Tag Archives: media

Steal This Show S03E09: Learning To Love Your Panopticon

Post Syndicated from Ernesto original https://torrentfreak.com/steal-show-s03e09-learning-love-panopticon/

stslogo180If you enjoy this episode, consider becoming a patron and getting involved with the show. Check out Steal This Show’s Patreon campaign: support us and get all kinds of fantastic benefits!

In this episode we meet Diani Barreto from the Berlin Bureau of ExposeFacs. Launched in June 2014, ExposeFacts.org supports and encourages whistleblowers to disclose information that citizens need to make truly informed decisions in a democracy.

ExposeFacts aims to shed light on concealed activities that are relevant to human rights, corporate malfeasance, the environment, civil liberties and war.

Steal This Show aims to release bi-weekly episodes featuring insiders discussing copyright and file-sharing news. It complements our regular reporting by adding more room for opinion, commentary, and analysis.

The guests for our news discussions will vary, and we’ll aim to introduce voices from different backgrounds and persuasions. In addition to news, STS will also produce features interviewing some of the great innovators and minds.

Host: Jamie King

Guest: Diani Barreto

Produced by Jamie King
Edited & Mixed by Riley Byrne
Original Music by David Triana
Web Production by Siraje Amarniss

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Introducing Cost Allocation Tags for Amazon SQS

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/introducing-cost-allocation-tags-for-amazon-sqs/

You have long had the ability to tag your AWS resources and to see cost breakouts on a per-tag basis. Cost allocation was launched in 2012 (see AWS Cost Allocation for Customer Bills) and we have steadily added support for additional services, most recently DynamoDB (Introducing Cost Allocation Tags for Amazon DynamoDB), Lambda (AWS Lambda Supports Tagging and Cost Allocations), and EBS (New – Cost Allocation for AWS Snapshots).

Today, we are launching tag-based cost allocation for Amazon Simple Queue Service (SQS). You can now assign tags to your queues and use them to manage your costs at any desired level: application, application stage (for a loosely coupled application that communicates via queues), project, department, or developer. After you have tagged your queues, you can use the AWS Tag Editor to search queues that have tags of interest.

Here’s how I would add three tags (app, stage, and department) to one of my queues:

This feature is available now in all AWS Regions and you can start using in today! To learn more about tagging, read Tagging Your Amazon SQS Queues. To learn more about cost allocation via tags, read Using Cost Allocation Tags. To learn more about how to use message queues to build loosely coupled microservices for modern applications, read our blog post (Building Loosely Coupled, Scalable, C# Applications with Amazon SQS and Amazon SNS) and watch the recording of our recent webinar, Decouple and Scale Applications Using Amazon SQS and Amazon SNS.

If you are coming to AWS re:Invent, plan to attend session ARC 330: How the BBC Built a Massive Media Pipeline Using Microservices. In the talk you will find out how they used SNS and SQS to improve the elasticity and reliability of the BBC iPlayer architecture.

Jeff;

Backing Up Linux to Backblaze B2 with Duplicity and Restic

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backing-linux-backblaze-b2-duplicity-restic/

Linux users have a variety of options for handling data backup. The choices range from free and open-source programs to paid commercial tools, and include applications that are purely command-line based (CLI) and others that have a graphical interface (GUI), or both.

If you take a look at our Backblaze B2 Cloud Storage Integrations page, you will see a number of offerings that enable you to back up your Linux desktops and servers to Backblaze B2. These include CloudBerry, Duplicity, Duplicacy, 45 Drives, GoodSync, HashBackup, QNAP, Restic, and Rclone, plus other choices for NAS and hybrid uses.

In this post, we’ll discuss two popular command line and open-source programs: one older, Duplicity, and a new player, Restic.

Old School vs. New School

We’re highlighting Duplicity and Restic today because they exemplify two different philosophical approaches to data backup: “Old School” (Duplicity) vs “New School” (Restic).

Old School (Duplicity)

In the old school model, data is written sequentially to the storage medium. Once a section of data is recorded, new data is written starting where that section of data ends. It’s not possible to go back and change the data that’s already been written.

This old-school model has long been associated with the use of magnetic tape, a prime example of which is the LTO (Linear Tape-Open) standard. In this “write once” model, files are always appended to the end of the tape. If a file is modified and overwritten or removed from the volume, the associated tape blocks used are not freed up: they are simply marked as unavailable, and the used volume capacity is not recovered. Data is deleted and capacity recovered only if the whole tape is reformatted. As a Linux/Unix user, you undoubtedly are familiar with the TAR archive format, which is an acronym for Tape ARchive. TAR has been around since 1979 and was originally developed to write data to sequential I/O devices with no file system of their own.

It is from the use of tape that we get the full backup/incremental backup approach to backups. A backup sequence beings with a full backup of data. Each incremental backup contains what’s been changed since the last full backup until the next full backup is made and the process starts over, filling more and more tape or whatever medium is being used.

This is the model used by Duplicity: full and incremental backups. Duplicity backs up files by producing encrypted, digitally signed, versioned, TAR-format volumes and uploading them to a remote location, including Backblaze B2 Cloud Storage. Released under the terms of the GNU General Public License (GPL), Duplicity is free software.

With Duplicity, the first archive is a complete (full) backup, and subsequent (incremental) backups only add differences from the latest full or incremental backup. Chains consisting of a full backup and a series of incremental backups can be recovered to the point in time that any of the incremental steps were taken. If any of the incremental backups are missing, then reconstructing a complete and current backup is much more difficult and sometimes impossible.

Duplicity is available under many Unix-like operating systems (such as Linux, BSD, and Mac OS X) and ships with many popular Linux distributions including Ubuntu, Debian, and Fedora. It also can be used with Windows under Cygwin.

We recently published a KB article on How to configure Backblaze B2 with Duplicity on Linux that demonstrates how to set up Duplicity with B2 and back up and restore a directory from Linux.

New School (Restic)

With the arrival of non-sequential storage medium, such as disk drives, and new ideas such as deduplication, comes the new school approach, which is used by Restic. Data can be written and changed anywhere on the storage medium. This efficiency comes largely through the use of deduplication. Deduplication is a process that eliminates redundant copies of data and reduces storage overhead. Data deduplication techniques ensure that only one unique instance of data is retained on storage media, greatly increasing storage efficiency and flexibility.

Restic is a recently available multi-platform command line backup software program that is designed to be fast, efficient, and secure. Restic supports a variety of backends for storing backups, including a local server, SFTP server, HTTP Rest server, and a number of cloud storage providers, including Backblaze B2.

Files are uploaded to a B2 bucket as deduplicated, encrypted chunks. Each time a backup runs, only changed data is backed up. On each backup run, a snapshot is created enabling restores to a specific date or time.

Restic assumes that the storage location for repository is shared, so it always encrypts the backed up data. This is in addition to any encryption and security from the storage provider.

Restic is open source and free software and licensed under the BSD 2-Clause License and actively developed on GitHub.

There’s a lot more you can do with Restic, including adding tags, mounting a repository locally, and scripting. To learn more, you can review the documentation at https://restic.readthedocs.io.

Coincidentally with this blog post, we published a KB article, How to configure Backblaze B2 with Restic on Linux, in which we show how to set up Restic for use with B2 and how to back up and restore a home directory from Linux to B2.

Which is Right for You?

While Duplicity is a popular, widely-available, and useful program, many users of cloud storage solutions such as B2 are moving to new-school solutions like Restic that take better advantage of the non-sequential access capabilities and speed of modern storage media used by cloud storage providers.

Tell us how you’re backing up Linux

Please let us know in the comments what you’re using for Linux backups, and if you have experience using Duplicity, Restic, or other backup software with Backblaze B2.

The post Backing Up Linux to Backblaze B2 with Duplicity and Restic appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Google Asked to Remove 3 Billion “Pirate” Search Results

Post Syndicated from Ernesto original https://torrentfreak.com/google-asked-to-remove-3-billion-pirate-search-results-171018/

Copyright holders continue to flood Google with DMCA takedown requests, asking the company to remove “pirate links” from its search results.

In recent years the number of reported URLs has exploded, surging to unprecedented heights.

Since Google first started to report the volume of takedown requests in its Transparency Report, the company has been asked to remove more than three billion allegedly infringing search results.

The frequency at which these URLs are reported has increased over the years and at the moment roughly three million ‘pirate’ URLs are submitted per day.

The URLs are sent in by major rightsholders including members of the BPI, RIAA, and various major Hollywood studios. They target a wide variety of sites, over 1.3 million, but a few dozen ‘repeat offenders’ are causing the most trouble.

File-hosting service 4shared.com currently tops the list of most-targeted domains with 66 million URLs, followed by the now-defunct MP3 download site MP3toys.xyz and Rapidgator.net, with 51 and 28 million URLs respectively.

3 billion URLs

Interestingly, the high volume of takedown notices is used as an argument for and against the DMCA process.

While Google believes that the millions of reported URLs per day are a sign that the DMCA takedown process is working correctly, rightsholders believe the volumes are indicative of an unbeatable game of whack-a-mole.

According to some copyright holders, the takedown efforts do little to seriously combat piracy. Various industry groups have therefore asked governments and lawmakers for broad revisions.

Among other things they want advanced technologies and processes to ensure that infringing content doesn’t reappear elsewhere once it’s removed, a so-called “notice and stay down” approach. In addition, Google has often been asked to demote pirate links in search results.

UK music industry group BPI, who are responsible for more than 10% of all the takedown requests on Google, sees the new milestone as an indicator of how much effort its anti-piracy activities take.

“This 3 billion figure shows how hard the creative sector has to work to police its content online and how much time and resource this takes. The BPI is the world’s largest remover of illegal music links from Google, one third of which are on behalf of independent record labels,” Geoff Taylor, BPI’s Chief Executive, informs TF.

However, there is also some progress to report. Earlier this year BPI announced a voluntary partnership with Google and Bing to demote pirate content faster and more effectively for US visitors.

“We now have a voluntary code of practice in place in the UK, facilitated by Government, that requires Google and Bing to work together with the BPI and other creator organizations to develop lasting solutions to the problem of illegal sites gaining popularity in search listings,” Taylor notes.

According to BPI, both Google and Bing have shown that changes to their algorithms can be effective in demoting the worst pirate sites from the top search results and they hope others will follow suit.

“Other intermediaries should follow this lead and take more responsibility to work with creators to reduce the proliferation of illegal links and disrupt the ability of illegal sites to capture consumers and build black market businesses that take money away from creators.”

Agreement or not, there are still plenty of pirate links in search results, so the BPI is still sending out millions of takedown requests per month.

We asked Google for a comment on the new milestone but at the time of writing, we have yet to hear back. In any event, the issue is bound to remain a hot topic during the months and years to come.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Using AWS Step Functions State Machines to Handle Workflow-Driven AWS CodePipeline Actions

Post Syndicated from Marcilio Mendonca original https://aws.amazon.com/blogs/devops/using-aws-step-functions-state-machines-to-handle-workflow-driven-aws-codepipeline-actions/

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. It offers powerful integration with other AWS services, such as AWS CodeBuildAWS CodeDeployAWS CodeCommit, AWS CloudFormation and with third-party tools such as Jenkins and GitHub. These services make it possible for AWS customers to successfully automate various tasks, including infrastructure provisioning, blue/green deployments, serverless deployments, AMI baking, database provisioning, and release management.

Developers have been able to use CodePipeline to build sophisticated automation pipelines that often require a single CodePipeline action to perform multiple tasks, fork into different execution paths, and deal with asynchronous behavior. For example, to deploy a Lambda function, a CodePipeline action might first inspect the changes pushed to the code repository. If only the Lambda code has changed, the action can simply update the Lambda code package, create a new version, and point the Lambda alias to the new version. If the changes also affect infrastructure resources managed by AWS CloudFormation, the pipeline action might have to create a stack or update an existing one through the use of a change set. In addition, if an update is required, the pipeline action might enforce a safety policy to infrastructure resources that prevents the deletion and replacement of resources. You can do this by creating a change set and having the pipeline action inspect its changes before updating the stack. Change sets that do not conform to the policy are deleted.

This use case is a good illustration of workflow-driven pipeline actions. These are actions that run multiple tasks, deal with async behavior and loops, need to maintain and propagate state, and fork into different execution paths. Implementing workflow-driven actions directly in CodePipeline can lead to complex pipelines that are hard for developers to understand and maintain. Ideally, a pipeline action should perform a single task and delegate the complexity of dealing with workflow-driven behavior associated with that task to a state machine engine. This would make it possible for developers to build simpler, more intuitive pipelines and allow them to use state machine execution logs to visualize and troubleshoot their pipeline actions.

In this blog post, we discuss how AWS Step Functions state machines can be used to handle workflow-driven actions. We show how a CodePipeline action can trigger a Step Functions state machine and how the pipeline and the state machine are kept decoupled through a Lambda function. The advantages of using state machines include:

  • Simplified logic (complex tasks are broken into multiple smaller tasks).
  • Ease of handling asynchronous behavior (through state machine wait states).
  • Built-in support for choices and processing different execution paths (through state machine choices).
  • Built-in visualization and logging of the state machine execution.

The source code for the sample pipeline, pipeline actions, and state machine used in this post is available at https://github.com/awslabs/aws-codepipeline-stepfunctions.

Overview

This figure shows the components in the CodePipeline-Step Functions integration that will be described in this post. The pipeline contains two stages: a Source stage represented by a CodeCommit Git repository and a Prod stage with a single Deploy action that represents the workflow-driven action.

This action invokes a Lambda function (1) called the State Machine Trigger Lambda, which, in turn, triggers a Step Function state machine to process the request (2). The Lambda function sends a continuation token back to the pipeline (3) to continue its execution later and terminates. Seconds later, the pipeline invokes the Lambda function again (4), passing the continuation token received. The Lambda function checks the execution state of the state machine (5,6) and communicates the status to the pipeline. The process is repeated until the state machine execution is complete. Then the Lambda function notifies the pipeline that the corresponding pipeline action is complete (7). If the state machine has failed, the Lambda function will then fail the pipeline action and stop its execution (7). While running, the state machine triggers various Lambda functions to perform different tasks. The state machine and the pipeline are fully decoupled. Their interaction is handled by the Lambda function.

The Deploy State Machine

The sample state machine used in this post is a simplified version of the use case, with emphasis on infrastructure deployment. The state machine will follow distinct execution paths and thus have different outcomes, depending on:

  • The current state of the AWS CloudFormation stack.
  • The nature of the code changes made to the AWS CloudFormation template and pushed into the pipeline.

If the stack does not exist, it will be created. If the stack exists, a change set will be created and its resources inspected by the state machine. The inspection consists of parsing the change set results and detecting whether any resources will be deleted or replaced. If no resources are being deleted or replaced, the change set is allowed to be executed and the state machine completes successfully. Otherwise, the change set is deleted and the state machine completes execution with a failure as the terminal state.

Let’s dive into each of these execution paths.

Path 1: Create a Stack and Succeed Deployment

The Deploy state machine is shown here. It is triggered by the Lambda function using the following input parameters stored in an S3 bucket.

Create New Stack Execution Path

{
    "environmentName": "prod",
    "stackName": "sample-lambda-app",
    "templatePath": "infra/Lambda-template.yaml",
    "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
    "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ"
}

Note that some values used here are for the use case example only. Account-specific parameters like revisionS3Bucket and revisionS3Key will be different when you deploy this use case in your account.

These input parameters are used by various states in the state machine and passed to the corresponding Lambda functions to perform different tasks. For example, stackName is used to create a stack, check the status of stack creation, and create a change set. The environmentName represents the environment (for example, dev, test, prod) to which the code is being deployed. It is used to prefix the name of stacks and change sets.

With the exception of built-in states such as wait and choice, each state in the state machine invokes a specific Lambda function.  The results received from the Lambda invocations are appended to the state machine’s original input. When the state machine finishes its execution, several parameters will have been added to its original input.

The first stage in the state machine is “Check Stack Existence”. It checks whether a stack with the input name specified in the stackName input parameter already exists. The output of the state adds a Boolean value called doesStackExist to the original state machine input as follows:

{
  "doesStackExist": true,
  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",
}

The following stage, “Does Stack Exist?”, is represented by Step Functions built-in choice state. It checks the value of doesStackExist to determine whether a new stack needs to be created (doesStackExist=true) or a change set needs to be created and inspected (doesStackExist=false).

If the stack does not exist, the states illustrated in green in the preceding figure are executed. This execution path creates the stack, waits until the stack is created, checks the status of the stack’s creation, and marks the deployment successful after the stack has been created. Except for “Stack Created?” and “Wait Stack Creation,” each of these stages invokes a Lambda function. “Stack Created?” and “Wait Stack Creation” are implemented by using the built-in choice state (to decide which path to follow) and the wait state (to wait a few seconds before proceeding), respectively. Each stage adds the results of their Lambda function executions to the initial input of the state machine, allowing future stages to process them.

