.

DevOps

November 16, 2018 | 09:00 AM – 09:45 AM PTBuild and Orchestrate Serverless Applications on AWS with PowerShell – Learn how to build and orchestrate serverless applications on AWS with AWS Lambda and PowerShell.

End-User Computing

November 19, 2018 | 01:00 PM – 02:00 PM PTWork Without Workstations with AppStream 2.0 – Learn how to work without workstations and accelerate your engineering workflows using AppStream 2.0.

Enterprise & Hybrid

November 19, 2018 | 09:00 AM – 10:00 AM PTEnterprise DevOps: New Patterns of Efficiency – Learn how to implement “Enterprise DevOps” in your organization through building a culture of inclusion, common sense, and continuous improvement.

November 20, 2018 | 11:00 AM – 11:45 AM PTAre Your Workloads Well-Architected? – Learn how to measure and improve your workloads with AWS Well-Architected best practices.

IoT

November 16, 2018 | 01:00 PM – 02:00 PM PTPushing Intelligence to the Edge in Industrial Applications – Learn how GE uses AWS IoT for industrial use cases, including 3D printing and aviation.

Machine Learning

November 12, 2018 | 09:00 AM – 09:45 AM PTAutomate for Efficiency with Amazon Transcribe and Amazon Translate – Learn how you can increase efficiency and reach of your operations with Amazon Translate and Amazon Transcribe.

Mobile

November 20, 2018 | 01:00 PM – 02:00 PM PTGraphQL Deep Dive – Designing Schemas and Automating Deployment – Get an overview of the basics of how GraphQL works and dive into different schema designs, best practices, and considerations for providing data to your applications in production.

re:Invent

November 9, 2018 | 08:00 AM – 08:30 AM PTEpisode 7: Getting Around the re:Invent Campus – Learn how to efficiently get around the re:Invent campus using our new mobile app technology. Make sure you arrive on time and never miss a session.

November 14, 2018 | 08:00 AM – 08:30 AM PTEpisode 8: Know Before You Go – Learn about all final details you need to know before you arrive in Las Vegas for AWS re:Invent!

Security, Identity & Compliance

November 16, 2018 | 11:00 AM – 12:00 PM PTAWS Office Hours: Amazon GuardDuty Tips and Tricks – Join us for office hours and get the latest tips and tricks for Amazon GuardDuty from AWS Security experts.

Serverless

November 14, 2018 | 09:00 AM – 10:00 AM PTServerless Workflows for the Enterprise – Learn how to seamlessly build and deploy serverless applications across multiple teams in large organizations.

Storage

November 15, 2018 | 01:00 PM – 01:45 PM PTMove From Tape Backups to AWS in 30 Minutes – Learn how to switch to cloud backups easily with AWS Storage Gateway.

November 20, 2018 | 09:00 AM – 10:00 AM PTDeep Dive on Amazon S3 Security and Management – Amazon S3 provides some of the most enhanced data security features available in the cloud today, including access controls, encryption, security monitoring, remediation, and security standards and compliance certifications.

How to build a front-line concussion monitoring system using AWS IoT and serverless data lakes – Part 2

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/big-data/how-to-build-a-front-line-concussion-monitoring-system-using-aws-iot-and-serverless-data-lakes-part-2/

In part 1 of this series, we demonstrated how to build a data pipeline in support of a data lake. We used key AWS services such as Amazon Kinesis Data Streams, Kinesis Data Analytics, Kinesis Data Firehose, and AWS Lambda. In part 2, we discuss how to process and visualize the data by creating a serverless data lake that uses key analytics to create actionable data.

Create a serverless data lake and explore data using AWS Glue, Amazon Athena, and Amazon QuickSight

As we discussed in part 1, you can store heart rate data in an Amazon S3 bucket using Kinesis Data Streams. However, storing data in a repository is not enough. You also need to be able to catalog and store the associated metadata related to your repository so that you can extract the meaningful pieces for analytics.

