Tag Archives: media

Field Notes: Create a serverless Live-to-VOD workflow with AWS Elemental

Post Syndicated from Markus Ziller original https://aws.amazon.com/blogs/architecture/field-notes-create-a-serverless-live-to-vod-workflow-with-aws-elemental/

Field Notes provides hands-on technical guidance from AWS Solutions Architects, consultants, and technical account managers, based on their experiences in the field solving real-world business problems for customers.

Many of our customers in the entertainment industry are transforming their business structure from a traditional broadcasting model to a digital media and online content distribution platform. Many shows and sport events are streamed live online and users expect to be able to catch up and rewatch content immediately after it airs. This demand creates the need for a robust and cost effective way to set up Live-to-VOD pipelines at scale.

In this post, this post we show how to easily set up a serverless pipeline using AWS Elemental Media Services. This serverless pipeline will help create and manage a Live-to-VOD application that allows users to extract video clips from a live stream, and then automatically process and prepare those clips for discovery in a VOD library. This solution is completely serverless, and costs are driven by resource consumption— a stark contrast to traditional solutions driven by fixed costs and upfront investments.

The AWS Elemental Live Streaming and Live-to-VOD Workshop offers a step-by-step guide on how to create a streaming video workflow using an encoder in the AWS Cloud to produce adaptive bitrate (ABR) content, and a packager to deliver the ABR streams to one or more viewers—including mobile devices and desktop browsers. We use this workshop as a basis and extend it to automate the Live-to-VOD workflow.

This solution consists of two major components: Video Delivery and VOD Application as shown in the following reference architecture diagram.

  • Video Delivery encapsulates services that are required to provide a livestream and extract clips from the live signal.
  • VOD Application encompasses components that are required to automate the workflow for creating clips and making them accessible via an API.

The complete code is available on GitHub. Let’s get started!

1 Architecture of the complete Live-To-VOD solution

Figure 1 – Architecture of the complete Live-to-VOD solution

Video delivery

The first step in building our Live-to-VOD application is deploying the AWS Elemental Live Streaming and Live-to-VOD Workshop into your account, which will set up all services and configurations required to provide an HLS packaged live stream. In this blog post, we describe the two AWS Elemental services we use to transcode and package the video signal.

Transcoding video with AWS Elemental MediaLive

The first challenge we face is to process the uncompressed live signal in real time into formats suitable for online streaming. For this, we use AWS Elemental MediaLive, a broadcast-grade live video processing service. It lets you create high-quality video streams for delivery to broadcast televisions and internet-connected multiscreen devices, like connected TVs, tablets, smartphones, and set-top boxes. The service encodes your live video streams in real time, taking a larger-sized live video source and compressing it into smaller versions for distribution to your viewers.

In this solution demo, AWS Elemental MediaLive takes an uncompressed video, encodes it in real time and sends the compressed video downstream to AWS Elemental MediaPackage for packaging. In most real world applications, your input comes from a live feed originating from an uncompressed live source like HD-SDI and requires more processing steps (that is, onsite transcoding using appliances like AWS Elemental Live), but in this simplified demo we use a static video file in Amazon S3 on loop as our live signal.

ABR packaging with AWS Elemental MediaPackage

After compressing the video stream, we must package it for delivery to our customers. AWS Elemental MediaPackage reliably prepares and protects your video for delivery over the internet. From a single video input, AWS Elemental MediaPackage creates video streams formatted to play on connected TVs, mobile phones, computers, tablets, and game consoles.

In this solution demo, we use AWS Elemental MediaPackage to package our compressed video signal into an Adaptive Bitrate (ABR) stream using HTTP Live Streaming (HLS). AWS Elemental MediaPackage supports all common video streaming formats, but for this solution we focus on HLS and out scope other features like AdMarkers or Digital Rights Management (DRM). At the end of the processing pipeline, we get an HTTP endpoint for the HLS manifest and are able to stream our video in any player that supports HLS.

Packaging group

After deploying the CloudFormation stack from the AWS Elemental Live Streaming and Live-to-VOD Workshop, we have everything necessary to provide a scalable and fault-tolerant enterprise-grade live-stream.

The next step is to set up a packaging group in AWS Elemental MediaPackage, which we will use to prepare the extracted clips for our VOD library. A packaging group holds one or more packaging configurations and defines the outputs that are available for the assets the packaging group is associated with.

The following snippet shows how a basic HLS packaging configuration can be setup using the AWS SDK for Python (boto).

To operationalize this, we recommend adapting the initial AWS CloudFormation template so that this is automatically provisioned during the deployment.

def create_hls_packaging_group(group_id, hls_packaging_config_id):
    mediapackage_vod.create_packaging_group(Id=group_id)
    mediapackage_vod.create_packaging_configuration(
        HlsPackage={
            'HlsManifests': [
                {
                    'AdMarkers': 'NONE',
                    'ManifestName': 'index',
                    'ProgramDateTimeIntervalSeconds': 60,
                },
            ],
            'SegmentDurationSeconds': 6,
            'UseAudioRenditionGroup': True
        }
        ,
        Id=hls_packaging_config_id,
        PackagingGroupId=group_id
    )

After creating the packaging group, we have everything set up in the Video Delivery component and can continue with the VOD application.

VOD application

The VOD application encompasses all components that are required to automate the workflow of creating clips and making them accessible via an API. In a real world scenario, the application could also contain a static website that integrates a video player to play the live stream we created earlier in the demo. This website would call an API that invokes a Lambda function, which triggers the extraction of a clip in AWS Elemental MediaPackage.

For brevity, in this solution demo we omit the webpage and focus on the API that triggers the process of clip extraction. We acknowledge that in a real world application, a clip would typically be created based on a dynamically set time interval, but for this demo we instead create a clip of the last 60 seconds of the livestream every time the API is called.

We use the AWS Serverless Application Model (AWS SAM) to manage all resources of the VOD application and the AWS SDK for Python(Boto) in our code. The following snippets show how to instantiate the required modules of the SDK and how to set up the environment variables we use in our Lambda functions.

import boto3

mediapackage = boto3.client('mediapackage')
mediapackage_vod = boto3.client('mediapackage-vod')
dynamodb = boto3.resource('dynamodb')

Globals:
  Function:
    Runtime: python3.7
    Environment:
      Variables:
        CLIPS_TABLE: !Ref ClipsTable
        CLIPS_BUCKET: !Ref ClipsBucket
        CLIPS_ORIGIN_ENDPOINT_ID: !Ref ClipsOriginEndpointId
        PACKAGING_GROUP_ID: !Ref PackagingGroupId
        MEDIA_PACKAGE_S3_ROLE_ARN: !GetAtt MediaPackageS3Role.Arn

Extracting clips from the live stream with job harvesting

To extract clips from our live stream we use an AWS Elemental MediaPackage feature called job harvesting, which allows us to extract a clip from a live stream by providing the id of the corresponding endpoint, a start and end time for the clip, and an S3 bucket to store the created clip.

AWS Lambda is a serverless compute service that runs your code in response to events and automatically manages the underlying compute resources for you. It integrates well with Amazon API Gateway, a fully managed service that makes it easy for developers to create, publish, maintain, monitor, and secure APIs at any scale.

