Tag Archives: bluetooth

Ridiculously Insecure Smart Lock

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/ridiculously_in.html

Tapplock sells an “unbreakable” Internet-connected lock that you can open with your fingerprint. It turns out that:

  1. The lock broadcasts its Bluetooth MAC address in the clear, and you can calculate the unlock key from it.
  2. Any Tapplock account an unlock every lock.

  3. You can open the lock with a screwdriver.

Regarding the third flaw, the manufacturer has responded that “…the lock is invincible to the people who do not have a screwdriver.”

You can’t make this stuff up.

OMG The Stupid It Burns

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/omg-stupid-it-burns.html

This article, pointed out by @TheGrugq, is stupid enough that it’s worth rebutting.

The article starts with the question “Why did the lessons of Stuxnet, Wannacry, Heartbleed and Shamoon go unheeded?“. It then proceeds to ignore the lessons of those things.
Some of the actual lessons should be things like how Stuxnet crossed air gaps, how Wannacry spread through flat Windows networking, how Heartbleed comes from technical debt, and how Shamoon furthers state aims by causing damage.
But this article doesn’t cover the technical lessons. Instead, it thinks the lesson should be the moral lesson, that we should take these things more seriously. But that’s stupid. It’s the sort of lesson people teach you that know nothing about the topic. When you have nothing of value to contribute to a topic you can always take the moral high road and criticize everyone for being morally weak for not taking it more seriously. Obviously, since doctors haven’t cured cancer yet, it’s because they don’t take the problem seriously.
The article continues to ignore the lesson of these cyber attacks and instead regales us with a list of military lessons from WW I and WW II. This makes the same flaw that many in the military make, trying to understand cyber through analogies with the real world. It’s not that such lessons could have no value, it’s that this article contains a poor list of them. It seems to consist of a random list of events that appeal to the author rather than events that have bearing on cybersecurity.
Then, in case we don’t get the point, the article bullies us with hyperbole, cliches, buzzwords, bombastic language, famous quotes, and citations. It’s hard to see how most of them actually apply to the text. Rather, it seems like they are included simply because he really really likes them.
The article invests much effort in discussing the buzzword “OODA loop”. Most attacks in cyberspace don’t have one. Instead, attackers flail around, trying lots of random things, overcoming defense with brute-force rather than an understanding of what’s going on. That’s obviously the case with Wannacry: it was an accident, with the perpetrator experimenting with what would happen if they added the ETERNALBLUE exploit to their existing ransomware code. The consequence was beyond anybody’s ability to predict.
You might claim that this is just the first stage, that they’ll loop around, observe Wannacry’s effects, orient themselves, decide, then act upon what they learned. Nope. Wannacry burned the exploit. It’s essentially removed any vulnerable systems from the public Internet, thereby making it impossible to use what they learned. It’s still active a year later, with infected systems behind firewalls busily scanning the Internet so that if you put a new system online that’s vulnerable, it’ll be taken offline within a few hours, before any other evildoer can take advantage of it.
See what I’m doing here? Learning the actual lessons of things like Wannacry? The thing the above article fails to do??
The article has a humorous paragraph on “defense in depth”, misunderstanding the term. To be fair, it’s the cybersecurity industry’s fault: they adopted then redefined the term. That’s why there’s two separate articles on Wikipedia: one for the old military term (as used in this article) and one for the new cybersecurity term.
As used in the cybersecurity industry, “defense in depth” means having multiple layers of security. Many organizations put all their defensive efforts on the perimeter, and none inside a network. The idea of “defense in depth” is to put more defenses inside the network. For example, instead of just one firewall at the edge of the network, put firewalls inside the network to segment different subnetworks from each other, so that a ransomware infection in the customer support computers doesn’t spread to sales and marketing computers.
The article talks about exploiting WiFi chips to bypass the defense in depth measures like browser sandboxes. This is conflating different types of attacks. A WiFi attack is usually considered a local attack, from somebody next to you in bar, rather than a remote attack from a server in Russia. Moreover, far from disproving “defense in depth” such WiFi attacks highlight the need for it. Namely, phones need to be designed so that successful exploitation of other microprocessors (namely, the WiFi, Bluetooth, and cellular baseband chips) can’t directly compromise the host system. In other words, once exploited with “Broadpwn”, a hacker would need to extend the exploit chain with another vulnerability in the hosts Broadcom WiFi driver rather than immediately exploiting a DMA attack across PCIe. This suggests that if PCIe is used to interface to peripherals in the phone that an IOMMU be used, for “defense in depth”.
Cybersecurity is a young field. There are lots of useful things that outsider non-techies can teach us. Lessons from military history would be well-received.
But that’s not this story. Instead, this story is by an outsider telling us we don’t know what we are doing, that they do, and then proceeds to prove they don’t know what they are doing. Their argument is based on a moral suasion and bullying us with what appears on the surface to be intellectual rigor, but which is in fact devoid of anything smart.
My fear, here, is that I’m going to be in a meeting where somebody has read this pretentious garbage, explaining to me why “defense in depth” is wrong and how we need to OODA faster. I’d rather nip this in the bud, pointing out if you found anything interesting from that article, you are wrong.

2018-03-17 малък видео setup

Post Syndicated from Vasil Kolev original https://vasil.ludost.net/blog/?p=3381

Събирам (засега основно в главата си) setup за видео streaming и запис в hackerspace-овете в България. Изискванията са:

– минимална инвестиция в нов хардуер;
– (сравнително) лесно за използване (предполагам, че хората там са поне донякъде технически грамотни);
– възможност за stream-ване на текущите платформи, и може би и в тяхната си страница;
– запис/архивиране;
– поносимо качество.

Целта на setup-а е да се справи с най-простия тип събитие, което е един лектор с презентация.

Компонентите са следните:

– запис на звука – може да е от въздуха, но по-добре една брошка на лектора, + запис на залата по някакъв начин, за въпроси и т.н.;
– усилване на звука – дори в малка зала е добре да се усили звука от лектора и да се пусне на едни колони, най-малкото има feedback дали си е пуснал микрофона;
– видео запис – да се запише видеото от презентацията и може би самия лектор как говори. Това има варианта с камера, която снима лектора и екрана, или screen capture, директно от лаптопа му (или някой по-сложен setup, за който вероятно няма смисъл да пиша);
– streaming – да се извадят аудио/видео сигнала в/у някакъв протокол и да се stream-нат до някоя услуга;
– restreaming – услугата да го разпрати навсякъде и може би да го запише.