Path 2: Safely Update a Stack and Mark Deployment as Successful

Safely Update a Stack and Mark Deployment as Successful Execution Path

If the stack indicated by the stackName parameter already exists, a different path is executed. (See the green states in the figure.) This path will create a change set and use wait and choice states to wait until the change set is created. Afterwards, a stage in the execution path will inspect  the resources affected before the change set is executed.

The inspection procedure represented by the “Inspect Change Set Changes” stage consists of parsing the resources affected by the change set and checking whether any of the existing resources are being deleted or replaced. The following is an excerpt of the algorithm, where changeSetChanges.Changes is the object representing the change set changes:

...
var RESOURCES_BEING_DELETED_OR_REPLACED = "RESOURCES-BEING-DELETED-OR-REPLACED";
var CAN_SAFELY_UPDATE_EXISTING_STACK = "CAN-SAFELY-UPDATE-EXISTING-STACK";
for (var i = 0; i < changeSetChanges.Changes.length; i++) {
    var change = changeSetChanges.Changes[i];
    if (change.Type == "Resource") {
        if (change.ResourceChange.Action == "Delete") {
            return RESOURCES_BEING_DELETED_OR_REPLACED;
        }
        if (change.ResourceChange.Action == "Modify") {
            if (change.ResourceChange.Replacement == "True") {
                return RESOURCES_BEING_DELETED_OR_REPLACED;
            }
        }
    }
}
return CAN_SAFELY_UPDATE_EXISTING_STACK;

The algorithm returns different values to indicate whether the change set can be safely executed (CAN_SAFELY_UPDATE_EXISTING_STACK or RESOURCES_BEING_DELETED_OR_REPLACED). This value is used later by the state machine to decide whether to execute the change set and update the stack or interrupt the deployment.

The output of the “Inspect Change Set” stage is shown here.

{
  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",
  "doesStackExist": true,
  "changeSetName": "prod-sample-lambda-app-change-set-545",
  "changeSetCreationStatus": "complete",
  "changeSetAction": "CAN-SAFELY-UPDATE-EXISTING-STACK"
}

At this point, these parameters have been added to the state machine’s original input:

  • changeSetName, which is added by the “Create Change Set” state.
  • changeSetCreationStatus, which is added by the “Get Change Set Creation Status” state.
  • changeSetAction, which is added by the “Inspect Change Set Changes” state.

The “Safe to Update Infra?” step is a choice state (its JSON spec follows) that simply checks the value of the changeSetAction parameter. If the value is equal to “CAN-SAFELY-UPDATE-EXISTING-STACK“, meaning that no resources will be deleted or replaced, the step will execute the change set by proceeding to the “Execute Change Set” state. The deployment is successful (the state machine completes its execution successfully).

"Safe to Update Infra?": {
      "Type": "Choice",
      "Choices": [
        {
          "Variable": "$.taskParams.changeSetAction",
          "StringEquals": "CAN-SAFELY-UPDATE-EXISTING-STACK",
          "Next": "Execute Change Set"
        }
      ],
      "Default": "Deployment Failed"
 }

Path 3: Reject Stack Update and Fail Deployment

Reject Stack Update and Fail Deployment Execution Path

If the changeSetAction parameter is different from “CAN-SAFELY-UPDATE-EXISTING-STACK“, the state machine will interrupt the deployment by deleting the change set and proceeding to the “Deployment Fail” step, which is a built-in Fail state. (Its JSON spec follows.) This state causes the state machine to stop in a failed state and serves to indicate to the Lambda function that the pipeline deployment should be interrupted in a fail state as well.

 "Deployment Failed": {
      "Type": "Fail",
      "Cause": "Deployment Failed",
      "Error": "Deployment Failed"
    }

In all three scenarios, there’s a state machine’s visual representation available in the AWS Step Functions console that makes it very easy for developers to identify what tasks have been executed or why a deployment has failed. Developers can also inspect the inputs and outputs of each state and look at the state machine Lambda function’s logs for details. Meanwhile, the corresponding CodePipeline action remains very simple and intuitive for developers who only need to know whether the deployment was successful or failed.

The State Machine Trigger Lambda Function

The Trigger Lambda function is invoked directly by the Deploy action in CodePipeline. The CodePipeline action must pass a JSON structure to the trigger function through the UserParameters attribute, as follows:

{
  "s3Bucket": "codepipeline-StepFunctions-sample",
  "stateMachineFile": "state_machine_input.json"
}

The s3Bucket parameter specifies the S3 bucket location for the state machine input parameters file. The stateMachineFile parameter specifies the file holding the input parameters. By being able to specify different input parameters to the state machine, we make the Trigger Lambda function and the state machine reusable across environments. For example, the same state machine could be called from a test and prod pipeline action by specifying a different S3 bucket or state machine input file for each environment.

The Trigger Lambda function performs two main tasks: triggering the state machine and checking the execution state of the state machine. Its core logic is shown here:

exports.index = function (event, context, callback) {
    try {
        console.log("Event: " + JSON.stringify(event));
        console.log("Context: " + JSON.stringify(context));
        console.log("Environment Variables: " + JSON.stringify(process.env));
        if (Util.isContinuingPipelineTask(event)) {
            monitorStateMachineExecution(event, context, callback);
        }
        else {
            triggerStateMachine(event, context, callback);
        }
    }
    catch (err) {
        failure(Util.jobId(event), callback, context.invokeid, err.message);
    }
}

Util.isContinuingPipelineTask(event) is a utility function that checks if the Trigger Lambda function is being called for the first time (that is, no continuation token is passed by CodePipeline) or as a continuation of a previous call. In its first execution, the Lambda function will trigger the state machine and send a continuation token to CodePipeline that contains the state machine execution ARN. The state machine ARN is exposed to the Lambda function through a Lambda environment variable called stateMachineArn. Here is the code that triggers the state machine:

function triggerStateMachine(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var s3Bucket = Util.actionUserParameter(event, "s3Bucket");
    var stateMachineFile = Util.actionUserParameter(event, "stateMachineFile");
    getStateMachineInputData(s3Bucket, stateMachineFile)
        .then(function (data) {
            var initialParameters = data.Body.toString();
            var stateMachineInputJSON = createStateMachineInitialInput(initialParameters, event);
            console.log("State machine input JSON: " + JSON.stringify(stateMachineInputJSON));
            return stateMachineInputJSON;
        })
        .then(function (stateMachineInputJSON) {
            return triggerStateMachineExecution(stateMachineArn, stateMachineInputJSON);
        })
        .then(function (triggerStateMachineOutput) {
            var continuationToken = { "stateMachineExecutionArn": triggerStateMachineOutput.executionArn };
            var message = "State machine has been triggered: " + JSON.stringify(triggerStateMachineOutput) + ", continuationToken: " + JSON.stringify(continuationToken);
            return continueExecution(Util.jobId(event), continuationToken, callback, message);
        })
        .catch(function (err) {
            console.log("Error triggering state machine: " + stateMachineArn + ", Error: " + err.message);
            failure(Util.jobId(event), callback, context.invokeid, err.message);
        })
}

The Trigger Lambda function fetches the state machine input parameters from an S3 file, triggers the execution of the state machine using the input parameters and the stateMachineArn environment variable, and signals to CodePipeline that the execution should continue later by passing a continuation token that contains the state machine execution ARN. In case any of these operations fail and an exception is thrown, the Trigger Lambda function will fail the pipeline immediately by signaling a pipeline failure through the putJobFailureResult CodePipeline API.

If the Lambda function is continuing a previous execution, it will extract the state machine execution ARN from the continuation token and check the status of the state machine, as shown here.

function monitorStateMachineExecution(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var continuationToken = JSON.parse(Util.continuationToken(event));
    var stateMachineExecutionArn = continuationToken.stateMachineExecutionArn;
    getStateMachineExecutionStatus(stateMachineExecutionArn)
        .then(function (response) {
            if (response.status === "RUNNING") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " is still " + response.status;
                return continueExecution(Util.jobId(event), continuationToken, callback, message);
            }
            if (response.status === "SUCCEEDED") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
                return success(Util.jobId(event), callback, message);
            }
            // FAILED, TIMED_OUT, ABORTED
            var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
            return failure(Util.jobId(event), callback, context.invokeid, message);
        })
        .catch(function (err) {
            var message = "Error monitoring execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + ", Error: " + err.message;
            failure(Util.jobId(event), callback, context.invokeid, message);
        });
}

If the state machine is in the RUNNING state, the Lambda function will send the continuation token back to the CodePipeline action. This will cause CodePipeline to call the Lambda function again a few seconds later. If the state machine has SUCCEEDED, then the Lambda function will notify the CodePipeline action that the action has succeeded. In any other case (FAILURE, TIMED-OUT, or ABORT), the Lambda function will fail the pipeline action.

This behavior is especially useful for developers who are building and debugging a new state machine because a bug in the state machine can potentially leave the pipeline action hanging for long periods of time until it times out. The Trigger Lambda function prevents this.

Also, by having the Trigger Lambda function as a means to decouple the pipeline and state machine, we make the state machine more reusable. It can be triggered from anywhere, not just from a CodePipeline action.

The Pipeline in CodePipeline

Our sample pipeline contains two simple stages: the Source stage represented by a CodeCommit Git repository and the Prod stage, which contains the Deploy action that invokes the Trigger Lambda function. When the state machine decides that the change set created must be rejected (because it replaces or deletes some the existing production resources), it fails the pipeline without performing any updates to the existing infrastructure. (See the failed Deploy action in red.) Otherwise, the pipeline action succeeds, indicating that the existing provisioned infrastructure was either created (first run) or updated without impacting any resources. (See the green Deploy stage in the pipeline on the left.)

The Pipeline in CodePipeline

The JSON spec for the pipeline’s Prod stage is shown here. We use the UserParameters attribute to pass the S3 bucket and state machine input file to the Lambda function. These parameters are action-specific, which means that we can reuse the state machine in another pipeline action.

{
  "name": "Prod",
  "actions": [
      {
          "inputArtifacts": [
              {
                  "name": "CodeCommitOutput"
              }
          ],
          "name": "Deploy",
          "actionTypeId": {
              "category": "Invoke",
              "owner": "AWS",
              "version": "1",
              "provider": "Lambda"
          },
          "outputArtifacts": [],
          "configuration": {
              "FunctionName": "StateMachineTriggerLambda",
              "UserParameters": "{\"s3Bucket\": \"codepipeline-StepFunctions-sample\", \"stateMachineFile\": \"state_machine_input.json\"}"
          },
          "runOrder": 1
      }
  ]
}

Conclusion

In this blog post, we discussed how state machines in AWS Step Functions can be used to handle workflow-driven actions. We showed how a Lambda function can be used to fully decouple the pipeline and the state machine and manage their interaction. The use of a state machine greatly simplified the associated CodePipeline action, allowing us to build a much simpler and cleaner pipeline while drilling down into the state machine’s execution for troubleshooting or debugging.

Here are two exercises you can complete by using the source code.

Exercise #1: Do not fail the state machine and pipeline action after inspecting a change set that deletes or replaces resources. Instead, create a stack with a different name (think of blue/green deployments). You can do this by creating a state machine transition between the “Safe to Update Infra?” and “Create Stack” stages and passing a new stack name as input to the “Create Stack” stage.

Exercise #2: Add wait logic to the state machine to wait until the change set completes its execution before allowing the state machine to proceed to the “Deployment Succeeded” stage. Use the stack creation case as an example. You’ll have to create a Lambda function (similar to the Lambda function that checks the creation status of a stack) to get the creation status of the change set.

Have fun and share your thoughts!

About the Author

Marcilio Mendonca is a Sr. Consultant in the Canadian Professional Services Team at Amazon Web Services. He has helped AWS customers design, build, and deploy best-in-class, cloud-native AWS applications using VMs, containers, and serverless architectures. Before he joined AWS, Marcilio was a Software Development Engineer at Amazon. Marcilio also holds a Ph.D. in Computer Science. In his spare time, he enjoys playing drums, riding his motorcycle in the Toronto GTA area, and spending quality time with his family.

New ‘Coalition Against Piracy’ Will Crack Down on Pirate Streaming Boxes

Post Syndicated from Ernesto original https://torrentfreak.com/new-coalition-against-piracy-will-crack-down-on-pirate-streaming-boxes-171017/

Traditionally there have only been a handful of well-known industry groups fighting online piracy, but this appears to be changing.

Increasingly, major entertainment industry companies are teaming up in various regions to bundle their enforcement efforts against copyright infringement.

Earlier this year the Alliance for Creativity and Entertainment (ACE) was formed by major players including Disney, HBO, and NBCUniversal, and several of the same media giants are also involved in the newly founded Coalition Against Piracy (CAP).

CAP will coordinate anti-piracy efforts in Asia and is backed by CASBAA, Disney, Fox, HBO Asia, NBCUniversal, Premier League, Turner Asia-Pacific, A&E Networks, Astro, BBC Worldwide, National Basketball Association, TV5MONDE, Viacom International, and others.

The coalition has hired Neil Gane as its general manager. Gane is no stranger to anti-piracy work, as he previously served as the MPAA’s regional director in Australasia and was chief of the Australian Federation Against Copyright Theft.

The goal of CAP will be to assist in local enforcement actions against piracy, including the disruption and dismantling of local businesses that facilitate it. Pirate streaming boxes and apps will be among the main targets.

These boxes, which often use the legal Kodi player paired with infringing add-ons, are referred to as illicit streaming devices (ISDs) by industry insiders. They have grown in popularity all around the world and Asia is no exception.

“The prevalence of ISDs across Asia is staggering. The criminals who operate the ISD networks and the pirate websites are profiting from the hard work of talented creators, seriously damaging the legitimate content ecosystem as well as exposing consumers to dangerous malware”, Gane said, quoted by Indian Television.

Gane knows the region well and started his career working for the Hong Kong Police. He sees the pirate streaming box ecosystem as a criminal network which presents a major threat to the entertainment industries.

“This is a highly organized transnational crime with criminal syndicates profiting enormously at the expense of consumers as well as content creators,” Gane noted.

The Asian creative industry is a major growth market as more and more legal content is made available. However, the growth of these legal services is threatened by pirate boxes and apps. The Coalition Against Piracy hopes to curb this.

The launch of CAP, which will be formalized at the upcoming CASBAA anti-piracy convention in November, confirms the trend of localized anti-piracy coalitions which are backed by major industry players. We can expect to hear more from these during the years to come.

Just a few days ago the founding members of the aforementioned ACE anti-piracy initiative filed their first joint lawsuit in the US which, unsurprisingly, targets a seller of streaming boxes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

ACME Support in Apache HTTP Server Project

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org//2017/10/17/acme-support-in-apache-httpd.html

We’re excited that support for getting and managing TLS certificates via the ACME protocol is coming to the Apache HTTP Server Project (httpd). ACME is the protocol used by Let’s Encrypt, and hopefully other Certificate Authorities in the future. We anticipate this feature will significantly aid the adoption of HTTPS for new and existing websites.

We created Let’s Encrypt in order to make getting and managing TLS certificates as simple as possible. For Let’s Encrypt subscribers, this usually means obtaining an ACME client and executing some simple commands. Ultimately though, we’d like for most Let’s Encrypt subscribers to have ACME clients built in to their server software so that obtaining an additional piece of software is not necessary. The less work people have to do to deploy HTTPS the better!

ACME support being built in to one of the world’s most popular Web servers, Apache httpd, is great because it means that deploying HTTPS will be even easier for millions of websites. It’s a huge step towards delivering the ideal certificate issuance and management experience to as many people as possible.

The Apache httpd ACME module is called mod_md. It’s currently in the development version of httpd and a plan is being formulated to backport it to an httpd 2.4.x stable release. The mod_md code is also available on GitHub.

It’s also worth mentioning that the development version of Apache httpd now includes support for an SSLPolicy directive. Properly configuring TLS has traditionally involved making a large number of complex choices. With the SSLPolicy directive, admins simply select a modern, intermediate, or old TLS configuration, and sensible choices will be made for them.

Development of mod_md and the SSLPolicy directive has been funded by Mozilla and carried out primarily by Stefan Eissing of greenbytes. Thank you Mozilla and Stefan!

Let’s Encrypt is currently providing certificates for more than 55 million websites. We look forward to being able to serve even more websites as efforts like this make deploying HTTPS with Let’s Encrypt even easier. If you’re as excited about the potential for a 100% HTTPS Web as we are, please consider getting involved, making a donation, or sponsoring Let’s Encrypt.

Netflix Expands Content Protection Team to Reduce Piracy

Post Syndicated from Ernesto original https://torrentfreak.com/netflix-expands-content-protection-team-to-reduce-piracy-171015/

There is little doubt that, in the United States and many other countries, Netflix has become the standard for watching movies on the Internet.