The following code defines an AWS Lambda function that creates a harvest job every time a POST request is sent to the /api/clip route of the created API Gateway. This harvest job will:

  • Create a clip with an end date of now and a start date of now - 60 s
  • Use CLIPS_ORIGIN_ENDPOINT_ID as source endpoint for this clip
  • Tell AWS Elemental MediaPackage to assume the MEDIA_PACKAGE_S3_ROLE_ARN role in order to be allowed to write the clip to Amazon S3 (CLIPS_BUCKETS_BUCKET)

def create_new_clip(event):
    clip_end = int(time.time())
    clip_start = clip_end - 60
    clip_id = f"{clip_start}_{clip_end}"
    
    mediapackage.create_harvest_job(
        StartTime=clip_start,
        EndTime=clip_end,
        Id=clip_id,
        OriginEndpointId=CLIPS_ORIGIN_ENDPOINT_ID,
        S3Destination={
            'BucketName': CLIPS_BUCKET,
            'ManifestKey': f"{clip_id}.m3u8",
            'RoleArn': MEDIA_PACKAGE_S3_ROLE_ARN
        }
    )

    return {
        "statusCode": 200,
        "headers": {
            'Content-Type': 'application/json'
        }
    }

CreateNewClipWithHarvestJob:
    Type: 'AWS::Serverless::Function'
    Properties:
      Handler: handler.create_new_clip
      Policies:
        - Version: '2012-10-17'
          Statement:
            - Effect: Allow
              Action: 'mediapackage:*'
              Resource: "*"
      Events:
        Apigateway:
          Type: Api
          Properties:
            Path: '/api/clip'
            Method: POST

Packaging and publishing a clip

The final step before we can offer our clip to our users is to package and publish it. Because creating a clip via harvest job is an asynchronous process, we use Amazon CloudWatch to send an alert when the job completes. Every time a harvesting job completes, a CloudWatch Event with details about the job is logged. This allows us to create a CloudWatch Events Rule that reacts on this event by invoking another Lambda function with the details of this event.

The following YAML code for AWS SAM describes both an Events Rule and a Lambda function and sets up the permissions that allow the Events Rule to trigger the Lambda Function.

ProcessHarvestedClip:
    Type: 'AWS::Serverless::Function'
    Properties:
      Handler: handler.process_harvested_clip
      Policies:
        - Version: '2012-10-17'
          Statement:
            - Effect: Allow
              Action: 'mediapackage-vod:*'
              Resource: "*"
            - Effect: Allow
              Action: 'iam:PassRole'
              Resource: "*"
            - Effect: Allow
              Action: 'dynamodb:PutItem'
              Resource: !GetAtt ClipsTable.Arn

EventRule:
    Type: AWS::Events::Rule
    Properties:
        Description: "HarvestJobToLambdaEventRule"
        EventPattern:
        source:
            - "aws.mediapackage"
        detail-type:
            - "MediaPackage HarvestJob Notification"
        State: "ENABLED"
        Targets:
        - Arn: !GetAtt ProcessHarvestedClip.Arn
            Id: "HarvestJobLambda"
    
PermissionForEventsToInvokeLambda:
    Type: AWS::Lambda::Permission
    Properties:
        FunctionName: !Ref ProcessHarvestedClip
        Action: "lambda:InvokeFunction"
        Principal: "events.amazonaws.com"
        SourceArn: !GetAtt EventRule.Arn

This configuration ensures that our Lambda function is invoked anytime a new clip has been harvested and provides the necessary information to process the request.  For our use case, we keep it simple and only deal with succeeded jobs         (if harvest_job['status'] == "SUCCEEDED" ).

At this point, two more steps are required to make the clips available in a VOD library.

  1. Create a video asset out of the harvested clip

An asset holds all of the information that AWS Elemental MediaPackage requires to ingest file-based video content from a source such as Amazon S3. Through the asset, AWS Elemental MediaPackage ingests and dynamically packages content in response to play back requests.

We require three pieces of information to create an asset.

  • The Id of the packaging group that we created earlier. This tells AWS Elemental MediaPackage the parameters it needs to create an ABR stream.
  • The SourceArn, which tells us where to find the manifest of the created clips. This information is part of the payload the Lambda is invoked with by the Events Rule.
  • The SourceRoleArn, which like in the previous steps is a reference to a role that allows the AWS Elemental MediaPackage service to read data from the SourceArn bucket on our behalf.

2. Persist the clip metadata in a database

We gather this information and persist the clip metadata to allow users to discover clips in their apps. We use Amazon DynamoDB, a fully managed key-value and document database that delivers single-digit millisecond performance at any scale. As we have a well-understood access pattern that can be modeled as key-value lookups, Amazon DynamoDB is a great fit that also integrates well with AWS Lambda.

There are two things to consider when thinking about the design of our DynamoDB Table.

  • A feature that is important in a real world scenario is keeping context between create_harvest_job and process_harvested_clip, for example to add custom metadata like title or description of a clip. In our demo, this is context is not kept due to the asynchronous nature of the workflow. An easy way to solve this is to insert the clip into the database already in the create_harvest_job step, flag it as inactive, and then activate it after the harvest job has successfully finished.
  • When creating a table, we have to choose a partition key that has a high cardinality and spreads out clip metadata across many partitions. For this example, we assume that each clip can be associated with a live event and that many such events happen in parallel (that is, Olympic Games with many different competitions), thus making the competitionId a good partition key. As we used timestamps for the clipId, we can use them to query clips related to a certain event. Although we will not dive deeper into this topic, it is important to consider DynamoDB table design before transferring this solution into a production application.

These design decisions are reflected in the following YAML code for AWS SAM that describes the table and puts it into auto scaling mode (BillingMode: PAY_PER_REQUEST). We also must give ProcessHarvestedClip permissions for the putItem operation on this particular table, which we did in the Policies section when we created the Lambda function.

ClipsTable:
    Type: 'AWS::DynamoDB::Table'
    Properties:
        AttributeDefinitions:
        - AttributeName: competition
            AttributeType: S
        - AttributeName: clip
            AttributeType: S
        KeySchema:
        - AttributeName: competition
            KeyType: HASH
        - AttributeName: clip
            KeyType: RANGE
        BillingMode: PAY_PER_REQUEST
        TableName: "VOD-Clips"

def process_harvested_clip(event):
    table = dynamodb.Table(CLIPS_TABLE)

    harvest_job = event['detail']['harvest_job']
    destination_bucket_name = harvest_job['s3_destination']['bucket_name']
    manifest_key = harvest_job['s3_destination']['manifest_key']

    if harvest_job['status'] == "SUCCEEDED":
        asset = mediapackage.create_asset(
            Id=harvest_job['id'],
            PackagingGroupId=PACKAGING_GROUP_ID,
            SourceArn=f"arn:aws:s3:::{destination_bucket_name}/{manifest_key}",
            SourceRoleArn=MEDIA_PACKAGE_S3_ROLE_ARN
        )

        table.put_item(Item={
            "competition": COMPETITION_ID,
            "clip": asset['Id'],
            "meta": {
                "id": asset['Id'],
                "title": f"Clip: {asset['Id']}"
            },
            "manifests": asset['EgressEndpoints']
        })

Our clip harvesting workflow is now complete and will create a clip, package it, and add its metadata and manifests           (asset.EgressEndpoints) to our DynamoDB table (CLIPS_TABLE) for every call made to the /api/clip endpoint.

Clip API

After implementing the clipping workflow, we are ready to build an API that allows our users to discover and watch clips.

We use Amazon API Gateway and AWS Lambda again to implement a customer-facing RESTful web service that provides a route to retrieve all clips of a given competitionId. The frontend devices of our users query this endpoint to retrieve all clips for the 100-m dash, including all metadata and the URL of the manifest.

GET https://someurl.com/api/competitions/100m-dash/clips

{
  "clips": [
    {
      "competition": "100m-dash",
      "manifest": "https://abcdef.egress.mediapackage-vod.eu-central-1.amazonaws.com/out/v1/../index.m3u8",
      "clip": "20200203133058_20200203133258",
      "meta": {
        "title": "First race",
        "description": "Someone wins",
        "id": "20200203133058_20200203133258"
      }
    },
    {
      ..
    }
  ]
}

  1. We must create a Lambda function that is invoked via a RESTful web service and is allowed to query our DynamoDB table.
  2. We must add our business logic to the Lambda function, which in this case is a query that gets all clips for a given competition. We can utilize the clipId for time-based queries (“clips of the last 24 hours”, etc.) or add global secondary indexes to the table as needed.

