Tag Archives: china

Upgrading the Cloudflare China Network: better performance and security through product innovation and partnership

Post Syndicated from Patrick R. Donahue original https://blog.cloudflare.com/upgrading-the-cloudflare-china-network/

Upgrading the Cloudflare China Network: better performance and security through product innovation and partnership

Upgrading the Cloudflare China Network: better performance and security through product innovation and partnership

Core to Cloudflare’s mission of helping build a better Internet is making it easy for our customers to improve the performance, security, and reliability of their digital properties, no matter where in the world they might be. This includes Mainland China. Cloudflare has had customers using our service in China since 2015 and recently, we expanded our China presence through a partnership with JD Cloud, the cloud division of Chinese Internet giant, JD.com. We’ve also had a local office in Beijing for several years, which has given us a deep understanding of the Chinese Internet landscape as well as local customers.

The new Cloudflare China Network built in partnership with JD Cloud has been live for several months, with significant performance and security improvements compared to the previous in-country network. Today, we’re excited to describe the improvements we made to our DNS and DDoS systems, and provide data demonstrating the performance gains customers are seeing. All customers licensed to operate in China can now benefit from these innovations, with the click of a button in the Cloudflare dashboard or via the API.

Serving DNS inside China

With over 14% of all domains on the Internet using Cloudflare’s nameservers we are the largest DNS provider. Furthermore, we pride ourselves on consistently being among the fastest authoritative nameservers, answering about 12 million DNS queries per second on average (in Q2 2021). We achieve this scale and performance by running our DNS platform on our global network in more than 200 cities, in over 100 countries.

Not too long ago, a user in mainland China accessing a website using Cloudflare DNS did not fully benefit from these advantages. Their DNS queries had to leave the country and, in most cases, cross the Pacific Ocean to reach our nameservers outside of China. This network distance introduced latency and sometimes even packet drops, resulting in a poor user experience.

With the new China Network offering built on JD Cloud’s infrastructure, customers are now able to serve their DNS in mainland China. This means DNS queries are answered directly from one of the JD Cloud Points of Presence (PoPs), leading to faster response times and improved reliability.

Once a user signs up a domain and opts in to serve their DNS in China we will assign two nameservers, from two of the following three domains:

cf-ns.com
cf-ns.net
cf-ns.tech

We selected these Top Level Domains (TLDs) because they offer the best possible performance from within mainland China. They are chosen to always be different from the TLD of the domain using them. For example, example.com will be assigned nameservers using the .tech and .net TLD. This gives us “glueless delegations” for customers’ nameservers, allowing us to dynamically return nameserver IP addresses instead of static glue records.

A “glue record” (or just “glue”) is a mapping between nameservers and IPs that’s added by registrars to break circular lookup dependencies when a domain uses a nameserver with the same TLD. For example, imagine a resolver asks the .com TLD nameserver: “Where do I find the nameservers for example.com?” and this domain is using ns1.example.com and ns2.example.com as nameservers. If .com just replied: “Go and ask ns1.example.com or ns2.example.com.” the resolver would come back to .com with the same question and this would never stop. One solution is to add glue at .com, so the answer can be: “The nameservers for example.com are ns1.example.com and ns2.example.com, and they can be reached at 192.0.2.78 and 203.0.113.55.”.

By using different TLDs, as described above, we don’t need to rely on glue records for customers’ nameservers. This way, we can ensure that queries will always be answered from the nearest point of presence (PoP) leading to a faster DNS response. Another advantage of serving dynamic nameserver IPs is the ability to distribute queries across different PoPs, which helps to spread load more efficiently and mitigate attacks.

Mitigating DDoS attacks within China

Everywhere in the world except for China and India, we use a technique known as anycast routing to distribute DDoS attacks and absorb them in data centers as close to the traffic source as possible. But as we first wrote in 2015, the Internet in China works a bit differently than the rest of the world so anycast-based mitigation was not an option:

Unlike much of the rest of the world where network routing is open, in China core Internet access is largely controlled by two ISPs: China Telecom and China Unicom. [Today this list also includes China Mobile.] These ISPs control IP address allocation and routing inside the country. Even the Chinese Internet giants rarely own their own IP address allocations, or use BGP to control routing across the Chinese Internet. This makes BGP Anycast and many of the other routing techniques we use across Cloudflare’s network impossible inside of China.

The lack of anycast in China requires a different approach to mitigating attacks, and our expansion with JD Cloud pushed us to further improve the edge-based mitigation system we wrote about earlier this year. Most importantly, we pushed the detection and mitigation of application (L7) attacks to the edge, reducing our time to mitigate and improving the resiliency of the system by removing a dependency on other core data centers for instructions. In the first quarter of 2021, we mitigated 81% of all L7 attacks at the edge.

