Tag Archives: infrastructure

Anti-Piracy Group Joins Internet Organization That Controls Top-Level Domain

Post Syndicated from Andy original https://torrentfreak.com/anti-piracy-group-joins-internet-organization-that-controls-top-level-domain-171019/

All around the world, content creators and rightsholders continue to protest against the unauthorized online distribution of copyrighted content.

While pirating end-users obviously share some of the burden, the main emphasis has traditionally been placed on the shuttering of illicit sites, whether torrent, streaming, or hosting based.

Over time, however, sites have become more prevalent and increasingly resilient, leaving the music, movie and publishing industries to play a frustrating game of whac-a-mole. With this in mind, their focus has increasingly shifted towards Internet gatekeepers, including ISPs and bodies with influence over domain availability.

While most of these efforts take place via cooperation or legal action, there’s regularly conflict when Hollywood, for example, wants a particular domain rendered inaccessible or the music industry wants pirates kicked off the Internet.

As a result, there’s nearly always a disconnect, with copyright holders on one side and Internet technology companies worried about mission creep on the other. In Denmark, however, those lines have just been blurred in the most intriguing way possible after an infamous anti-piracy outfit joined an organization with significant control over the Internet in the country.

RettighedsAlliancen (or Rights Alliance as it’s more commonly known) is an anti-piracy group which counts some of the most powerful local and international movie companies among its members. It also operates on behalf of IFPI and by extension, most of the world’s major recording labels.

The group has been involved in dozens of legal processes over the years against file-sharers and file-sharing sites, most recently fighting for and winning ISP blockades against most major pirate portals including The Pirate Bay, RARBG, Torrentz, and many more.

In a somewhat surprising new announcement, the group has revealed it’s become the latest member of DIFO, the Danish Internet Forum (DIFO) which “works for a secure and accessible Internet” under the top-level .DK domain. Indeed, DIFO has overall responsibility for Danish internet infrastructure.

“For DIFO it is important to have a strong link to the Danish internet community. Therefore, we are very pleased that the Alliance wishes to be part of the association,” DIFO said in a statement.

Rights Alliance will be DIFO’s third new member this year but uniquely it will get the opportunity to represent the interests of more than 100,000 Danish and international rightholders from inside an influential Internet-focused organization.

Looking at DIFO’s membership, Rights Alliance certainly stands out as unusual. The majority of the members are made up of IT-based organizations, such as the Internet Industry Association, The Association of Open Source Suppliers and DKRegistrar, the industry association for Danish domain registrars.

A meeting around a table with these players and their often conflicting interests is likely to be an experience for all involved. However, all parties seem more than happy with the new partnership.

“We want to help create a more secure internet for companies that invest in doing business online, and for users to be safe, so combating digital crime is a key and shared goal,” says Rights Alliance chief, Maria Fredenslund. “I am therefore looking forward to the future cooperation with DIFO.”

Only time will tell how this partnership will play out but if common ground can be found, it’s certainly possible that the anti-piracy scene in Denmark could step up a couple of gears in the future.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Using AWS Step Functions State Machines to Handle Workflow-Driven AWS CodePipeline Actions

Post Syndicated from Marcilio Mendonca original https://aws.amazon.com/blogs/devops/using-aws-step-functions-state-machines-to-handle-workflow-driven-aws-codepipeline-actions/

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. It offers powerful integration with other AWS services, such as AWS CodeBuildAWS CodeDeployAWS CodeCommit, AWS CloudFormation and with third-party tools such as Jenkins and GitHub. These services make it possible for AWS customers to successfully automate various tasks, including infrastructure provisioning, blue/green deployments, serverless deployments, AMI baking, database provisioning, and release management.

Developers have been able to use CodePipeline to build sophisticated automation pipelines that often require a single CodePipeline action to perform multiple tasks, fork into different execution paths, and deal with asynchronous behavior. For example, to deploy a Lambda function, a CodePipeline action might first inspect the changes pushed to the code repository. If only the Lambda code has changed, the action can simply update the Lambda code package, create a new version, and point the Lambda alias to the new version. If the changes also affect infrastructure resources managed by AWS CloudFormation, the pipeline action might have to create a stack or update an existing one through the use of a change set. In addition, if an update is required, the pipeline action might enforce a safety policy to infrastructure resources that prevents the deletion and replacement of resources. You can do this by creating a change set and having the pipeline action inspect its changes before updating the stack. Change sets that do not conform to the policy are deleted.

This use case is a good illustration of workflow-driven pipeline actions. These are actions that run multiple tasks, deal with async behavior and loops, need to maintain and propagate state, and fork into different execution paths. Implementing workflow-driven actions directly in CodePipeline can lead to complex pipelines that are hard for developers to understand and maintain. Ideally, a pipeline action should perform a single task and delegate the complexity of dealing with workflow-driven behavior associated with that task to a state machine engine. This would make it possible for developers to build simpler, more intuitive pipelines and allow them to use state machine execution logs to visualize and troubleshoot their pipeline actions.

In this blog post, we discuss how AWS Step Functions state machines can be used to handle workflow-driven actions. We show how a CodePipeline action can trigger a Step Functions state machine and how the pipeline and the state machine are kept decoupled through a Lambda function. The advantages of using state machines include:

  • Simplified logic (complex tasks are broken into multiple smaller tasks).
  • Ease of handling asynchronous behavior (through state machine wait states).
  • Built-in support for choices and processing different execution paths (through state machine choices).
  • Built-in visualization and logging of the state machine execution.

The source code for the sample pipeline, pipeline actions, and state machine used in this post is available at https://github.com/awslabs/aws-codepipeline-stepfunctions.


This figure shows the components in the CodePipeline-Step Functions integration that will be described in this post. The pipeline contains two stages: a Source stage represented by a CodeCommit Git repository and a Prod stage with a single Deploy action that represents the workflow-driven action.

This action invokes a Lambda function (1) called the State Machine Trigger Lambda, which, in turn, triggers a Step Function state machine to process the request (2). The Lambda function sends a continuation token back to the pipeline (3) to continue its execution later and terminates. Seconds later, the pipeline invokes the Lambda function again (4), passing the continuation token received. The Lambda function checks the execution state of the state machine (5,6) and communicates the status to the pipeline. The process is repeated until the state machine execution is complete. Then the Lambda function notifies the pipeline that the corresponding pipeline action is complete (7). If the state machine has failed, the Lambda function will then fail the pipeline action and stop its execution (7). While running, the state machine triggers various Lambda functions to perform different tasks. The state machine and the pipeline are fully decoupled. Their interaction is handled by the Lambda function.

The Deploy State Machine

The sample state machine used in this post is a simplified version of the use case, with emphasis on infrastructure deployment. The state machine will follow distinct execution paths and thus have different outcomes, depending on:

  • The current state of the AWS CloudFormation stack.
  • The nature of the code changes made to the AWS CloudFormation template and pushed into the pipeline.

If the stack does not exist, it will be created. If the stack exists, a change set will be created and its resources inspected by the state machine. The inspection consists of parsing the change set results and detecting whether any resources will be deleted or replaced. If no resources are being deleted or replaced, the change set is allowed to be executed and the state machine completes successfully. Otherwise, the change set is deleted and the state machine completes execution with a failure as the terminal state.

Let’s dive into each of these execution paths.