For a serverless data lake, you can use AWS Glue, which is a fully managed data catalog and ETL (extract, transform, and load) service. AWS Glue simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. As you get your AWS Glue Data Catalog data partitioned and compressed for optimal performance, you can use Amazon Athena for the direct query to S3 data. You can then visualize the data using Amazon QuickSight.

The following diagram depicts the data lake that is created in this demonstration:

Amazon S3 now has the raw data stored from the Kinesis process. The first task is to prepare the Data Catalog and identify what data attributes are available to query and analyze. To do this task, you need to create a database in AWS Glue that will hold the table created by the AWS Glue crawler.

An AWS Glue crawler scans through the raw data available in an S3 bucket and creates a data table with a Data Catalog. You can add a scheduler to the crawler to run periodically and scan new data as required. For specific steps to create a database and crawler in AWS Glue, see the blog post Build a Data Lake Foundation with AWS Glue and Amazon S3.

The following figure shows the summary screen for a crawler configuration in AWS Glue:

After configuring the crawler, choose Finish, and then choose Crawler in the navigation bar. Select the crawler that you created, and choose Run crawler.

The crawler process can take 20–60 seconds to initiate. It depends on the Data Catalog, and it creates a table in your database as defined during the crawler configuration.

You can choose the table name and explore the Data Catalog and table:

In the demonstration table details, our data has three attribute time stamps as value_time, the person’s ID as id, and the heart rate as colvalue. These attributes are identified and listed by the AWS Glue crawler. You can see other information such as the data format (text) and the record count (approx. 15,000 with each record size of 61 bytes).

You can use Athena to query the raw data. To access Athena directly from the AWS Glue console, choose the table, and then choose View data on the Actions menu, as shown following:

As noted, the data is currently in a JSON format and we haven’t partitioned it. This means that Athena continues to scan more data, which increases the query cost. The best practice is to always partition data and to convert the data into a columnar format like Apache Parquet or Apache ORC. This reduces the amount of data scans while running a query. Having fewer data scans means better query performance at a lower cost.

To accomplish this, AWS Glue generates an ETL script for you. You can schedule it to run periodically for your data processing, which removes the necessity for complex code writing. AWS Glue is a managed service that runs on top of a warm Apache Spark cluster that is managed by AWS. You can run your own script in AWS Glue or modify a script provided by AWS Glue that meets your requirements. For examples of how to build a custom script for your solution, see Providing Your Own Custom Scripts in the AWS Glue Developer Guide.

For detailed steps to create a job, see the blog post Build a Data Lake Foundation with AWS Glue and Amazon S3. The following figure shows the final AWS Glue job configuration summary for this demonstration:

In this example configuration, we enabled the job bookmark, which helps AWS Glue maintain state information and prevents the reprocessing of old data. You only want to process new data when rerunning on a scheduled interval.

When you choose Finish, AWS Glue generates a Python script. This script processes your data and stores it in a columnar format in the destination S3 bucket specified in the job configuration.

If you choose Run Job, it takes time to complete depending on the amount of data and data processing units (DPUs) configured. By default, a job is configured with 10 DPUs, which can be increased. A single DPU provides processing capacity that consists of 4 vCPUs of compute and 16 GB of memory.

After the job is complete, inspect your destination S3 bucket, and you will find that your data is now in columnar Parquet format.

Partitioning has emerged as an important technique for organizing datasets so that they can be queried efficiently by a variety of big data systems. Data is organized in a hierarchical directory structure based on the distinct values of one or more columns. For information about efficiently processing partitioned datasets using AWS Glue, see the blog post Work with partitioned data in AWS Glue.

You can create triggers for your job that run the job periodically to process new data as it is transmitted to your S3 bucket. For detailed steps on how to configure a job trigger, see Triggering Jobs in AWS Glue.

The next step is to create a crawler for the Parquet data so that a table can be created. The following image shows the configuration for our Parquet crawler:

Choose Finish, and execute the crawler.