Вариантите за компоненти/setup-и в главата ми са следните:

– ffmpeg команда, която stream-ва екрана + звук от звуковата карта, в която има един свестен микрофон – това го имаме в няколко варианта, тествани и работещи (за windows и linux), трябва да ги качим някъде. Това е най-бързия начин, почти не иска допълнителен хардуер (освен един микрофон, щото тия на лаптопите за нищо не стават). Микрофонът може да е например някоя bluetooth/usb слушалка, или просто от слушалки с микрофон, да е близо до главата на лектора. Може да е от стандартните брошки, които се използват по различни събития, аз имам една китайска цифрова, дето в общи линии ме радва и е около 200-и-нещо лева от aliexpress;

– проста малка камера, която може да записва видео от екрана и звук, която може да бълва и по IP някакси. Това в общи линии са gopro-та (ако се намери как да им се пъхне звук) и още някакви подобни камери, които нямат особено добро качество (особено на звука, та задължително трябва външен микрофон), но на хората и се намират.

– проста камера, която обаче не може да бълва по IP, и има HDMI изход. Това е от нещата, които на хората им се намират по някакви причини, и в тая категория са половината DSLR-и и фотоапарати (които не прегряват след дълга (2-часова) употреба), gopro-та и нормален клас камери. Това се комбинира с устройство, което може да capture-ва HDMI и да го stream-ва, където засега опцията е един китайски device.

– streaming service – човек може да ползва youtube, моя streaming, или ако се мрази, facebook. Много места би трябвало да могат да си пуснат нещо просто при тях (например един nginx с модула за rtmp), да stream-ват до него, то да записва, и от него да restream-ват на други места и да дават някакъв лесен начин на хората ги гледат (с едно video.js/hls.js, както последно направихме за openfest).

Та, за момента основните неща, които издирвам са:

– евтини и работещи микрофони;
– евтини работещи камери с hdmi изход (или с ethernet порт, тва с wifi-то е боза), които да са switchable м/у 50hz и 60hz;
– hdmi capture вариант.

Приемам идеи, и ще гледам да сглобя едно такова за initLab.

Raspberry Pi 3 Model B+ on sale now at $35

Post Syndicated from Eben Upton original https://www.raspberrypi.org/blog/raspberry-pi-3-model-bplus-sale-now-35/

Here’s a long post. We think you’ll find it interesting. If you don’t have time to read it all, we recommend you watch this video, which will fill you in with everything you need, and then head straight to the product page to fill yer boots. (We recommend the video anyway, even if you do have time for a long read. ‘Cos it’s fab.)

A BRAND-NEW PI FOR π DAY

Raspberry Pi 3 Model B+ is now on sale now for $35, featuring: – A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU – Dual-band 802.11ac wireless LAN and Bluetooth 4.2 – Faster Ethernet (Gigabit Ethernet over USB 2.0) – Power-over-Ethernet support (with separate PoE HAT) – Improved PXE network and USB mass-storage booting – Improved thermal management Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

If you’ve been a Raspberry Pi watcher for a while now, you’ll have a bit of a feel for how we update our products. Just over two years ago, we released Raspberry Pi 3 Model B. This was our first 64-bit product, and our first product to feature integrated wireless connectivity. Since then, we’ve sold over nine million Raspberry Pi 3 units (we’ve sold 19 million Raspberry Pis in total), which have been put to work in schools, homes, offices and factories all over the globe.

Those Raspberry Pi watchers will know that we have a history of releasing improved versions of our products a couple of years into their lives. The first example was Raspberry Pi 1 Model B+, which added two additional USB ports, introduced our current form factor, and rolled up a variety of other feedback from the community. Raspberry Pi 2 didn’t get this treatment, of course, as it was superseded after only one year; but it feels like it’s high time that Raspberry Pi 3 received the “plus” treatment.

So, without further ado, Raspberry Pi 3 Model B+ is now on sale for $35 (the same price as the existing Raspberry Pi 3 Model B), featuring:

  • A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU
  • Dual-band 802.11ac wireless LAN and Bluetooth 4.2
  • Faster Ethernet (Gigabit Ethernet over USB 2.0)
  • Power-over-Ethernet support (with separate PoE HAT)
  • Improved PXE network and USB mass-storage booting
  • Improved thermal management

Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

Behold the shiny

Raspberry Pi 3B+ is available to buy today from our network of Approved Resellers.

New features, new chips

Roger Thornton did the design work on this revision of the Raspberry Pi. Here, he and I have a chat about what’s new.

Introducing the Raspberry Pi 3 Model B+

Raspberry Pi 3 Model B+ is now on sale now for $35, featuring: – A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU – Dual-band 802.11ac wireless LAN and Bluetooth 4.2 – Faster Ethernet (Gigabit Ethernet over USB 2.0) – Power-over-Ethernet support (with separate PoE HAT) – Improved PXE network and USB mass-storage booting – Improved thermal management Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

The new product is built around BCM2837B0, an updated version of the 64-bit Broadcom application processor used in Raspberry Pi 3B, which incorporates power integrity optimisations, and a heat spreader (that’s the shiny metal bit you can see in the photos). Together these allow us to reach higher clock frequencies (or to run at lower voltages to reduce power consumption), and to more accurately monitor and control the temperature of the chip.

Dual-band wireless LAN and Bluetooth are provided by the Cypress CYW43455 “combo” chip, connected to a Proant PCB antenna similar to the one used on Raspberry Pi Zero W. Compared to its predecessor, Raspberry Pi 3B+ delivers somewhat better performance in the 2.4GHz band, and far better performance in the 5GHz band, as demonstrated by these iperf results from LibreELEC developer Milhouse.

Tx bandwidth (Mb/s) Rx bandwidth (Mb/s)
Raspberry Pi 3B 35.7 35.6
Raspberry Pi 3B+ (2.4GHz) 46.7 46.3
Raspberry Pi 3B+ (5GHz) 102 102

The wireless circuitry is encapsulated under a metal shield, rather fetchingly embossed with our logo. This has allowed us to certify the entire board as a radio module under FCC rules, which in turn will significantly reduce the cost of conformance testing Raspberry Pi-based products.

We’ll be teaching metalwork next.

Previous Raspberry Pi devices have used the LAN951x family of chips, which combine a USB hub and 10/100 Ethernet controller. For Raspberry Pi 3B+, Microchip have supported us with an upgraded version, LAN7515, which supports Gigabit Ethernet. While the USB 2.0 connection to the application processor limits the available bandwidth, we still see roughly a threefold increase in throughput compared to Raspberry Pi 3B. Again, here are some typical iperf results.