Lambda Function

def get_all_clips_for_competition(event):
    competition_id = event['pathParameters']['competitionId']
    table = dynamodb.Table(CLIPS_TABLE)

    clips = table.query(
        KeyConditionExpression='competition = :id',
        ExpressionAttributeValues={
            ':id': competition_id
        }
    )

    return {
        "statusCode": 200,
        "body": json.dumps(clips.get('Items', []))
    }

AWS SAM

GetAllVotes:
Type: 'AWS::Serverless::Function'
Properties:
    Handler: handler.getAllClipsForCompetition
    Policies:
    - Version: '2012-10-17'
        Statement:
        - Effect: Allow
            Action:
            - 'dynamodb:Query'
            Resource: !GetAtt ClipsTable.Arn
    Events:
    Apigateway:
        Type: Api
        Properties:
        Path: '/api/competitions/{competitionId}/clips'
        Method: GET

We can now deploy our VOD Application and start creating clips for our VOD library. Check the GitHub repo for the complete source code and more detailed instructions.

Summary

In this blog post, we built a serverless video delivery pipeline that allows us to take a live video signal as input, transcode the signal in real time, and then output an adaptive bitrate stream (ABS). We also created a workflow that allows us to extract clips from the live stream and automatically put them into a VOD library, with no human interaction beyond the point of triggering the clip creation process required.

Achieving just the basic functionality of what we managed to provide in a few hundred lines of code requires a significant investment in an on-premises setup. The solution we created requires zero upfront investment and only incurs costs for the actual usage, since we do not have to pay for idle resources when no event happening and no users are watching. From a resiliency standpoint, the solution has built in redundancy by running the video delivery pipeline in two Availability Zones and utilizing serverless computing in the VOD application. If you also take operational complexity, low utilization, and limited scalability into account, it becomes even more apparent why many of AWS’ media customers consider these new capabilities a game changer for their business.

The deployment of the solution is automated using infrastructure as code, which makes it maintainable and repeatable. Scaling the application is easy, both from a Video Delivery and a VOD Application perspective. For the former, we may adapt our automation to handle additional live signals and integrate with the clipping components by creating additional video delivery pipelines. Scaling with user demand is inherently covered as well, since AWS Lambda, Amazon DynamoDB and Amazon API Gateway are serverless offerings that allow customers to offload the complexity of scaling to those services.

Clean up

The solution this demo builds is not covered by our free tier and will incur costs based on consumption. Be sure to clean up both the AWS Elemental Live Streaming and Live-to-VOD Workshop and the stack you created as part of this blog post. This ensures you are not billed for any accidental consumption of resources you created as part of this workshop.

EC2 Instance Update – M5 Instances with Local NVMe Storage (M5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-m5-instances-with-local-nvme-storage-m5d/

Earlier this month we launched the C5 Instances with Local NVMe Storage and I told you that we would be doing the same for additional instance types in the near future!

Today we are introducing M5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for workloads that require a balance of compute and memory resources. Here are the specs:

Instance NamevCPUsRAMLocal StorageEBS-Optimized BandwidthNetwork Bandwidth
m5d.large28 GiB1 x 75 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.xlarge416 GiB1 x 150 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.2xlarge832 GiB1 x 300 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.4xlarge1664 GiB1 x 600 GB NVMe SSD2.210 GbpsUp to 10 Gbps
m5d.12xlarge48192 GiB2 x 900 GB NVMe SSD5.0 Gbps10 Gbps
m5d.24xlarge96384 GiB4 x 900 GB NVMe SSD10.0 Gbps25 Gbps

The M5d instances are powered by Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, including support for AVX-512.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage on the M5d instances:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
M5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent M5 instances.

Jeff;

 

Hiring a Director of Sales

Post Syndicated from Yev original https://www.backblaze.com/blog/hiring-a-director-of-sales/

Backblaze is hiring a Director of Sales. This is a critical role for Backblaze as we continue to grow the team. We need a strong leader who has experience in scaling a sales team and who has an excellent track record for exceeding goals by selling Software as a Service (SaaS) solutions. In addition, this leader will need to be highly motivated, as well as able to create and develop a highly-motivated, success oriented sales team that has fun and enjoys what they do.

The History of Backblaze from our CEO
In 2007, after a friend’s computer crash caused her some suffering, we realized that with every photo, video, song, and document going digital, everyone would eventually lose all of their information. Five of us quit our jobs to start a company with the goal of making it easy for people to back up their data.

Like many startups, for a while we worked out of a co-founder’s one-bedroom apartment. Unlike most startups, we made an explicit agreement not to raise funding during the first year. We would then touch base every six months and decide whether to raise or not. We wanted to focus on building the company and the product, not on pitching and slide decks. And critically, we wanted to build a culture that understood money comes from customers, not the magical VC giving tree. Over the course of 5 years we built a profitable, multi-million dollar revenue business — and only then did we raise a VC round.

Fast forward 10 years later and our world looks quite different. You’ll have some fantastic assets to work with:

  • A brand millions recognize for openness, ease-of-use, and affordability.
  • A computer backup service that stores over 500 petabytes of data, has recovered over 30 billion files for hundreds of thousands of paying customers — most of whom self-identify as being the people that find and recommend technology products to their friends.
  • Our B2 service that provides the lowest cost cloud storage on the planet at 1/4th the price Amazon, Google or Microsoft charges. While being a newer product on the market, it already has over 100,000 IT and developers signed up as well as an ecosystem building up around it.
  • A growing, profitable and cash-flow positive company.
  • And last, but most definitely not least: a great sales team.

You might be saying, “sounds like you’ve got this under control — why do you need me?” Don’t be misled. We need you. Here’s why:

  • We have a great team, but we are in the process of expanding and we need to develop a structure that will easily scale and provide the most success to drive revenue.
  • We just launched our outbound sales efforts and we need someone to help develop that into a fully successful program that’s building a strong pipeline and closing business.
  • We need someone to work with the marketing department and figure out how to generate more inbound opportunities that the sales team can follow up on and close.
  • We need someone who will work closely in developing the skills of our current sales team and build a path for career growth and advancement.
  • We want someone to manage our Customer Success program.

So that’s a bit about us. What are we looking for in you?

Experience: As a sales leader, you will strategically build and drive the territory’s sales pipeline by assembling and leading a skilled team of sales professionals. This leader should be familiar with generating, developing and closing software subscription (SaaS) opportunities. We are looking for a self-starter who can manage a team and make an immediate impact of selling our Backup and Cloud Storage solutions. In this role, the sales leader will work closely with the VP of Sales, marketing staff, and service staff to develop and implement specific strategic plans to achieve and exceed revenue targets, including new business acquisition as well as build out our customer success program.

Leadership: We have an experienced team who’s brought us to where we are today. You need to have the people and management skills to get them excited about working with you. You need to be a strong leader and compassionate about developing and supporting your team.

Data driven and creative: The data has to show something makes sense before we scale it up. However, without creativity, it’s easy to say “the data shows it’s impossible” or to find a local maximum. Whether it’s deciding how to scale the team, figuring out what our outbound sales efforts should look like or putting a plan in place to develop the team for career growth, we’ve seen a bit of creativity get us places a few extra dollars couldn’t.

Jive with our culture: Strong leaders affect culture and the person we hire for this role may well shape, not only fit into, ours. But to shape the culture you have to be accepted by the organism, which means a certain set of shared values. We default to openness with our team, our customers, and everyone if possible. We love initiative — without arrogance or dictatorship. We work to create a place people enjoy showing up to work. That doesn’t mean ping pong tables and foosball (though we do try to have perks & fun), but it means people are friendly, non-political, working to build a good service but also a good place to work.

Do the work: Ideas and strategy are critical, but good execution makes them happen. We’re looking for someone who can help the team execute both from the perspective of being capable of guiding and organizing, but also someone who is hands-on themselves.