Path 1: Create a Stack and Succeed Deployment

The Deploy state machine is shown here. It is triggered by the Lambda function using the following input parameters stored in an S3 bucket.

Create New Stack Execution Path

    "environmentName": "prod",
    "stackName": "sample-lambda-app",
    "templatePath": "infra/Lambda-template.yaml",
    "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
    "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ"

Note that some values used here are for the use case example only. Account-specific parameters like revisionS3Bucket and revisionS3Key will be different when you deploy this use case in your account.

These input parameters are used by various states in the state machine and passed to the corresponding Lambda functions to perform different tasks. For example, stackName is used to create a stack, check the status of stack creation, and create a change set. The environmentName represents the environment (for example, dev, test, prod) to which the code is being deployed. It is used to prefix the name of stacks and change sets.

With the exception of built-in states such as wait and choice, each state in the state machine invokes a specific Lambda function.  The results received from the Lambda invocations are appended to the state machine’s original input. When the state machine finishes its execution, several parameters will have been added to its original input.

The first stage in the state machine is “Check Stack Existence”. It checks whether a stack with the input name specified in the stackName input parameter already exists. The output of the state adds a Boolean value called doesStackExist to the original state machine input as follows:

  "doesStackExist": true,
  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",

The following stage, “Does Stack Exist?”, is represented by Step Functions built-in choice state. It checks the value of doesStackExist to determine whether a new stack needs to be created (doesStackExist=true) or a change set needs to be created and inspected (doesStackExist=false).

If the stack does not exist, the states illustrated in green in the preceding figure are executed. This execution path creates the stack, waits until the stack is created, checks the status of the stack’s creation, and marks the deployment successful after the stack has been created. Except for “Stack Created?” and “Wait Stack Creation,” each of these stages invokes a Lambda function. “Stack Created?” and “Wait Stack Creation” are implemented by using the built-in choice state (to decide which path to follow) and the wait state (to wait a few seconds before proceeding), respectively. Each stage adds the results of their Lambda function executions to the initial input of the state machine, allowing future stages to process them.

Path 2: Safely Update a Stack and Mark Deployment as Successful

Safely Update a Stack and Mark Deployment as Successful Execution Path

If the stack indicated by the stackName parameter already exists, a different path is executed. (See the green states in the figure.) This path will create a change set and use wait and choice states to wait until the change set is created. Afterwards, a stage in the execution path will inspect  the resources affected before the change set is executed.

The inspection procedure represented by the “Inspect Change Set Changes” stage consists of parsing the resources affected by the change set and checking whether any of the existing resources are being deleted or replaced. The following is an excerpt of the algorithm, where changeSetChanges.Changes is the object representing the change set changes:

for (var i = 0; i < changeSetChanges.Changes.length; i++) {
    var change = changeSetChanges.Changes[i];
    if (change.Type == "Resource") {
        if (change.ResourceChange.Action == "Delete") {
        if (change.ResourceChange.Action == "Modify") {
            if (change.ResourceChange.Replacement == "True") {

The algorithm returns different values to indicate whether the change set can be safely executed (CAN_SAFELY_UPDATE_EXISTING_STACK or RESOURCES_BEING_DELETED_OR_REPLACED). This value is used later by the state machine to decide whether to execute the change set and update the stack or interrupt the deployment.

The output of the “Inspect Change Set” stage is shown here.

  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",
  "doesStackExist": true,
  "changeSetName": "prod-sample-lambda-app-change-set-545",
  "changeSetCreationStatus": "complete",

At this point, these parameters have been added to the state machine’s original input:

  • changeSetName, which is added by the “Create Change Set” state.
  • changeSetCreationStatus, which is added by the “Get Change Set Creation Status” state.
  • changeSetAction, which is added by the “Inspect Change Set Changes” state.

The “Safe to Update Infra?” step is a choice state (its JSON spec follows) that simply checks the value of the changeSetAction parameter. If the value is equal to “CAN-SAFELY-UPDATE-EXISTING-STACK“, meaning that no resources will be deleted or replaced, the step will execute the change set by proceeding to the “Execute Change Set” state. The deployment is successful (the state machine completes its execution successfully).

"Safe to Update Infra?": {
      "Type": "Choice",
      "Choices": [
          "Variable": "$.taskParams.changeSetAction",
          "StringEquals": "CAN-SAFELY-UPDATE-EXISTING-STACK",
          "Next": "Execute Change Set"
      "Default": "Deployment Failed"

Path 3: Reject Stack Update and Fail Deployment

Reject Stack Update and Fail Deployment Execution Path

If the changeSetAction parameter is different from “CAN-SAFELY-UPDATE-EXISTING-STACK“, the state machine will interrupt the deployment by deleting the change set and proceeding to the “Deployment Fail” step, which is a built-in Fail state. (Its JSON spec follows.) This state causes the state machine to stop in a failed state and serves to indicate to the Lambda function that the pipeline deployment should be interrupted in a fail state as well.

 "Deployment Failed": {
      "Type": "Fail",
      "Cause": "Deployment Failed",
      "Error": "Deployment Failed"

In all three scenarios, there’s a state machine’s visual representation available in the AWS Step Functions console that makes it very easy for developers to identify what tasks have been executed or why a deployment has failed. Developers can also inspect the inputs and outputs of each state and look at the state machine Lambda function’s logs for details. Meanwhile, the corresponding CodePipeline action remains very simple and intuitive for developers who only need to know whether the deployment was successful or failed.

The State Machine Trigger Lambda Function

The Trigger Lambda function is invoked directly by the Deploy action in CodePipeline. The CodePipeline action must pass a JSON structure to the trigger function through the UserParameters attribute, as follows:

  "s3Bucket": "codepipeline-StepFunctions-sample",
  "stateMachineFile": "state_machine_input.json"

The s3Bucket parameter specifies the S3 bucket location for the state machine input parameters file. The stateMachineFile parameter specifies the file holding the input parameters. By being able to specify different input parameters to the state machine, we make the Trigger Lambda function and the state machine reusable across environments. For example, the same state machine could be called from a test and prod pipeline action by specifying a different S3 bucket or state machine input file for each environment.

The Trigger Lambda function performs two main tasks: triggering the state machine and checking the execution state of the state machine. Its core logic is shown here:

exports.index = function (event, context, callback) {
    try {
        console.log("Event: " + JSON.stringify(event));
        console.log("Context: " + JSON.stringify(context));
        console.log("Environment Variables: " + JSON.stringify(process.env));
        if (Util.isContinuingPipelineTask(event)) {
            monitorStateMachineExecution(event, context, callback);
        else {
            triggerStateMachine(event, context, callback);
    catch (err) {
        failure(Util.jobId(event), callback, context.invokeid, err.message);