Tx bandwidth (Mb/s) Rx bandwidth (Mb/s)
Raspberry Pi 3B 94.1 95.5
Raspberry Pi 3B+ 315 315

We use a magjack that supports Power over Ethernet (PoE), and bring the relevant signals to a new 4-pin header. We will shortly launch a PoE HAT which can generate the 5V necessary to power the Raspberry Pi from the 48V PoE supply.

There… are… four… pins!

Coming soon to a Raspberry Pi 3B+ near you

Raspberry Pi 3B was our first product to support PXE Ethernet boot. Testing it in the wild shook out a number of compatibility issues with particular switches and traffic environments. Gordon has rolled up fixes for all known issues into the BCM2837B0 boot ROM, and PXE boot is now enabled by default.

Clocking, voltages and thermals

The improved power integrity of the BCM2837B0 package, and the improved regulation accuracy of our new MaxLinear MxL7704 power management IC, have allowed us to tune our clocking and voltage rules for both better peak performance and longer-duration sustained performance.

Below 70°C, we use the improvements to increase the core frequency to 1.4GHz. Above 70°C, we drop to 1.2GHz, and use the improvements to decrease the core voltage, increasing the period of time before we reach our 80°C thermal throttle; the reduction in power consumption is such that many use cases will never reach the throttle. Like a modern smartphone, we treat the thermal mass of the device as a resource, to be spent carefully with the goal of optimising user experience.

This graph, courtesy of Gareth Halfacree, demonstrates that Raspberry Pi 3B+ runs faster and at a lower temperature for the duration of an eight‑minute quad‑core Sysbench CPU test.

Note that Raspberry Pi 3B+ does consume substantially more power than its predecessor. We strongly encourage you to use a high-quality 2.5A power supply, such as the official Raspberry Pi Universal Power Supply.

FAQs

We’ll keep updating this list over the next couple of days, but here are a few to get you started.

Are you discontinuing earlier Raspberry Pi models?

No. We have a lot of industrial customers who will want to stick with the existing products for the time being. We’ll keep building these models for as long as there’s demand. Raspberry Pi 1B+, Raspberry Pi 2B, and Raspberry Pi 3B will continue to sell for $25, $35, and $35 respectively.

What about Model A+?

Raspberry Pi 1A+ continues to be the $20 entry-level “big” Raspberry Pi for the time being. We are considering the possibility of producing a Raspberry Pi 3A+ in due course.

What about the Compute Module?

CM1, CM3 and CM3L will continue to be available. We may offer versions of CM3 and CM3L with BCM2837B0 in due course, depending on customer demand.

Are you still using VideoCore?

Yes. VideoCore IV 3D is the only publicly-documented 3D graphics core for ARM‑based SoCs, and we want to make Raspberry Pi more open over time, not less.

Credits

A project like this requires a vast amount of focused work from a large team over an extended period. Particular credit is due to Roger Thornton, who designed the board and ran the exhaustive (and exhausting) RF compliance campaign, and to the team at the Sony UK Technology Centre in Pencoed, South Wales. A partial list of others who made major direct contributions to the BCM2837B0 chip program, CYW43455 integration, LAN7515 and MxL7704 developments, and Raspberry Pi 3B+ itself follows:

James Adams, David Armour, Jonathan Bell, Maria Blazquez, Jamie Brogan-Shaw, Mike Buffham, Rob Campling, Cindy Cao, Victor Carmon, KK Chan, Nick Chase, Nigel Cheetham, Scott Clark, Nigel Clift, Dominic Cobley, Peter Coyle, John Cronk, Di Dai, Kurt Dennis, David Doyle, Andrew Edwards, Phil Elwell, John Ferdinand, Doug Freegard, Ian Furlong, Shawn Guo, Philip Harrison, Jason Hicks, Stefan Ho, Andrew Hoare, Gordon Hollingworth, Tuomas Hollman, EikPei Hu, James Hughes, Andy Hulbert, Anand Jain, David John, Prasanna Kerekoppa, Shaik Labeeb, Trevor Latham, Steve Le, David Lee, David Lewsey, Sherman Li, Xizhe Li, Simon Long, Fu Luo Larson, Juan Martinez, Sandhya Menon, Ben Mercer, James Mills, Max Passell, Mark Perry, Eric Phiri, Ashwin Rao, Justin Rees, James Reilly, Matt Rowley, Akshaye Sama, Ian Saturley, Serge Schneider, Manuel Sedlmair, Shawn Shadburn, Veeresh Shivashimper, Graham Smith, Ben Stephens, Mike Stimson, Yuree Tchong, Stuart Thomson, John Wadsworth, Ian Watch, Sarah Williams, Jason Zhu.

If you’re not on this list and think you should be, please let me know, and accept my apologies.

The post Raspberry Pi 3 Model B+ on sale now at $35 appeared first on Raspberry Pi.

Happy birthday to us!

Post Syndicated from Eben Upton original https://www.raspberrypi.org/blog/happy-birthday-2018/

The eagle-eyed among you may have noticed that today is 28 February, which is as close as you’re going to get to our sixth birthday, given that we launched on a leap day. For the last three years, we’ve launched products on or around our birthday: Raspberry Pi 2 in 2015; Raspberry Pi 3 in 2016; and Raspberry Pi Zero W in 2017. But today is a snow day here at Pi Towers, so rather than launching something, we’re taking a photo tour of the last six years of Raspberry Pi products before we don our party hats for the Raspberry Jam Big Birthday Weekend this Saturday and Sunday.

Prehistory

Before there was Raspberry Pi, there was the Broadcom BCM2763 ‘micro DB’, designed, as it happens, by our very own Roger Thornton. This was the first thing we demoed as a Raspberry Pi in May 2011, shown here running an ARMv6 build of Ubuntu 9.04.

BCM2763 micro DB

Ubuntu on Raspberry Pi, 2011-style

A few months later, along came the first batch of 50 “alpha boards”, designed for us by Broadcom. I used to have a spreadsheet that told me where in the world each one of these lived. These are the first “real” Raspberry Pis, built around the BCM2835 application processor and LAN9512 USB hub and Ethernet adapter; remarkably, a software image taken from the download page today will still run on them.