For the larger network-based (L3/L4) attacks, we worked closely with JD Cloud to augment our in-data center protections with remote signaling to China Telecom, China Unicom, and China Mobile. These integrations allow us to remotely — and automatically — signal from our edge-based mitigation systems when we want upstream filtering assistance from the ISP. Mitigating attacks at the edge is faster than relying on centralized data centers, and in the first quarter of 2021 98.6% of all L3/4 DDoS attacks were mitigated without centralized communication. Attacks exceeding certain thresholds can also be re-routed to large scrubbing centers, a technique that doesn’t make sense in an anycast world but is useful when unicast is the only option.

Beyond the improved mitigation controls, we also developed new traffic engineering processes to move traffic from overloaded data centers to locations with more spare resources. These controls are already used outside of China, but doing so within the country required integration with our DNS systems.

Lastly, because all of our data centers run the same software stack, the work we did to improve the underlying components of DDoS detection and mitigation systems within China has already made its way back to our data centers outside of China.

Improving performance

Cloudflare on JD Cloud is significantly faster than our previous in-country network, allowing us to accelerate the delivery of our customers’ web properties in China.

To compare the Cloudflare PoPs on JD Cloud vs. our previous in-country network, we deployed a test zone to simulate a customer website on both China networks. We tested each website with the same two origin networks. Both origins are commonly used public cloud providers. One site was hosted in the northwest region of the United States, and the other in Western Europe.

For both zones, we assigned DNS nameservers in China to reduce out-of-country latency incurred during DNS lookups (more details are on DNS below). To test our caching, we used a monitoring and benchmarking service with a wide variety of clients in various Chinese cities and provinces to download 100 kilobyte, 1 megabyte, and 10 megabyte files every 15 minutes over the course of 36 hours.

Latency, as measured by Round Trip Time (RTT) from the client to our JD Cloud PoPs, was reduced at least 30% across tests for all file sizes. This subsequently reduced our Time to First Byte (TTFB) metrics. Reducing latency — and making it more consistent, i.e., improving jitter — has the most impact on other performance metrics, as latency and the slow-start process is the bottleneck for the vast majority of TCP connections.

Our latency reduction comes from the quality of the JD Cloud network, their placement of the PoPs within China, and our ability to direct clients to the closest PoP. As we continue to add more capacity and PoPs in partnership with JD Cloud in the future, we only expect our latency metrics to get even better.

Dynamic Content

Upgrading the Cloudflare China Network: better performance and security through product innovation and partnership

Static Content

Upgrading the Cloudflare China Network: better performance and security through product innovation and partnership

DNS Response Time

Upgrading the Cloudflare China Network: better performance and security through product innovation and partnership

Looking forward and welcoming new customers in China

Cloudflare’s sustained product investments in China, in partnership with JD Cloud, have resulted in significant performance and security improvements over our previous in-country network first launched in 2015.

Specifically, innovations in DNS and DDoS mitigation technology, alongside an improved network design and distribution of PoPs, have resulted in better security for our customers and at least a 30% performance boost.

This new network is open for business, and interested customers should reach out to learn more.

China Taking Control of Zero-Day Exploits

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/07/china-taking-control-of-zero-day-exploits.html

China is making sure that all newly discovered zero-day exploits are disclosed to the government.

Under the new rules, anyone in China who finds a vulnerability must tell the government, which will decide what repairs to make. No information can be given to “overseas organizations or individuals” other than the product’s manufacturer.

No one may “collect, sell or publish information on network product security vulnerabilities,” say the rules issued by the Cyberspace Administration of China and the police and industry ministries.

This just blocks the cyber-arms trade. It doesn’t prevent researchers from telling the products’ companies, even if they are outside of China.

AI-Piloted Fighter Jets

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/06/ai-piloted-fighter-jets.html

News from Georgetown’s Center for Security and Emerging Technology:

China Claims Its AI Can Beat Human Pilots in Battle: Chinese state media reported that an AI system had successfully defeated human pilots during simulated dogfights. According to the Global Times report, the system had shot down several PLA pilots during a handful of virtual exercises in recent years. Observers outside China noted that while reports coming out of state-controlled media outlets should be taken with a grain of salt, the capabilities described in the report are not outside the realm of possibility. Last year, for example, an AI agent defeated a U.S. Air Force F-16 pilot five times out of five as part of DARPA’s AlphaDogfight Trial (which we covered at the time). While the Global Times report indicated plans to incorporate AI into future fighter planes, it is not clear how far away the system is from real-world testing. At the moment, the system appears to be used only for training human pilots. DARPA, for its part, is aiming to test dogfights with AI-piloted subscale jets later this year and with full-scale jets in 2023 and 2024.