Additional Responsibilities needed for this role:

  • Recruit, coach, mentor, manage and lead a team of sales professionals to achieve yearly sales targets. This includes closing new business and expanding upon existing clientele.
  • Expand the customer success program to provide the best customer experience possible resulting in upsell opportunities and a high retention rate.
  • Develop effective sales strategies and deliver compelling product demonstrations and sales pitches.
  • Acquire and develop the appropriate sales tools to make the team efficient in their daily work flow.
  • Apply a thorough understanding of the marketplace, industry trends, funding developments, and products to all management activities and strategic sales decisions.
  • Ensure that sales department operations function smoothly, with the goal of facilitating sales and/or closings; operational responsibilities include accurate pipeline reporting and sales forecasts.
  • This position will report directly to the VP of Sales and will be staffed in our headquarters in San Mateo, CA.

Requirements:

  • 7 – 10+ years of successful sales leadership experience as measured by sales performance against goals.
    Experience in developing skill sets and providing career growth and opportunities through advancement of team members.
  • Background in selling SaaS technologies with a strong track record of success.
  • Strong presentation and communication skills.
  • Must be able to travel occasionally nationwide.
  • BA/BS degree required

Think you want to join us on this adventure?
Send an email to jobscontact@backblaze.com with the subject “Director of Sales.” (Recruiters and agencies, please don’t email us.) Include a resume and answer these two questions:

  1. How would you approach evaluating the current sales team and what is your process for developing a growth strategy to scale the team?
  2. What are the goals you would set for yourself in the 3 month and 1-year timeframes?

Thank you for taking the time to read this and I hope that this sounds like the opportunity for which you’ve been waiting.

Backblaze is an Equal Opportunity Employer.

The post Hiring a Director of Sales appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Getting Rid of Your Mac? Here’s How to Securely Erase a Hard Drive or SSD

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/how-to-wipe-a-mac-hard-drive/

erasing a hard drive and a solid state drive

What do I do with a Mac that still has personal data on it? Do I take out the disk drive and smash it? Do I sweep it with a really strong magnet? Is there a difference in how I handle a hard drive (HDD) versus a solid-state drive (SSD)? Well, taking a sledgehammer or projectile weapon to your old machine is certainly one way to make the data irretrievable, and it can be enormously cathartic as long as you follow appropriate safety and disposal protocols. But there are far less destructive ways to make sure your data is gone for good. Let me introduce you to secure erasing.

Which Type of Drive Do You Have?

Before we start, you need to know whether you have a HDD or a SSD. To find out, or at least to make sure, you click on the Apple menu and select “About this Mac.” Once there, select the “Storage” tab to see which type of drive is in your system.

The first example, below, shows a SATA Disk (HDD) in the system.

SATA HDD

In the next case, we see we have a Solid State SATA Drive (SSD), plus a Mac SuperDrive.

Mac storage dialog showing SSD

The third screen shot shows an SSD, as well. In this case it’s called “Flash Storage.”

Flash Storage

Make Sure You Have a Backup

Before you get started, you’ll want to make sure that any important data on your hard drive has moved somewhere else. OS X’s built-in Time Machine backup software is a good start, especially when paired with Backblaze. You can learn more about using Time Machine in our Mac Backup Guide.

With a local backup copy in hand and secure cloud storage, you know your data is always safe no matter what happens.

Once you’ve verified your data is backed up, roll up your sleeves and get to work. The key is OS X Recovery — a special part of the Mac operating system since OS X 10.7 “Lion.”

How to Wipe a Mac Hard Disk Drive (HDD)

NOTE: If you’re interested in wiping an SSD, see below.

    1. Make sure your Mac is turned off.
    2. Press the power button.
    3. Immediately hold down the command and R keys.
    4. Wait until the Apple logo appears.
    5. Select “Disk Utility” from the OS X Utilities list. Click Continue.
    6. Select the disk you’d like to erase by clicking on it in the sidebar.
    7. Click the Erase button.
    8. Click the Security Options button.
    9. The Security Options window includes a slider that enables you to determine how thoroughly you want to erase your hard drive.

There are four notches to that Security Options slider. “Fastest” is quick but insecure — data could potentially be rebuilt using a file recovery app. Moving that slider to the right introduces progressively more secure erasing. Disk Utility’s most secure level erases the information used to access the files on your disk, then writes zeroes across the disk surface seven times to help remove any trace of what was there. This setting conforms to the DoD 5220.22-M specification.

  1. Once you’ve selected the level of secure erasing you’re comfortable with, click the OK button.
  2. Click the Erase button to begin. Bear in mind that the more secure method you select, the longer it will take. The most secure methods can add hours to the process.

Once it’s done, the Mac’s hard drive will be clean as a whistle and ready for its next adventure: a fresh installation of OS X, being donated to a relative or a local charity, or just sent to an e-waste facility. Of course you can still drill a hole in your disk or smash it with a sledgehammer if it makes you happy, but now you know how to wipe the data from your old computer with much less ruckus.

The above instructions apply to older Macintoshes with HDDs. What do you do if you have an SSD?

Securely Erasing SSDs, and Why Not To

Most new Macs ship with solid state drives (SSDs). Only the iMac and Mac mini ship with regular hard drives anymore, and even those are available in pure SSD variants if you want.

If your Mac comes equipped with an SSD, Apple’s Disk Utility software won’t actually let you zero the hard drive.

Wait, what?

In a tech note posted to Apple’s own online knowledgebase, Apple explains that you don’t need to securely erase your Mac’s SSD:

With an SSD drive, Secure Erase and Erasing Free Space are not available in Disk Utility. These options are not needed for an SSD drive because a standard erase makes it difficult to recover data from an SSD.

In fact, some folks will tell you not to zero out the data on an SSD, since it can cause wear and tear on the memory cells that, over time, can affect its reliability. I don’t think that’s nearly as big an issue as it used to be — SSD reliability and longevity has improved.

If “Standard Erase” doesn’t quite make you feel comfortable that your data can’t be recovered, there are a couple of options.

FileVault Keeps Your Data Safe

One way to make sure that your SSD’s data remains secure is to use FileVault. FileVault is whole-disk encryption for the Mac. With FileVault engaged, you need a password to access the information on your hard drive. Without it, that data is encrypted.

There’s one potential downside of FileVault — if you lose your password or the encryption key, you’re screwed: You’re not getting your data back any time soon. Based on my experience working at a Mac repair shop, losing a FileVault key happens more frequently than it should.

When you first set up a new Mac, you’re given the option of turning FileVault on. If you don’t do it then, you can turn on FileVault at any time by clicking on your Mac’s System Preferences, clicking on Security & Privacy, and clicking on the FileVault tab. Be warned, however, that the initial encryption process can take hours, as will decryption if you ever need to turn FileVault off.

With FileVault turned on, you can restart your Mac into its Recovery System (by restarting the Mac while holding down the command and R keys) and erase the hard drive using Disk Utility, once you’ve unlocked it (by selecting the disk, clicking the File menu, and clicking Unlock). That deletes the FileVault key, which means any data on the drive is useless.

FileVault doesn’t impact the performance of most modern Macs, though I’d suggest only using it if your Mac has an SSD, not a conventional hard disk drive.

Securely Erasing Free Space on Your SSD

If you don’t want to take Apple’s word for it, if you’re not using FileVault, or if you just want to, there is a way to securely erase free space on your SSD. It’s a little more involved but it works.

Before we get into the nitty-gritty, let me state for the record that this really isn’t necessary to do, which is why Apple’s made it so hard to do. But if you’re set on it, you’ll need to use Apple’s Terminal app. Terminal provides you with command line interface access to the OS X operating system. Terminal lives in the Utilities folder, but you can access Terminal from the Mac’s Recovery System, as well. Once your Mac has booted into the Recovery partition, click the Utilities menu and select Terminal to launch it.