Raspberry Pi alpha board, top view

Raspberry Pi alpha board

We shot some great demos with this board, including this video of Quake III:

Raspberry Pi – Quake 3 demo

A little something for the weekend: here’s Eben showing the Raspberry Pi running Quake 3, and chatting a bit about the performance of the board. Thanks to Rob Bishop and Dave Emett for getting the demo running.

Pete spent the second half of 2011 turning the alpha board into a shippable product, and just before Christmas we produced the first 20 “beta boards”, 10 of which were sold at auction, raising over £10000 for the Foundation.

The beginnings of a Bramble

Beta boards on parade

Here’s Dom, demoing both the board and his excellent taste in movie trailers:

Raspberry Pi Beta Board Bring up

See http://www.raspberrypi.org/ for more details, FAQ and forum.

Launch

Rather to Pete’s surprise, I took his beta board design (with a manually-added polygon in the Gerbers taking the place of Paul Grant’s infamous red wire), and ordered 2000 units from Egoman in China. After a few hiccups, units started to arrive in Cambridge, and on 29 February 2012, Raspberry Pi went on sale for the first time via our partners element14 and RS Components.

Pallet of pis

The first 2000 Raspberry Pis

Unboxing continues

The first Raspberry Pi from the first box from the first pallet

We took over 100000 orders on the first day: something of a shock for an organisation that had imagined in its wildest dreams that it might see lifetime sales of 10000 units. Some people who ordered that day had to wait until the summer to finally receive their units.

Evolution

Even as we struggled to catch up with demand, we were working on ways to improve the design. We quickly replaced the USB polyfuses in the top right-hand corner of the board with zero-ohm links to reduce IR drop. If you have a board with polyfuses, it’s a real limited edition; even more so if it also has Hynix memory. Pete’s “rev 2” design made this change permanent, tweaked the GPIO pin-out, and added one much-requested feature: mounting holes.

Revision 1 versus revision 2

If you look carefully, you’ll notice something else about the revision 2 board: it’s made in the UK. 2012 marked the start of our relationship with the Sony UK Technology Centre in Pencoed, South Wales. In the five years since, they’ve built every product we offer, including more than 12 million “big” Raspberry Pis and more than one million Zeros.

Celebrating 500,000 Welsh units, back when that seemed like a lot

Economies of scale, and the decline in the price of SDRAM, allowed us to double the memory capacity of the Model B to 512MB in the autumn of 2012. And as supply of Model B finally caught up with demand, we were able to launch the Model A, delivering on our original promise of a $25 computer.

A UK-built Raspberry Pi Model A

In 2014, James took all the lessons we’d learned from two-and-a-bit years in the market, and designed the Model B+, and its baby brother the Model A+. The Model B+ established the form factor for all our future products, with a 40-pin extended GPIO connector, four USB ports, and four mounting holes.

The Raspberry Pi 1 Model B+ — entering the era of proper product photography with a bang.

New toys

While James was working on the Model B+, Broadcom was busy behind the scenes developing a follow-on to the BCM2835 application processor. BCM2836 samples arrived in Cambridge at 18:00 one evening in April 2014 (chips never arrive at 09:00 — it’s always early evening, usually just before a public holiday), and within a few hours Dom had Raspbian, and the usual set of VideoCore multimedia demos, up and running.

We launched Raspberry Pi 2 at the start of 2015, pairing BCM2836 with 1GB of memory. With a quad-core Arm Cortex-A7 clocked at 900MHz, we’d increased performance sixfold, and memory fourfold, in just three years.

Nobody mention the xenon death flash.

And of course, while James was working on Raspberry Pi 2, Broadcom was developing BCM2837, with a quad-core 64-bit Arm Cortex-A53 clocked at 1.2GHz. Raspberry Pi 3 launched barely a year after Raspberry Pi 2, providing a further doubling of performance and, for the first time, wireless LAN and Bluetooth.

All our recent products are just the same board shot from different angles

Zero to hero

Where the PC industry has historically used Moore’s Law to “fill up” a given price point with more performance each year, the original Raspberry Pi used Moore’s law to deliver early-2000s PC performance at a lower price. But with Raspberry Pi 2 and 3, we’d gone back to filling up our original $35 price point. After the launch of Raspberry Pi 2, we started to wonder whether we could pull the same trick again, taking the original Raspberry Pi platform to a radically lower price point.

The result was Raspberry Pi Zero. Priced at just $5, with a 1GHz BCM2835 and 512MB of RAM, it was cheap enough to bundle on the front of The MagPi, making us the first computer magazine to give away a computer as a cover gift.

Cheap thrills

MagPi issue 40 in all its glory

We followed up with the $10 Raspberry Pi Zero W, launched exactly a year ago. This adds the wireless LAN and Bluetooth functionality from Raspberry Pi 3, using a rather improbable-looking PCB antenna designed by our buddies at Proant in Sweden.

Up to our old tricks again

Other things

Of course, this isn’t all. There has been a veritable blizzard of point releases; RAM changes; Chinese red units; promotional blue units; Brazilian blue-ish units; not to mention two Camera Modules, in two flavours each; a touchscreen; the Sense HAT (now aboard the ISS); three compute modules; and cases for the Raspberry Pi 3 and the Zero (the former just won a Design Effectiveness Award from the DBA). And on top of that, we publish three magazines (The MagPi, Hello World, and HackSpace magazine) and a whole host of Project Books and Essentials Guides.

Chinese Raspberry Pi 1 Model B

RS Components limited-edition blue Raspberry Pi 1 Model B

Brazilian-market Raspberry Pi 3 Model B

Visible-light Camera Module v2

Learning about injection moulding the hard way

250 pages of content each month, every month

Essential reading

Forward the Foundation

Why does all this matter? Because we’re providing everyone, everywhere, with the chance to own a general-purpose programmable computer for the price of a cup of coffee; because we’re giving people access to tools to let them learn new skills, build businesses, and bring their ideas to life; and because when you buy a Raspberry Pi product, every penny of profit goes to support the Raspberry Pi Foundation in its mission to change the face of computing education.

We’ve had an amazing six years, and they’ve been amazing in large part because of the community that’s grown up alongside us. This weekend, more than 150 Raspberry Jams will take place around the world, comprising the Raspberry Jam Big Birthday Weekend.

Raspberry Pi Big Birthday Weekend 2018. GIF with confetti and bopping JAM balloons

If you want to know more about the Raspberry Pi community, go ahead and find your nearest Jam on our interactive map — maybe we’ll see you there.

The post Happy birthday to us! appeared first on Raspberry Pi.