Chinese Hackers Stole an NSA Windows Exploit in 2014

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/03/chinese-hackers-stole-an-nsa-windows-exploit-in-2014.html

Check Point has evidence that (probably government affiliated) Chinese hackers stole and cloned an NSA Windows hacking tool years before (probably government affiliated) Russian hackers stole and then published the same tool. Here’s the timeline:

The timeline basically seems to be, according to Check Point:

  • 2013: NSA’s Equation Group developed a set of exploits including one called EpMe that elevates one’s privileges on a vulnerable Windows system to system-administrator level, granting full control. This allows someone with a foothold on a machine to commandeer the whole box.
  • 2014-2015: China’s hacking team code-named APT31, aka Zirconium, developed Jian by, one way or another, cloning EpMe.
  • Early 2017: The Equation Group’s tools were teased and then leaked online by a team calling itself the Shadow Brokers. Around that time, Microsoft cancelled its February Patch Tuesday, identified the vulnerability exploited by EpMe (CVE-2017-0005), and fixed it in a bumper March update. Interestingly enough, Lockheed Martin was credited as alerting Microsoft to the flaw, suggesting it was perhaps used against an American target.
  • Mid 2017: Microsoft quietly fixed the vulnerability exploited by the leaked EpMo exploit.

Lots of news articles about this.

National Security Risks of Late-Stage Capitalism

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/03/national-security-risks-of-late-stage-capitalism.html

Early in 2020, cyberspace attackers apparently working for the Russian government compromised a piece of widely used network management software made by a company called SolarWinds. The hack gave the attackers access to the computer networks of some 18,000 of SolarWinds’s customers, including US government agencies such as the Homeland Security Department and State Department, American nuclear research labs, government contractors, IT companies and nongovernmental agencies around the world.

It was a huge attack, with major implications for US national security. The Senate Intelligence Committee is scheduled to hold a hearing on the breach on Tuesday. Who is at fault?

The US government deserves considerable blame, of course, for its inadequate cyberdefense. But to see the problem only as a technical shortcoming is to miss the bigger picture. The modern market economy, which aggressively rewards corporations for short-term profits and aggressive cost-cutting, is also part of the problem: Its incentive structure all but ensures that successful tech companies will end up selling insecure products and services.

Like all for-profit corporations, SolarWinds aims to increase shareholder value by minimizing costs and maximizing profit. The company is owned in large part by Silver Lake and Thoma Bravo, private-equity firms known for extreme cost-cutting.

SolarWinds certainly seems to have underspent on security. The company outsourced much of its software engineering to cheaper programmers overseas, even though that typically increases the risk of security vulnerabilities. For a while, in 2019, the update server’s password for SolarWinds’s network management software was reported to be “solarwinds123.” Russian hackers were able to breach SolarWinds’s own email system and lurk there for months. Chinese hackers appear to have exploited a separate vulnerability in the company’s products to break into US government computers. A cybersecurity adviser for the company said that he quit after his recommendations to strengthen security were ignored.

There is no good reason to underspend on security other than to save money — especially when your clients include government agencies around the world and when the technology experts that you pay to advise you are telling you to do more.

As the economics writer Matt Stoller has suggested, cybersecurity is a natural area for a technology company to cut costs because its customers won’t notice unless they are hacked ­– and if they are, they will have already paid for the product. In other words, the risk of a cyberattack can be transferred to the customers. Doesn’t this strategy jeopardize the possibility of long-term, repeat customers? Sure, there’s a danger there –­ but investors are so focused on short-term gains that they’re too often willing to take that risk.

The market loves to reward corporations for risk-taking when those risks are largely borne by other parties, like taxpayers. This is known as “privatizing profits and socializing losses.” Standard examples include companies that are deemed “too big to fail,” which means that society as a whole pays for their bad luck or poor business decisions. When national security is compromised by high-flying technology companies that fob off cybersecurity risks onto their customers, something similar is at work.

Similar misaligned incentives affect your everyday cybersecurity, too. Your smartphone is vulnerable to something called SIM-swap fraud because phone companies want to make it easy for you to frequently get a new phone — and they know that the cost of fraud is largely borne by customers. Data brokers and credit bureaus that collect, use, and sell your personal data don’t spend a lot of money securing it because it’s your problem if someone hacks them and steals it. Social media companies too easily let hate speech and misinformation flourish on their platforms because it’s expensive and complicated to remove it, and they don’t suffer the immediate costs ­– indeed, they tend to profit from user engagement regardless of its nature.