Util.isContinuingPipelineTask(event) is a utility function that checks if the Trigger Lambda function is being called for the first time (that is, no continuation token is passed by CodePipeline) or as a continuation of a previous call. In its first execution, the Lambda function will trigger the state machine and send a continuation token to CodePipeline that contains the state machine execution ARN. The state machine ARN is exposed to the Lambda function through a Lambda environment variable called stateMachineArn. Here is the code that triggers the state machine:

function triggerStateMachine(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var s3Bucket = Util.actionUserParameter(event, "s3Bucket");
    var stateMachineFile = Util.actionUserParameter(event, "stateMachineFile");
    getStateMachineInputData(s3Bucket, stateMachineFile)
        .then(function (data) {
            var initialParameters = data.Body.toString();
            var stateMachineInputJSON = createStateMachineInitialInput(initialParameters, event);
            console.log("State machine input JSON: " + JSON.stringify(stateMachineInputJSON));
            return stateMachineInputJSON;
        .then(function (stateMachineInputJSON) {
            return triggerStateMachineExecution(stateMachineArn, stateMachineInputJSON);
        .then(function (triggerStateMachineOutput) {
            var continuationToken = { "stateMachineExecutionArn": triggerStateMachineOutput.executionArn };
            var message = "State machine has been triggered: " + JSON.stringify(triggerStateMachineOutput) + ", continuationToken: " + JSON.stringify(continuationToken);
            return continueExecution(Util.jobId(event), continuationToken, callback, message);
        .catch(function (err) {
            console.log("Error triggering state machine: " + stateMachineArn + ", Error: " + err.message);
            failure(Util.jobId(event), callback, context.invokeid, err.message);

The Trigger Lambda function fetches the state machine input parameters from an S3 file, triggers the execution of the state machine using the input parameters and the stateMachineArn environment variable, and signals to CodePipeline that the execution should continue later by passing a continuation token that contains the state machine execution ARN. In case any of these operations fail and an exception is thrown, the Trigger Lambda function will fail the pipeline immediately by signaling a pipeline failure through the putJobFailureResult CodePipeline API.

If the Lambda function is continuing a previous execution, it will extract the state machine execution ARN from the continuation token and check the status of the state machine, as shown here.

function monitorStateMachineExecution(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var continuationToken = JSON.parse(Util.continuationToken(event));
    var stateMachineExecutionArn = continuationToken.stateMachineExecutionArn;
        .then(function (response) {
            if (response.status === "RUNNING") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " is still " + response.status;
                return continueExecution(Util.jobId(event), continuationToken, callback, message);
            if (response.status === "SUCCEEDED") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
                return success(Util.jobId(event), callback, message);
            var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
            return failure(Util.jobId(event), callback, context.invokeid, message);
        .catch(function (err) {
            var message = "Error monitoring execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + ", Error: " + err.message;
            failure(Util.jobId(event), callback, context.invokeid, message);

If the state machine is in the RUNNING state, the Lambda function will send the continuation token back to the CodePipeline action. This will cause CodePipeline to call the Lambda function again a few seconds later. If the state machine has SUCCEEDED, then the Lambda function will notify the CodePipeline action that the action has succeeded. In any other case (FAILURE, TIMED-OUT, or ABORT), the Lambda function will fail the pipeline action.

This behavior is especially useful for developers who are building and debugging a new state machine because a bug in the state machine can potentially leave the pipeline action hanging for long periods of time until it times out. The Trigger Lambda function prevents this.

Also, by having the Trigger Lambda function as a means to decouple the pipeline and state machine, we make the state machine more reusable. It can be triggered from anywhere, not just from a CodePipeline action.

The Pipeline in CodePipeline

Our sample pipeline contains two simple stages: the Source stage represented by a CodeCommit Git repository and the Prod stage, which contains the Deploy action that invokes the Trigger Lambda function. When the state machine decides that the change set created must be rejected (because it replaces or deletes some the existing production resources), it fails the pipeline without performing any updates to the existing infrastructure. (See the failed Deploy action in red.) Otherwise, the pipeline action succeeds, indicating that the existing provisioned infrastructure was either created (first run) or updated without impacting any resources. (See the green Deploy stage in the pipeline on the left.)

The Pipeline in CodePipeline

The JSON spec for the pipeline’s Prod stage is shown here. We use the UserParameters attribute to pass the S3 bucket and state machine input file to the Lambda function. These parameters are action-specific, which means that we can reuse the state machine in another pipeline action.

  "name": "Prod",
  "actions": [
          "inputArtifacts": [
                  "name": "CodeCommitOutput"
          "name": "Deploy",
          "actionTypeId": {
              "category": "Invoke",
              "owner": "AWS",
              "version": "1",
              "provider": "Lambda"
          "outputArtifacts": [],
          "configuration": {
              "FunctionName": "StateMachineTriggerLambda",
              "UserParameters": "{\"s3Bucket\": \"codepipeline-StepFunctions-sample\", \"stateMachineFile\": \"state_machine_input.json\"}"
          "runOrder": 1


In this blog post, we discussed how state machines in AWS Step Functions can be used to handle workflow-driven actions. We showed how a Lambda function can be used to fully decouple the pipeline and the state machine and manage their interaction. The use of a state machine greatly simplified the associated CodePipeline action, allowing us to build a much simpler and cleaner pipeline while drilling down into the state machine’s execution for troubleshooting or debugging.

Here are two exercises you can complete by using the source code.

Exercise #1: Do not fail the state machine and pipeline action after inspecting a change set that deletes or replaces resources. Instead, create a stack with a different name (think of blue/green deployments). You can do this by creating a state machine transition between the “Safe to Update Infra?” and “Create Stack” stages and passing a new stack name as input to the “Create Stack” stage.

Exercise #2: Add wait logic to the state machine to wait until the change set completes its execution before allowing the state machine to proceed to the “Deployment Succeeded” stage. Use the stack creation case as an example. You’ll have to create a Lambda function (similar to the Lambda function that checks the creation status of a stack) to get the creation status of the change set.

Have fun and share your thoughts!

About the Author

Marcilio Mendonca is a Sr. Consultant in the Canadian Professional Services Team at Amazon Web Services. He has helped AWS customers design, build, and deploy best-in-class, cloud-native AWS applications using VMs, containers, and serverless architectures. Before he joined AWS, Marcilio was a Software Development Engineer at Amazon. Marcilio also holds a Ph.D. in Computer Science. In his spare time, he enjoys playing drums, riding his motorcycle in the Toronto GTA area, and spending quality time with his family.

Implementing Default Directory Indexes in Amazon S3-backed Amazon CloudFront Origins Using [email protected]

Post Syndicated from Ronnie Eichler original https://aws.amazon.com/blogs/compute/implementing-default-directory-indexes-in-amazon-s3-backed-amazon-cloudfront-origins-using-lambdaedge/

With the recent launch of [email protected], it’s now possible for you to provide even more robust functionality to your static websites. Amazon CloudFront is a content distribution network service. In this post, I show how you can use [email protected] along with the CloudFront origin access identity (OAI) for Amazon S3 and still provide simple URLs (such as www.example.com/about/ instead of www.example.com/about/index.html).


Amazon S3 is a great platform for hosting a static website. You don’t need to worry about managing servers or underlying infrastructure—you just publish your static to content to an S3 bucket. S3 provides a DNS name such as <bucket-name>.s3-website-<AWS-region>.amazonaws.com. Use this name for your website by creating a CNAME record in your domain’s DNS environment (or Amazon Route 53) as follows:

www.example.com -> <bucket-name>.s3-website-<AWS-region>.amazonaws.com

You can also put CloudFront in front of S3 to further scale the performance of your site and cache the content closer to your users. CloudFront can enable HTTPS-hosted sites, by either using a custom Secure Sockets Layer (SSL) certificate or a managed certificate from AWS Certificate Manager. In addition, CloudFront also offers integration with AWS WAF, a web application firewall. As you can see, it’s possible to achieve some robust functionality by using S3, CloudFront, and other managed services and not have to worry about maintaining underlying infrastructure.