From a Terminal command line, type:

diskutil secureErase freespace VALUE /Volumes/DRIVE

That tells your Mac to securely erase the free space on your SSD. You’ll need to change VALUE to a number between 0 and 4. 0 is a single-pass run of zeroes; 1 is a single-pass run of random numbers; 2 is a 7-pass erase; 3 is a 35-pass erase; and 4 is a 3-pass erase. DRIVE should be changed to the name of your hard drive. To run a 7-pass erase of your SSD drive in “JohnB-Macbook”, you would enter the following:

diskutil secureErase freespace 2 /Volumes/JohnB-Macbook

And remember, if you used a space in the name of your Mac’s hard drive, you need to insert a leading backslash before the space. For example, to run a 35-pass erase on a hard drive called “Macintosh HD” you enter the following:

diskutil secureErase freespace 3 /Volumes/Macintosh\ HD

Something to remember is that the more extensive the erase procedure, the longer it will take.

When Erasing is Not Enough — How to Destroy a Drive

If you absolutely, positively need to be sure that all the data on a drive is irretrievable, see this Scientific American article (with contributions by Gleb Budman, Backblaze CEO), How to Destroy a Hard Drive — Permanently.

The post Getting Rid of Your Mac? Here’s How to Securely Erase a Hard Drive or SSD appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Replacing macOS Server with Synology NAS

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/replacing-macos-server-with-synology-nas/

Synology NAS boxes backed up to the cloud

Businesses and organizations that rely on macOS server for essential office and data services are facing some decisions about the future of their IT services.

Apple recently announced that it is deprecating a significant portion of essential network services in macOS Server, as they described in a support statement posted on April 24, 2018, “Prepare for changes to macOS Server.” Apple’s note includes:

macOS Server is changing to focus more on management of computers, devices, and storage on your network. As a result, some changes are coming in how Server works. A number of services will be deprecated, and will be hidden on new installations of an update to macOS Server coming in spring 2018.

The note lists the services that will be removed in a future release of macOS Server, including calendar and contact support, Dynamic Host Configuration Protocol (DHCP), Domain Name Services (DNS), mail, instant messages, virtual private networking (VPN), NetInstall, Web server, and the Wiki.

Apple assures users who have already configured any of the listed services that they will be able to use them in the spring 2018 macOS Server update, but the statement ends with links to a number of alternative services, including hosted services, that macOS Server users should consider as viable replacements to the features it is removing. These alternative services are all FOSS (Free and Open-Source Software).

As difficult as this could be for organizations that use macOS server, this is not unexpected. Apple left the server hardware space back in 2010, when Steve Jobs announced the company was ending its line of Xserve rackmount servers, which were introduced in May, 2002. Since then, macOS Server has hardly been a prominent part of Apple’s product lineup. It’s not just the product itself that has lost some luster, but the entire category of SMB office and business servers, which has been undergoing a gradual change in recent years.

Some might wonder how important the news about macOS Server is, given that macOS Server represents a pretty small share of the server market. macOS Server has been important to design shops, agencies, education users, and small businesses that likely have been on Macs for ages, but it’s not a significant part of the IT infrastructure of larger organizations and businesses.

What Comes After macOS Server?

Lovers of macOS Server don’t have to fear having their Mac minis pried from their cold, dead hands quite yet. Installed services will continue to be available. In the fall of 2018, new installations and upgrades of macOS Server will require users to migrate most services to other software. Since many of the services of macOS Server were already open-source, this means that a change in software might not be required. It does mean more configuration and management required from those who continue with macOS Server, however.

Users can continue with macOS Server if they wish, but many will see the writing on the wall and look for a suitable substitute.

The Times They Are A-Changin’

For many people working in organizations, what is significant about this announcement is how it reflects the move away from the once ubiquitous server-based IT infrastructure. Services that used to be centrally managed and office-based, such as storage, file sharing, communications, and computing, have moved to the cloud.

In selecting the next office IT platforms, there’s an opportunity to move to solutions that reflect and support how people are working and the applications they are using both in the office and remotely. For many, this means including cloud-based services in office automation, backup, and business continuity/disaster recovery planning. This includes Software as a Service, Platform as a Service, and Infrastructure as a Service (Saas, PaaS, IaaS) options.

IT solutions that integrate well with the cloud are worth strong consideration for what comes after a macOS Server-based environment.

Synology NAS as a macOS Server Alternative

One solution that is becoming popular is to replace macOS Server with a device that has the ability to provide important office services, but also bridges the office and cloud environments. Using Network-Attached Storage (NAS) to take up the server slack makes a lot of sense. Many customers are already using NAS for file sharing, local data backup, automatic cloud backup, and other uses. In the case of Synology, their operating system, Synology DiskStation Manager (DSM), is Linux based, and integrates the basic functions of file sharing, centralized backup, RAID storage, multimedia streaming, virtual storage, and other common functions.

Synology NAS box

Synology NAS

Since DSM is based on Linux, there are numerous server applications available, including many of the same ones that are available for macOS Server, which shares conceptual roots with Linux as it comes from BSD Unix.

Synology DiskStation Manager Package Center screenshot

Synology DiskStation Manager Package Center

According to Ed Lukacs, COO at 2FIFTEEN Systems Management in Salt Lake City, their customers have found the move from macOS Server to Synology NAS not only painless, but positive. DSM works seamlessly with macOS and has been faster for their customers, as well. Many of their customers are running Adobe Creative Suite and Google G Suite applications, so a workflow that combines local storage, remote access, and the cloud, is already well known to them. Remote users are supported by Synology’s QuickConnect or VPN.

Business continuity and backup are simplified by the flexible storage capacity of the NAS. Synology has built-in backup to Backblaze B2 Cloud Storage with Synology’s Cloud Sync, as well as a choice of a number of other B2-compatible applications, such as Cloudberry, Comet, and Arq.

Customers have been able to get up and running quickly, with only initial data transfers requiring some time to complete. After that, management of the NAS can be handled in-house or with the support of a Managed Service Provider (MSP).

Are You Sticking with macOS Server or Moving to Another Platform?

If you’re affected by this change in macOS Server, please let us know in the comments how you’re planning to cope. Are you using Synology NAS for server services? Please tell us how that’s working for you.

The post Replacing macOS Server with Synology NAS appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

EC2 Instance Update – C5 Instances with Local NVMe Storage (C5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-c5-instances-with-local-nvme-storage-c5d/

As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!

Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.

New C5d Instances with Local Storage
In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:

Instance NamevCPUsRAMLocal StorageEBS BandwidthNetwork Bandwidth
c5d.large24 GiB1 x 50 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.xlarge48 GiB1 x 100 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.2xlarge816 GiB1 x 225 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.4xlarge1632 GiB1 x 450 GB NVMe SSD2.25 GbpsUp to 10 Gbps
c5d.9xlarge3672 GiB1 x 900 GB NVMe SSD4.5 Gbps10 Gbps
c5d.18xlarge72144 GiB2 x 900 GB NVMe SSD9 Gbps25 Gbps

Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.

Jeff;

PS – We will be adding local NVMe storage to other EC2 instance types in the months to come, so stay tuned!

Canonical on trust and security in the Snap Store

Post Syndicated from corbet original https://lwn.net/Articles/754502/rss

Here’s a
posting from Canonical
concerning the cryptocurrency-mining app that
was discovered in its Snap Store. “Several years ago when we started
the work on snap packages, we understood that we could not instantly
implement an alternative that was completely safe from all perspectives. In
addition to being safe, it had to be useful. So the challenge we gave
ourselves was to significantly improve the situation immediately, and then
pave the road for incremental improvements that could be rolled out
gradually.

Solving Complex Ordering Challenges with Amazon SQS FIFO Queues

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/

Contributed by Shea Lutton, AWS Cloud Infrastructure Architect

Amazon Simple Queue Service (Amazon SQS) is a fully managed queuing service that helps decouple applications, distributed systems, and microservices to increase fault tolerance. SQS queues come in two distinct types:

  • Standard SQS queues are able to scale to enormous throughput with at-least-once delivery.
  • FIFO queues are designed to guarantee that messages are processed exactly once in the exact order that they are received and have a default rate of 300 transactions per second.

As customers explore SQS FIFO queues, they often have questions about how the behavior works when messages arrive and are consumed. This post walks through some common situations to identify the exact behavior that you can expect. It also covers the behavior of message groups in depth and explains why message groups are key to understanding how FIFO queues work.