There are two problems to solve. The first is information asymmetry: buyers can’t adequately judge the security of software products or company practices. The second is a perverse incentive structure: the market encourages companies to make decisions in their private interest, even if that imperils the broader interests of society. Together these two problems result in companies that save money by taking on greater risk and then pass off that risk to the rest of us, as individuals and as a nation.

The only way to force companies to provide safety and security features for customers and users is with government intervention. Companies need to pay the true costs of their insecurities, through a combination of laws, regulations, and legal liability. Governments routinely legislate safety — pollution standards, automobile seat belts, lead-free gasoline, food service regulations. We need to do the same with cybersecurity: the federal government should set minimum security standards for software and software development.

In today’s underregulated markets, it’s just too easy for software companies like SolarWinds to save money by skimping on security and to hope for the best. That’s a rational decision in today’s free-market world, and the only way to change that is to change the economic incentives.

This essay previously appeared in the New York Times.

On Chinese-Owned Technology Platforms

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/02/on-chinese-owned-technology-platforms.html

I am a co-author on a report published by the Hoover Institution: “Chinese Technology Platforms Operating in the United States.” From a blog post:

The report suggests a comprehensive framework for understanding and assessing the risks posed by Chinese technology platforms in the United States and developing tailored responses. It starts from the common view of the signatories — one reflected in numerous publicly available threat assessments — that China’s power is growing, that a large part of that power is in the digital sphere, and that China can and will wield that power in ways that adversely affect our national security. However, the specific threats and risks posed by different Chinese technologies vary, and effective policies must start with a targeted understanding of the nature of risks and an assessment of the impact US measures will have on national security and competitiveness. The goal of the paper is not to specifically quantify the risk of any particular technology, but rather to analyze the various threats, put them into context, and offer a framework for assessing proposed responses in ways that the signatories hope can aid those doing the risk analysis in individual cases.

Chinese Supply-Chain Attack on Computer Systems

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/02/chinese-supply-chain-attack-on-computer-systems.html

Bloomberg News has a major story about the Chinese hacking computer motherboards made by Supermicro, Levono, and others. It’s been going on since at least 2008. The US government has known about it for almost as long, and has tried to keep the attack secret:

China’s exploitation of products made by Supermicro, as the U.S. company is known, has been under federal scrutiny for much of the past decade, according to 14 former law enforcement and intelligence officials familiar with the matter. That included an FBI counterintelligence investigation that began around 2012, when agents started monitoring the communications of a small group of Supermicro workers, using warrants obtained under the Foreign Intelligence Surveillance Act, or FISA, according to five of the officials.

There’s lots of detail in the article, and I recommend that you read it through.

This is a follow on, with a lot more detail, to a story Bloomberg reported on in fall 2018. I didn’t believe the story back then, writing:

I don’t think it’s real. Yes, it’s plausible. But first of all, if someone actually surreptitiously put malicious chips onto motherboards en masse, we would have seen a photo of the alleged chip already. And second, there are easier, more effective, and less obvious ways of adding backdoors to networking equipment.

I seem to have been wrong. From the current Bloomberg story:

Mike Quinn, a cybersecurity executive who served in senior roles at Cisco Systems Inc. and Microsoft Corp., said he was briefed about added chips on Supermicro motherboards by officials from the U.S. Air Force. Quinn was working for a company that was a potential bidder for Air Force contracts, and the officials wanted to ensure that any work would not include Supermicro equipment, he said. Bloomberg agreed not to specify when Quinn received the briefing or identify the company he was working for at the time.

“This wasn’t a case of a guy stealing a board and soldering a chip on in his hotel room; it was architected onto the final device,” Quinn said, recalling details provided by Air Force officials. The chip “was blended into the trace on a multilayered board,” he said.

“The attackers knew how that board was designed so it would pass” quality assurance tests, Quinn said.

Supply-chain attacks are the flavor of the moment, it seems. But they’re serious, and very hard to defend against in our deeply international IT industry. (I have repeatedly called this an “insurmountable problem.”) Here’s me in 2018:

Supply-chain security is an incredibly complex problem. US-only design and manufacturing isn’t an option; the tech world is far too internationally interdependent for that. We can’t trust anyone, yet we have no choice but to trust everyone. Our phones, computers, software and cloud systems are touched by citizens of dozens of different countries, any one of whom could subvert them at the demand of their government.

We need some fundamental security research here. I wrote this in 2019:

The other solution is to build a secure system, even though any of its parts can be subverted. This is what the former Deputy Director of National Intelligence Sue Gordon meant in April when she said about 5G, “You have to presume a dirty network.” Or more precisely, can we solve this by building trustworthy systems out of untrustworthy parts?