Despite the widespread availability, however, Netflix originals are widely pirated. Episodes from House of Cards, Narcos, and Orange is the New Black are downloaded and streamed millions of times through unauthorized platforms.

The streaming giant is obviously not happy with this situation and has ramped up its anti-piracy efforts in recent years. Since last year the company has sent out over a million takedown requests to Google alone and this volume continues to expand.

This growth coincides with an expansion of the company’s internal anti-piracy division. A new job posting shows that Netflix is expanding this team with a Copyright and Content Protection Coordinator. The ultimate goal is to reduce piracy to a fringe activity.

“The growing Global Copyright & Content Protection Group is looking to expand its team with the addition of a coordinator,” the job listing reads.

“He or she will be tasked with supporting the Netflix Global Copyright & Content Protection Group in its internal tactical take down efforts with the goal of reducing online piracy to a socially unacceptable fringe activity.”

Among other things, the new coordinator will evaluate new technological solutions to tackle piracy online.

More old-fashioned takedown efforts are also part of the job. This includes monitoring well-known content platforms, search engines and social network sites for pirated content.

“Day to day scanning of Facebook, YouTube, Twitter, Periscope, Google Search, Bing Search, VK, DailyMotion and all other platforms (including live platforms) used for piracy,” is listed as one of the main responsibilities.

Netflix’ Copyright and Content Protection Coordinator Job

The coordinator is further tasked with managing Facebook’s Rights Manager and YouTube’s Content-ID system, to prevent circumvention of these piracy filters. Experience with fingerprinting technologies and other anti-piracy tools will be helpful in this regard.

Netflix doesn’t do all the copyright enforcement on its own though. The company works together with other media giants in the recently launched “Alliance for Creativity and Entertainment” that is spearheaded by the MPAA.

In addition, the company also uses the takedown services of external anti-piracy outfits to target more traditional infringement sources, such as cyberlockers and piracy streaming sites. The coordinator has to keep an eye on these as well.

“Liaise with our vendors on manual takedown requests on linking sites and hosting sites and gathering data on pirate streaming sites, cyberlockers and usenet platforms.”

The above shows that Netflix is doing its best to prevent piracy from getting out of hand. It’s definitely taking the issue more seriously than a few years ago when the company didn’t have much original content.

The switch from being merely a distribution platform to becoming a major content producer and copyright holder has changed the stakes. Netflix hasn’t won the war on piracy, it’s just getting started.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

‘Pirate’ EBook Site Refuses Point Blank to Cooperate With BREIN

Post Syndicated from Andy original https://torrentfreak.com/pirate-ebook-site-refuses-point-blank-to-cooperate-with-brein-171015/

Dutch anti-piracy group BREIN is probably best known for its legal action against The Pirate Bay but the outfit also tackles many other forms of piracy.

A prime example is the case it pursued against a seller of fully-loaded Kodi boxes in the Netherlands. The subsequent landmark ruling from the European Court of Justice will reverberate around Europe for years to come.

Behind the scenes, however, BREIN persistently tries to take much smaller operations offline, and not without success. Earlier this year it revealed it had taken down 231 illegal sites and services includes 84 linking sites, 63 streaming portals, and 34 torrent sites. Some of these shut down completely and others were forced to leave their hosting providers.

Much of this work flies under the radar but some current action, against an eBook site, is now being thrust into the public eye.

For more than five years, EBoek.info (eBook) has serviced Internet users looking to obtain comic books in Dutch. The site informs TorrentFreak it provides a legitimate service, targeted at people who have purchased a hard copy but also want their comics in digital format.

“EBoek.info is a site about comic books in the Dutch language. Besides some general information about the books, people who have legally obtained a hard copy of the books can find a link to an NZB file which enables them to download a digital version of the books they already have,” site representative ‘Zala’ says.

For those out of the loop, NZB files are a bit like Usenet’s version of .torrent files. They contain no copyrighted content themselves but do provide software clients with information on where to find specific content, so it can be downloaded to a user’s machine.

“BREIN claims that this is illegal as it is impossible for us to verify if our visitor is telling the truth [about having purchased a copy],” Zala reveals.

Speaking with TorrentFreak, BREIN chief Tim Kuik says there’s no question that offering downloads like this is illegal.

“It is plain and simple: the site makes links to unauthorized digital copies available to the general public and therefore is infringing copyright. It is distribution of the content without authorization of the rights holder,” Kuik says.

“The unauthorized copies are not private copies. The private copy exception does not apply to this kind of distribution. The private copy has not been made by the owner of the book himself for his own use. Someone else made the digital copy and is making it available to anyone who wants to download it provided he makes the unverified claim that he has a legal copy. This harms the normal exploitation of the
content.”

Zala says that BREIN has been trying to take his site offline for many years but more recently, the platform has utilized the services of Cloudflare, partly as a form of shield. As readers may be aware, a site behind Cloudflare has its originating IP addresses hidden from the public, not to mention BREIN, who values that kind of information. According to the operator, however, BREIN managed to obtain the information from the CDN provider.

“BREIN has tried for years to take our site offline. Recently, however, Cloudflare was so friendly to give them our IP address,” Zala notes.

A text copy of an email reportedly sent by BREIN to EBoek’s web host and seen by TF appears to confirm that Cloudflare handed over the information as suggested. Among other things, the email has BREIN informing the host that “The IP we got back from Cloudflare is XXX.XXX.XX.33.”

This means that BREIN was able to place direct pressure on EBoek.info’s web host, so only time will tell if that bears any fruit for the anti-piracy group. In the meantime, however, EBoek has decided to go public over its battle with BREIN.

“We have received a request from Stichting BREIN via our hosting provider to take EBoek.info offline,” the site informed its users yesterday.

Interestingly, it also appears that BREIN doesn’t appreciate that the operators of EBoek have failed to make their identities publicly known on their platform.

“The site operates anonymously which also is unlawful. Consumer protection requires that the owner/operator of a site identifies himself,” Kuik says.

According to EBoek, the anti-piracy outfit told the site’s web host that as a “commercial online service”, EBoek is required under EU law to display its “correct and complete business information” including names, addresses, and other information. But perhaps unsurprisingly, the site doesn’t want to play ball.

“In my opinion, you are confusing us with Facebook. They are a foreign commercial company with a European branch in Ireland, and therefore are subject to Irish legislation,” Zala says in an open letter to BREIN.

“Eboek.info, on the other hand, is a foreign hobby club with no commercial purpose, whose administrators have no connection with any country in the European Union. As administrators, we follow the laws of our country of residence which do not oblige us to disclose our identity through our website.

“The fact that Eboek is visible in the Netherlands does not just mean that we are going to adapt to Dutch rules, just as we don’t adapt the site to the rules of Saudi Arabia or China or wherever we are available.”

In a further snub to the anti-piracy group, EBoek says that all visitors to the site have to communicate with its operators via its guestbook, which is publicly visible.

“We see no reason to make an exception for Stichting BREIN,” the site notes.

What makes the situation more complex is that EBoek isn’t refusing dialog completely. The site says it doesn’t want to talk to BREIN but will speak to BREIN’s customers – the publishers of the comic books in question – noting that to date no complaints from publishers have ever been received.

While the parties argue about lines of communication, BREIN insists that following this year’s European Court of Justice decision in the GS Media case, a link to a known infringing work represents copyright infringement. In this case, an NZB file – which links to a location on Usenet – would generally fit the bill.

But despite focusing on the Dutch market, the operators of EBoek say the ruling doesn’t apply to them as they’re outside of the ECJ’s jurisdiction and aren’t commercially motivated. Refusing point blank to take their site offline, EBoek’s operators say that BREIN can do its worst, nothing will have much effect.

“[W]hat’s the worst thing that can happen? That our web host hands [BREIN] our address and IP data. In that case, it will turn out that…we are actually far away,” Zala says.

“[In the case the site goes offline], we’ll just put a backup on another server and, in this case, won’t make use of the ‘services’ of Cloudflare, the provider that apparently put BREIN on the right track.”

The question of jurisdiction is indeed an interesting one, particularly given BREIN’s focus in the Netherlands. But Kuik is clear – it is the area where the content is made available that matters.

“The law of the country where the content is made available applies. In this case the EU and amongst others the Netherlands,” Kuik concludes.

To be continued…..

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Hollywood Giants Sue Kodi-powered ‘TickBox TV’ Over Piracy

Post Syndicated from Ernesto original https://torrentfreak.com/hollywood-giants-sue-kodi-powered-tickbox-tv-over-piracy-171014/

Online streaming piracy is booming and many people use dedicated media players to bring this content to their regular TVs.

The bare hardware is not illegal and neither is media player software such as Kodi. When these devices are loaded with copyright-infringing addons, however, they turn into an unprecedented piracy threat.

It becomes even more problematic when the sellers of these devices market their products as pirate tools. This is exactly what TickBox TV does, according to Hollywood’s major movie studios, Netflix, and Amazon.

TickBox is a Georgia-based provider of set-top boxes that allow users to stream a variety of popular media. The company’s devices use the Kodi media player and come with instructions on how to add various add-ons.

In a complaint filed in a California federal court yesterday, Universal, Columbia Pictures, Disney, 20th Century Fox, Paramount Pictures, Warner Bros, Amazon, and Netflix accuse Tickbox of inducing and contributing to copyright infringement.

“TickBox sells ‘TickBox TV,’ a computer hardware device that TickBox urges its customers to use as a tool for the mass infringement of Plaintiffs’ copyrighted motion pictures and television shows,” the complaint, picked up by THR, reads.

While the device itself does not host any infringing content, users are informed where they can find it.

The movie and TV studios stress that Tickbox’s marketing highlights its infringing uses with statements such as “if you’re tired of wasting money with online streaming services like Netflix, Hulu or Amazon Prime.”

Sick of paying high monthly fees?

“TickBox promotes the use of TickBox TV for overwhelmingly, if not exclusively, infringing purposes, and that is how its customers use TickBox TV. TickBox advertises TickBox TV as a substitute for authorized and legitimate distribution channels such as cable television or video-on-demand services like Amazon Prime and Netflix,” the studios’ lawyers write.

The complaint explains in detail how TickBox works. When users first boot up their device they are prompted to download the “TickBox TV Player” software. This comes with an instruction video guiding people to infringing streams.

“The TickBox TV instructional video urges the customer to use the ‘Select Your Theme’ button on the start-up menu for downloading addons. The ‘Themes’ are curated collections of popular addons that link to unauthorized streams of motion pictures and television shows.”

“Some of the most popular addons currently distributed — which are available through TickBox TV — are titled ‘Elysium,’ ‘Bob,’ and ‘Covenant’,” the complaint adds, showing screenshots of the interface.

Covenant

The movie and TV studios, which are the founding members of the recently launched ACE anti-piracy initiative, want TickBox to stop selling their devices. In addition, they demand compensation for the damages they’ve suffered. Requesting the maximum statutory damages of $150,000 per copyright infringement, this can run into the millions.

The involvement of Amazon, albeit the content division, is notable since the online store itself sells dozens of similar streaming devices, some of which even list “infringing” addons.

The TickBox lawsuit is the first case in the United States where a group of major Hollywood players is targeting a streaming device. Earlier this year various Hollywood insiders voiced concerns about the piracy streaming epidemic and if this case goes their way, it probably won’t be the last.

A copy of the full complaint is available here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Coaxing 2D platforming out of Unity

Post Syndicated from Eevee original https://eev.ee/blog/2017/10/13/coaxing-2d-platforming-out-of-unity/

An anonymous donor asked a question that I can’t even begin to figure out how to answer, but they also said anything else is fine, so here’s anything else.

I’ve been avoiding writing about game physics, since I want to save it for ✨ the book I’m writing ✨, but that book will almost certainly not touch on Unity. Here, then, is a brief run through some of the brick walls I ran into while trying to convince Unity to do 2D platforming.

This is fairly high-level — there are no blocks of code or helpful diagrams. I’m just getting this out of my head because it’s interesting. If you want more gritty details, I guess you’ll have to wait for ✨ the book ✨.

The setup

I hadn’t used Unity before. I hadn’t even used a “real” physics engine before. My games so far have mostly used LÖVE, a Lua-based engine. LÖVE includes box2d bindings, but for various reasons (not all of them good), I opted to avoid them and instead write my own physics completely from scratch. (How, you ask? ✨ Book ✨!)

I was invited to work on a Unity project, Chaos Composer, that someone else had already started. It had basic movement already implemented; I taught myself Unity’s physics system by hacking on it. It’s entirely possible that none of this is actually the best way to do anything, since I was really trying to reproduce my own homegrown stuff in Unity, but it’s the best I’ve managed to come up with.

Two recurring snags were that you can’t ask Unity to do multiple physics updates in a row, and sometimes getting the information I wanted was difficult. Working with my own code spoiled me a little, since I could invoke it at any time and ask it anything I wanted; Unity, on the other hand, is someone else’s black box with a rigid interface on top.

Also, wow, Googling for a lot of this was not quite as helpful as expected. A lot of what’s out there is just the first thing that works, and often that’s pretty hacky and imposes severe limits on the game design (e.g., “this won’t work with slopes”). Basic movement and collision are the first thing you do, which seems to me like the worst time to be locking yourself out of a lot of design options. I tried very (very, very, very) hard to minimize those kinds of constraints.

Problem 1: Movement

When I showed up, movement was already working. Problem solved!

Like any good programmer, I immediately set out to un-solve it. Given a “real” physics engine like Unity prominently features, you have two options: ⓐ treat the player as a physics object, or ⓑ don’t. The existing code went with option ⓑ, like I’d done myself with LÖVE, and like I’d seen countless people advise. Using a physics sim makes for bad platforming.

But… why? I believed it, but I couldn’t concretely defend it. I had to know for myself. So I started a blank project, drew some physics boxes, and wrote a dozen-line player controller.

Ah! Immediate enlightenment.

If the player was sliding down a wall, and I tried to move them into the wall, they would simply freeze in midair until I let go of the movement key. The trouble is that the physics sim works in terms of forces — moving the player involves giving them a nudge in some direction, like a giant invisible hand pushing them around the level. Surprise! If you press a real object against a real wall with your real hand, you’ll see the same effect — friction will cancel out gravity, and the object will stay in midair..

Platformer movement, as it turns out, doesn’t make any goddamn physical sense. What is air control? What are you pushing against? Nothing, really; we just have it because it’s nice to play with, because not having it is a nightmare.

I looked to see if there were any common solutions to this, and I only really found one: make all your walls frictionless.

Game development is full of hacks like this, and I… don’t like them. I can accept that minor hacks are necessary sometimes, but this one makes an early and widespread change to a fundamental system to “fix” something that was wrong in the first place. It also imposes an “invisible” requirement, something I try to avoid at all costs — if you forget to make a particular wall frictionless, you’ll never know unless you happen to try sliding down it.

And so, I swiftly returned to the existing code. It wasn’t too different from what I’d come up with for LÖVE: it applied gravity by hand, tracked the player’s velocity, computed the intended movement each frame, and moved by that amount. The interesting thing was that it used MovePosition, which schedules a movement for the next physics update and stops the movement if the player hits something solid.

It’s kind of a nice hybrid approach, actually; all the “physics” for conscious actors is done by hand, but the physics engine is still used for collision detection. It’s also used for collision rejection — if the player manages to wedge themselves several pixels into a solid object, for example, the physics engine will try to gently nudge them back out of it with no extra effort required on my part. I still haven’t figured out how to get that to work with my homegrown stuff, which is built to prevent overlap rather than to jiggle things out of it.

But wait, what about…

Our player is a dynamic body with rotation lock and no gravity. Why not just use a kinematic body?

I must be missing something, because I do not understand the point of kinematic bodies. I ran into this with Godot, too, which documented them the same way: as intended for use as players and other manually-moved objects. But by default, they don’t even collide with other kinematic bodies or static geometry. What? There’s a checkbox to turn this on, which I enabled, but then I found out that MovePosition doesn’t stop kinematic bodies when they hit something, so I would’ve had to cast along the intended path of movement to figure out when to stop, thus duplicating the same work the physics engine was about to do.

But that’s impossible anyway! Static geometry generally wants to be made of edge colliders, right? They don’t care about concave/convex. Imagine the player is standing on the ground near a wall and tries to move towards the wall. Both the ground and the wall are different edges from the same edge collider.

If you try to cast the player’s hitbox horizontally, parallel to the ground, you’ll only get one collision: the existing collision with the ground. Casting doesn’t distinguish between touching and hitting. And because Unity only reports one collision per collider, and because the ground will always show up first, you will never find out about the impending wall collision.

So you’re forced to either use raycasts for collision detection or decomposed polygons for world geometry, both of which are slightly worse tools for no real gain.

I ended up sticking with a dynamic body.