One of the key concerns that you might have when implementing any type of WAF or CDN is that you want to force your users to go through the CDN. If you implement CloudFront in front of S3, you can achieve this by using an OAI. However, in order to do this, you cannot use the HTTP endpoint that is exposed by S3’s static website hosting feature. Instead, CloudFront must use the S3 REST endpoint to fetch content from your origin so that the request can be authenticated using the OAI. This presents some challenges in that the REST endpoint does not support redirection to a default index page.

CloudFront does allow you to specify a default root object (index.html), but it only works on the root of the website (such as http://www.example.com > http://www.example.com/index.html). It does not work on any subdirectory (such as http://www.example.com/about/). If you were to attempt to request this URL through CloudFront, CloudFront would do a S3 GetObject API call against a key that does not exist.

Of course, it is a bad user experience to expect users to always type index.html at the end of every URL (or even know that it should be there). Until now, there has not been an easy way to provide these simpler URLs (equivalent to the DirectoryIndex Directive in an Apache Web Server configuration) to users through CloudFront. Not if you still want to be able to restrict access to the S3 origin using an OAI. However, with the release of [email protected], you can use a JavaScript function running on the CloudFront edge nodes to look for these patterns and request the appropriate object key from the S3 origin.


In this example, you use the compute power at the CloudFront edge to inspect the request as it’s coming in from the client. Then re-write the request so that CloudFront requests a default index object (index.html in this case) for any request URI that ends in ‘/’.

When a request is made against a web server, the client specifies the object to obtain in the request. You can use this URI and apply a regular expression to it so that these URIs get resolved to a default index object before CloudFront requests the object from the origin. Use the following code:

'use strict';
exports.handler = (event, context, callback) => {
    // Extract the request from the CloudFront event that is sent to [email protected] 
    var request = event.Records[0].cf.request;

    // Extract the URI from the request
    var olduri = request.uri;

    // Match any '/' that occurs at the end of a URI. Replace it with a default index
    var newuri = olduri.replace(/\/$/, '\/index.html');
    // Log the URI as received by CloudFront and the new URI to be used to fetch from origin
    console.log("Old URI: " + olduri);
    console.log("New URI: " + newuri);
    // Replace the received URI with the URI that includes the index page
    request.uri = newuri;
    // Return to CloudFront
    return callback(null, request);


To get started, create an S3 bucket to be the origin for CloudFront:

Create bucket

On the other screens, you can just accept the defaults for the purposes of this walkthrough. If this were a production implementation, I would recommend enabling bucket logging and specifying an existing S3 bucket as the destination for access logs. These logs can be useful if you need to troubleshoot issues with your S3 access.

Now, put some content into your S3 bucket. For this walkthrough, create two simple webpages to demonstrate the functionality:  A page that resides at the website root, and another that is in a subdirectory.


<!doctype html>
        <meta charset="utf-8">
        <title>Root home page</title>
        <p>Hello, this page resides in the root directory.</p>


<!doctype html>
        <meta charset="utf-8">
        <title>Subdirectory home page</title>
        <p>Hello, this page resides in the /subdirectory/ directory.</p>

When uploading the files into S3, you can accept the defaults. You add a bucket policy as part of the CloudFront distribution creation that allows CloudFront to access the S3 origin. You should now have an S3 bucket that looks like the following:

Root of bucket

Subdirectory in bucket

Next, create a CloudFront distribution that your users will use to access the content. Open the CloudFront console, and choose Create Distribution. For Select a delivery method for your content, under Web, choose Get Started.

On the next screen, you set up the distribution. Below are the options to configure:

  • Origin Domain Name:  Select the S3 bucket that you created earlier.
  • Restrict Bucket Access: Choose Yes.
  • Origin Access Identity: Create a new identity.
  • Grant Read Permissions on Bucket: Choose Yes, Update Bucket Policy.
  • Object Caching: Choose Customize (I am changing the behavior to avoid having CloudFront cache objects, as this could affect your ability to troubleshoot while implementing the Lambda code).
    • Minimum TTL: 0
    • Maximum TTL: 0
    • Default TTL: 0

You can accept all of the other defaults. Again, this is a proof-of-concept exercise. After you are comfortable that the CloudFront distribution is working properly with the origin and Lambda code, you can re-visit the preceding values and make changes before implementing it in production.

CloudFront distributions can take several minutes to deploy (because the changes have to propagate out to all of the edge locations). After that’s done, test the functionality of the S3-backed static website. Looking at the distribution, you can see that CloudFront assigns a domain name:

CloudFront Distribution Settings

Try to access the website using a combination of various URLs:

http://<domainname>/:  Works

› curl -v http://d3gt20ea1hllb.cloudfront.net/
*   Trying
* Connected to d3gt20ea1hllb.cloudfront.net ( port 80 (#0)
> GET / HTTP/1.1
> Host: d3gt20ea1hllb.cloudfront.net
> User-Agent: curl/7.51.0
> Accept: */*
< HTTP/1.1 200 OK
< ETag: "cb7e2634fe66c1fd395cf868087dd3b9"
< Accept-Ranges: bytes
< Server: AmazonS3
< X-Cache: Miss from cloudfront
< X-Amz-Cf-Id: -D2FSRwzfcwyKZKFZr6DqYFkIf4t7HdGw2MkUF5sE6YFDxRJgi0R1g==
< Content-Length: 209
< Content-Type: text/html
< Last-Modified: Wed, 19 Jul 2017 19:21:16 GMT
< Via: 1.1 6419ba8f3bd94b651d416054d9416f1e.cloudfront.net (CloudFront), 1.1 iad6-proxy-3.amazon.com:80 (Cisco-WSA/9.1.2-010)
< Connection: keep-alive
<!doctype html>
        <meta charset="utf-8">
        <title>Root home page</title>
        <p>Hello, this page resides in the root directory.</p>
* Curl_http_done: called premature == 0
* Connection #0 to host d3gt20ea1hllb.cloudfront.net left intact

This is because CloudFront is configured to request a default root object (index.html) from the origin.

http://<domainname>/subdirectory/:  Doesn’t work

› curl -v http://d3gt20ea1hllb.cloudfront.net/subdirectory/
*   Trying
* Connected to d3gt20ea1hllb.cloudfront.net ( port 80 (#0)
> GET /subdirectory/ HTTP/1.1
> Host: d3gt20ea1hllb.cloudfront.net
> User-Agent: curl/7.51.0
> Accept: */*
< HTTP/1.1 200 OK
< ETag: "d41d8cd98f00b204e9800998ecf8427e"
< x-amz-server-side-encryption: AES256
< Accept-Ranges: bytes
< Server: AmazonS3
< X-Cache: Miss from cloudfront
< X-Amz-Cf-Id: Iqf0Gy8hJLiW-9tOAdSFPkL7vCWBrgm3-1ly5tBeY_izU82ftipodA==
< Content-Length: 0
< Content-Type: application/x-directory
< Last-Modified: Wed, 19 Jul 2017 19:21:24 GMT
< Via: 1.1 6419ba8f3bd94b651d416054d9416f1e.cloudfront.net (CloudFront), 1.1 iad6-proxy-3.amazon.com:80 (Cisco-WSA/9.1.2-010)
< Connection: keep-alive
* Curl_http_done: called premature == 0
* Connection #0 to host d3gt20ea1hllb.cloudfront.net left intact