The simple case

Suppose that you run a major auction platform where people buy and sell a wide range of products. Your platform requires that transactions from buyers and sellers get processed in exactly the order received. Here’s how a FIFO queue helps you keep all your transactions in one straight flow.

A seller currently is holding an auction for a laptop, and three different bids are received for the same price. Ties are awarded to the first bidder at that price so it is important to track which arrived first. Your auction platform receives the three bids and sends them to a FIFO queue before they are processed.

Now observe how messages leave the queue. When your consumer asks for a batch of up to 10 messages, SQS starts filling the batch with the oldest message (bid A1). It keeps filling until either the batch is full or the queue is empty. In this case, the batch contains the three messages and the queue is now empty. After a batch has left the queue, SQS considers that batch of messages to be “in-flight” until the consumer either deletes them or the batch’s visibility timer expires.

 

When you have a single consumer, this is easy to envision. The consumer gets a batch of messages (now in-flight), does its processing, and deletes the messages. That consumer is then ready to ask for the next batch of messages.

The critical thing to keep in mind is that SQS won’t release the next batch of messages until the first batch has been deleted. By adding more messages to the queue, you can see more interesting behaviors. Imagine that a burst of 11 bids is sent to your FIFO queue, with two bids for Auction A arriving last.

The FIFO queue now has at least two batches of messages in it. When your single consumer requests the first batch of 10 messages, it receives a batch starting with B1 and ending with A1. Later, after the first batch has been deleted, the consumer can get the second batch of messages containing the final A2 message from the queue.

Adding complexity with multiple message groups

A new challenge arises. Your auction platform is getting busier and your dev team added a number of new features. The combination of increased messages and extra processing time for the new features means that a single consumer is too slow. The solution is to scale to have more consumers and process messages in parallel.

To work in parallel, your team realized that only the messages related to a single auction must be kept in order. All transactions for Auction A need to be kept in order and so do all transactions for Auction B. But the two auctions are independent and it does not matter which auctions transactions are processed first.

FIFO can handle that case with a feature called message groups. Each transaction related to Auction A is placed by your producer into message group A, and so on. In the diagram below, Auction A and Auction B each received three bid transactions, with bid B1 arriving first. The FIFO queue always keeps transactions within a message group in the order in which they arrived.

How is this any different than earlier examples? The consumer now gets the messages ordered by message groups, all the B group messages followed by all the A group messages. Multiple message groups create the possibility of using multiple consumers, which I explain in a moment. If FIFO can’t fill up a batch of messages with a single message group, FIFO can place more than one message group in a batch of messages. But whenever possible, the queue gives you a full batch of messages from the same group.

The order of messages leaving a FIFO queue is governed by three rules:

  1. Return the oldest message where no other message in the same message group is currently in-flight.
  2. Return as many messages from the same message group as possible.
  3. If a message batch is still not full, go back to rule 1.

To see this behavior, add a second consumer and insert many more messages into the queue. For simplicity, the delete message action has been omitted in these diagrams but it is assumed that all messages in a batch are processed successfully by the consumer and the batch is properly deleted immediately after.

In this example, there are 11 Group A and 11 Group B transactions arriving in interleaved order and a second consumer has been added. Consumer 1 asks for a group of 10 messages and receives 10 Group A messages. Consumer 2 then asks for 10 messages but SQS knows that Group A is in flight, so it releases 10 Group B messages. The two consumers are now processing two batches of messages in parallel, speeding up throughput and then deleting their batches. When Consumer 1 requests the next batch of messages, it receives the remaining two messages, one from Group A and one from Group B.

Consider this nuanced detail from the example above. What would happen if Consumer 1 was on a faster server and processed its first batch of messages before Consumer 2 could mark its messages for deletion? See if you can predict the behavior before looking at the answer.

If Consumer 2 has not deleted its Group B messages yet when Consumer 1 asks for the next batch, then the FIFO queue considers Group B to still be in flight. It does not release any more Group B messages. Consumer 1 gets only the remaining Group A message. Later, after Consumer 2 has deleted its first batch, the remaining Group B message is released.

Conclusion

I hope this post answered your questions about how Amazon SQS FIFO queues work and why message groups are helpful. If you’re interested in exploring SQS FIFO queues further, here are a few ideas to get you started:

A serverless solution for invoking AWS Lambda at a sub-minute frequency

Post Syndicated from Emanuele Menga original https://aws.amazon.com/blogs/architecture/a-serverless-solution-for-invoking-aws-lambda-at-a-sub-minute-frequency/

If you’ve used Amazon CloudWatch Events to schedule the invocation of a Lambda function at regular intervals, you may have noticed that the highest frequency possible is one invocation per minute. However, in some cases, you may need to invoke Lambda more often than that. In this blog post, I’ll cover invoking a Lambda function every 10 seconds, but with some simple math you can change to whatever interval you like.

To achieve this, I’ll show you how to leverage Step Functions and Amazon Kinesis Data Streams.

The Solution

For this example, I’ve created a Step Functions State Machine that invokes our Lambda function 6 times, 10 seconds apart. Such State Machine is then executed once per minute by a CloudWatch Events Rule. This state machine is then executed once per minute by an Amazon CloudWatch Events rule. Finally, the Kinesis Data Stream triggers our Lambda function for each record inserted. The result is our Lambda function being invoked every 10 seconds, indefinitely.

Below is a diagram illustrating how the various services work together.

Step 1: My sampleLambda function doesn’t actually do anything, it just simulates an execution for a few seconds. This is the (Python) code of my dummy function:

import time

import random


def lambda_handler(event, context):

rand = random.randint(1, 3)

print('Running for {} seconds'.format(rand))

time.sleep(rand)

return True

Step 2:

The next step is to create a second Lambda function, that I called Iterator, which has two duties:

  • It keeps track of the current number of iterations, since Step Function doesn’t natively have a state we can use for this purpose.
  • It asynchronously invokes our Lambda function at every loops.

This is the code of the Iterator, adapted from here.

 

import boto3

client = boto3.client('kinesis')

def lambda_handler(event, context):

index = event['iterator']['index'] + 1

response = client.put_record(

StreamName='LambdaSubMinute',

PartitionKey='1',

Data='',

)

return {

'index': index,

'continue': index < event['iterator']['count'],

'count': event['iterator']['count']

}

This function does three things:

  • Increments the counter.
  • Verifies if we reached a count of (in this example) 6.
  • Sends an empty record to the Kinesis Stream.

Now we can create the Step Functions State Machine; the definition is, again, adapted from here.

 

{

"Comment": "Invoke Lambda every 10 seconds",

"StartAt": "ConfigureCount",

"States": {

"ConfigureCount": {

"Type": "Pass",

"Result": {

"index": 0,

"count": 6

},

"ResultPath": "$.iterator",

"Next": "Iterator"

},

"Iterator": {

"Type": "Task",

"Resource": “arn:aws:lambda:REGION:ACCOUNT_ID:function:Iterator",

"ResultPath": "$.iterator",

"Next": "IsCountReached"

},

"IsCountReached": {

"Type": "Choice",

"Choices": [

{

"Variable": "$.iterator.continue",

"BooleanEquals": true,

"Next": "Wait"

}

],

"Default": "Done"

},

"Wait": {

"Type": "Wait",

"Seconds": 10,

"Next": "Iterator"

},

"Done": {

"Type": "Pass",

"End": true

}

}

}

This is how it works:

  1. The state machine starts and sets the index at 0 and the count at 6.
  2. Iterator function is invoked.
  3. If the iterator function reached the end of the loop, the IsCountReached state terminates the execution, otherwise the machine waits for 10 seconds.
  4. The machine loops back to the iterator.

Step 3: Create an Amazon CloudWatch Events rule scheduled to trigger every minute and add the state machine as its target. I’ve actually prepared an Amazon CloudFormation template that creates the whole stack and starts the Lambda invocations, you can find it here.