Oh, one other thing that doesn’t really fit anywhere else: keep track of units! If you’re adding something called “velocity” directly to something called “position”, something has gone very wrong. Acceleration is distance per time squared; velocity is distance per time; position is distance. You must multiply or divide by time to convert between them.

I never even, say, add a constant directly to position every frame; I always phrase it as velocity and multiply by Δt. It keeps the units consistent: time is always in seconds, not in tics.

Problem 2: Slopes

Ah, now we start to get off in the weeds.

A sort of pre-problem here was detecting whether we’re on a slope, which means detecting the ground. The codebase originally used a manual physics query of the area around the player’s feet to check for the ground, which seems to be somewhat common, but that can’t tell me the angle of the detected ground. (It’s also kind of error-prone, since “around the player’s feet” has to be specified by hand and may not stay correct through animations or changes in the hitbox.)

I replaced that with what I’d eventually settled on in LÖVE: detect the ground by detecting collisions, and looking at the normal of the collision. A normal is a vector that points straight out from a surface, so if you’re standing on the ground, the normal points straight up; if you’re on a 10° incline, the normal points 10° away from straight up.

Not all collisions are with the ground, of course, so I assumed something is ground if the normal pointed away from gravity. (I like this definition more than “points upwards”, because it avoids assuming anything about the direction of gravity, which leaves some interesting doors open for later on.) That’s easily detected by taking the dot product — if it’s negative, the collision was with the ground, and I now have the normal of the ground.

Actually doing this in practice was slightly tricky. With my LÖVE engine, I could cram this right into the middle of collision resolution. With Unity, not quite so much. I went through a couple iterations before I really grasped Unity’s execution order, which I guess I will have to briefly recap for this to make sense.

Unity essentially has two update cycles. It performs physics updates at fixed intervals for consistency, and updates everything else just before rendering. Within a single frame, Unity does as many fixed physics updates as it has spare time for (which might be zero, one, or more), then does a regular update, then renders. User code can implement either or both of Update, which runs during a regular update, and FixedUpdate, which runs just before Unity does a physics pass.

So my solution was:

  • At the very end of FixedUpdate, clear the actor’s “on ground” flag and ground normal.

  • During OnCollisionEnter2D and OnCollisionStay2D (which are called from within a physics pass), if there’s a collision that looks like it’s with the ground, set the “on ground” flag and ground normal. (If there are multiple ground collisions, well, good luck figuring out the best way to resolve that! At the moment I’m just taking the first and hoping for the best.)

That means there’s a brief window between the end of FixedUpdate and Unity’s physics pass during which a grounded actor might mistakenly believe it’s not on the ground, which is a bit of a shame, but there are very few good reasons for anything to be happening in that window.

Okay! Now we can do slopes.

Just kidding! First we have to do sliding.

When I first looked at this code, it didn’t apply gravity while the player was on the ground. I think I may have had some problems with detecting the ground as result, since the player was no longer pushing down against it? Either way, it seemed like a silly special case, so I made gravity always apply.

Lo! I was a fool. The player could no longer move.

Why? Because MovePosition does exactly what it promises. If the player collides with something, they’ll stop moving. Applying gravity means that the player is trying to move diagonally downwards into the ground, and so MovePosition stops them immediately.

Hence, sliding. I don’t want the player to actually try to move into the ground. I want them to move the unblocked part of that movement. For flat ground, that means the horizontal part, which is pretty much the same as discarding gravity. For sloped ground, it’s a bit more complicated!

Okay but actually it’s less complicated than you’d think. It can be done with some cross products fairly easily, but Unity makes it even easier with a couple casts. There’s a Vector3.ProjectOnPlane function that projects an arbitrary vector on a plane given by its normal — exactly the thing I want! So I apply that to the attempted movement before passing it along to MovePosition. I do the same thing with the current velocity, to prevent the player from accelerating infinitely downwards while standing on flat ground.

One other thing: I don’t actually use the detected ground normal for this. The player might be touching two ground surfaces at the same time, and I’d want to project on both of them. Instead, I use the player body’s GetContacts method, which returns contact points (and normals!) for everything the player is currently touching. I believe those contact points are tracked by the physics engine anyway, so asking for them doesn’t require any actual physics work.

(Looking at the code I have, I notice that I still only perform the slide for surfaces facing upwards — but I’d want to slide against sloped ceilings, too. Why did I do this? Maybe I should remove that.)

(Also, I’m pretty sure projecting a vector on a plane is non-commutative, which raises the question of which order the projections should happen in and what difference it makes. I don’t have a good answer.)

(I note that my LÖVE setup does something slightly different: it just tries whatever the movement ought to be, and if there’s a collision, then it projects — and tries again with the remaining movement. But I can’t ask Unity to do multiple moves in one physics update, alas.)

Okay! Now, slopes. But actually, with the above work done, slopes are most of the way there already.

One obvious problem is that the player tries to move horizontally even when on a slope, and the easy fix is to change their movement from speed * Vector2.right to speed * new Vector2(ground.y, -ground.x) while on the ground. That’s the ground normal rotated a quarter-turn clockwise, so for flat ground it still points to the right, and in general it points rightwards along the ground. (Note that it assumes the ground normal is a unit vector, but as far as I’m aware, that’s true for all the normals Unity gives you.)

Another issue is that if the player stands motionless on a slope, gravity will cause them to slowly slide down it — because the movement from gravity will be projected onto the slope, and unlike flat ground, the result is no longer zero. For conscious actors only, I counter this by adding the opposite factor to the player’s velocity as part of adding in their walking speed. This matches how the real world works, to some extent: when you’re standing on a hill, you’re exerting some small amount of effort just to stay in place.

(Note that slope resistance is not the same as friction. Okay, yes, in the real world, virtually all resistance to movement happens as a result of friction, but bracing yourself against the ground isn’t the same as being passively resisted.)

From here there are a lot of things you can do, depending on how you think slopes should be handled. You could make the player unable to walk up slopes that are too steep. You could make walking down a slope faster than walking up it. You could make jumping go along the ground normal, rather than straight up. You could raise the player’s max allowed speed while running downhill. Whatever you want, really. Armed with a normal and awareness of dot products, you can do whatever you want.

But first you might want to fix a few aggravating side effects.

Problem 3: Ground adherence

I don’t know if there’s a better name for this. I rarely even see anyone talk about it, which surprises me; it seems like it should be a very common problem.

The problem is: if the player runs up a slope which then abruptly changes to flat ground, their momentum will carry them into the air. For very fast players going off the top of very steep slopes, this makes sense, but it becomes visible even for relatively gentle slopes. It was a mild nightmare in the original release of our game Lunar Depot 38, which has very “rough” ground made up of lots of shallow slopes — so the player is very frequently slightly off the ground, which meant they couldn’t jump, for seemingly no reason. (I even had code to fix this, but I disabled it because of a silly visual side effect that I never got around to fixing.)

Anyway! The reason this is a problem is that game protagonists are generally not boxes sliding around — they have legs. We don’t go flying off the top of real-world hilltops because we put our foot down until it touches the ground.

Simulating this footfall is surprisingly fiddly to get right, especially with someone else’s physics engine. It’s made somewhat easier by Cast, which casts the entire hitbox — no matter what shape it is — in a particular direction, as if it had moved, and tells you all the hypothetical collisions in order.

So I cast the player in the direction of gravity by some distance. If the cast hits something solid with a ground-like collision normal, then the player must be close to the ground, and I move them down to touch it (and set that ground as the new ground normal).

There are some wrinkles.

Wrinkle 1: I only want to do this if the player is off the ground now, but was on the ground last frame, and is not deliberately moving upwards. That latter condition means I want to skip this logic if the player jumps, for example, but also if the player is thrust upwards by a spring or abducted by a UFO or whatever. As long as external code goes through some interface and doesn’t mess with the player’s velocity directly, that shouldn’t be too hard to track.

Wrinkle 2: When does this logic run? It needs to happen after the player moves, which means after a Unity physics pass… but there’s no callback for that point in time. I ended up running it at the beginning of FixedUpdate and the beginning of Update — since I definitely want to do it before rendering happens! That means it’ll sometimes happen twice between physics updates. (I could carefully juggle a flag to skip the second run, but I… didn’t do that. Yet?)

Wrinkle 3: I can’t move the player with MovePosition! Remember, MovePosition schedules a movement, it doesn’t actually perform one; that means if it’s called twice before the physics pass, the first call is effectively ignored. I can’t easily combine the drop with the player’s regular movement, for various fiddly reasons. I ended up doing it “by hand” using transform.Translate, which I think was the “old way” to do manual movement before MovePosition existed. I’m not totally sure if it activates triggers? For that matter, I’m not sure it even notices collisions — but since I did a full-body Cast, there shouldn’t be any anyway.

Wrinkle 4: What, exactly, is “some distance”? I’ve yet to find a satisfying answer for this. It seems like it ought to be based on the player’s current speed and the slope of the ground they’re moving along, but every time I’ve done that math, I’ve gotten totally ludicrous answers that sometimes exceed the size of a tile. But maybe that’s not wrong? Play around, I guess, and think about when the effect should “break” and the player should go flying off the top of a hill.

Wrinkle 5: It’s possible that the player will launch off a slope, hit something, and then be adhered to the ground where they wouldn’t have hit it. I don’t much like this edge case, but I don’t see a way around it either.

This problem is surprisingly awkward for how simple it sounds, and the solution isn’t entirely satisfying. Oh, well; the results are much nicer than the solution. As an added bonus, this also fixes occasional problems with running down a hill and becoming detached from the ground due to precision issues or whathaveyou.

Problem 4: One-way platforms

Ah, what a nightmare.

It took me ages just to figure out how to define one-way platforms. Only block when the player is moving downwards? Nope. Only block when the player is above the platform? Nuh-uh.

Well, okay, yes, those approaches might work for convex players and flat platforms. But what about… sloped, one-way platforms? There’s no reason you shouldn’t be able to have those. If Super Mario World can do it, surely Unity can do it almost 30 years later.

The trick is, again, to look at the collision normal. If it faces away from gravity, the player is hitting a ground-like surface, so the platform should block them. Otherwise (or if the player overlaps the platform), it shouldn’t.

Here’s the catch: Unity doesn’t have conditional collision. I can’t decide, on the fly, whether a collision should block or not. In fact, I think that by the time I get a callback like OnCollisionEnter2D, the physics pass is already over.

I could go the other way and use triggers (which are non-blocking), but then I have the opposite problem: I can’t stop the player on the fly. I could move them back to where they hit the trigger, but I envision all kinds of problems as a result. What if they were moving fast enough to activate something on the other side of the platform? What if something else moved to where I’m trying to shove them back to in the meantime? How does this interact with ground detection and listing contacts, which would rightly ignore a trigger as non-blocking?

I beat my head against this for a while, but the inability to respond to collision conditionally was a huge roadblock. It’s all the more infuriating a problem, because Unity ships with a one-way platform modifier thing. Unfortunately, it seems to have been implemented by someone who has never played a platformer. It’s literally one-way — the player is only allowed to move straight upwards through it, not in from the sides. It also tries to block the player if they’re moving downwards while inside the platform, which invokes clumsy rejection behavior. And this all seems to be built into the physics engine itself somehow, so I can’t simply copy whatever they did.

Eventually, I settled on the following. After calculating attempted movement (including sliding), just at the end of FixedUpdate, I do a Cast along the movement vector. I’m not thrilled about having to duplicate the physics engine’s own work, but I do filter to only things on a “one-way platform” physics layer, which should at least help. For each object the cast hits, I use Physics2D.IgnoreCollision to either ignore or un-ignore the collision between the player and the platform, depending on whether the collision was ground-like or not.

(A lot of people suggested turning off collision between layers, but that can’t possibly work — the player might be standing on one platform while inside another, and anyway, this should work for all actors!)

Again, wrinkles! But fewer this time. Actually, maybe just one: handling the case where the player already overlaps the platform. I can’t just check for that with e.g. OverlapCollider, because that doesn’t distinguish between overlapping and merely touching.

I came up with a fairly simple fix: if I was going to un-ignore the collision (i.e. make the platform block), and the cast distance is reported as zero (either already touching or overlapping), I simply do nothing instead. If I’m standing on the platform, I must have already set it blocking when I was approaching it from the top anyway; if I’m overlapping it, I must have already set it non-blocking to get here in the first place.

I can imagine a few cases where this might go wrong. Moving platforms, especially, are going to cause some interesting issues. But this is the best I can do with what I know, and it seems to work well enough so far.

Oh, and our player can deliberately drop down through platforms, which was easy enough to implement; I just decide the platform is always passable while some button is held down.

Problem 5: Pushers and carriers

I haven’t gotten to this yet! Oh boy, can’t wait. I implemented it in LÖVE, but my way was hilariously invasive; I’m hoping that having a physics engine that supports a handwaved “this pushes that” will help. Of course, you also have to worry about sticking to platforms, for which the recommended solution is apparently to parent the cargo to the platform, which sounds goofy to me? I guess I’ll find out when I throw myself at it later.

Overall result

I ended up with a fairly pleasant-feeling system that supports slopes and one-way platforms and whatnot, with all the same pieces as I came up with for LÖVE. The code somehow ended up as less of a mess, too, but it probably helps that I’ve been down this rabbit hole once before and kinda knew what I was aiming for this time.

Animation of a character running smoothly along the top of an irregular dinosaur skeleton

Sorry that I don’t have a big block of code for you to copy-paste into your project. I don’t think there are nearly enough narrative discussions of these fundamentals, though, so hopefully this is useful to someone. If not, well, look forward to ✨ my book, that I am writing ✨!

Predict Billboard Top 10 Hits Using RStudio, H2O and Amazon Athena

Post Syndicated from Gopal Wunnava original https://aws.amazon.com/blogs/big-data/predict-billboard-top-10-hits-using-rstudio-h2o-and-amazon-athena/

Success in the popular music industry is typically measured in terms of the number of Top 10 hits artists have to their credit. The music industry is a highly competitive multi-billion dollar business, and record labels incur various costs in exchange for a percentage of the profits from sales and concert tickets.

Predicting the success of an artist’s release in the popular music industry can be difficult. One release may be extremely popular, resulting in widespread play on TV, radio and social media, while another single may turn out quite unpopular, and therefore unprofitable. Record labels need to be selective in their decision making, and predictive analytics can help them with decision making around the type of songs and artists they need to promote.

In this walkthrough, you leverage H2O.ai, Amazon Athena, and RStudio to make predictions on whether a song might make it to the Top 10 Billboard charts. You explore the GLM, GBM, and deep learning modeling techniques using H2O’s rapid, distributed and easy-to-use open source parallel processing engine. RStudio is a popular IDE, licensed either commercially or under AGPLv3, for working with R. This is ideal if you don’t want to connect to a server via SSH and use code editors such as vi to do analytics. RStudio is available in a desktop version, or a server version that allows you to access R via a web browser. RStudio’s Notebooks feature is used to demonstrate the execution of code and output. In addition, this post showcases how you can leverage Athena for query and interactive analysis during the modeling phase. A working knowledge of statistics and machine learning would be helpful to interpret the analysis being performed in this post.

Walkthrough

Your goal is to predict whether a song will make it to the Top 10 Billboard charts. For this purpose, you will be using multiple modeling techniques―namely GLM, GBM and deep learning―and choose the model that is the best fit.

This solution involves the following steps:

  • Install and configure RStudio with Athena
  • Log in to RStudio
  • Install R packages
  • Connect to Athena
  • Create a dataset
  • Create models

Install and configure RStudio with Athena

Use the following AWS CloudFormation stack to install, configure, and connect RStudio on an Amazon EC2 instance with Athena.

Launching this stack creates all required resources and prerequisites:

  • Amazon EC2 instance with Amazon Linux (minimum size of t2.large is recommended)
  • Provisioning of the EC2 instance in an existing VPC and public subnet
  • Installation of Java 8
  • Assignment of an IAM role to the EC2 instance with the required permissions for accessing Athena and Amazon S3
  • Security group allowing access to the RStudio and SSH ports from the internet (I recommend restricting access to these ports)
  • S3 staging bucket required for Athena (referenced within RStudio as ATHENABUCKET)
  • RStudio username and password
  • Setup logs in Amazon CloudWatch Logs (if needed for additional troubleshooting)
  • Amazon EC2 Systems Manager agent, which makes it easy to manage and patch

All AWS resources are created in the US-East-1 Region. To avoid cross-region data transfer fees, launch the CloudFormation stack in the same region. To check the availability of Athena in other regions, see Region Table.

Log in to RStudio

The instance security group has been automatically configured to allow incoming connections on the RStudio port 8787 from any source internet address. You can edit the security group to restrict source IP access. If you have trouble connecting, ensure that port 8787 isn’t blocked by subnet network ACLS or by your outgoing proxy/firewall.