If you use a tool such like cURL to test this, you notice that CloudFront and S3 are returning a blank response. The reason for this is that the subdirectory does exist, but it does not resolve to an S3 object. Keep in mind that S3 is an object store, so there are no real directories. User interfaces such as the S3 console present a hierarchical view of a bucket with folders based on the presence of forward slashes, but behind the scenes the bucket is just a collection of keys that represent stored objects.

http://<domainname>/subdirectory/index.html:  Works

› curl -v http://d3gt20ea1hllb.cloudfront.net/subdirectory/index.html
*   Trying
* Connected to d3gt20ea1hllb.cloudfront.net ( port 80 (#0)
> GET /subdirectory/index.html HTTP/1.1
> Host: d3gt20ea1hllb.cloudfront.net
> User-Agent: curl/7.51.0
> Accept: */*
< HTTP/1.1 200 OK
< Date: Thu, 20 Jul 2017 20:35:15 GMT
< ETag: "ddf87c487acf7cef9d50418f0f8f8dae"
< Accept-Ranges: bytes
< Server: AmazonS3
< X-Cache: RefreshHit from cloudfront
< X-Amz-Cf-Id: bkh6opXdpw8pUomqG3Qr3UcjnZL8axxOH82Lh0OOcx48uJKc_Dc3Cg==
< Content-Length: 227
< Content-Type: text/html
< Last-Modified: Wed, 19 Jul 2017 19:21:45 GMT
< Via: 1.1 3f2788d309d30f41de96da6f931d4ede.cloudfront.net (CloudFront), 1.1 iad6-proxy-3.amazon.com:80 (Cisco-WSA/9.1.2-010)
< Connection: keep-alive
<!doctype html>
        <meta charset="utf-8">
        <title>Subdirectory home page</title>
        <p>Hello, this page resides in the /subdirectory/ directory.</p>
* Curl_http_done: called premature == 0
* Connection #0 to host d3gt20ea1hllb.cloudfront.net left intact

This request works as expected because you are referencing the object directly. Now, you implement the [email protected] function to return the default index.html page for any subdirectory. Looking at the example JavaScript code, here’s where the magic happens:

var newuri = olduri.replace(/\/$/, '\/index.html');

You are going to use a JavaScript regular expression to match any ‘/’ that occurs at the end of the URI and replace it with ‘/index.html’. This is the equivalent to what S3 does on its own with static website hosting. However, as I mentioned earlier, you can’t rely on this if you want to use a policy on the bucket to restrict it so that users must access the bucket through CloudFront. That way, all requests to the S3 bucket must be authenticated using the S3 REST API. Because of this, you implement a [email protected] function that takes any client request ending in ‘/’ and append a default ‘index.html’ to the request before requesting the object from the origin.

In the Lambda console, choose Create function. On the next screen, skip the blueprint selection and choose Author from scratch, as you’ll use the sample code provided.

Next, configure the trigger. Choosing the empty box shows a list of available triggers. Choose CloudFront and select your CloudFront distribution ID (created earlier). For this example, leave Cache Behavior as * and CloudFront Event as Origin Request. Select the Enable trigger and replicate box and choose Next.

Lambda Trigger

Next, give the function a name and a description. Then, copy and paste the following code:

'use strict';
exports.handler = (event, context, callback) => {
    // Extract the request from the CloudFront event that is sent to [email protected] 
    var request = event.Records[0].cf.request;

    // Extract the URI from the request
    var olduri = request.uri;

    // Match any '/' that occurs at the end of a URI. Replace it with a default index
    var newuri = olduri.replace(/\/$/, '\/index.html');
    // Log the URI as received by CloudFront and the new URI to be used to fetch from origin
    console.log("Old URI: " + olduri);
    console.log("New URI: " + newuri);
    // Replace the received URI with the URI that includes the index page
    request.uri = newuri;
    // Return to CloudFront
    return callback(null, request);


Next, define a role that grants permissions to the Lambda function. For this example, choose Create new role from template, Basic Edge Lambda permissions. This creates a new IAM role for the Lambda function and grants the following permissions:

    "Version": "2012-10-17",
    "Statement": [
            "Effect": "Allow",
            "Action": [
            "Resource": [

In a nutshell, these are the permissions that the function needs to create the necessary CloudWatch log group and log stream, and to put the log events so that the function is able to write logs when it executes.

After the function has been created, you can go back to the browser (or cURL) and re-run the test for the subdirectory request that failed previously:

› curl -v http://d3gt20ea1hllb.cloudfront.net/subdirectory/
*   Trying
* Connected to d3gt20ea1hllb.cloudfront.net ( port 80 (#0)
> GET /subdirectory/ HTTP/1.1
> Host: d3gt20ea1hllb.cloudfront.net
> User-Agent: curl/7.51.0
> Accept: */*
< HTTP/1.1 200 OK
< Date: Thu, 20 Jul 2017 21:18:44 GMT
< ETag: "ddf87c487acf7cef9d50418f0f8f8dae"
< Accept-Ranges: bytes
< Server: AmazonS3
< X-Cache: Miss from cloudfront
< X-Amz-Cf-Id: rwFN7yHE70bT9xckBpceTsAPcmaadqWB9omPBv2P6WkIfQqdjTk_4w==
< Content-Length: 227
< Content-Type: text/html
< Last-Modified: Wed, 19 Jul 2017 19:21:45 GMT
< Via: 1.1 3572de112011f1b625bb77410b0c5cca.cloudfront.net (CloudFront), 1.1 iad6-proxy-3.amazon.com:80 (Cisco-WSA/9.1.2-010)
< Connection: keep-alive
<!doctype html>
        <meta charset="utf-8">
        <title>Subdirectory home page</title>
        <p>Hello, this page resides in the /subdirectory/ directory.</p>
* Curl_http_done: called premature == 0
* Connection #0 to host d3gt20ea1hllb.cloudfront.net left intact

You have now configured a way for CloudFront to return a default index page for subdirectories in S3!


In this post, you used [email protected] to be able to use CloudFront with an S3 origin access identity and serve a default root object on subdirectory URLs. To find out some more about this use-case, see [email protected] integration with CloudFront in our documentation.

If you have questions or suggestions, feel free to comment below. For troubleshooting or implementation help, check out the Lambda forum.

How to Compete with Giants

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/how-to-compete-with-giants/

How to Compete with Giants

This post by Backblaze’s CEO and co-founder Gleb Budman is the sixth in a series about entrepreneurship. You can choose posts in the series from the list below:

  1. How Backblaze got Started: The Problem, The Solution, and the Stuff In-Between
  2. Building a Competitive Moat: Turning Challenges Into Advantages
  3. From Idea to Launch: Getting Your First Customers
  4. How to Get Your First 1,000 Customers
  5. Surviving Your First Year
  6. How to Compete with Giants

Use the Join button above to receive notification of new posts in this series.

Perhaps your business is competing in a brand new space free from established competitors. Most of us, though, start companies that compete with existing offerings from large, established companies. You need to come up with a better mousetrap — not the first mousetrap.

That’s the challenge Backblaze faced. In this post, I’d like to share some of the lessons I learned from that experience.

Backblaze vs. Giants

Competing with established companies that are orders of magnitude larger can be daunting. How can you succeed?