Performance

Let’s have a look at a sample series of invocations and analyse how precise the timing is. In the following chart I reported the delay (in excess of the expected 10-second-wait) of 30 consecutive invocations of my dummy function, when the Iterator is configured with a memory size of 1024MB.

Invocations Delay

Notice the delay increases by a few hundred milliseconds at every invocation. The good news is it accrues only within the same loop, 6 times; after that, a new CloudWatch Events kicks in and it resets.

This delay  is due to the work that AWS Step Function does outside of the Wait state, the main component of which is the Iterator function itself, that runs synchronously in the state machine and therefore adds up its duration to the 10-second-wait.

As we can easily imagine, the memory size of the Iterator Lambda function does make a difference. Here are the Average and Maximum duration of the function with 256MB, 512MB, 1GB and 2GB of memory.

Average Duration

Maximum Duration


Given those results, I’d say that a memory of 1024MB is a good compromise between costs and performance.

Caveats

As mentioned, in our Amazon CloudWatch Events documentation, in rare cases a rule can be triggered twice, causing two parallel executions of the state machine. If that is a concern, we can add a task state at the beginning of the state machine that checks if any other executions are currently running. If the outcome is positive, then a choice state can immediately terminate the flow. Since the state machine is invoked every 60 seconds and runs for about 50, it is safe to assume that executions should all be sequential and any parallel executions should be treated as duplicates. The task state that checks for current running executions can be a Lambda function similar to the following:

 

import boto3

client = boto3.client('stepfunctions')

def lambda_handler(event, context):

response = client.list_executions(

stateMachineArn='arn:aws:states:REGION:ACCOUNTID:stateMachine:LambdaSubMinute',

statusFilter='RUNNING'

)

return {

'alreadyRunning': len(response['executions']) > 0

}

About the Author

Emanuele Menga, Cloud Support Engineer

 

The US Is Unprepared for Election-Related Hacking in 2018

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/the_us_is_unpre.html

This survey and report is not surprising:

The survey of nearly forty Republican and Democratic campaign operatives, administered through November and December 2017, revealed that American political campaign staff — primarily working at the state and congressional levels — are not only unprepared for possible cyber attacks, but remain generally unconcerned about the threat. The survey sample was relatively small, but nevertheless the survey provides a first look at how campaign managers and staff are responding to the threat.

The overwhelming majority of those surveyed do not want to devote campaign resources to cybersecurity or to hire personnel to address cybersecurity issues. Even though campaign managers recognize there is a high probability that campaign and personal emails are at risk of being hacked, they are more concerned about fundraising and press coverage than they are about cybersecurity. Less than half of those surveyed said they had taken steps to make their data secure and most were unsure if they wanted to spend any money on this protection.

Security is never something we actually want. Security is something we need in order to avoid what we don’t want. It’s also more abstract, concerned with hypothetical future possibilities. Of course it’s lower on the priorities list than fundraising and press coverage. They’re more tangible, and they’re more immediate.

This is all to the attackers’ advantage.

EC2 Price Reduction – H1 Instances

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-price-reduction-h1-instances/

EC2’s H1 instances offer 2 to 16 terabytes of fast, dense storage for big data applications, optimized to deliver high throughput for sequential I/O. Enhanced Networking, 32 to 256 gigabytes of RAM, and Intel Xeon E5-2686 v4 processors running at a base frequency of 2.3 GHz round out the feature set.

I am happy to announce that we are reducing the On-Demand and Reserved Instance prices for H1 instances in the US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland) Regions by 15%, effective immediately.

Jeff;

 

Serverless Architectures with AWS Lambda: Overview and Best Practices

Post Syndicated from Andrew Baird original https://aws.amazon.com/blogs/architecture/serverless-architectures-with-aws-lambda-overview-and-best-practices/

For some organizations, the idea of “going serverless” can be daunting. But with an understanding of best practices – and the right tools — many serverless applications can be fully functional with only a few lines of code and little else.

Examples of fully-serverless-application use cases include:

  • Web or mobile backends – Create fully-serverless, mobile applications or websites by creating user-facing content in a native mobile application or static web content in an S3 bucket. Then have your front-end content integrate with Amazon API Gateway as a backend service API. Lambda functions will then execute the business logic you’ve written for each of the API Gateway methods in your backend API.
  • Chatbots and virtual assistants – Build new serverless ways to interact with your customers, like customer support assistants and bots ready to engage customers on your company-run social media pages. The Amazon Alexa Skills Kit (ASK) and Amazon Lex have the ability to apply natural-language understanding to user-voice and freeform-text input so that a Lambda function you write can intelligently respond and engage with them.
  • Internet of Things (IoT) backends – AWS IoT has direct-integration for device messages to be routed to and processed by Lambda functions. That means you can implement serverless backends for highly secure, scalable IoT applications for uses like connected consumer appliances and intelligent manufacturing facilities.

Using AWS Lambda as the logic layer of a serverless application can enable faster development speed and greater experimentation – and innovation — than in a traditional, server-based environment.

We recently published the “Serverless Architectures with AWS Lambda: Overview and Best Practices” whitepaper to provide the guidance and best practices you need to write better Lambda functions and build better serverless architectures.

Once you’ve finished reading the whitepaper, below are a couple additional resources I recommend as your next step:

  1. If you would like to better understand some of the architecture pattern possibilities for serverless applications: Thirty Serverless Architectures in 30 Minutes (re:Invent 2017 video)
  2. If you’re ready to get hands-on and build a sample serverless application: AWS Serverless Workshops (GitHub Repository)
  3. If you’ve already built a serverless application and you’d like to ensure your application has been Well Architected: The Serverless Application Lens: AWS Well Architected Framework (Whitepaper)

About the Author

 

Andrew Baird is a Sr. Solutions Architect for AWS. Prior to becoming a Solutions Architect, Andrew was a developer, including time as an SDE with Amazon.com. He has worked on large-scale distributed systems, public-facing APIs, and operations automation.

OMG The Stupid It Burns

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/omg-stupid-it-burns.html

This article, pointed out by @TheGrugq, is stupid enough that it’s worth rebutting.