  1. In the CloudFormation stack, choose Outputs, Value, and then open the RStudio URL. You might need to wait for a few minutes until the instance has been launched.
  2. Log in to RStudio with the and password you provided during setup.

Install R packages

Next, install the required R packages from the RStudio console. You can download the R notebook file containing just the code.

#install pacman – a handy package manager for managing installs
if("pacman" %in% rownames(installed.packages()) == FALSE)
{install.packages("pacman")}  
library(pacman)
p_load(h2o,rJava,RJDBC,awsjavasdk)
h2o.init(nthreads = -1)
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 hours 42 minutes 
##     H2O cluster version:        3.10.4.6 
##     H2O cluster version age:    4 months and 4 days !!! 
##     H2O cluster name:           H2O_started_from_R_rstudio_hjx881 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.30 GB 
##     H2O cluster total cores:    4 
##     H2O cluster allowed cores:  4 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 3.3.3 (2017-03-06)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is too old (4 months and 4 days)!
## Please download and install the latest version from http://h2o.ai/download/
#install aws sdk if not present (pre-requisite for using Athena with an IAM role)
if (!aws_sdk_present()) {
  install_aws_sdk()
}

load_sdk()
## NULL

Connect to Athena

Next, establish a connection to Athena from RStudio, using an IAM role associated with your EC2 instance. Use ATHENABUCKET to specify the S3 staging directory.

URL <- 'https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.0.1.jar'
fil <- basename(URL)
#download the file into current working directory
if (!file.exists(fil)) download.file(URL, fil)
#verify that the file has been downloaded successfully
list.files()
## [1] "AthenaJDBC41-1.0.1.jar"
drv <- JDBC(driverClass="com.amazonaws.athena.jdbc.AthenaDriver", fil, identifier.quote="'")

con <- jdbcConnection <- dbConnect(drv, 'jdbc:awsathena://athena.us-east-1.amazonaws.com:443/',
                                   s3_staging_dir=Sys.getenv("ATHENABUCKET"),
                                   aws_credentials_provider_class="com.amazonaws.auth.DefaultAWSCredentialsProviderChain")

Verify the connection. The results returned depend on your specific Athena setup.

con
## <JDBCConnection>
dbListTables(con)
##  [1] "gdelt"               "wikistats"           "elb_logs_raw_native"
##  [4] "twitter"             "twitter2"            "usermovieratings"   
##  [7] "eventcodes"          "events"              "billboard"          
## [10] "billboardtop10"      "elb_logs"            "gdelthist"          
## [13] "gdeltmaster"         "twitter"             "twitter3"

Create a dataset

For this analysis, you use a sample dataset combining information from Billboard and Wikipedia with Echo Nest data in the Million Songs Dataset. Upload this dataset into your own S3 bucket. The table below provides a description of the fields used in this dataset.

Field Description
year Year that song was released
songtitle Title of the song
artistname Name of the song artist
songid Unique identifier for the song
artistid Unique identifier for the song artist
timesignature Variable estimating the time signature of the song
timesignature_confidence Confidence in the estimate for the timesignature
loudness Continuous variable indicating the average amplitude of the audio in decibels
tempo Variable indicating the estimated beats per minute of the song
tempo_confidence Confidence in the estimate for tempo
key Variable with twelve levels indicating the estimated key of the song (C, C#, B)
key_confidence Confidence in the estimate for key
energy Variable that represents the overall acoustic energy of the song, using a mix of features such as loudness
pitch Continuous variable that indicates the pitch of the song
timbre_0_min thru timbre_11_min Variables that indicate the minimum values over all segments for each of the twelve values in the timbre vector
timbre_0_max thru timbre_11_max Variables that indicate the maximum values over all segments for each of the twelve values in the timbre vector
top10 Indicator for whether or not the song made it to the Top 10 of the Billboard charts (1 if it was in the top 10, and 0 if not)

Create an Athena table based on the dataset

In the Athena console, select the default database, sampled, or create a new database.

Run the following create table statement.

create external table if not exists billboard
(
year int,
songtitle string,
artistname string,
songID string,
artistID string,
timesignature int,
timesignature_confidence double,
loudness double,
tempo double,
tempo_confidence double,
key int,
key_confidence double,
energy double,
pitch double,
timbre_0_min double,
timbre_0_max double,
timbre_1_min double,
timbre_1_max double,
timbre_2_min double,
timbre_2_max double,
timbre_3_min double,
timbre_3_max double,
timbre_4_min double,
timbre_4_max double,
timbre_5_min double,
timbre_5_max double,
timbre_6_min double,
timbre_6_max double,
timbre_7_min double,
timbre_7_max double,
timbre_8_min double,
timbre_8_max double,
timbre_9_min double,
timbre_9_max double,
timbre_10_min double,
timbre_10_max double,
timbre_11_min double,
timbre_11_max double,
Top10 int
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION 's3://aws-bigdata-blog/artifacts/predict-billboard/data'
;

Inspect the table definition for the ‘billboard’ table that you have created. If you chose a database other than sampledb, replace that value with your choice.

dbGetQuery(con, "show create table sampledb.billboard")
##                                      createtab_stmt
## 1       CREATE EXTERNAL TABLE `sampledb.billboard`(
## 2                                       `year` int,
## 3                               `songtitle` string,
## 4                              `artistname` string,
## 5                                  `songid` string,
## 6                                `artistid` string,
## 7                              `timesignature` int,
## 8                `timesignature_confidence` double,
## 9                                `loudness` double,
## 10                                  `tempo` double,
## 11                       `tempo_confidence` double,
## 12                                       `key` int,
## 13                         `key_confidence` double,
## 14                                 `energy` double,
## 15                                  `pitch` double,
## 16                           `timbre_0_min` double,
## 17                           `timbre_0_max` double,
## 18                           `timbre_1_min` double,
## 19                           `timbre_1_max` double,
## 20                           `timbre_2_min` double,
## 21                           `timbre_2_max` double,
## 22                           `timbre_3_min` double,
## 23                           `timbre_3_max` double,
## 24                           `timbre_4_min` double,
## 25                           `timbre_4_max` double,
## 26                           `timbre_5_min` double,
## 27                           `timbre_5_max` double,
## 28                           `timbre_6_min` double,
## 29                           `timbre_6_max` double,
## 30                           `timbre_7_min` double,
## 31                           `timbre_7_max` double,
## 32                           `timbre_8_min` double,
## 33                           `timbre_8_max` double,
## 34                           `timbre_9_min` double,
## 35                           `timbre_9_max` double,
## 36                          `timbre_10_min` double,
## 37                          `timbre_10_max` double,
## 38                          `timbre_11_min` double,
## 39                          `timbre_11_max` double,
## 40                                     `top10` int)
## 41                             ROW FORMAT DELIMITED 
## 42                         FIELDS TERMINATED BY ',' 
## 43                            STORED AS INPUTFORMAT 
## 44       'org.apache.hadoop.mapred.TextInputFormat' 
## 45                                     OUTPUTFORMAT 
## 46  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
## 47                                        LOCATION
## 48    's3://aws-bigdata-blog/artifacts/predict-billboard/data'
## 49                                  TBLPROPERTIES (
## 50            'transient_lastDdlTime'='1505484133')

Run a sample query

Next, run a sample query to obtain a list of all songs from Janet Jackson that made it to the Billboard Top 10 charts.

dbGetQuery(con, " SELECT songtitle,artistname,top10   FROM sampledb.billboard WHERE lower(artistname) =     'janet jackson' AND top10 = 1")
##                       songtitle    artistname top10
## 1                       Runaway Janet Jackson     1
## 2               Because Of Love Janet Jackson     1
## 3                         Again Janet Jackson     1
## 4                            If Janet Jackson     1
## 5  Love Will Never Do (Without You) Janet Jackson 1
## 6                     Black Cat Janet Jackson     1
## 7               Come Back To Me Janet Jackson     1
## 8                       Alright Janet Jackson     1
## 9                      Escapade Janet Jackson     1
## 10                Rhythm Nation Janet Jackson     1

Determine how many songs in this dataset are specifically from the year 2010.

dbGetQuery(con, " SELECT count(*)   FROM sampledb.billboard WHERE year = 2010")
##   _col0
## 1   373

The sample dataset provides certain song properties of interest that can be analyzed to gauge the impact to the song’s overall popularity. Look at one such property, timesignature, and determine the value that is the most frequent among songs in the database. Timesignature is a measure of the number of beats and the type of note involved.

Running the query directly may result in an error, as shown in the commented lines below. This error is a result of trying to retrieve a large result set over a JDBC connection, which can cause out-of-memory issues at the client level. To address this, reduce the fetch size and run again.

#t<-dbGetQuery(con, " SELECT timesignature FROM sampledb.billboard")
#Note:  Running the preceding query results in the following error: 
#Error in .jcall(rp, "I", "fetch", stride, block): java.sql.SQLException: The requested #fetchSize is more than the allowed value in Athena. Please reduce the fetchSize and try #again. Refer to the Athena documentation for valid fetchSize values.
# Use the dbSendQuery function, reduce the fetch size, and run again
r <- dbSendQuery(con, " SELECT timesignature     FROM sampledb.billboard")
dftimesignature<- fetch(r, n=-1, block=100)
dbClearResult(r)
## [1] TRUE
table(dftimesignature)
## dftimesignature
##    0    1    3    4    5    7 
##   10  143  503 6787  112   19
nrow(dftimesignature)
## [1] 7574

From the results, observe that 6787 songs have a timesignature of 4.

Next, determine the song with the highest tempo.

dbGetQuery(con, " SELECT songtitle,artistname,tempo   FROM sampledb.billboard WHERE tempo = (SELECT max(tempo) FROM sampledb.billboard) ")
##                   songtitle      artistname   tempo
## 1 Wanna Be Startin' Somethin' Michael Jackson 244.307

Create the training dataset

Your model needs to be trained such that it can learn and make accurate predictions. Split the data into training and test datasets, and create the training dataset first.  This dataset contains all observations from the year 2009 and earlier. You may face the same JDBC connection issue pointed out earlier, so this query uses a fetch size.

#BillboardTrain <- dbGetQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
#Running the preceding query results in the following error:-
#Error in .verify.JDBC.result(r, "Unable to retrieve JDBC result set for ", : Unable to retrieve #JDBC result set for SELECT * FROM sampledb.billboard WHERE year <= 2009 (Internal error)
#Follow the same approach as before to address this issue.

r <- dbSendQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
BillboardTrain <- fetch(r, n=-1, block=100)
dbClearResult(r)
## [1] TRUE
BillboardTrain[1:2,c(1:3,6:10)]
##   year           songtitle artistname timesignature
## 1 2009 The Awkward Goodbye    Athlete             3
## 2 2009        Rubik's Cube    Athlete             3
##   timesignature_confidence loudness   tempo tempo_confidence
## 1                    0.732   -6.320  89.614   0.652
## 2                    0.906   -9.541 117.742   0.542
nrow(BillboardTrain)
## [1] 7201

Create the test dataset

BillboardTest <- dbGetQuery(con, "SELECT * FROM sampledb.billboard where year = 2010")
BillboardTest[1:2,c(1:3,11:15)]
##   year              songtitle        artistname key
## 1 2010 This Is the House That Doubt Built A Day to Remember  11
## 2 2010        Sticks & Bricks A Day to Remember  10
##   key_confidence    energy pitch timbre_0_min
## 1          0.453 0.9666556 0.024        0.002
## 2          0.469 0.9847095 0.025        0.000
nrow(BillboardTest)
## [1] 373

Convert the training and test datasets into H2O dataframes

train.h2o <- as.h2o(BillboardTrain)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
test.h2o <- as.h2o(BillboardTest)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%

Inspect the column names in your H2O dataframes.

colnames(train.h2o)
##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"

Create models

You need to designate the independent and dependent variables prior to applying your modeling algorithms. Because you’re trying to predict the ‘top10’ field, this would be your dependent variable and everything else would be independent.

Create your first model using GLM. Because GLM works best with numeric data, you create your model by dropping non-numeric variables. You only use the variables in the dataset that describe the numerical attributes of the song in the logistic regression model. You won’t use these variables:  “year”, “songtitle”, “artistname”, “songid”, or “artistid”.

y.dep <- 39
x.indep <- c(6:38)
x.indep
##  [1]  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
## [24] 29 30 31 32 33 34 35 36 37 38

Create Model 1: All numeric variables

Create Model 1 with the training dataset, using GLM as the modeling algorithm and H2O’s built-in h2o.glm function.

modelh1 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=====                                                            |   8%
  |                                                                       
  |=================================================================| 100%

Measure the performance of Model 1, using H2O’s built-in performance function.

h2o.performance(model=modelh1,newdata=test.h2o)
## H2OBinomialMetrics: glm
## 
## MSE:  0.09924684
## RMSE:  0.3150347
## LogLoss:  0.3220267
## Mean Per-Class Error:  0.2380168
## AUC:  0.8431394
## Gini:  0.6862787
## R^2:  0.254663
## Null Deviance:  326.0801
## Residual Deviance:  240.2319
## AIC:  308.2319
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0   1    Error     Rate
## 0      255  59 0.187898  =59/314
## 1       17  42 0.288136   =17/59
## Totals 272 101 0.203753  =76/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.192772 0.525000 100
## 2                       max f2  0.124912 0.650510 155
## 3                 max f0point5  0.416258 0.612903  23
## 4                 max accuracy  0.416258 0.879357  23
## 5                max precision  0.813396 1.000000   0
## 6                   max recall  0.037579 1.000000 282
## 7              max specificity  0.813396 1.000000   0
## 8             max absolute_mcc  0.416258 0.455251  23
## 9   max min_per_class_accuracy  0.161402 0.738854 125
## 10 max mean_per_class_accuracy  0.124912 0.765006 155
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or ` 
h2o.auc(h2o.performance(modelh1,test.h2o)) 
## [1] 0.8431394

The AUC metric provides insight into how well the classifier is able to separate the two classes. In this case, the value of 0.8431394 indicates that the classification is good. (A value of 0.5 indicates a worthless test, while a value of 1.0 indicates a perfect test.)

Next, inspect the coefficients of the variables in the dataset.

dfmodelh1 <- as.data.frame(h2o.varimp(modelh1))
dfmodelh1
##                       names coefficients sign
## 1              timbre_0_max  1.290938663  NEG
## 2                  loudness  1.262941934  POS
## 3                     pitch  0.616995941  NEG
## 4              timbre_1_min  0.422323735  POS
## 5              timbre_6_min  0.349016024  NEG
## 6                    energy  0.348092062  NEG
## 7             timbre_11_min  0.307331997  NEG
## 8              timbre_3_max  0.302225619  NEG
## 9             timbre_11_max  0.243632060  POS
## 10             timbre_4_min  0.224233951  POS
## 11             timbre_4_max  0.204134342  POS
## 12             timbre_5_min  0.199149324  NEG
## 13             timbre_0_min  0.195147119  POS
## 14 timesignature_confidence  0.179973904  POS
## 15         tempo_confidence  0.144242598  POS
## 16            timbre_10_max  0.137644568  POS
## 17             timbre_7_min  0.126995955  NEG
## 18            timbre_10_min  0.123851179  POS
## 19             timbre_7_max  0.100031481  NEG
## 20             timbre_2_min  0.096127636  NEG
## 21           key_confidence  0.083115820  POS
## 22             timbre_6_max  0.073712419  POS
## 23            timesignature  0.067241917  POS
## 24             timbre_8_min  0.061301881  POS
## 25             timbre_8_max  0.060041698  POS
## 26                      key  0.056158445  POS
## 27             timbre_3_min  0.050825116  POS
## 28             timbre_9_max  0.033733561  POS
## 29             timbre_2_max  0.030939072  POS
## 30             timbre_9_min  0.020708113  POS
## 31             timbre_1_max  0.014228818  NEG
## 32                    tempo  0.008199861  POS
## 33             timbre_5_max  0.004837870  POS
## 34                                    NA <NA>

Typically, songs with heavier instrumentation tend to be louder (have higher values in the variable “loudness”) and more energetic (have higher values in the variable “energy”). This knowledge is helpful for interpreting the modeling results.

You can make the following observations from the results:

  • The coefficient estimates for the confidence values associated with the time signature, key, and tempo variables are positive. This suggests that higher confidence leads to a higher predicted probability of a Top 10 hit.
  • The coefficient estimate for loudness is positive, meaning that mainstream listeners prefer louder songs with heavier instrumentation.
  • The coefficient estimate for energy is negative, meaning that mainstream listeners prefer songs that are less energetic, which are those songs with light instrumentation.