Google Login Security for High-Risk Users

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/google_log-in_s.html

Google has a new login service for high-risk users. It’s good, but unforgiving.

Logging in from a desktop will require a special USB key, while accessing your data from a mobile device will similarly require a Bluetooth dongle. All non-Google services and apps will be exiled from reaching into your Gmail or Google Drive. Google’s malware scanners will use a more intensive process to quarantine and analyze incoming documents. And if you forget your password, or lose your hardware login keys, you’ll have to jump through more hoops than ever to regain access, the better to foil any intruders who would abuse that process to circumvent all of Google’s other safeguards.

It’s called Advanced Protection.

All Systems Go! 2017 Schedule Published

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/all-systems-go-2017-schedule-published.html

The All Systems Go! 2017 schedule has been published!

I am happy to announce that we have published the All Systems Go! 2017 schedule!
We are very happy with the large number and the quality of the
submissions we got, and the resulting schedule is exceptionally
strong.

Without further ado:

Here’s the schedule for the first day (Saturday, 21st of October).

And here’s the schedule for the second day (Sunday, 22nd of October).

Here are a couple of keywords from the topics of the talks:
1password, azure, bluetooth, build systems,
casync, cgroups, cilium, cockpit, containers,
ebpf, flatpak, habitat, IoT, kubernetes,
landlock, meson, OCI, rkt, rust, secureboot,
skydive, systemd, testing, tor, varlink,
virtualization, wifi, and more.

Our speakers are from all across the industry: Chef CoreOS, Covalent,
Facebook, Google, Intel, Kinvolk, Microsoft, Mozilla, Pantheon,
Pengutronix, Red Hat, SUSE and more.

For further information about All Systems Go! visit our conference web site.

Make sure to buy your ticket for All Systems Go! 2017 now! A limited
number of tickets are left at this point, so make sure you get yours
before we are all sold out! Find all details here.

See you in Berlin!

Bluetooth Vulnerabilities

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/bluetooth_vulne.html

A bunch of Bluetooth vulnerabilities are being reported, some pretty nasty.

BlueBorne concerns us because of the medium by which it operates. Unlike the majority of attacks today, which rely on the internet, a BlueBorne attack spreads through the air. This works similarly to the two less extensive vulnerabilities discovered recently in a Broadcom Wi-Fi chip by Project Zero and Exodus. The vulnerabilities found in Wi-Fi chips affect only the peripherals of the device, and require another step to take control of the device. With BlueBorne, attackers can gain full control right from the start. Moreover, Bluetooth offers a wider attacker surface than WiFi, almost entirely unexplored by the research community and hence contains far more vulnerabilities.

Airborne attacks, unfortunately, provide a number of opportunities for the attacker. First, spreading through the air renders the attack much more contagious, and allows it to spread with minimum effort. Second, it allows the attack to bypass current security measures and remain undetected, as traditional methods do not protect from airborne threats. Airborne attacks can also allow hackers to penetrate secure internal networks which are “air gapped,” meaning they are disconnected from any other network for protection. This can endanger industrial systems, government agencies, and critical infrastructure.

Finally, unlike traditional malware or attacks, the user does not have to click on a link or download a questionable file. No action by the user is necessary to enable the attack.

Fully patched Windows and iOS systems are protected; Linux coming soon.

Billions of devices imperiled by new clickless Bluetooth attack (ars technica)

Post Syndicated from corbet original https://lwn.net/Articles/733460/rss

Ars technica reports
on a set of just-disclosed Bluetooth vulnerabilities
in multiple
operating systems.
BlueBorne, as the researchers have dubbed their attack, is notable for its unusual reach and effectiveness. Virtually any Android, Linux, or Windows device that hasn’t been recently patched and has Bluetooth turned on can be compromised by an attacking device within 32 feet. It doesn’t require device users to click on any links, connect to a rogue Bluetooth device, or take any other action, short of leaving Bluetooth on.

PulseAudio 11.0 released

Post Syndicated from corbet original https://lwn.net/Articles/732970/rss

Version 11.0 of the PulseAudio sound system has been released. New
features include more hardware support, a priority change so that external
sound devices are preferred over internal devices, support for operating as
a Bluetooth headset device, and the long awaited GNU Hurd port. See the
release notes
for details.

Raspbian Stretch has arrived for Raspberry Pi

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/raspbian-stretch/

It’s now just under two years since we released the Jessie version of Raspbian. Those of you who know that Debian run their releases on a two-year cycle will therefore have been wondering when we might be releasing the next version, codenamed Stretch. Well, wonder no longer – Raspbian Stretch is available for download today!

Disney Pixar Toy Story Raspbian Stretch Raspberry Pi

Debian releases are named after characters from Disney Pixar’s Toy Story trilogy. In case, like me, you were wondering: Stretch is a purple octopus from Toy Story 3. Hi, Stretch!

The differences between Jessie and Stretch are mostly under-the-hood optimisations, and you really shouldn’t notice any differences in day-to-day use of the desktop and applications. (If you’re really interested, the technical details are in the Debian release notes here.)

However, we’ve made a few small changes to our image that are worth mentioning.

New versions of applications

Version 3.0.1 of Sonic Pi is included – this includes a lot of new functionality in terms of input/output. See the Sonic Pi release notes for more details of exactly what has changed.

Raspbian Stretch Raspberry Pi

The Chromium web browser has been updated to version 60, the most recent stable release. This offers improved memory usage and more efficient code, so you may notice it running slightly faster than before. The visual appearance has also been changed very slightly.

Raspbian Stretch Raspberry Pi

Bluetooth audio

In Jessie, we used PulseAudio to provide support for audio over Bluetooth, but integrating this with the ALSA architecture used for other audio sources was clumsy. For Stretch, we are using the bluez-alsa package to make Bluetooth audio work with ALSA itself. PulseAudio is therefore no longer installed by default, and the volume plugin on the taskbar will no longer start and stop PulseAudio. From a user point of view, everything should still work exactly as before – the only change is that if you still wish to use PulseAudio for some other reason, you will need to install it yourself.

Better handling of other usernames

The default user account in Raspbian has always been called ‘pi’, and a lot of the desktop applications assume that this is the current user. This has been changed for Stretch, so now applications like Raspberry Pi Configuration no longer assume this to be the case. This means, for example, that the option to automatically log in as the ‘pi’ user will now automatically log in with the name of the current user instead.