It sounds ridiculous on its face, but the Internet itself was a solution to a similar problem: a reliable network built out of unreliable parts. This was the result of decades of research. That research continues today, and it’s how we can have highly resilient distributed systems like Google’s network even though none of the individual components are particularly good. It’s also the philosophy behind much of the cybersecurity industry today: systems watching one another, looking for vulnerabilities and signs of attack.

It seems that supply-chain attacks are constantly in the news right now. That’s good. They’ve been a serious problem for a long time, and we need to take the threat seriously. For further reading, I strongly recommend this Atlantic Council report from last summer: “Breaking trust: Shades of crisis across an insecure software supply chain.

Another SolarWinds Orion Hack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/02/another-solarwinds-orion-hack.html

At the same time the Russians were using a backdoored SolarWinds update to attack networks worldwide, another threat actor — believed to be Chinese in origin — was using an already existing vulnerability in Orion to penetrate networks:

Two people briefed on the case said FBI investigators recently found that the National Finance Center, a federal payroll agency inside the U.S. Department of Agriculture, was among the affected organizations, raising fears that data on thousands of government employees may have been compromised.

[…]

Reuters was not able to establish how many organizations were compromised by the suspected Chinese operation. The sources, who spoke on condition of anonymity to discuss ongoing investigations, said the attackers used computer infrastructure and hacking tools previously deployed by state-backed Chinese cyberspies.

[…]

While the alleged Russian hackers penetrated deep into SolarWinds network and hid a “back door” in Orion software updates which were then sent to customers, the suspected Chinese group exploited a separate bug in Orion’s code to help spread across networks they had already compromised, the sources said.

Two takeaways: One, we are learning about a lot of supply-chain attacks right now. Two, SolarWinds’ terrible security is the result of a conscious business decision to reduce costs in the name of short-term profits. Economist Matt Stoller writes about this:

These private equity-owned software firms torture professionals with bad user experiences and shitty customer support in everything from yoga studio software to car dealer IT to the nightmarish ‘core’ software that runs small banks and credit unions, as close as one gets to automating Office Space. But they also degrade product quality by firing or disrespecting good workers, under-investing in good security practices, or sending work abroad and paying badly, meaning their products are more prone to espionage. In other words, the same sloppy and corrupt practices that allowed this massive cybersecurity hack made Bravo a billionaire. In a sense, this hack, and many more like it, will continue to happen, as long as men like Bravo get rich creating security vulnerabilities for bad actors to exploit.

SolarWinds increased its profits by increasing its cybersecurity risk, and then transferred that risk to its customers without their knowledge or consent.

How China Uses Stolen US Personnel Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/12/how-china-uses-stolen-us-personnel-data.html

Interesting analysis of China’s efforts to identify US spies:

By about 2010, two former CIA officials recalled, the Chinese security services had instituted a sophisticated travel intelligence program, developing databases that tracked flights and passenger lists for espionage purposes. “We looked at it very carefully,” said the former senior CIA official. China’s spies “were actively using that for counterintelligence and offensive intelligence. The capability was there and was being utilized.” China had also stepped up its hacking efforts targeting biometric and passenger data from transit hubs…

To be sure, China had stolen plenty of data before discovering how deeply infiltrated it was by U.S. intelligence agencies. However, the shake-up between 2010 and 2012 gave Beijing an impetus not only to go after bigger, riskier targets, but also to put together the infrastructure needed to process the purloined information. It was around this time, said a former senior NSA official, that Chinese intelligence agencies transitioned from merely being able to steal large datasets en masse to actually rapidly sifting through information from within them for use….

For U.S. intelligence personnel, these new capabilities made China’s successful hack of the U.S. Office of Personnel Management (OPM) that much more chilling. During the OPM breach, Chinese hackers stole detailed, often highly sensitive personnel data from 21.5 million current and former U.S. officials, their spouses, and job applicants, including health, residency, employment, fingerprint, and financial data. In some cases, details from background investigations tied to the granting of security clearances — investigations that can delve deeply into individuals’ mental health records, their sexual histories and proclivities, and whether a person’s relatives abroad may be subject to government blackmail — were stolen as well….

When paired with travel details and other purloined data, information from the OPM breach likely provided Chinese intelligence potent clues about unusual behavior patterns, biographical information, or career milestones that marked individuals as likely U.S. spies, officials say. Now, these officials feared, China could search for when suspected U.S. spies were in certain locations — and potentially also meeting secretly with their Chinese sources. China “collects bulk personal data to help it track dissidents or other perceived enemies of China around the world,” Evanina, the top U.S. counterintelligence official, said.

[..]