These coefficients lead to contradictory conclusions for Model 1. This could be due to multicollinearity issues. Inspect the correlation between the variables “loudness” and “energy” in the training set.

cor(train.h2o$loudness,train.h2o$energy)
## [1] 0.7399067

This number indicates that these two variables are highly correlated, and Model 1 does indeed suffer from multicollinearity. Typically, you associate a value of -1.0 to -0.5 or 1.0 to 0.5 to indicate strong correlation, and a value of 0.1 to 0.1 to indicate weak correlation. To avoid this correlation issue, omit one of these two variables and re-create the models.

You build two variations of the original model:

  • Model 2, in which you keep “energy” and omit “loudness”
  • Model 3, in which you keep “loudness” and omit “energy”

You compare these two models and choose the model with a better fit for this use case.

Create Model 2: Keep energy and omit loudness

colnames(train.h2o)
##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:7,9:38)
x.indep
##  [1]  6  7  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh2 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=======                                                          |  10%
  |                                                                       
  |=================================================================| 100%

Measure the performance of Model 2.

h2o.performance(model=modelh2,newdata=test.h2o)
## H2OBinomialMetrics: glm
## 
## MSE:  0.09922606
## RMSE:  0.3150017
## LogLoss:  0.3228213
## Mean Per-Class Error:  0.2490554
## AUC:  0.8431933
## Gini:  0.6863867
## R^2:  0.2548191
## Null Deviance:  326.0801
## Residual Deviance:  240.8247
## AIC:  306.8247
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      280 34 0.108280  =34/314
## 1       23 36 0.389831   =23/59
## Totals 303 70 0.152815  =57/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.254391 0.558140  69
## 2                       max f2  0.113031 0.647208 157
## 3                 max f0point5  0.413999 0.596026  22
## 4                 max accuracy  0.446250 0.876676  18
## 5                max precision  0.811739 1.000000   0
## 6                   max recall  0.037682 1.000000 283
## 7              max specificity  0.811739 1.000000   0
## 8             max absolute_mcc  0.254391 0.469060  69
## 9   max min_per_class_accuracy  0.141051 0.716561 131
## 10 max mean_per_class_accuracy  0.113031 0.761821 157
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh2 <- as.data.frame(h2o.varimp(modelh2))
dfmodelh2
##                       names coefficients sign
## 1                     pitch  0.700331511  NEG
## 2              timbre_1_min  0.510270513  POS
## 3              timbre_0_max  0.402059546  NEG
## 4              timbre_6_min  0.333316236  NEG
## 5             timbre_11_min  0.331647383  NEG
## 6              timbre_3_max  0.252425901  NEG
## 7             timbre_11_max  0.227500308  POS
## 8              timbre_4_max  0.210663865  POS
## 9              timbre_0_min  0.208516163  POS
## 10             timbre_5_min  0.202748055  NEG
## 11             timbre_4_min  0.197246582  POS
## 12            timbre_10_max  0.172729619  POS
## 13         tempo_confidence  0.167523934  POS
## 14 timesignature_confidence  0.167398830  POS
## 15             timbre_7_min  0.142450727  NEG
## 16             timbre_8_max  0.093377516  POS
## 17            timbre_10_min  0.090333426  POS
## 18            timesignature  0.085851625  POS
## 19             timbre_7_max  0.083948442  NEG
## 20           key_confidence  0.079657073  POS
## 21             timbre_6_max  0.076426046  POS
## 22             timbre_2_min  0.071957831  NEG
## 23             timbre_9_max  0.071393189  POS
## 24             timbre_8_min  0.070225578  POS
## 25                      key  0.061394702  POS
## 26             timbre_3_min  0.048384697  POS
## 27             timbre_1_max  0.044721121  NEG
## 28                   energy  0.039698433  POS
## 29             timbre_5_max  0.039469064  POS
## 30             timbre_2_max  0.018461133  POS
## 31                    tempo  0.013279926  POS
## 32             timbre_9_min  0.005282143  NEG
## 33                                    NA <NA>

h2o.auc(h2o.performance(modelh2,test.h2o)) 
## [1] 0.8431933

You can make the following observations:

  • The AUC metric is 0.8431933.
  • Inspecting the coefficient of the variable energy, Model 2 suggests that songs with high energy levels tend to be more popular. This is as per expectation.
  • As H2O orders variables by significance, the variable energy is not significant in this model.

You can conclude that Model 2 is not ideal for this use , as energy is not significant.

CreateModel 3: Keep loudness but omit energy

colnames(train.h2o)
##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:12,14:38)
x.indep
##  [1]  6  7  8  9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh3 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |========                                                         |  12%
  |                                                                       
  |=================================================================| 100%
perfh3<-h2o.performance(model=modelh3,newdata=test.h2o)
perfh3
## H2OBinomialMetrics: glm
## 
## MSE:  0.0978859
## RMSE:  0.3128672
## LogLoss:  0.3178367
## Mean Per-Class Error:  0.264925
## AUC:  0.8492389
## Gini:  0.6984778
## R^2:  0.2648836
## Null Deviance:  326.0801
## Residual Deviance:  237.1062
## AIC:  303.1062
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      286 28 0.089172  =28/314
## 1       26 33 0.440678   =26/59
## Totals 312 61 0.144772  =54/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.273799 0.550000  60
## 2                       max f2  0.125503 0.663265 155
## 3                 max f0point5  0.435479 0.628931  24
## 4                 max accuracy  0.435479 0.882038  24
## 5                max precision  0.821606 1.000000   0
## 6                   max recall  0.038328 1.000000 280
## 7              max specificity  0.821606 1.000000   0
## 8             max absolute_mcc  0.435479 0.471426  24
## 9   max min_per_class_accuracy  0.173693 0.745763 120
## 10 max mean_per_class_accuracy  0.125503 0.775073 155
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh3 <- as.data.frame(h2o.varimp(modelh3))
dfmodelh3
##                       names coefficients sign
## 1              timbre_0_max 1.216621e+00  NEG
## 2                  loudness 9.780973e-01  POS
## 3                     pitch 7.249788e-01  NEG
## 4              timbre_1_min 3.891197e-01  POS
## 5              timbre_6_min 3.689193e-01  NEG
## 6             timbre_11_min 3.086673e-01  NEG
## 7              timbre_3_max 3.025593e-01  NEG
## 8             timbre_11_max 2.459081e-01  POS
## 9              timbre_4_min 2.379749e-01  POS
## 10             timbre_4_max 2.157627e-01  POS
## 11             timbre_0_min 1.859531e-01  POS
## 12             timbre_5_min 1.846128e-01  NEG
## 13 timesignature_confidence 1.729658e-01  POS
## 14             timbre_7_min 1.431871e-01  NEG
## 15            timbre_10_max 1.366703e-01  POS
## 16            timbre_10_min 1.215954e-01  POS
## 17         tempo_confidence 1.183698e-01  POS
## 18             timbre_2_min 1.019149e-01  NEG
## 19           key_confidence 9.109701e-02  POS
## 20             timbre_7_max 8.987908e-02  NEG
## 21             timbre_6_max 6.935132e-02  POS
## 22             timbre_8_max 6.878241e-02  POS
## 23            timesignature 6.120105e-02  POS
## 24                      key 5.814805e-02  POS
## 25             timbre_8_min 5.759228e-02  POS
## 26             timbre_1_max 2.930285e-02  NEG
## 27             timbre_9_max 2.843755e-02  POS
## 28             timbre_3_min 2.380245e-02  POS
## 29             timbre_2_max 1.917035e-02  POS
## 30             timbre_5_max 1.715813e-02  POS
## 31                    tempo 1.364418e-02  NEG
## 32             timbre_9_min 8.463143e-05  NEG
## 33                                    NA <NA>
h2o.sensitivity(perfh3,0.5)
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501855569251422. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.2033898
h2o.auc(perfh3)
## [1] 0.8492389

You can make the following observations:

  • The AUC metric is 0.8492389.
  • From the confusion matrix, the model correctly predicts that 33 songs will be top 10 hits (true positives). However, it has 26 false positives (songs that the model predicted would be Top 10 hits, but ended up not being Top 10 hits).
  • Loudness has a positive coefficient estimate, meaning that this model predicts that songs with heavier instrumentation tend to be more popular. This is the same conclusion from Model 2.
  • Loudness is significant in this model.

Overall, Model 3 predicts a higher number of top 10 hits with an accuracy rate that is acceptable. To choose the best fit for production runs, record labels should consider the following factors:

  • Desired model accuracy at a given threshold
  • Number of correct predictions for top10 hits
  • Tolerable number of false positives or false negatives

Next, make predictions using Model 3 on the test dataset.

predict.regh <- h2o.predict(modelh3, test.h2o)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
print(predict.regh)
##   predict        p0          p1
## 1       0 0.9654739 0.034526052
## 2       0 0.9654748 0.034525236
## 3       0 0.9635547 0.036445318
## 4       0 0.9343579 0.065642149
## 5       0 0.9978334 0.002166601
## 6       0 0.9779949 0.022005078
## 
## [373 rows x 3 columns]
predict.regh$predict
##   predict
## 1       0
## 2       0
## 3       0
## 4       0
## 5       0
## 6       0
## 
## [373 rows x 1 column]
dpr<-as.data.frame(predict.regh)
#Rename the predicted column 
colnames(dpr)[colnames(dpr) == 'predict'] <- 'predict_top10'
table(dpr$predict_top10)
## 
##   0   1 
## 312  61

The first set of output results specifies the probabilities associated with each predicted observation.  For example, observation 1 is 96.54739% likely to not be a Top 10 hit, and 3.4526052% likely to be a Top 10 hit (predict=1 indicates Top 10 hit and predict=0 indicates not a Top 10 hit).  The second set of results list the actual predictions made.  From the third set of results, this model predicts that 61 songs will be top 10 hits.

Compute the baseline accuracy, by assuming that the baseline predicts the most frequent outcome, which is that most songs are not Top 10 hits.

table(BillboardTest$top10)
## 
##   0   1 
## 314  59

Now observe that the baseline model would get 314 observations correct, and 59 wrong, for an accuracy of 314/(314+59) = 0.8418231.

It seems that Model 3, with an accuracy of 0.8552, provides you with a small improvement over the baseline model. But is this model useful for record labels?

View the two models from an investment perspective:

  • A production company is interested in investing in songs that are more likely to make it to the Top 10. The company’s objective is to minimize the risk of financial losses attributed to investing in songs that end up unpopular.
  • How many songs does Model 3 correctly predict as a Top 10 hit in 2010? Looking at the confusion matrix, you see that it predicts 33 top 10 hits correctly at an optimal threshold, which is more than half the number
  • It will be more useful to the record label if you can provide the production company with a list of songs that are highly likely to end up in the Top 10.
  • The baseline model is not useful, as it simply does not label any song as a hit.

Considering the three models built so far, you can conclude that Model 3 proves to be the best investment choice for the record label.

GBM model

H2O provides you with the ability to explore other learning models, such as GBM and deep learning. Explore building a model using the GBM technique, using the built-in h2o.gbm function.

Before you do this, you need to convert the target variable to a factor for multinomial classification techniques.

train.h2o$top10=as.factor(train.h2o$top10)
gbm.modelh <- h2o.gbm(y=y.dep, x=x.indep, training_frame = train.h2o, ntrees = 500, max_depth = 4, learn_rate = 0.01, seed = 1122,distribution="multinomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |===                                                              |   5%
  |                                                                       
  |=====                                                            |   7%
  |                                                                       
  |======                                                           |   9%
  |                                                                       
  |=======                                                          |  10%
  |                                                                       
  |======================                                           |  33%
  |                                                                       
  |=====================================                            |  56%
  |                                                                       
  |====================================================             |  79%
  |                                                                       
  |================================================================ |  98%
  |                                                                       
  |=================================================================| 100%
perf.gbmh<-h2o.performance(gbm.modelh,test.h2o)
perf.gbmh
## H2OBinomialMetrics: gbm
## 
## MSE:  0.09860778
## RMSE:  0.3140188
## LogLoss:  0.3206876
## Mean Per-Class Error:  0.2120263
## AUC:  0.8630573
## Gini:  0.7261146
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      266 48 0.152866  =48/314
## 1       16 43 0.271186   =16/59
## Totals 282 91 0.171582  =64/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.189757 0.573333  90
## 2                     max f2  0.130895 0.693717 145
## 3               max f0point5  0.327346 0.598802  26
## 4               max accuracy  0.442757 0.876676  14
## 5              max precision  0.802184 1.000000   0
## 6                 max recall  0.049990 1.000000 284
## 7            max specificity  0.802184 1.000000   0
## 8           max absolute_mcc  0.169135 0.496486 104
## 9 max min_per_class_accuracy  0.169135 0.796610 104
## 10 max mean_per_class_accuracy  0.169135 0.805948 104
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `
h2o.sensitivity(perf.gbmh,0.5)
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501205344484314. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.1355932
h2o.auc(perf.gbmh)
## [1] 0.8630573

This model correctly predicts 43 top 10 hits, which is 10 more than the number predicted by Model 3. Moreover, the AUC metric is higher than the one obtained from Model 3.

As seen above, H2O’s API provides the ability to obtain key statistical measures required to analyze the models easily, using several built-in functions. The record label can experiment with different parameters to arrive at the model that predicts the maximum number of Top 10 hits at the desired level of accuracy and threshold.

H2O also allows you to experiment with deep learning models. Deep learning models have the ability to learn features implicitly, but can be more expensive computationally.

Now, create a deep learning model with the h2o.deeplearning function, using the same training and test datasets created before. The time taken to run this model depends on the type of EC2 instance chosen for this purpose.  For models that require more computation, consider using accelerated computing instances such as the P2 instance type.

system.time(
  dlearning.modelh <- h2o.deeplearning(y = y.dep,
                                      x = x.indep,
                                      training_frame = train.h2o,
                                      epoch = 250,
                                      hidden = c(250,250),
                                      activation = "Rectifier",
                                      seed = 1122,
                                      distribution="multinomial"
  )
)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |===                                                              |   4%
  |                                                                       
  |=====                                                            |   8%
  |                                                                       
  |========                                                         |  12%
  |                                                                       
  |==========                                                       |  16%
  |                                                                       
  |=============                                                    |  20%
  |                                                                       
  |================                                                 |  24%
  |                                                                       
  |==================                                               |  28%
  |                                                                       
  |=====================                                            |  32%
  |                                                                       
  |=======================                                          |  36%
  |                                                                       
  |==========================                                       |  40%
  |                                                                       
  |=============================                                    |  44%
  |                                                                       
  |===============================                                  |  48%
  |                                                                       
  |==================================                               |  52%
  |                                                                       
  |====================================                             |  56%
  |                                                                       
  |=======================================                          |  60%
  |                                                                       
  |==========================================                       |  64%
  |                                                                       
  |============================================                     |  68%
  |                                                                       
  |===============================================                  |  72%
  |                                                                       
  |=================================================                |  76%
  |                                                                       
  |====================================================             |  80%
  |                                                                       
  |=======================================================          |  84%
  |                                                                       
  |=========================================================        |  88%
  |                                                                       
  |============================================================     |  92%
  |                                                                       
  |==============================================================   |  96%
  |                                                                       
  |=================================================================| 100%
##    user  system elapsed 
##   1.216   0.020 166.508
perf.dl<-h2o.performance(model=dlearning.modelh,newdata=test.h2o)
perf.dl
## H2OBinomialMetrics: deeplearning
## 
## MSE:  0.1678359
## RMSE:  0.4096778
## LogLoss:  1.86509
## Mean Per-Class Error:  0.3433013
## AUC:  0.7568822
## Gini:  0.5137644
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      290 24 0.076433  =24/314
## 1       36 23 0.610169   =36/59
## Totals 326 47 0.160858  =60/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.826267 0.433962  46
## 2                     max f2  0.000000 0.588235 239
## 3               max f0point5  0.999929 0.511811  16
## 4               max accuracy  0.999999 0.865952  10
## 5              max precision  1.000000 1.000000   0
## 6                 max recall  0.000000 1.000000 326
## 7            max specificity  1.000000 1.000000   0
## 8           max absolute_mcc  0.999929 0.363219  16
## 9 max min_per_class_accuracy  0.000004 0.662420 145
## 10 max mean_per_class_accuracy  0.000000 0.685334 224
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
h2o.sensitivity(perf.dl,0.5)
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.496293348880151. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.3898305
h2o.auc(perf.dl)
## [1] 0.7568822

The AUC metric for this model is 0.7568822, which is less than what you got from the earlier models. I recommend further experimentation using different hyper parameters, such as the learning rate, epoch or the number of hidden layers.

H2O’s built-in functions provide many key statistical measures that can help measure model performance. Here are some of these key terms.