I’ll set the stage by offering a few sets of giants we compete with:

  • When we started Backblaze, we offered online backup in a market where companies had been offering “online backup” for at least a decade, and even the newer entrants had raised tens of millions of dollars.
  • When we built our storage servers, the alternatives were EMC, NetApp, and Dell — each of which had a market cap of over $10 billion.
  • When we introduced our cloud storage offering, B2, our direct competitors were Amazon, Google, and Microsoft. You might have heard of them.

What did we learn by competing with these giants on a bootstrapped budget? Let’s take a look.

Determine What Success Means

For a long time Apple considered Apple TV to be a hobby, not a real product worth focusing on, because it did not generate a billion in revenue. For a $10 billion per year revenue company, a new business that generates $50 million won’t move the needle and often isn’t worth putting focus on. However, for a startup, getting to $50 million in revenue can be the start of a wildly successful business.

Lesson Learned: Don’t let the giants set your success metrics.

The Advantages Startups Have

The giants have a lot of advantages: more money, people, scale, resources, access, etc. Following their playbook and attacking head-on means you’re simply outgunned. Common paths to failure are trying to build more features, enter more markets, outspend on marketing, and other similar approaches where scale and resources are the primary determinants of success.

But being a startup affords many advantages most giants would salivate over. As a nimble startup you can leverage those to succeed. Let’s breakdown nine competitive advantages we’ve used that you can too.

1. Drive Focus

It’s hard to build a $10 billion revenue business doing just one thing, and most giants have a broad portfolio of businesses, numerous products for each, and targeting a variety of customer segments in multiple markets. That adds complexity and distributes management attention.

Startups get the benefit of having everyone in the company be extremely focused, often on a singular mission, product, customer segment, and market. While our competitors sell everything from advertising to Zantac, and are investing in groceries and shipping, Backblaze has focused exclusively on cloud storage. This means all of our best people (i.e. everyone) is focused on our cloud storage business. Where is all of your focus going?

Lesson Learned: Align everyone in your company to a singular focus to dramatically out-perform larger teams.

2. Use Lack-of-Scale as an Advantage

You may have heard Paul Graham say “Do things that don’t scale.” There are a host of things you can do specifically because you don’t have the same scale as the giants. Use that as an advantage.

When we look for data center space, we have more options than our largest competitors because there are simply more spaces available with room for 100 cabinets than for 1,000 cabinets. With some searching, we can find data center space that is better/cheaper.

When a flood in Thailand destroyed factories, causing the world’s supply of hard drives to plummet and prices to triple, we started drive farming. The giants certainly couldn’t. It was a bit crazy, but it let us keep prices unchanged for our customers.

Our Chief Cloud Officer, Tim, used to work at Adobe. Because of their size, any new product needed to always launch in a multitude of languages and in global markets. Once launched, they had scale. But getting any new product launched was incredibly challenging.

Lesson Learned: Use lack-of-scale to exploit opportunities that are closed to giants.

3. Build a Better Product

This one is probably obvious. If you’re going to provide the same product, at the same price, to the same customers — why do it? Remember that better does not always mean more features. Here’s one way we built a better product that didn’t require being a bigger company.

All online backup services required customers to choose what to include in their backup. We found that this was complicated for users since they often didn’t know what needed to be backed up. We flipped the model to back up everything and allow users to exclude if they wanted to, but it was not required. This reduced the number of features/options, while making it easier and better for the user.

This didn’t require the resources of a huge company; it just required understanding customers a bit deeper and thinking about the solution differently. Building a better product is the most classic startup competitive advantage.

Lesson Learned: Dig deep with your customers to understand and deliver a better mousetrap.

4. Provide Better Service

How can you provide better service? Use your advantages. Escalations from your customer care folks to engineering can go through fewer hoops. Fixing an issue and shipping can be quicker. Access to real answers on Twitter or Facebook can be more effective.

A strategic decision we made was to have all customer support people as full-time employees in our headquarters. This ensures they are in close contact to the whole company for feedback to quickly go both ways.

Having a smaller team and fewer layers enables faster internal communication, which increases customer happiness. And the option to do things that don’t scale — such as help a customer in a unique situation — can go a long way in building customer loyalty.

Lesson Learned: Service your customers better by establishing clear internal communications.

5. Remove The Unnecessary

After determining that the industry standard EMC/NetApp/Dell storage servers would be too expensive to build our own cloud storage upon, we decided to build our own infrastructure. Many said we were crazy to compete with these multi-billion dollar companies and that it would be impossible to build a lower cost storage server. However, not only did it prove to not be impossible — it wasn’t even that hard.

One key trick? Remove the unnecessary. While EMC and others built servers to sell to other companies for a wide variety of use cases, Backblaze needed servers that only Backblaze would run, and for a single use case. As a result we could tailor the servers for our needs by removing redundancy from each server (since we would run redundant servers), and using lower-performance components (since we would get high-performance by running parallel servers).

What do your customers and use cases not need? This can trim costs and complexity while often improving the product for your use case.

Lesson Learned: Don’t think “what can we add” to what the giants offer — think “what can we remove.”

6. Be Easy

How many times have you visited a large company website, particularly one that’s not consumer-focused, only to leave saying, “Huh? I don’t understand what you do.” Keeping your website clear, and your product and pricing simple, will dramatically increase conversion and customer satisfaction. If you’re able to make it 2x easier and thus increasing your conversion by 2x, you’ve just allowed yourself to spend ½ as much acquiring a customer.

Providing unlimited data backup wasn’t specifically about providing more storage — it was about making it easier. Since users didn’t know how much data they needed to back up, charging per gigabyte meant they wouldn’t know the cost. Providing unlimited data backup meant they could just relax.

Customers love easy — and being smaller makes easy easier to deliver. Use that as an advantage in your website, marketing materials, pricing, product, and in every other customer interaction.

Lesson Learned: Ease-of-use isn’t a slogan: it’s a competitive advantage. Treat it as seriously as any other feature of your product

7. Don’t Be Afraid of Risk

Obviously unnecessary risks are unnecessary, and some risks aren’t worth taking. However, large companies that have given guidance to Wall Street with a $0.01 range on their earning-per-share are inherently going to be very risk-averse. Use risk-tolerance to open up opportunities, and adjust your tolerance level as you scale. In your first year, there are likely an infinite number of ways your business may vaporize; don’t be too worried about taking a risk that might have a 20% downside when the upside is hockey stick growth.

Using consumer-grade hard drives in our servers may have caused pain and suffering for us years down-the-line, but they were priced at approximately 50% of enterprise drives. Giants wouldn’t have considered the option. Turns out, the consumer drives performed great for us.

Lesson Learned: Use calculated risks as an advantage.

8. Be Open

The larger a company grows, the more it wants to hide information. Some of this is driven by regulatory requirements as a public company. But most of this is cultural. Sharing something might cause a problem, so let’s not. All external communication is treated as a critical press release, with rounds and rounds of editing by multiple teams and approvals. However, customers are often desperate for information. Moreover, sharing information builds trust, understanding, and advocates.

I started blogging at Backblaze before we launched. When we blogged about our Storage Pod and open-sourced the design, many thought we were crazy to share this information. But it was transformative for us, establishing Backblaze as a tech thought leader in storage and giving people a sense of how we were able to provide our service at such a low cost.