But after the OPM breach, anomalies began to multiply. In 2012, senior U.S. spy hunters began to puzzle over some “head-scratchers”: In a few cases, spouses of U.S. officials whose sensitive work should have been difficult to discern were being approached by Chinese and Russian intelligence operatives abroad, according to the former counterintelligence executive. In one case, Chinese operatives tried to harass and entrap a U.S. official’s wife while she accompanied her children on a school field trip to China. “The MO is that, usually at the end of the trip, the lightbulb goes on [and the foreign intelligence service identifies potential persons of interest]. But these were from day one, from the airport onward,” the former official said.

Worries about what the Chinese now knew precipitated an intelligence community-wide damage assessment surrounding the OPM and other hacks, recalled Douglas Wise, a former senior CIA official who served deputy director of the Defense Intelligence Agency from 2014 to 2016. Some worried that China might have purposefully secretly altered data in individuals’ OPM files to later use as leverage in recruitment attempts. Officials also believed that the Chinese might sift through the OPM data to try and craft the most ideal profiles for Chinese intelligence assets seeking to infiltrate the U.S. government­ — since they now had granular knowledge of what the U.S. government looked for, and what it didn’t, while considering applicants for sensitive positions. U.S. intelligence agencies altered their screening procedures to anticipate new, more finely tuned Chinese attempts at human spying, Wise said.

Symantec Reports on Cicada APT Attacks against Japan

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/11/symantec-reports-on-cicada-apt-attacks-against-japan.html

Symantec is reporting on an APT group linked to China, named Cicada. They have been attacking organizations in Japan and elsewhere.

Cicada has historically been known to target Japan-linked organizations, and has also targeted MSPs in the past. The group is using living-off-the-land tools as well as custom malware in this attack campaign, including a custom malware — Backdoor.Hartip — that Symantec has not seen being used by the group before. Among the machines compromised during this attack campaign were domain controllers and file servers, and there was evidence of files being exfiltrated from some of the compromised machines.

The attackers extensively use DLL side-loading in this campaign, and were also seen leveraging the ZeroLogon vulnerability that was patched in August 2020.

Interesting details about the group’s tactics.

News article.

NSA Advisory on Chinese Government Hacking

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/10/nsa-advisory-on-chinese-government-hacking.html

The NSA released an advisory listing the top twenty-five known vulnerabilities currently being exploited by Chinese nation-state attackers.

This advisory provides Common Vulnerabilities and Exposures (CVEs) known to be recently leveraged, or scanned-for, by Chinese state-sponsored cyber actors to enable successful hacking operations against a multitude of victim networks. Most of the vulnerabilities listed below can be exploited to gain initial access to victim networks using products that are directly accessible from the Internet and act as gateways to internal networks. The majority of the products are either for remote access (T1133) or for external web services (T1190), and should be prioritized for immediate patching.

Friday Squid Blogging: Chinese Squid Fishing Near the Galapagos

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/10/friday-squid-blogging-chinese-squid-fishing-near-the-galapagos.html

The Chinese have been illegally squid fishing near the Galapagos Islands.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Chinese COVID-19 Disinformation Campaign

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/04/chinese_covid-1.html

The New York Times is reporting on state-sponsored disinformation campaigns coming out of China:

Since that wave of panic, United States intelligence agencies have assessed that Chinese operatives helped push the messages across platforms, according to six American officials, who spoke on the condition of anonymity to publicly discuss intelligence matters. The amplification techniques are alarming to officials because the disinformation showed up as texts on many Americans’ cellphones, a tactic that several of the officials said they had not seen before.

Facial Recognition for People Wearing Masks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/03/facial_recognit_3.html

The Chinese facial recognition company Hanwang claims it can recognize people wearing masks:

The company now says its masked facial recognition program has reached 95 percent accuracy in lab tests, and even claims that it is more accurate in real life, where its cameras take multiple photos of a person if the first attempt to identify them fails.

[…]

Counter-intuitively, training facial recognition algorithms to recognize masked faces involves throwing data away. A team at the University of Bradford published a study last year showing they could train a facial recognition program to accurately recognize half-faces by deleting parts of the photos they used to train the software.

When a facial recognition program tries to recognize a person, it takes a photo of the person to be identified, and reduces it down to a bundle, or vector, of numbers that describes the relative positions of features on the face.

[…]

Hanwang’s system works for masked faces by trying to guess what all the faces in its existing database of photographs would look like if they were masked.