One other change is how sudo is handled. By default, the ‘pi’ user is set up with passwordless sudo access. We are no longer assuming this to be the case, so now desktop applications which require sudo access will prompt for the password rather than simply failing to work if a user without passwordless sudo uses them.

Scratch 2 SenseHAT extension

In the last Jessie release, we added the offline version of Scratch 2. While Scratch 2 itself hasn’t changed for this release, we have added a new extension to allow the SenseHAT to be used with Scratch 2. Look under ‘More Blocks’ and choose ‘Add an Extension’ to load the extension.

This works with either a physical SenseHAT or with the SenseHAT emulator. If a SenseHAT is connected, the extension will control that in preference to the emulator.

Raspbian Stretch Raspberry Pi

Fix for Broadpwn exploit

A couple of months ago, a vulnerability was discovered in the firmware of the BCM43xx wireless chipset which is used on Pi 3 and Pi Zero W; this potentially allows an attacker to take over the chip and execute code on it. The Stretch release includes a patch that addresses this vulnerability.

There is also the usual set of minor bug fixes and UI improvements – I’ll leave you to spot those!

How to get Raspbian Stretch

As this is a major version upgrade, we recommend using a clean image; these are available from the Downloads page on our site as usual.

Upgrading an existing Jessie image is possible, but is not guaranteed to work in every circumstance. If you wish to try upgrading a Jessie image to Stretch, we strongly recommend taking a backup first – we can accept no responsibility for loss of data from a failed update.

To upgrade, first modify the files /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list. In both files, change every occurrence of the word ‘jessie’ to ‘stretch’. (Both files will require sudo to edit.)

Then open a terminal window and execute

sudo apt-get update
sudo apt-get -y dist-upgrade

Answer ‘yes’ to any prompts. There may also be a point at which the install pauses while a page of information is shown on the screen – hold the ‘space’ key to scroll through all of this and then hit ‘q’ to continue.

Finally, if you are not using PulseAudio for anything other than Bluetooth audio, remove it from the image by entering

sudo apt-get -y purge pulseaudio*

The post Raspbian Stretch has arrived for Raspberry Pi appeared first on Raspberry Pi.

Hacking a Segway

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/hacking_a_segwa.html

The Segway has a mobile app. It is hackable:

While analyzing the communication between the app and the Segway scooter itself, Kilbride noticed that a user PIN number meant to protect the Bluetooth communication from unauthorized access wasn’t being used for authentication at every level of the system. As a result, Kilbride could send arbitrary commands to the scooter without needing the user-chosen PIN.

He also discovered that the hoverboard’s software update platform didn’t have a mechanism in place to confirm that firmware updates sent to the device were really from Segway (often called an “integrity check”). This meant that in addition to sending the scooter commands, an attacker could easily trick the device into installing a malicious firmware update that could override its fundamental programming. In this way an attacker would be able to nullify built-in safety mechanisms that prevented the app from remote-controlling or shutting off the vehicle while someone was on it.

“The app allows you to do things like change LED colors, it allows you to remote-control the hoverboard and also apply firmware updates, which is the interesting part,” Kilbride says. “Under the right circumstances, if somebody applies a malicious firmware update, any attacker who knows the right assembly language could then leverage this to basically do as they wish with the hoverboard.”

MagPi 59: the Raspberry Pi PC Challenge

Post Syndicated from Lucy Hattersley original https://www.raspberrypi.org/blog/magpi-59/

Hey everyone, Lucy here! I’m standing in for Rob this month to introduce The MagPi 59, the latest edition of the official Raspberry Pi magazine.

The MagPi 59

Ever wondered whether a Pi could truly replace your home computer? Looking for inspiration for a Pi-powered project you can make and use in the sunshine? Interested in winning a Raspberry Pi that’s a true collector’s item?

Then we’ve got you covered in Issue 59, out in stores today!

The MagPi 59

Shiny and new

The Raspberry Pi PC challenge

This month’s feature is fascinating! We set the legendary Rob Zwetsloot a challenge: use no other computer but a Raspberry Pi for a week, and let us know how it goes – for science!

Is there anything you can’t do with a $35 computer? To find out, you just have to read the magazine.

12 summer projects

We’re bringing together some of the greatest outdoor projects for the Raspberry Pi in this MagPi issue. From a high-altitude balloon, to aerial photography, to bike computers and motorised skateboards, there’s plenty of bright ideas in The MagPi 59.

12 Summer Projects in The MagPi 59

Maybe your Pi will ripen in the sun?

The best of the rest in The MagPi 59

We’ve got a fantastic collection of community projects this month. Ingmar Stapel shows off Big Rob, his SatNav-guided robot, while Eric Page demonstrates his Dog Treat Dispenser. There are also interesting tutorials on building a GPS tracker, controlling a Raspberry Pi with an Android app and Bluetooth, and building an electronic wind chime with magnetometers.

You can even enter our give-away of 10 ultra-rare ‘Raspberry Pi 3 plus official case’ kits signed by none other than Eben Upton, co-creator of the Raspberry Pi. Win one and be the envy of the entire Raspberry Pi community!

Electronic Wind Chimes - MagPi 59

MAGNETS!

You can find The MagPi 59 in the UK right now, at WHSmith, Sainsbury’s, Asda, and Tesco. Copies will be arriving in US stores including Barnes & Noble and Micro Center very soon. You can also get a copy online from our store or via our Android or iOS app. And don’t forget: there’s always the free PDF as well.

Get reading, get making, and enjoy the new issue!

Rob isn’t here to add his signature Picard GIF, but we’ve sorted it for him. He loves a good pun, so he does! – Janina & Alex

The post MagPi 59: the Raspberry Pi PC Challenge appeared first on Raspberry Pi.

Encased in amber: meet the epoxy-embedded Pi

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/epoxy-pi-resin-io/

The maker of one of our favourite projects from this year’s Maker Faire Bay Area took the idea of an ’embedded device’ and ran with it: Ronald McCollam has created a wireless, completely epoxy-encased Pi build – screen included!

Resin.io in resin epoxy-encased Raspberry Pi

*cue epic music theme* “Welcome…to resin in resin.”

Just encase…

Of course, this build is not meant to be a museum piece: Ronald embedded a Raspberry Pi 3 with built-in wireless LAN and Bluetooth to create a hands-on demonstration of the resin.io platform, for which he is a Solution Architect. Resin.io is useful for remotely controlling groups of Linux-based IoT devices. In this case, Ronald used it to connect to the encased Pi. And yes, he named his make Resin-in-resin – we salute you, sir!

resin.io in resin epoxy-encased Raspberry Pi

“Life uh…finds a way.”