Explore your database, and you will notice that one more table was created in the Parquet format.

You can use this new table for direct queries to reduce costs and to increase the query performance of this demonstration.

Because AWS Glue is integrated with Athena, you will find in the Athena console an AWS Glue catalog already available with the table catalog. Fetch 10 rows from Athena in a new Parquet table like you did for the JSON data table in the previous steps.

As the following image shows, we fetched the first 10 rows of heartbeat data from a Parquet format table. This same Athena query scanned only 4.99 KB of data compared to 205 KB of data that was scanned in a raw format. Also, there was a significant improvement in query performance in terms of run time.

Visualize data in Amazon QuickSight

Amazon QuickSight is a data visualization service that you can use to analyze data that has been combined. For more detailed instructions, see the Amazon QuickSight User Guide.

The first step in Amazon QuickSight is to create a new Amazon Athena data source. Choose the heartbeat database created in AWS Glue, and then choose the table that was created by the AWS Glue crawler.

Choose Import to SPICE for quicker analytics. This option creates a data cache and improves graph loading. All non-database datasets must use SPICE. To learn more about SPICE, see Managing SPICE Capacity.

Choose Visualize, and wait for SPICE to import the data to the cache. You can also schedule a periodic refresh so that new data is loaded to SPICE as the data is pipelined to the S3 bucket.

When the SPICE import is complete, you can create a visual dashboard easily. The following figure shows graphs displaying the occurrence of heart rate records per device.  The first graph is a horizontally stacked bar chart, which shows the percentage of heart rate occurrence per device. In the second graph, you can visualize the heart rate count group to the heart rate device.

Conclusion

Processing streaming data at scale is relevant in every industry. Whether you process data from wearables to tackle human health issues or address predictive maintenance in manufacturing centers, AWS can help you simplify your data ingestion and analysis while keeping your overall IT expenditure manageable.

In this two-part series, you learned how to ingest streaming data from a heart rate sensor and visualize it in such a way to create actionable insights. The current state of the art available in the big data and machine learning space makes it possible to ingest terabytes and petabytes of data and extract useful and actionable information from that process.


Additional Reading

If you found this post useful, be sure to check out Work with partitioned data in AWS Glue, and 10 visualizations to try in Amazon QuickSight with sample data.

 


About the Authors

Saurabh Shrivastava is a partner solutions architect and big data specialist working with global systems integrators. He works with AWS partners and customers to provide them architectural guidance for building scalable architecture in hybrid and AWS environments.

 

 

 

Abhinav Krishna Vadlapatla is a Solutions Architect with Amazon Web Services. He supports startups and small businesses with their cloud adoption to build scalable and secure solutions using AWS. During his free time, he likes to cook and travel.

 

 

 

John Cupit is a partner solutions architect for AWS’ Global Telecom Alliance Team. His passion is leveraging the cloud to transform the carrier industry. He has a son and daughter who have both graduated from college. His daughter is gainfully employed, while his son is in his first year of law school at Tulane University. As such, he has no spare money and no spare time to work a second job.

 

 

David Cowden is partner solutions architect and IoT specialist working with AWS emerging partners. He works with customers to provide them architectural guidance for building scalable architecture in IoT space.

 

 

 

Josh Ragsdale is an enterprise solutions architect at AWS. His focus is on adapting to a cloud operating model at very large scale. He enjoys cycling and spending time with his family outdoors.

 

 

 

Pierre-Yves Aquilanti, Ph.D., is a senior specialized HPC solutions architect at AWS. He spent several years in the oil & gas industry to optimize R&D applications for large scale HPC systems and enable the potential of machine learning for the upstream. He and his family crave to live in Singapore again for the human, cultural experience and eat fresh durians.

 

 

Manuel Puron is an enterprise solutions architect at AWS. He has been working in cloud security and IT service management for over 10 years. He is focused on the telecommunications industry. He enjoys video games and traveling to new destinations to discover new cultures.