Over the years we’ve developed a culture of being open internally and externally, on our blog and with the press, and in communities such as Hacker News and Reddit. Often we’ve been asked, “why would you share that!?” — but it’s the continual openness that builds trust. And that culture of openness is incredibly challenging for the giants.

Lesson Learned: Overshare to build trust and brand where giants won’t.

9. Be Human

As companies scale, typically a smaller percent of founders and executives interact with customers. The people who build the company become more hidden, the language feels “corporate,” and customers start to feel they’re interacting with the cliche “faceless, nameless corporation.” Use your humanity to your advantage. From day one the Backblaze About page listed all the founders, and my email address. While contacting us shouldn’t be the first path for a customer support question, I wanted it to be clear that we stand behind the service we offer; if we’re doing something wrong — I want to know it.

To scale it’s important to have processes and procedures, but sometimes a situation falls outside of a well-established process. While we want our employees to follow processes, they’re still encouraged to be human and “try to do the right thing.” How to you strike this balance? Simon Sinek gives a good talk about it: make your employees feel safe. If employees feel safe they’ll be human.

If your customer is a consumer, they’ll appreciate being treated as a human. Even if your customer is a corporation, the purchasing decision-makers are still people.

Lesson Learned: Being human is the ultimate antithesis to the faceless corporation.

Build Culture to Sustain Your Advantages at Scale

Presumably the goal is not to always be competing with giants, but to one day become a giant. Does this mean you’ll lose all of these advantages? Some, yes — but not all. Some of these advantages are cultural, and if you build these into the culture from the beginning, and fight to keep them as you scale, you can keep them as you become a giant.

Tesla still comes across as human, with Elon Musk frequently interacting with people on Twitter. Apple continues to provide great service through their Genius Bar. And, worst case, if you lose these at scale, you’ll still have the other advantages of being a giant such as money, people, scale, resources, and access.

Of course, some new startup will be gunning for you with grand ambitions, so just be sure not to get complacent. 😉

The post How to Compete with Giants appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

More Raspberry Pi labs in West Africa

Post Syndicated from Rachel Churcher original https://www.raspberrypi.org/blog/pi-based-ict-west-africa/

Back in May 2013, we heard from Dominique Laloux about an exciting project to bring Raspberry Pi labs to schools in rural West Africa. Until 2012, 75 percent of teachers there had never used a computer. The project has been very successful, and Dominique has been in touch again to bring us the latest news.

A view of the inside of the new Pi lab building

Preparing the new Pi labs building in Kuma Tokpli, Togo

Growing the project

Thanks to the continuing efforts of a dedicated team of teachers, parents and other supporters, the Centre Informatique de Kuma, now known as INITIC (from the French ‘INItiation aux TIC’), runs two Raspberry Pi labs in schools in Togo, and plans to open a third in December. The second lab was opened last year in Kpalimé, a town in the Plateaux Region in the west of the country.

Student using a Raspberry Pi computer

Using the new Raspberry Pi labs in Kpalimé, Togo

More than 400 students used the new lab intensively during the last school year. Dominique tells us more:

“The report made in early July by the seven teachers who accompanied the students was nothing short of amazing: the young people covered a very impressive number of concepts and skills, from the GUI and the file system, to a solid introduction to word processing and spreadsheets, and many other skills. The lab worked exactly as expected. Its 21 Raspberry Pis worked flawlessly, with the exception of a couple of SD cards that needed re-cloning, and a couple of old screens that needed to be replaced. All the Raspberry Pis worked without a glitch. They are so reliable!”

The teachers and students have enjoyed access to a range of software and resources, all running on Raspberry Pi 2s and 3s.

“Our current aim is to introduce the students to ICT using the Raspberry Pis, rather than introducing them to programming and electronics (a step that will certainly be considered later). We use Ubuntu Mate along with a large selection of applications, from LibreOffice, Firefox, GIMP, Audacity, and Calibre, to special maths, science, and geography applications. There are also special applications such as GnuCash and GanttProject, as well as logic games including PyChess. Since December, students also have access to a local server hosting Kiwix, Wiktionary (a local copy of Wikipedia in four languages), several hundred videos, and several thousand books. They really love it!”

Pi lab upgrade

This summer, INITIC upgraded the equipment in their Pi lab in Kuma Adamé, which has been running since 2014. 21 older model Raspberry Pis were replaced with Pi 2s and 3s, to bring this lab into line with the others, and encourage co-operation between the different locations.

“All 21 first-generation Raspberry Pis worked flawlessly for three years, despite the less-than-ideal conditions in which they were used — tropical conditions, dust, frequent power outages, etc. I brought them all back to Brussels, and they all still work fine. The rationale behind the upgrade was to bring more computing power to the lab, and also to have the same equipment in our two Raspberry Pi labs (and in other planned installations).”

Students and teachers using the upgraded Pi labs in Kuma Adamé

Students and teachers using the upgraded Pi lab in Kuma Adamé

An upgrade of the organisation’s first lab, installed in 2012 in Kuma Tokpli, will be completed in December. This lab currently uses ‘retired’ laptops, which will be replaced with Raspberry Pis and peripherals. INITIC, in partnership with the local community, is also constructing a new building to house the upgraded technology, and the organisation’s third Raspberry Pi lab.

Reliable tech

Dominique has been very impressed with the performance of the Raspberry Pis since 2014.

“Our experience of three years, in two very different contexts, clearly demonstrates that the Raspberry Pi is a very convincing alternative to more ‘conventional’ computers for introducing young students to ICT where resources are scarce. I wish I could convince more communities in the world to invest in such ‘low cost, low consumption, low maintenance’ infrastructure. It really works!”

He goes on to explain that:

“Our goal now is to build at least one new Raspberry Pi lab in another Togolese school each year. That will, of course, depend on how successful we are at gathering the funds necessary for each installation, but we are confident we can convince enough friends to give us the financial support needed for our action.”

A desk with Raspberry Pis and peripherals

Reliable Raspberry Pis in the labs at Kpalimé

Get involved

We are delighted to see the Raspberry Pi being used to bring information technology to new teachers, students, and communities in Togo – it’s wonderful to see this project becoming established and building on its achievements. The mission of the Raspberry Pi Foundation is to put the power of digital making into the hands of people all over the world. Therefore, projects like this, in which people use our tech to fulfil this mission in places with few resources, are wonderful to us.

More information about INITIC and its projects can be found on its website. If you are interested in helping the organisation to meet its goals, visit the How to help page. And if you are involved with a project like this, bringing ICT, computer science, and coding to new places, please tell us about it in the comments below.

The post More Raspberry Pi labs in West Africa appeared first on Raspberry Pi.

Amazon Lightsail Update – Launch and Manage Windows Virtual Private Servers

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-lightsail-update-launch-and-manage-windows-virtual-private-servers/

I first told you about Amazon Lightsail last year in my blog post, Amazon Lightsail – the Power of AWS, the Simplicity of a VPS. Since last year’s launch, thousands of customers have used Lightsail to get started with AWS, launching Linux-based Virtual Private Servers.

Today we are adding support for Windows-based Virtual Private Servers. You can launch a VPS that runs Windows Server 2012 R2, Windows Server 2016, or Windows Server 2016 with SQL Server 2016 Express and be up and running in minutes. You can use your VPS to build, test, and deploy .NET or Windows applications without having to set up or run any infrastructure. Backups, DNS management, and operational metrics are all accessible with a click or two.