The article starts with the question “Why did the lessons of Stuxnet, Wannacry, Heartbleed and Shamoon go unheeded?“. It then proceeds to ignore the lessons of those things.
Some of the actual lessons should be things like how Stuxnet crossed air gaps, how Wannacry spread through flat Windows networking, how Heartbleed comes from technical debt, and how Shamoon furthers state aims by causing damage.
But this article doesn’t cover the technical lessons. Instead, it thinks the lesson should be the moral lesson, that we should take these things more seriously. But that’s stupid. It’s the sort of lesson people teach you that know nothing about the topic. When you have nothing of value to contribute to a topic you can always take the moral high road and criticize everyone for being morally weak for not taking it more seriously. Obviously, since doctors haven’t cured cancer yet, it’s because they don’t take the problem seriously.
The article continues to ignore the lesson of these cyber attacks and instead regales us with a list of military lessons from WW I and WW II. This makes the same flaw that many in the military make, trying to understand cyber through analogies with the real world. It’s not that such lessons could have no value, it’s that this article contains a poor list of them. It seems to consist of a random list of events that appeal to the author rather than events that have bearing on cybersecurity.
Then, in case we don’t get the point, the article bullies us with hyperbole, cliches, buzzwords, bombastic language, famous quotes, and citations. It’s hard to see how most of them actually apply to the text. Rather, it seems like they are included simply because he really really likes them.
The article invests much effort in discussing the buzzword “OODA loop”. Most attacks in cyberspace don’t have one. Instead, attackers flail around, trying lots of random things, overcoming defense with brute-force rather than an understanding of what’s going on. That’s obviously the case with Wannacry: it was an accident, with the perpetrator experimenting with what would happen if they added the ETERNALBLUE exploit to their existing ransomware code. The consequence was beyond anybody’s ability to predict.
You might claim that this is just the first stage, that they’ll loop around, observe Wannacry’s effects, orient themselves, decide, then act upon what they learned. Nope. Wannacry burned the exploit. It’s essentially removed any vulnerable systems from the public Internet, thereby making it impossible to use what they learned. It’s still active a year later, with infected systems behind firewalls busily scanning the Internet so that if you put a new system online that’s vulnerable, it’ll be taken offline within a few hours, before any other evildoer can take advantage of it.
See what I’m doing here? Learning the actual lessons of things like Wannacry? The thing the above article fails to do??
The article has a humorous paragraph on “defense in depth”, misunderstanding the term. To be fair, it’s the cybersecurity industry’s fault: they adopted then redefined the term. That’s why there’s two separate articles on Wikipedia: one for the old military term (as used in this article) and one for the new cybersecurity term.
As used in the cybersecurity industry, “defense in depth” means having multiple layers of security. Many organizations put all their defensive efforts on the perimeter, and none inside a network. The idea of “defense in depth” is to put more defenses inside the network. For example, instead of just one firewall at the edge of the network, put firewalls inside the network to segment different subnetworks from each other, so that a ransomware infection in the customer support computers doesn’t spread to sales and marketing computers.
The article talks about exploiting WiFi chips to bypass the defense in depth measures like browser sandboxes. This is conflating different types of attacks. A WiFi attack is usually considered a local attack, from somebody next to you in bar, rather than a remote attack from a server in Russia. Moreover, far from disproving “defense in depth” such WiFi attacks highlight the need for it. Namely, phones need to be designed so that successful exploitation of other microprocessors (namely, the WiFi, Bluetooth, and cellular baseband chips) can’t directly compromise the host system. In other words, once exploited with “Broadpwn”, a hacker would need to extend the exploit chain with another vulnerability in the hosts Broadcom WiFi driver rather than immediately exploiting a DMA attack across PCIe. This suggests that if PCIe is used to interface to peripherals in the phone that an IOMMU be used, for “defense in depth”.
Cybersecurity is a young field. There are lots of useful things that outsider non-techies can teach us. Lessons from military history would be well-received.
But that’s not this story. Instead, this story is by an outsider telling us we don’t know what we are doing, that they do, and then proceeds to prove they don’t know what they are doing. Their argument is based on a moral suasion and bullying us with what appears on the surface to be intellectual rigor, but which is in fact devoid of anything smart.
My fear, here, is that I’m going to be in a meeting where somebody has read this pretentious garbage, explaining to me why “defense in depth” is wrong and how we need to OODA faster. I’d rather nip this in the bud, pointing out if you found anything interesting from that article, you are wrong.

Securing Elections

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/securing_electi_1.html

Elections serve two purposes. The first, and obvious, purpose is to accurately choose the winner. But the second is equally important: to convince the loser. To the extent that an election system is not transparently and auditably accurate, it fails in that second purpose. Our election systems are failing, and we need to fix them.

Today, we conduct our elections on computers. Our registration lists are in computer databases. We vote on computerized voting machines. And our tabulation and reporting is done on computers. We do this for a lot of good reasons, but a side effect is that elections now have all the insecurities inherent in computers. The only way to reliably protect elections from both malice and accident is to use something that is not hackable or unreliable at scale; the best way to do that is to back up as much of the system as possible with paper.

Recently, there have been two graphic demonstrations of how bad our computerized voting system is. In 2007, the states of California and Ohio conducted audits of their electronic voting machines. Expert review teams found exploitable vulnerabilities in almost every component they examined. The researchers were able to undetectably alter vote tallies, erase audit logs, and load malware on to the systems. Some of their attacks could be implemented by a single individual with no greater access than a normal poll worker; others could be done remotely.

Last year, the Defcon hackers’ conference sponsored a Voting Village. Organizers collected 25 pieces of voting equipment, including voting machines and electronic poll books. By the end of the weekend, conference attendees had found ways to compromise every piece of test equipment: to load malicious software, compromise vote tallies and audit logs, or cause equipment to fail.

It’s important to understand that these were not well-funded nation-state attackers. These were not even academics who had been studying the problem for weeks. These were bored hackers, with no experience with voting machines, playing around between parties one weekend.

It shouldn’t be any surprise that voting equipment, including voting machines, voter registration databases, and vote tabulation systems, are that hackable. They’re computers — often ancient computers running operating systems no longer supported by the manufacturers — and they don’t have any magical security technology that the rest of the industry isn’t privy to. If anything, they’re less secure than the computers we generally use, because their manufacturers hide any flaws behind the proprietary nature of their equipment.

We’re not just worried about altering the vote. Sometimes causing widespread failures, or even just sowing mistrust in the system, is enough. And an election whose results are not trusted or believed is a failed election.

Voting systems have another requirement that makes security even harder to achieve: the requirement for a secret ballot. Because we have to securely separate the election-roll system that determines who can vote from the system that collects and tabulates the votes, we can’t use the security systems available to banking and other high-value applications.

We can securely bank online, but can’t securely vote online. If we could do away with anonymity — if everyone could check that their vote was counted correctly — then it would be easy to secure the vote. But that would lead to other problems. Before the US had the secret ballot, voter coercion and vote-buying were widespread.

We can’t, so we need to accept that our voting systems are insecure. We need an election system that is resilient to the threats. And for many parts of the system, that means paper.

Let’s start with the voter rolls. We know they’ve already been targeted. In 2016, someone changed the party affiliation of hundreds of voters before the Republican primary. That’s just one possibility. A well-executed attack that deletes, for example, one in five voters at random — or changes their addresses — would cause chaos on election day.

Yes, we need to shore up the security of these systems. We need better computer, network, and database security for the various state voter organizations. We also need to better secure the voter registration websites, with better design and better internet security. We need better security for the companies that build and sell all this equipment.

Multiple, unchangeable backups are essential. A record of every addition, deletion, and change needs to be stored on a separate system, on write-only media like a DVD. Copies of that DVD, or — even better — a paper printout of the voter rolls, should be available at every polling place on election day. We need to be ready for anything.

Next, the voting machines themselves. Security researchers agree that the gold standard is a voter-verified paper ballot. The easiest (and cheapest) way to achieve this is through optical-scan voting. Voters mark paper ballots by hand; they are fed into a machine and counted automatically. That paper ballot is saved, and serves as a final true record in a recount in case of problems. Touch-screen machines that print a paper ballot to drop in a ballot box can also work for voters with disabilities, as long as the ballot can be easily read and verified by the voter.

Finally, the tabulation and reporting systems. Here again we need more security in the process, but we must always use those paper ballots as checks on the computers. A manual, post-election, risk-limiting audit varies the number of ballots examined according to the margin of victory. Conducting this audit after every election, before the results are certified, gives us confidence that the election outcome is correct, even if the voting machines and tabulation computers have been tampered with. Additionally, we need better coordination and communications when incidents occur.

It’s vital to agree on these procedures and policies before an election. Before the fact, when anyone can win and no one knows whose votes might be changed, it’s easy to agree on strong security. But after the vote, someone is the presumptive winner — and then everything changes. Half of the country wants the result to stand, and half wants it reversed. At that point, it’s too late to agree on anything.

The politicians running in the election shouldn’t have to argue their challenges in court. Getting elections right is in the interest of all citizens. Many countries have independent election commissions that are charged with conducting elections and ensuring their security. We don’t do that in the US.

Instead, we have representatives from each of our two parties in the room, keeping an eye on each other. That provided acceptable security against 20th-century threats, but is totally inadequate to secure our elections in the 21st century. And the belief that the diversity of voting systems in the US provides a measure of security is a dangerous myth, because few districts can be decisive and there are so few voting-machine vendors.

We can do better. In 2017, the Department of Homeland Security declared elections to be critical infrastructure, allowing the department to focus on securing them. On 23 March, Congress allocated $380m to states to upgrade election security.

These are good starts, but don’t go nearly far enough. The constitution delegates elections to the states but allows Congress to “make or alter such Regulations”. In 1845, Congress set a nationwide election day. Today, we need it to set uniform and strict election standards.

This essay originally appeared in the Guardian.