Metric Description
Sensitivity Measures the proportion of positives that have been correctly identified. It is also called the true positive rate, or recall.
Specificity Measures the proportion of negatives that have been correctly identified. It is also called the true negative rate.
Threshold Cutoff point that maximizes specificity and sensitivity. While the model may not provide the highest prediction at this point, it would not be biased towards positives or negatives.
Precision The fraction of the documents retrieved that are relevant to the information needed, for example, how many of the positively classified are relevant
AUC

Provides insight into how well the classifier is able to separate the two classes. The implicit goal is to deal with situations where the sample distribution is highly skewed, with a tendency to overfit to a single class.

0.90 – 1 = excellent (A)

0.8 – 0.9 = good (B)

0.7 – 0.8 = fair (C)

.6 – 0.7 = poor (D)

0.5 – 0.5 = fail (F)

Here’s a summary of the metrics generated from H2O’s built-in functions for the three models that produced useful results.

Metric Model 3 GBM Model Deep Learning Model

Accuracy

(max)

0.882038

(t=0.435479)

0.876676

(t=0.442757)

0.865952

(t=0.999999)

Precision

(max)

1.0

(t=0.821606)

1.0

(t=0802184)

1.0

(t=1.0)

Recall

(max)

1.0 1.0

1.0

(t=0)

Specificity

(max)

1.0 1.0

1.0

(t=1)

Sensitivity

 

0.2033898 0.1355932

0.3898305

(t=0.5)

AUC 0.8492389 0.8630573 0.756882

Note: ‘t’ denotes threshold.

Your options at this point could be narrowed down to Model 3 and the GBM model, based on the AUC and accuracy metrics observed earlier.  If the slightly lower accuracy of the GBM model is deemed acceptable, the record label can choose to go to production with the GBM model, as it can predict a higher number of Top 10 hits.  The AUC metric for the GBM model is also higher than that of Model 3.

Record labels can experiment with different learning techniques and parameters before arriving at a model that proves to be the best fit for their business. Because deep learning models can be computationally expensive, record labels can choose more powerful EC2 instances on AWS to run their experiments faster.

Conclusion

In this post, I showed how the popular music industry can use analytics to predict the type of songs that make the Top 10 Billboard charts. By running H2O’s scalable machine learning platform on AWS, data scientists can easily experiment with multiple modeling techniques and interactively query the data using Amazon Athena, without having to manage the underlying infrastructure. This helps record labels make critical decisions on the type of artists and songs to promote in a timely fashion, thereby increasing sales and revenue.

If you have questions or suggestions, please comment below.


Additional Reading

Learn how to build and explore a simple geospita simple GEOINT application using SparkR.


About the Authors

gopalGopal Wunnava is a Partner Solution Architect with the AWS GSI Team. He works with partners and customers on big data engagements, and is passionate about building analytical solutions that drive business capabilities and decision making. In his spare time, he loves all things sports and movies related and is fond of old classics like Asterix, Obelix comics and Hitchcock movies.

 

 

Bob Strahan, a Senior Consultant with AWS Professional Services, contributed to this post.

 

 

Popcorn Time Creator Readies BitTorrent & Blockchain-Powered Video Platform

Post Syndicated from Andy original https://torrentfreak.com/popcorn-time-creator-readies-bittorrent-blockchain-powered-youtube-competitor-171012/

Without a doubt, YouTube is one of the most important websites available on the Internet today.

Its massive archive of videos brings pleasure to millions on a daily basis but its centralized nature means that owner Google always exercises control.

Over the years, people have looked to decentralize the YouTube concept and the latest project hoping to shake up the market has a particularly interesting player onboard.

Until 2015, only insiders knew that Argentinian designer Federico Abad was actually ‘Sebastian’, the shadowy figure behind notorious content sharing platform Popcorn Time.

Now he’s part of the team behind Flixxo, a BitTorrent and blockchain-powered startup hoping to wrestle a share of the video market from YouTube. Here’s how the team, which features blockchain startup RSK Labs, hope things will play out.

The Flixxo network will have no centralized storage of data, eliminating the need for expensive hosting along with associated costs. Instead, transfers will take place between peers using BitTorrent, meaning video content will be stored on the machines of Flixxo users. In practice, the content will be downloaded and uploaded in much the same way as users do on The Pirate Bay or indeed Abad’s baby, Popcorn Time.

However, there’s a twist to the system that envisions content creators, content consumers, and network participants (seeders) making revenue from their efforts.

At the heart of the Flixxo system are digital tokens (think virtual currency), called Flixx. These Flixx ‘coins’, which will go on sale in 12 days, can be used to buy access to content. Creators can also opt to pay consumers when those people help to distribute their content to others.

“Free from structural costs, producers can share the earnings from their content with the network that supports them,” the team explains.

“This way you get paid for helping us improve Flixxo, and you earn credits (in the form of digital tokens called Flixx) for watching higher quality content. Having no intermediaries means that the price you pay for watching the content that you actually want to watch is lower and fairer.”

The Flixxo team

In addition to earning tokens from helping to distribute content, people in the Flixxo ecosystem can also earn currency by watching sponsored content, i.e advertisements. While in a traditional system adverts are often considered a nuisance, Flixx tokens have real value, with a promise that users will be able to trade their Flixx not only for videos, but also for tangible and semi-tangible goods.

“Use your Flixx to reward the producers you follow, encouraging them to create more awesome content. Or keep your Flixx in your wallet and use them to buy a movie ticket, a pair of shoes from an online retailer, a chest of coins in your favourite game or even convert them to old-fashioned cash or up-and-coming digital assets, like Bitcoin,” the team explains.

The Flixxo team have big plans. After foundation in early 2016, the second quarter of 2017 saw the completion of a functional alpha release. In a little under two weeks, the project will begin its token generation event, with new offices in Los Angeles planned for the first half of 2018 alongside a premiere of the Flixxo platform.

“A total of 1,000,000,000 (one billion) Flixx tokens will be issued. A maximum of 300,000,000 (three hundred million) tokens will be sold. Some of these tokens (not more than 33% or 100,000,000 Flixx) may be sold with anticipation of the token allocation event to strategic investors,” Flixxo states.

Like all content platforms, Flixxo will live or die by the quality of the content it provides and whether, at least in the first instance, it can persuade people to part with their hard-earned cash. Only time will tell whether its content will be worth a premium over readily accessible YouTube content but with much-reduced costs, it may tempt creators seeking a bigger piece of the pie.

“Flixxo will also educate its community, teaching its users that in this new internet era value can be held and transferred online without intermediaries, a value that can be earned back by participating in a community, by contributing, being rewarded for every single social interaction,” the team explains.

Of course, the elephant in the room is what will happen when people begin sharing copyrighted content via Flixxo. Certainly, the fact that Popcorn Time’s founder is a key player and rival streaming platform Stremio is listed as a partner means that things could get a bit spicy later on.

Nevertheless, the team suggests that piracy and spam content distribution will be limited by mechanisms already built into the system.

“[A]uthors have to time-block tokens in a smart contract (set as a warranty) in order to upload content. This contract will also handle and block their earnings for a certain period of time, so that in the case of a dispute the unfair-uploader may lose those tokens,” they explain.

That being said, Flixxo also says that “there is no way” for third parties to censor content “which means that anyone has the chance of making any piece of media available on the network.” However, Flixxo says it will develop tools for filtering what it describes as “inappropriate content.”

At this point, things start to become a little unclear. On the one hand Flixxo says it could become a “revolutionary tool for uncensorable and untraceable media” yet on the other it says that it’s necessary to ensure that adult content, for example, isn’t seen by kids.

“We know there is a thin line between filtering or curating content and censorship, and it is a fact that we have an open network for everyone to upload any content. However, Flixxo as a platform will apply certain filtering based on clear rules – there should be a behavior-code for uploaders in order to offer the right content to the right user,” Flixxo explains.

To this end, Flixxo says it will deploy a centralized curation function, carried out by 101 delegates elected by the community, which will become progressively decentralized over time.

“This curation will have a cost, paid in Flixx, and will be collected from the warranty blocked by the content uploaders,” they add.

There can be little doubt that if Flixxo begins ‘curating’ unsuitable content, copyright holders will call on it to do the same for their content too. And, if the platform really takes off, 101 curators probably won’t scratch the surface. There’s also the not inconsiderable issue of what might happen to curators’ judgment when they’re incentivized to block curate content.

Finally, for those sick of “not available in your region” messages, there’s good and bad news. Flixxo insists there will be no geo-blocking of content on its part but individual creators will still have that feature available to them, should they choose.

The Flixx whitepaper can be downloaded here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

"Responsible encryption" fallacies

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/10/responsible-encryption-fallacies.html

Deputy Attorney General Rod Rosenstein gave a speech recently calling for “Responsible Encryption” (aka. “Crypto Backdoors”). It’s full of dangerous ideas that need to be debunked.

The importance of law enforcement

The first third of the speech talks about the importance of law enforcement, as if it’s the only thing standing between us and chaos. It cites the 2016 Mirai attacks as an example of the chaos that will only get worse without stricter law enforcement.

But the Mira case demonstrated the opposite, how law enforcement is not needed. They made no arrests in the case. A year later, they still haven’t a clue who did it.

Conversely, we technologists have fixed the major infrastructure issues. Specifically, those affected by the DNS outage have moved to multiple DNS providers, including a high-capacity DNS provider like Google and Amazon who can handle such large attacks easily.

In other words, we the people fixed the major Mirai problem, and law-enforcement didn’t.

Moreover, instead being a solution to cyber threats, law enforcement has become a threat itself. The DNC didn’t have the FBI investigate the attacks from Russia likely because they didn’t want the FBI reading all their files, finding wrongdoing by the DNC. It’s not that they did anything actually wrong, but it’s more like that famous quote from Richelieu “Give me six words written by the most honest of men and I’ll find something to hang him by”. Give all your internal emails over to the FBI and I’m certain they’ll find something to hang you by, if they want.
Or consider the case of Andrew Auernheimer. He found AT&T’s website made public user accounts of the first iPad, so he copied some down and posted them to a news site. AT&T had denied the problem, so making the problem public was the only way to force them to fix it. Such access to the website was legal, because AT&T had made the data public. However, prosecutors disagreed. In order to protect the powerful, they twisted and perverted the law to put Auernheimer in jail.

It’s not that law enforcement is bad, it’s that it’s not the unalloyed good Rosenstein imagines. When law enforcement becomes the thing Rosenstein describes, it means we live in a police state.

Where law enforcement can’t go

Rosenstein repeats the frequent claim in the encryption debate:

Our society has never had a system where evidence of criminal wrongdoing was totally impervious to detection

Of course our society has places “impervious to detection”, protected by both legal and natural barriers.

An example of a legal barrier is how spouses can’t be forced to testify against each other. This barrier is impervious.

A better example, though, is how so much of government, intelligence, the military, and law enforcement itself is impervious. If prosecutors could gather evidence everywhere, then why isn’t Rosenstein prosecuting those guilty of CIA torture?

Oh, you say, government is a special exception. If that were the case, then why did Rosenstein dedicate a precious third of his speech discussing the “rule of law” and how it applies to everyone, “protecting people from abuse by the government”. It obviously doesn’t, there’s one rule of government and a different rule for the people, and the rule for government means there’s lots of places law enforcement can’t go to gather evidence.

Likewise, the crypto backdoor Rosenstein is demanding for citizens doesn’t apply to the President, Congress, the NSA, the Army, or Rosenstein himself.

Then there are the natural barriers. The police can’t read your mind. They can only get the evidence that is there, like partial fingerprints, which are far less reliable than full fingerprints. They can’t go backwards in time.

I mention this because encryption is a natural barrier. It’s their job to overcome this barrier if they can, to crack crypto and so forth. It’s not our job to do it for them.

It’s like the camera that increasingly comes with TVs for video conferencing, or the microphone on Alexa-style devices that are always recording. This suddenly creates evidence that the police want our help in gathering, such as having the camera turned on all the time, recording to disk, in case the police later gets a warrant, to peer backward in time what happened in our living rooms. The “nothing is impervious” argument applies here as well. And it’s equally bogus here. By not helping police by not recording our activities, we aren’t somehow breaking some long standing tradit

And this is the scary part. It’s not that we are breaking some ancient tradition that there’s no place the police can’t go (with a warrant). Instead, crypto backdoors breaking the tradition that never before have I been forced to help them eavesdrop on me, even before I’m a suspect, even before any crime has been committed. Sure, laws like CALEA force the phone companies to help the police against wrongdoers — but here Rosenstein is insisting I help the police against myself.

Balance between privacy and public safety

Rosenstein repeats the frequent claim that encryption upsets the balance between privacy/safety:

Warrant-proof encryption defeats the constitutional balance by elevating privacy above public safety.

This is laughable, because technology has swung the balance alarmingly in favor of law enforcement. Far from “Going Dark” as his side claims, the problem we are confronted with is “Going Light”, where the police state monitors our every action.

You are surrounded by recording devices. If you walk down the street in town, outdoor surveillance cameras feed police facial recognition systems. If you drive, automated license plate readers can track your route. If you make a phone call or use a credit card, the police get a record of the transaction. If you stay in a hotel, they demand your ID, for law enforcement purposes.

And that’s their stuff, which is nothing compared to your stuff. You are never far from a recording device you own, such as your mobile phone, TV, Alexa/Siri/OkGoogle device, laptop. Modern cars from the last few years increasingly have always-on cell connections and data recorders that record your every action (and location).

Even if you hike out into the country, when you get back, the FBI can subpoena your GPS device to track down your hidden weapon’s cache, or grab the photos from your camera.

And this is all offline. So much of what we do is now online. Of the photographs you own, fewer than 1% are printed out, the rest are on your computer or backed up to the cloud.

Your phone is also a GPS recorder of your exact position all the time, which if the government wins the Carpenter case, they police can grab without a warrant. Tagging all citizens with a recording device of their position is not “balance” but the premise for a novel more dystopic than 1984.

If suspected of a crime, which would you rather the police searched? Your person, houses, papers, and physical effects? Or your mobile phone, computer, email, and online/cloud accounts?

The balance of privacy and safety has swung so far in favor of law enforcement that rather than debating whether they should have crypto backdoors, we should be debating how to add more privacy protections.

“But it’s not conclusive”

Rosenstein defends the “going light” (“Golden Age of Surveillance”) by pointing out it’s not always enough for conviction. Nothing gives a conviction better than a person’s own words admitting to the crime that were captured by surveillance. This other data, while copious, often fails to convince a jury beyond a reasonable doubt.
This is nonsense. Police got along well enough before the digital age, before such widespread messaging. They solved terrorist and child abduction cases just fine in the 1980s. Sure, somebody’s GPS location isn’t by itself enough — until you go there and find all the buried bodies, which leads to a conviction. “Going dark” imagines that somehow, the evidence they’ve been gathering for centuries is going away. It isn’t. It’s still here, and matches up with even more digital evidence.
Conversely, a person’s own words are not as conclusive as you think. There’s always missing context. We quickly get back to the Richelieu “six words” problem, where captured communications are twisted to convict people, with defense lawyers trying to untwist them.

Rosenstein’s claim may be true, that a lot of criminals will go free because the other electronic data isn’t convincing enough. But I’d need to see that claim backed up with hard studies, not thrown out for emotional impact.

Terrorists and child molesters

You can always tell the lack of seriousness of law enforcement when they bring up terrorists and child molesters.
To be fair, sometimes we do need to talk about terrorists. There are things unique to terrorism where me may need to give government explicit powers to address those unique concerns. For example, the NSA buys mobile phone 0day exploits in order to hack terrorist leaders in tribal areas. This is a good thing.
But when terrorists use encryption the same way everyone else does, then it’s not a unique reason to sacrifice our freedoms to give the police extra powers. Either it’s a good idea for all crimes or no crimes — there’s nothing particular about terrorism that makes it an exceptional crime. Dead people are dead. Any rational view of the problem relegates terrorism to be a minor problem. More citizens have died since September 8, 2001 from their own furniture than from terrorism. According to studies, the hot water from the tap is more of a threat to you than terrorists.
Yes, government should do what they can to protect us from terrorists, but no, it’s not so bad of a threat that requires the imposition of a military/police state. When people use terrorism to justify their actions, it’s because they trying to form a military/police state.
A similar argument works with child porn. Here’s the thing: the pervs aren’t exchanging child porn using the services Rosenstein wants to backdoor, like Apple’s Facetime or Facebook’s WhatsApp. Instead, they are exchanging child porn using custom services they build themselves.
Again, I’m (mostly) on the side of the FBI. I support their idea of buying 0day exploits in order to hack the web browsers of visitors to the secret “PlayPen” site. This is something that’s narrow to this problem and doesn’t endanger the innocent. On the other hand, their calls for crypto backdoors endangers the innocent while doing effectively nothing to address child porn.
Terrorists and child molesters are a clichéd, non-serious excuse to appeal to our emotions to give up our rights. We should not give in to such emotions.

Definition of “backdoor”

Rosenstein claims that we shouldn’t call backdoors “backdoors”:

No one calls any of those functions [like key recovery] a “back door.”  In fact, those capabilities are marketed and sought out by many users.