Before he started the practical part of his project, he did his research to find a suitable resin. He found that epoxy types specifically designed for encasing electronics are very expensive. In the end, Ronald tried out a cheap type, usually employed to coat furniture, by encasing an LED. It worked perfectly, and he went ahead to use this resin for embedding the Pi.

Bubbleshooting epoxy

This was the first time Ronald had worked with resin, so he learned some essential things about casting. He advises other makers to mix the epoxy very, very slowly to minimize the formation of bubbles; to try their hands on some small-scale casting attempts first; and to make sure they’re using a large enough mold for casting. Another thing to keep in mind is that some components of the make will heat up and expand while the device is running.

His first version of an encased Pi was still connected to the outside world by its USB cable:

Ronald McCollam on Twitter

Updates don’t get more “hands off” than a Raspberry Pi encased in epoxy — @resin_io inside resin! Come ask me about it at @DockerCon!

Not satisfied with this, he went on to incorporate an inductive charging coil as a power source, so that the Pi could be totally insulated in epoxy. The Raspberry Pi Foundation’s Matt Richardson got a look the finished project at Maker Faire Bay Area:

MattRichardson🏳️‍🌈 on Twitter

If you’re at @makerfaire, you must check out what @resin_io is showing. A @Raspberry_Pi completely enclosed in resin. Completely wireless. https://t.co/djVjoLz3hI

MAGNETS!

The charging coil delivers enough power to keep the Pi running for several hours, but it doesn’t allow secure booting. After some head-scratching, Ronald came up with a cool solution to this problem: he added a battery and a magnetic reed switch. He explains:

[The] boot process is to use the magnetic switch to turn off the Pi, put it on the charger for a few minutes to allow the battery to charge up, then remove the magnet so the Pi boots.

Pi in resin controlled by resin.io

“God help us, we’re in the hands of engineers.”

He talks about his build on the resin.io blog, and has provided a detailed project log on Hackaday. For those of you who want to recreate this project at home, Ronald has even put together an Adafruit wishlist of the necessary components.

Does this resin-ate with you?

What’s especially great about Ronald’s posts is that they’re full of helpful tips about getting started with using epoxy resin in your digital making projects. So whether you’re keen to build your own wireless Pi, or just generally interested in embedding electronic components in resin, you’ll find his write-ups useful.

If you have experience in working with epoxy and electronic devices and want to share what you’ve learned, please do so in the comments!

The post Encased in amber: meet the epoxy-embedded Pi appeared first on Raspberry Pi.

Weaponising a teddy bear

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/weaponising-teddy-bear/

At primary school, I loved my Tamagotchi: it moved, it beeped, it was almost like I could talk to it! Nowadays, kids can actually have conversations with their toys, and some toys are IoT devices, capable of accessing online services or of interacting with people via the Internet. And so to one of this week’s news stories: using a Raspberry Pi, an eleven-year-old has demonstrated how to weaponise a teddy bear. This has garnered lots of attention, because he did it at a cybersecurity conference in The Hague, and he used the Bluetooth devices of the assembled experts to do it.

AFP news agency on Twitter

Eleven-year-old “cyber ninja” stuns security experts by hacking into their bluetooth devices to manipulate teddy bear #InternetofThings https://t.co/bx9kTbNUcT

Reuben Paul, from Texas, used a Raspberry Pi together with his laptop to download the numbers of audience members’ smartphones. He then proceeded to use a Python program to manipulate his bear, Bob, using one of the numbers he’d accessed, making him blink one of his lights and record an audio message from the audience.

Reuben has quite of bit of digital making experience, and he’s very concerned about the safety risks of IoT devices. “IoT home appliances, things that can be used in our everyday lives, our cars, lights, refrigerators, everything like this that is connected can be used and weaponised to spy on us or harm us,” he told AFP.

Apparently even his father, software security expert Mano Paul, was unaware of just how unsafe IoT toys can be until Reuben “shocked” him by hacking a toy car.

Reuben is using his computer skills for good: he has already founded an organisation to educate children and adults about cybersecurity. Considering that he is also the youngest Shaolin Kung Fu black belt in the US and reportedly has excellent gymnastics skills, I’m getting serious superhero vibes from this kid!

No Title

No Description

And to think that the toys that were around when I was Reuben’s age could be used for nothing more devious than distracting me from class…

The post Weaponising a teddy bear appeared first on Raspberry Pi.

Ubertooth – Open Source Bluetooth Sniffer

Post Syndicated from Darknet original http://feedproxy.google.com/~r/darknethackers/~3/8fG834VW8HA/

Ubertooth is an open source Bluetooth sniffer and is essentially a development platform for Bluetooth experimentation. It runs best as a native Linux install and should work fine from within a VM. Ubertooth ships with a capable BLE (Bluetooth Smart) sniffer and can sniff some data from Basic Rate (BR) Bluetooth Classic connections. Features The…

Read the full post at darknet.org.uk

Use Amazon WorkSpaces on Your Samsung Galaxy S8/S8+ With the New Samsung DeX

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/use-amazon-workspaces-on-your-samsung-galaxy-s8s8-with-the-new-samsung-dex/

It is really interesting to watch as technology evolves and improves. For example, today’s mobile phones offer screens with resolution that rivals a high-end desktop, along with multiple connectivity options and portability.

Earlier this week I had the opportunity to get some hands-on experience with the brand-new Samsung Galaxy S8+ phone and a unique new companion device called the Samsung DeX Station. I installed the Amazon WorkSpaces client for Android tablet on the phone, entered the registration code for my WorkSpace, and logged in. You can see all of this in action in my new video:

DeX includes USB connectors for your keyboard and mouse, and can also communicate with them using Bluetooth. It also includes a cooling fan, a fast phone charger, plus HDMI and Ethernet ports (You can also use your phone’s cellular or Wi-Fi connections).

Bring it all together and you can get to your cloud-based desktop from just about anywhere. Travel light, use the TV / monitor in your hotel room, and enjoy full access to your corporate network, files, and other resources.

Jeff;

PS – If you want to know more about my working environment, check out I Love my Amazon WorkSpace.

Steampunk laptop powered by Pi: OMG so fancy!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/steampunk-laptop/

In this digital age, where backup computers and multiple internet-connected devices are a must, maker phrazelle built this beautiful Raspberry Pi-powered steampunk laptop for his girlfriend.

And now we all want one. I mean, just look at it!