Emergency Surveillance During COVID-19 Crisis

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/03/emergency_surve.html

Israel is using emergency surveillance powers to track people who may have COVID-19, joining China and Iran in using mass surveillance in this way. I believe pressure will increase to leverage existing corporate surveillance infrastructure for these purposes in the US and other countries. With that in mind, the EFF has some good thinking on how to balance public safety with civil liberties:

Thus, any data collection and digital monitoring of potential carriers of COVID-19 should take into consideration and commit to these principles:

  • Privacy intrusions must be necessary and proportionate. A program that collects, en masse, identifiable information about people must be scientifically justified and deemed necessary by public health experts for the purpose of containment. And that data processing must be proportionate to the need. For example, maintenance of 10 years of travel history of all people would not be proportionate to the need to contain a disease like COVID-19, which has a two-week incubation period.
  • Data collection based on science, not bias. Given the global scope of communicable diseases, there is historical precedent for improper government containment efforts driven by bias based on nationality, ethnicity, religion, and race­ — rather than facts about a particular individual’s actual likelihood of contracting the virus, such as their travel history or contact with potentially infected people. Today, we must ensure that any automated data systems used to contain COVID-19 do not erroneously identify members of specific demographic groups as particularly susceptible to infection.

  • Expiration. As in other major emergencies in the past, there is a hazard that the data surveillance infrastructure we build to contain COVID-19 may long outlive the crisis it was intended to address. The government and its corporate cooperators must roll back any invasive programs created in the name of public health after crisis has been contained.

  • Transparency. Any government use of “big data” to track virus spread must be clearly and quickly explained to the public. This includes publication of detailed information about the information being gathered, the retention period for the information, the tools used to process that information, the ways these tools guide public health decisions, and whether these tools have had any positive or negative outcomes.

  • Due Process. If the government seeks to limit a person’s rights based on this “big data” surveillance (for example, to quarantine them based on the system’s conclusions about their relationships or travel), then the person must have the opportunity to timely and fairly challenge these conclusions and limits.

Chinese Hackers Bypassing Two-Factor Authentication

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/12/chinese_hackers_1.html

Interesting story of how a Chinese state-sponsored hacking group is bypassing the RSA SecurID two-factor authentication system.

How they did it remains unclear; although, the Fox-IT team has their theory. They said APT20 stole an RSA SecurID software token from a hacked system, which the Chinese actor then used on its computers to generate valid one-time codes and bypass 2FA at will.

Normally, this wouldn’t be possible. To use one of these software tokens, the user would need to connect a physical (hardware) device to their computer. The device and the software token would then generate a valid 2FA code. If the device was missing, the RSA SecureID software would generate an error.

The Fox-IT team explains how hackers might have gone around this issue:

The software token is generated for a specific system, but of course this system specific value could easily be retrieved by the actor when having access to the system of the victim.

As it turns out, the actor does not actually need to go through the trouble of obtaining the victim’s system specific value, because this specific value is only checked when importing the SecurID Token Seed, and has no relation to the seed used to generate actual 2-factor tokens. This means the actor can actually simply patch the check which verifies if the imported soft token was generated for this system, and does not need to bother with stealing the system specific value at all.

In short, all the actor has to do to make use of the 2 factor authentication codes is to steal an RSA SecurID Software Token and to patch 1 instruction, which results in the generation of valid tokens.

GPS Manipulation

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/11/gps_manipulatio.html

Long article on the manipulation of GPS in Shanghai. It seems not to be some Chinese military program, but ships who are stealing sand.

The Shanghai “crop circles,” which somehow spoof each vessel to a different false location, are something new. “I’m still puzzled by this,” says Humphreys. “I can’t get it to work out in the math. It’s an interesting mystery.” It’s also a mystery that raises the possibility of potentially deadly accidents.

“Captains and pilots have become very dependent on GPS, because it has been historically very reliable,” says Humphreys. “If it claims to be working, they rely on it and don’t double-check it all that much.”

On June 5 this year, the Run 5678, a river cargo ship, tried to overtake a smaller craft on the Huangpu, about five miles south of the Bund. The Run avoided the small ship but plowed right into the New Glory (Chinese name: Tong Yang Jingrui), a freighter heading north.

Boing Boing article.

Supply-Chain Security and Trust

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/09/supply-chain_se_1.html

The United States government’s continuing disagreement with the Chinese company Huawei underscores a much larger problem with computer technologies in general: We have no choice but to trust them completely, and it’s impossible to verify that they’re trustworthy. Solving this problem ­ which is increasingly a national security issue ­ will require us to both make major policy changes and invent new technologies.

The Huawei problem is simple to explain. The company is based in China and subject to the rules and dictates of the Chinese government. The government could require Huawei to install back doors into the 5G routers it sells abroad, allowing the government to eavesdrop on communications or ­– even worse ­– take control of the routers during wartime. Since the United States will rely on those routers for all of its communications, we become vulnerable by building our 5G backbone on Huawei equipment.

It’s obvious that we can’t trust computer equipment from a country we don’t trust, but the problem is much more pervasive than that. The computers and smartphones you use are not built in the United States. Their chips aren’t made in the United States. The engineers who design and program them come from over a hundred countries. Thousands of people have the opportunity, acting alone, to slip a back door into the final product.