He’s partly right in that we rarely refer to PGP’s key escrow feature as a “backdoor”.

But that’s because the term “backdoor” refers less to how it’s done and more to who is doing it. If I set up a recovery password with Apple, I’m the one doing it to myself, so we don’t call it a backdoor. If it’s the police, spies, hackers, or criminals, then we call it a “backdoor” — even it’s identical technology.

Wikipedia uses the key escrow feature of the 1990s Clipper Chip as a prime example of what everyone means by “backdoor“. By “no one”, Rosenstein is including Wikipedia, which is obviously incorrect.

Though in truth, it’s not going to be the same technology. The needs of law enforcement are different than my personal key escrow/backup needs. In particular, there are unsolvable problems, such as a backdoor that works for the “legitimate” law enforcement in the United States but not for the “illegitimate” police states like Russia and China.

I feel for Rosenstein, because the term “backdoor” does have a pejorative connotation, which can be considered unfair. But that’s like saying the word “murder” is a pejorative term for killing people, or “torture” is a pejorative term for torture. The bad connotation exists because we don’t like government surveillance. I mean, honestly calling this feature “government surveillance feature” is likewise pejorative, and likewise exactly what it is that we are talking about.

Providers

Rosenstein focuses his arguments on “providers”, like Snapchat or Apple. But this isn’t the question.

The question is whether a “provider” like Telegram, a Russian company beyond US law, provides this feature. Or, by extension, whether individuals should be free to install whatever software they want, regardless of provider.

Telegram is a Russian company that provides end-to-end encryption. Anybody can download their software in order to communicate so that American law enforcement can’t eavesdrop. They aren’t going to put in a backdoor for the U.S. If we succeed in putting backdoors in Apple and WhatsApp, all this means is that criminals are going to install Telegram.

If the, for some reason, the US is able to convince all such providers (including Telegram) to install a backdoor, then it still doesn’t solve the problem, as uses can just build their own end-to-end encryption app that has no provider. It’s like email: some use the major providers like GMail, others setup their own email server.

Ultimately, this means that any law mandating “crypto backdoors” is going to target users not providers. Rosenstein tries to make a comparison with what plain-old telephone companies have to do under old laws like CALEA, but that’s not what’s happening here. Instead, for such rules to have any effect, they have to punish users for what they install, not providers.

This continues the argument I made above. Government backdoors is not something that forces Internet services to eavesdrop on us — it forces us to help the government spy on ourselves.
Rosenstein tries to address this by pointing out that it’s still a win if major providers like Apple and Facetime are forced to add backdoors, because they are the most popular, and some terrorists/criminals won’t move to alternate platforms. This is false. People with good intentions, who are unfairly targeted by a police state, the ones where police abuse is rampant, are the ones who use the backdoored products. Those with bad intentions, who know they are guilty, will move to the safe products. Indeed, Telegram is already popular among terrorists because they believe American services are already all backdoored. 
Rosenstein is essentially demanding the innocent get backdoored while the guilty don’t. This seems backwards. This is backwards.

Apple is morally weak

The reason I’m writing this post is because Rosenstein makes a few claims that cannot be ignored. One of them is how he describes Apple’s response to government insistence on weakening encryption doing the opposite, strengthening encryption. He reasons this happens because:

Of course they [Apple] do. They are in the business of selling products and making money. 

We [the DoJ] use a different measure of success. We are in the business of preventing crime and saving lives. 

He swells in importance. His condescending tone ennobles himself while debasing others. But this isn’t how things work. He’s not some white knight above the peasantry, protecting us. He’s a beat cop, a civil servant, who serves us.

A better phrasing would have been:

They are in the business of giving customers what they want.

We are in the business of giving voters what they want.

Both sides are doing the same, giving people what they want. Yes, voters want safety, but they also want privacy. Rosenstein imagines that he’s free to ignore our demands for privacy as long has he’s fulfilling his duty to protect us. He has explicitly rejected what people want, “we use a different measure of success”. He imagines it’s his job to tell us where the balance between privacy and safety lies. That’s not his job, that’s our job. We, the people (and our representatives), make that decision, and it’s his job is to do what he’s told. His measure of success is how well he fulfills our wishes, not how well he satisfies his imagined criteria.

That’s why those of us on this side of the debate doubt the good intentions of those like Rosenstein. He criticizes Apple for wanting to protect our rights/freedoms, and declare they measure success differently.

They are willing to be vile

Rosenstein makes this argument:

Companies are willing to make accommodations when required by the government. Recent media reports suggest that a major American technology company developed a tool to suppress online posts in certain geographic areas in order to embrace a foreign government’s censorship policies. 

Let me translate this for you:

Companies are willing to acquiesce to vile requests made by police-states. Therefore, they should acquiesce to our vile police-state requests.

It’s Rosenstein who is admitting here is that his requests are those of a police-state.

Constitutional Rights

Rosenstein says:

There is no constitutional right to sell warrant-proof encryption.

Maybe. It’s something the courts will have to decide. There are many 1st, 2nd, 3rd, 4th, and 5th Amendment issues here.
The reason we have the Bill of Rights is because of the abuses of the British Government. For example, they quartered troops in our homes, as a way of punishing us, and as a way of forcing us to help in our own oppression. The troops weren’t there to defend us against the French, but to defend us against ourselves, to shoot us if we got out of line.

And that’s what crypto backdoors do. We are forced to be agents of our own oppression. The principles enumerated by Rosenstein apply to a wide range of even additional surveillance. With little change to his speech, it can equally argue why the constant TV video surveillance from 1984 should be made law.

Let’s go back and look at Apple. It is not some base company exploiting consumers for profit. Apple doesn’t have guns, they cannot make people buy their product. If Apple doesn’t provide customers what they want, then customers vote with their feet, and go buy an Android phone. Apple isn’t providing encryption/security in order to make a profit — it’s giving customers what they want in order to stay in business.
Conversely, if we citizens don’t like what the government does, tough luck, they’ve got the guns to enforce their edicts. We can’t easily vote with our feet and walk to another country. A “democracy” is far less democratic than capitalism. Apple is a minority, selling phones to 45% of the population, and that’s fine, the minority get the phones they want. In a Democracy, where citizens vote on the issue, those 45% are screwed, as the 55% impose their will unwanted onto the remainder.

That’s why we have the Bill of Rights, to protect the 49% against abuse by the 51%. Regardless whether the Supreme Court agrees the current Constitution, it is the sort right that might exist regardless of what the Constitution says. 

Obliged to speak the truth

Here is the another part of his speech that I feel cannot be ignored. We have to discuss this:

Those of us who swear to protect the rule of law have a different motivation.  We are obliged to speak the truth.

The truth is that “going dark” threatens to disable law enforcement and enable criminals and terrorists to operate with impunity.

This is not true. Sure, he’s obliged to say the absolute truth, in court. He’s also obliged to be truthful in general about facts in his personal life, such as not lying on his tax return (the sort of thing that can get lawyers disbarred).

But he’s not obliged to tell his spouse his honest opinion whether that new outfit makes them look fat. Likewise, Rosenstein knows his opinion on public policy doesn’t fall into this category. He can say with impunity that either global warming doesn’t exist, or that it’ll cause a biblical deluge within 5 years. Both are factually untrue, but it’s not going to get him fired.

And this particular claim is also exaggerated bunk. While everyone agrees encryption makes law enforcement’s job harder than with backdoors, nobody honestly believes it can “disable” law enforcement. While everyone agrees that encryption helps terrorists, nobody believes it can enable them to act with “impunity”.

I feel bad here. It’s a terrible thing to question your opponent’s character this way. But Rosenstein made this unavoidable when he clearly, with no ambiguity, put his integrity as Deputy Attorney General on the line behind the statement that “going dark threatens to disable law enforcement and enable criminals and terrorists to operate with impunity”. I feel it’s a bald face lie, but you don’t need to take my word for it. Read his own words yourself and judge his integrity.

Conclusion

Rosenstein’s speech includes repeated references to ideas like “oath”, “honor”, and “duty”. It reminds me of Col. Jessup’s speech in the movie “A Few Good Men”.

If you’ll recall, it was rousing speech, “you want me on that wall” and “you use words like honor as a punchline”. Of course, since he was violating his oath and sending two privates to death row in order to avoid being held accountable, it was Jessup himself who was crapping on the concepts of “honor”, “oath”, and “duty”.

And so is Rosenstein. He imagines himself on that wall, doing albeit terrible things, justified by his duty to protect citizens. He imagines that it’s he who is honorable, while the rest of us not, even has he utters bald faced lies to further his own power and authority.

We activists oppose crypto backdoors not because we lack honor, or because we are criminals, or because we support terrorists and child molesters. It’s because we value privacy and government officials who get corrupted by power. It’s not that we fear Trump becoming a dictator, it’s that we fear bureaucrats at Rosenstein’s level becoming drunk on authority — which Rosenstein demonstrably has. His speech is a long train of corrupt ideas pursuing the same object of despotism — a despotism we oppose.

In other words, we oppose crypto backdoors because it’s not a tool of law enforcement, but a tool of despotism.

Тръмп, лицензиите на NBC, Първата поправка

Post Syndicated from nellyo original https://nellyo.wordpress.com/2017/10/11/nbc/

//platform.twitter.com/widgets.js

Президентът Тръмп открито днес поставя въпроса за отнемане на лицензиите на NBC и други критично настроени медии, недоволен от новинарските им емисии.  Отдавна се знае, че Тръмп сочи CNN като производител на фалшиви новини, сега към CNN се добавят и други медии.

Отделен въпрос е кой и как може да отнеме лицензии – това е регулаторът FCC – и то при определени основания – и то не на цели мрежи. Но това не прави заплахата на президента по-малко опасна. Става дума за конституционна разпоредба  – зачитане на свободата на изразяване според Първата поправка на Конституцията на САЩ. Ценност, която и президентите не си позволяват да атакуват.

Filed under: Media Law, US Law

Taringa Hack – 27 Million User Records Leaked

Post Syndicated from Darknet original https://www.darknet.org.uk/2017/10/taringa-hack-27-million-user-records-leaked/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Taringa Hack – 27 Million User Records Leaked

The Taringa hack is actually one of the biggest leaks of the year with 27 million weakly hashed passwords breached, but it’s not often covered in the Western media with it being a Latin American site (something like Reddit).

The leak happened in August and it seems like the hackers were able to brute force around 95% of the account passwords fairly quickly with Taringa using an outdated and flawing hashing algorithm – md5.

Read the rest of Taringa Hack – 27 Million User Records Leaked now! Only available at Darknet.

The CoderDojo Girls Initiative

Post Syndicated from Nuala McHale original https://www.raspberrypi.org/blog/coderdojo-girls-initiative/

In March, the CoderDojo Foundation launched their Girls Initiative, which aims to increase the average proportion of girls attending CoderDojo clubs from 29% to at least 40% over the next three years.

The CoderDojo Girls Initiative

Six months on, we wanted to highlight what we’ve done so far and what’s next for our initiative.

What we’ve done so far

To date, we have focussed our efforts on four key areas:

  • Developing and improving content
  • Conducting and learning from research
  • Highlighting role models
  • Developing a guide of tried and tested best practices for encouraging and sustaining girls in a Dojo setting (Empowering the Future)

Content

We’ve taken measures to ensure our resources are as friendly to girls as well as boys, and we are improving them based on feedback from girls. For example, we have developed beginner-level content (Sushi Cards) for working with wearables and for building apps using App Inventor. In response to girls’ feedback, we are exploring more creative goal-orientated content.

The CoderDojo Girls Initiative

Moreover, as part of our Empowering the Future guide, we have developed three short ‘Mini-Sushi’ projects which provide a taster of different programming languages, such as Scratch, HTML, and App Inventor.

What’s next?

We are currently finalising our intermediate-level wearables Sushi Cards. These are resources for learners to further explore wearables and integrate them with other coding skills they are developing. The Cards will enable young people to program LEDs which can be sewn into clothing with conductive thread. We are also planning another series of Sushi Cards focused on using coding skills to solve problems Ninjas have reported as important to them.

Research

In June 2017 we conducted the first Ninja survey. It was sent to all young people registered on the CoderDojo community platform, Zen. Hundreds of young people involved in Dojos around the world responded and shared their experiences.

The CoderDojo Girls Initiative

We are currently examining these results to identify areas in which girls feel most or least confident, as well as the motivations and influencing factors that cause them to continue with coding.

What’s next?

Over the coming months we will delve deeper into the findings of this research, and decide how we can improve our content and Dojo support to adapt accordingly. Additionally, as part of sending out our Empowering the Future guide, we’re asking Dojos to provide insights into their current proportions of girls and female Mentors.

The CoderDojo Girls Initiative

We will follow up with recipients of the guide to document the impact of the recommended approaches they try at their Dojo. Thus, we will find out which approaches are most effective in different regional contexts, which will help us improve our support for Dojos wanting to increase their proportion of attending girls.

Role models

Many Dojos, Champions, and Mentors are doing amazing work to support and encourage girls at their Dojos. Female Mentors not only help by supporting attending girls, but they also act as vital role models in an environment which is often male-dominated. Blogs by female Mentors and Ninjas which have already featured on our website include:

What’s next?

We recognise the importance of female role models, and over the coming months we will continue to encourage community members to share their stories so that we bring them to the wider CoderDojo community. Do you know a female Mentor or Ninja you would like to shine a spotline on? Get in touch with us at [email protected] You can also use #CoderDojoGirls on social media.

The CoderDojo Girls Initiative

Empowering the Future guide

Ahead of Ada Lovelace Day and International Day of the Girl Child, the CoderDojo Foundation has released Empowering the Future, a comprehensive guide of practical approaches which Dojos have tested to engage and sustain girls.

Some topics covered in the guide are:

  • Approaches to improve the Dojo environment and layout
  • Language and images used to describe and promote Dojos
  • Content considerations, and suggested resources
  • The importance of female Mentors, and ways to increase access to role models

For the next month, Dojos that want to improve their proportion of girls can still sign up to have the guide book sent to them for free! From today, Dojos and anyone else can also download a PDF file of the guide.

The CoderDojo Girls Initiative

We would like to say a massive thank you to all community members who have shared their insights with us to make our Empowering the Future guide as comprehensive and beneficial as possible for other Dojos.

Tell us what you think

Have you found an approach, or used content, which girls find particularly engaging? Do you have questions about our Girls Initiative? We would love to hear your ideas, insights, and experiences in relation to supporting CoderDojo girls! Feel free to use our forums to share with the global CoderDojo community, and email us at [email protected]

The post The CoderDojo Girls Initiative appeared first on Raspberry Pi.

Roku Shows FBI Warning to Pirate Channel Users

Post Syndicated from Ernesto original https://torrentfreak.com/roku-shows-fbi-warning-to-pirate-channel-users-171009/

In recent years it has become much easier to stream movies and TV-shows over the Internet.

Legal services such as Netflix and HBO are flourishing, but at the same time millions of people are streaming from unauthorized sources, often paired with perfectly legal streaming platforms and devices.

Hollywood insiders have dubbed this trend “Piracy 3.0” and are actively working with stakeholders to address the threat. One of the companies rightsholders are working with is Roku, known for its easy-to-use media players.

Earlier this year a Mexican court ordered retailers to take the Roku media player off the shelves. This legal battle is still ongoing, but it was a clear signal to the company, which now has its own anti-piracy team.

Several third-party “private” channels have been removed from the player in recent weeks as they violate Roku’s terms and conditions. These include the hugely popular streaming channel XTV, which offered access to infringing content.

After its removal, XTV briefly returned as XTV 2, but that didn’t last for long. The infringing channel was soon removed again, this time showing the FBI’s anti-piracy seal followed by a rather ominous message.

“FBI Anti-Piracy Warning: Unauthorized copying is punishable under federal law,” it reads. “Roku has removed this unauthorized service due to repeated claims of copyright infringement.”

FBI Warning (via Cordcuttersnews)

The unusual warning was picked up by Cordcuttersnews and states that Roku itself removed the channel.

To some it may seem that the FBI is cracking down on Roku channels, but this is not the case. The anti-piracy seal and associated warning are often used in cases where the organization is not actively involved, to add extra weight. The FBI supports this, as long as certain standards are met.

A Roku spokesperson confirmed to TorrentFreak that they’re using it on their own accord here.

“We want to send a clear message to Roku customers and to publishers that any publication of pirated content on our platform is a violation of law and our platform rules,” the company says.

“We have recently expanded the messaging that we display to customers that install non-certified channels to alert them to the associated risks, and we display the FBI’s publicly available warning when we remove channels for copyright violations.”

The strong language shows that Roku is taking its efforts to crack down on infringing channels very seriously. A few weeks ago the company started to warn users that pirate channels may be removed without prior notice.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.