Raspberry Pi Steampunk laptop

There’s no denying that, had Liz seen this before me, she’d have copied the link into an email and titled it INSTABLOG before sending it to my inbox.

This build is gorgeous. And as a fan of quirky-looking tech builds and of making things out of wood, it caught my eye in a heartbeat, causing me to exclaim “Why, I – ugh! – I want a Steampunk laptop?!” Shortly afterwards, there followed the realisation that there is an Instructables page for the project, leading me to rejoice that I could make my own. “You’ll never finish it,” chides the incomplete Magic Mirror beneath my desk. I shush it with a kick.

Winging it

“I didn’t really spec this out when I started building. I knew I wanted a box, but didn’t know how I was going to approach it,” explains phrazelle, a maker after my own “meh, I’ll wing it” heart. He continues, “I started with a mechanical keyboard with some typewriter-esque keys and built out a board for it. This went in a few directions, and I wound up with a Frankenstein keyboard tray.”

Originally wanting a hole for each key, phrazelle used a paint relief method to mark the place of each one. However, this didn’t work out too well, so he decided to jigsaw out a general space for the keys in a group. After a few attempts and an application of Gorilla Glue, it was looking good.

Building a Steampunk laptop

With his father’s help, phrazelle’s next step was to build the box for the body of the laptop. Again, it was something of an unplanned mashup, resulting in a box that was built around the keyboard tray. Via a series of mitred joints, routing, and some last minute trim, he was able to fit an LCD screen from a cannibalised laptop into the lid, complete with an LCD driver acquired from eBay.

All of the Steampunk trimmings

“As I was going in the Steampunk direction, gears and gauges seemed to make sense,” says phrazelle. “I found a lot of cool stuff on Etsy and Amazon. The front battery gauge, back switch plate, and LED indicator housings came off Etsy.” He also discovered that actual watch gears, which he had purchased in bulk, were too flimsy for use as decoration, so he replaced them with some brass replicas from Amazon instead. Hand-blown marbles worked as LED defusers and the case was complete.

Inside the belly of the (beautiful) beast

Within the laptop body, phrazelle (do let us know your actual name, by the way) included a Talentcell battery pack which he modified to cut the output lines, something that was causing grief when trying to charge the battery. He utilised a plugable USB 2.4 four-port powered hub to power the Raspberry Pi and optional USB devices. He also added a bushel of various other modifications, all of which he explains on his Instructables page.

I ran with the Pixel distro for this build. Then I went through and did some basic security housekeeping like changing the default password, closing every unnecessary port on the firewall, and disabling the Bluetooth. I even put the Bro IDS platform on it to keep an eye out for shifty hackers… *shakes fist*

This thing runs like a champ! For its intended functionality, it does everything it needs to. You can get on the internet, write papers, check email… If you want to get nerdy, you can even brush up on your coding skillz.

Instructables and you

As I said, we love this build. Not only is it a great example of creating an all-in-one Raspberry Pi laptop, but it’s also gorgeous! Make sure to check out phrazelle’s other builds on Instructables, including his Zelda-themed bartop arcade and his ornate magic mirror.

While you’re there, check out the other Raspberry Pi-themed builds on Instructables. There are LOADS of them. And they’re great. And if you wrote any of them – ahem! – like I did, you should be proud of yourself – ahem! – like I am. *clears throat even more pointedly*

Have you built your own Pi laptop? Tell us about it in the comments below. We can’t wait to see it!

The post Steampunk laptop powered by Pi: OMG so fancy! appeared first on Raspberry Pi.

Pi for the connected home

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/pi-for-the-connected-home/

This column is from The MagPi issue 55. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

Since the original Raspberry Pi Zero came out, I’ve seen many makers using it for connected home projects. Its size, low price, low power consumption, and software package have made it a great option, even if makers had to use a USB peripheral to add connectivity. Now that wireless LAN and Bluetooth connectivity are built into Raspberry Pi Zero W, it makes this mini computer platform even better suited for home Internet of Things projects.

Raspberry Pi Zero W

Let me get this out of the way first: ‘Internet of Things’, or ‘IoT’, has all the trappings of an overhyped buzzword. But even if the term Internet of Things doesn’t stick around very long, the concept of connected devices is here to stay for good. It’s a clear side effect of increasingly affordable wireless connectivity technology.

It’s not just development boards that are becoming more connected. The consumer electronics devices that we buy for our homes are more likely to have wireless capabilities. Even a product as simple as a light bulb can be equipped with connectivity, so that you can control its intensity and colour with a mobile app or home automation platform. I recently connected our Google Home to our WeMo Smart Plugs so that I can control the lights in our home using my voice. Last week I was carrying a load of laundry into a dark bedroom. Being able to say “OK Google, turn the bedroom lights on” and having it instantly do just that was a magical moment.

As makers and technology enthusiasts, we have even more power available to us. We benefit from affordable connectivity when it arrives on hardware platforms like Zero W, and can create the connected devices that we hope to see on store shelves one day. We also benefit from being able to interface with consumer-connected devices. For example, a simple hack with a Raspberry Pi lets you use Amazon Dash buttons to control almost anything you want. (Dash buttons are usually used to order a particular product, such as laundry detergent, from Amazon with just a single press.)

Advanced IoT

If you want to go beyond the basics, there are cloud-based platforms that let you manage many devices at once, and create intelligent alerts and actions. Many platforms are already Raspberry Pi-friendly, including the Particle Cloud, Initial State, Cayenne, and Resin.io. Each has its distinct advantages. For example, Initial State makes it really easy for you to create custom web-based dashboards to show you the state of your own sensors and internet-connected devices.

And if you’re a beginner, there are platforms that make it easy to get started with connected devices. One in particular is called IFTTT, which stands for ‘If This, Then That’. It’s an easy-to-use service that lets you connect consumer and maker platforms together without needing to write any code. IFTTT can also go beyond your devices: it can interact with the news, weather, or even local government. In the first partnership of its kind, the City of Louisville, Kentucky recently announced that it’s now on IFTTT and sending real-time air quality data, which you can log or use to trigger your own projects. I hope that it’s just the beginning for IoT partnerships like these.

With all the recent developments in the Internet of Things realm, Raspberry Pi Zero W comes at the perfect time to offer affordable, portable, and connected computing power. The best part is that exploring IoT doesn’t mean that you need to go too far into uncharted territory… it’s still the same Raspberry Pi that you already know and love.

The post Pi for the connected home appeared first on Raspberry Pi.