There’s more. Open-source software packages are increasingly targeted by groups installing back doors. Fake apps in the Google Play store illustrate vulnerabilities in our software distribution systems. The NotPetya worm was distributed by a fraudulent update to a popular Ukranian accounting package, illustrating vulnerabilities in our update systems. Hardware chips can be back-doored at the point of fabrication, even if the design is secure. The National Security Agency exploited the shipping process to subvert Cisco routers intended for the Syrian telephone company. The overall problem is that of supply-chain security, because every part of the supply chain can be attacked.

And while nation-state threats like China and Huawei ­– or Russia and the antivirus company Kaspersky a couple of years earlier ­– make the news, many of the vulnerabilities I described above are being exploited by cybercriminals.

Policy solutions involve forcing companies to open their technical details to inspection, including the source code of their products and the designs of their hardware. Huawei and Kaspersky have offered this sort of openness as a way to demonstrate that they are trustworthy. This is not a worthless gesture, and it helps, but it’s not nearly enough. Too many back doors can evade this kind of inspection.

Technical solutions fall into two basic categories, both currently beyond our reach. One is to improve the technical inspection processes for products whose designers provide source code and hardware design specifications, and for products that arrive without any transparency information at all. In both cases, we want to verify that the end product is secure and free of back doors. Sometimes we can do this for some classes of back doors: We can inspect source code ­ this is how a Linux back door was discovered and removed in 2003 ­ or the hardware design, which becomes a cleverness battle between attacker and defender.

This is an area that needs more research. Today, the advantage goes to the attacker. It’s hard to ensure that the hardware and software you examine is the same as what you get, and it’s too easy to create back doors that slip past inspection. And while we can find and correct some of these supply-chain attacks, we won’t find them all. It’s a needle-in-a-haystack problem, except we don’t know what a needle looks like. We need technologies, possibly based on artificial intelligence, that can inspect systems more thoroughly and faster than humans can do. We need them quickly.

The other solution is to build a secure system, even though any of its parts can be subverted. This is what the former Deputy Director of National Intelligence Sue Gordon meant in April when she said about 5G, “You have to presume a dirty network.” Or more precisely, can we solve this by building trustworthy systems out of untrustworthy parts?

It sounds ridiculous on its face, but the Internet itself was a solution to a similar problem: a reliable network built out of unreliable parts. This was the result of decades of research. That research continues today, and it’s how we can have highly resilient distributed systems like Google’s network even though none of the individual components are particularly good. It’s also the philosophy behind much of the cybersecurity industry today: systems watching one another, looking for vulnerabilities and signs of attack.

Security is a lot harder than reliability. We don’t even really know how to build secure systems out of secure parts, let alone out of parts and processes that we can’t trust and that are almost certainly being subverted by governments and criminals around the world. Current security technologies are nowhere near good enough, though, to defend against these increasingly sophisticated attacks. So while this is an important part of the solution, and something we need to focus research on, it’s not going to solve our near-term problems.

At the same time, all of these problems are getting worse as computers and networks become more critical to personal and national security. The value of 5G isn’t for you to watch videos faster; it’s for things talking to things without bothering you. These things ­– cars, appliances, power plants, smart cities –­ increasingly affect the world in a direct physical manner. They’re increasingly autonomous, using A.I. and other technologies to make decisions without human intervention. The risk from Chinese back doors into our networks and computers isn’t that their government will listen in on our conversations; it’s that they’ll turn the power off or make all the cars crash into one another.

All of this doesn’t leave us with many options for today’s supply-chain problems. We still have to presume a dirty network ­– as well as back-doored computers and phones — and we can clean up only a fraction of the vulnerabilities. Citing the lack of non-Chinese alternatives for some of the communications hardware, already some are calling to abandon attempts to secure 5G from Chinese back doors and work on having secure American or European alternatives for 6G networks. It’s not nearly enough to solve the problem, but it’s a start.

Perhaps these half-solutions are the best we can do. Live with the problem today, and accelerate research to solve the problem for the future. These are research projects on a par with the Internet itself. They need government funding, like the Internet itself. And, also like the Internet, they’re critical to national security.

Critically, these systems must be as secure as we can make them. As former FCC Commissioner Tom Wheeler has explained, there’s a lot more to securing 5G than keeping Chinese equipment out of the network. This means we have to give up the fantasy that law enforcement can have back doors to aid criminal investigations without also weakening these systems. The world uses one network, and there can only be one answer: Either everyone gets to spy, or no one gets to spy. And as these systems become more critical to national security, a network secure from all eavesdroppers becomes more important.

This essay previously appeared in the New York Times.