Servers are available in five sizes, with 512 MB to 8 GB of RAM, 1 or 2 vCPUs, and up to 80 GB of SSD storage. Prices (including software licenses) start at $10 per month:

You can try out a 512 MB server for one month (up to 750 hours) at no charge.

Launching a Windows VPS
To launch a Windows VPS, log in to Lightsail , click on Create instance, and select the Microsoft Windows platform. Then click on Apps + OS if you want to run SQL Server 2016 Express, or OS Only if Windows is all you need:

If you want to use a Powershell script to customize your instance after it launches for the first time, click on Add launch script and enter the script:

Choose your instance plan, enter a name for your instance(s), and select the quantity to be launched, then click on Create:

Your instance will be up and running within a minute or so:

Click on the instance, and then click on Connect using RDP:

This will connect using a built-in, browser-based RDP client (you can also use the IP address and the credentials with another client):

Available Today
This feature is available today in the US East (Northern Virginia), US East (Ohio), US West (Oregon), EU (London), EU (Ireland), EU (Frankfurt), Asia Pacific (Singapore), Asia Pacific (Mumbai), Asia Pacific (Sydney), and Asia Pacific (Tokyo) Regions.



My Blogging

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/my_blogging.html

Blog regulars will notice that I haven’t been posting as much lately as I have in the past. There are two reasons. One, it feels harder to find things to write about. So often it’s the same stories over and over. I don’t like repeating myself. Two, I am busy writing a book. The title is still: Click Here to Kill Everybody: Peril and Promise in a Hyper-Connected World. The book is a year late, and as a very different table of contents than it had in 2016. I have been writing steadily since mid-August. The book is due to the publisher at the end of March 2018, and will be published in the beginning of September.

This is the current table of contents:

  • Introduction: Everything is Becoming a Computer
  • Part 1: The Trends
    • 1. Capitalism Continues to Drive the Internet
    • 2. Customer/User Control is Next
    • 3. Government Surveillance and Control is Also Increasing
    • 4. Cybercrime is More Profitable Than Ever
    • 5. Cyberwar is the New Normal
    • 6. Algorithms, Automation, and Autonomy Bring New Dangers
    • 7. What We Know About Computer Security
    • 8. Agile is Failing as a Security Paradigm
    • 9. Authentication and Identification are Getting Harder
    • 10. Risks are Becoming Catastrophic
  • Part 2: The Solutions
    • 11. We Need to Regulate the Internet of Things
    • 12. We Need to Defend Critical Infrastructure
    • 13. We Need to Prioritize Defense Over Offence
    • 14. We Need to Make Smarter Decisions About Connecting
    • 15. What’s Likely to Happen, and What We Can Do in Response
    • 16. Where Policy Can Go Wrong
  • Conclusion: Technology and Policy, Together

So that’s what’s been happening.

Predict Billboard Top 10 Hits Using RStudio, H2O and Amazon Athena

Post Syndicated from Gopal Wunnava original https://aws.amazon.com/blogs/big-data/predict-billboard-top-10-hits-using-rstudio-h2o-and-amazon-athena/

Success in the popular music industry is typically measured in terms of the number of Top 10 hits artists have to their credit. The music industry is a highly competitive multi-billion dollar business, and record labels incur various costs in exchange for a percentage of the profits from sales and concert tickets.

Predicting the success of an artist’s release in the popular music industry can be difficult. One release may be extremely popular, resulting in widespread play on TV, radio and social media, while another single may turn out quite unpopular, and therefore unprofitable. Record labels need to be selective in their decision making, and predictive analytics can help them with decision making around the type of songs and artists they need to promote.

In this walkthrough, you leverage H2O.ai, Amazon Athena, and RStudio to make predictions on whether a song might make it to the Top 10 Billboard charts. You explore the GLM, GBM, and deep learning modeling techniques using H2O’s rapid, distributed and easy-to-use open source parallel processing engine. RStudio is a popular IDE, licensed either commercially or under AGPLv3, for working with R. This is ideal if you don’t want to connect to a server via SSH and use code editors such as vi to do analytics. RStudio is available in a desktop version, or a server version that allows you to access R via a web browser. RStudio’s Notebooks feature is used to demonstrate the execution of code and output. In addition, this post showcases how you can leverage Athena for query and interactive analysis during the modeling phase. A working knowledge of statistics and machine learning would be helpful to interpret the analysis being performed in this post.


Your goal is to predict whether a song will make it to the Top 10 Billboard charts. For this purpose, you will be using multiple modeling techniques―namely GLM, GBM and deep learning―and choose the model that is the best fit.

This solution involves the following steps:

  • Install and configure RStudio with Athena
  • Log in to RStudio
  • Install R packages
  • Connect to Athena
  • Create a dataset
  • Create models

Install and configure RStudio with Athena

Use the following AWS CloudFormation stack to install, configure, and connect RStudio on an Amazon EC2 instance with Athena.

Launching this stack creates all required resources and prerequisites:

  • Amazon EC2 instance with Amazon Linux (minimum size of t2.large is recommended)
  • Provisioning of the EC2 instance in an existing VPC and public subnet
  • Installation of Java 8
  • Assignment of an IAM role to the EC2 instance with the required permissions for accessing Athena and Amazon S3
  • Security group allowing access to the RStudio and SSH ports from the internet (I recommend restricting access to these ports)
  • S3 staging bucket required for Athena (referenced within RStudio as ATHENABUCKET)
  • RStudio username and password
  • Setup logs in Amazon CloudWatch Logs (if needed for additional troubleshooting)
  • Amazon EC2 Systems Manager agent, which makes it easy to manage and patch

All AWS resources are created in the US-East-1 Region. To avoid cross-region data transfer fees, launch the CloudFormation stack in the same region. To check the availability of Athena in other regions, see Region Table.

Log in to RStudio

The instance security group has been automatically configured to allow incoming connections on the RStudio port 8787 from any source internet address. You can edit the security group to restrict source IP access. If you have trouble connecting, ensure that port 8787 isn’t blocked by subnet network ACLS or by your outgoing proxy/firewall.

  1. In the CloudFormation stack, choose Outputs, Value, and then open the RStudio URL. You might need to wait for a few minutes until the instance has been launched.
  2. Log in to RStudio with the and password you provided during setup.

Install R packages

Next, install the required R packages from the RStudio console. You can download the R notebook file containing just the code.

#install pacman – a handy package manager for managing installs
if("pacman" %in% rownames(installed.packages()) == FALSE)
h2o.init(nthreads = -1)
##  Connection successful!
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 hours 42 minutes 
##     H2O cluster version: 
##     H2O cluster version age:    4 months and 4 days !!! 
##     H2O cluster name:           H2O_started_from_R_rstudio_hjx881 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.30 GB 
##     H2O cluster total cores:    4 
##     H2O cluster allowed cores:  4 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 3.3.3 (2017-03-06)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is too old (4 months and 4 days)!
## Please download and install the latest version from http://h2o.ai/download/
#install aws sdk if not present (pre-requisite for using Athena with an IAM role)
if (!aws_sdk_present()) {


Connect to Athena

Next, establish a connection to Athena from RStudio, using an IAM role associated with your EC2 instance. Use ATHENABUCKET to specify the S3 staging directory.

URL <- 'https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.0.1.jar'
fil <- basename(URL)
#download the file into current working directory
if (!file.exists(fil)) download.file(URL, fil)
#verify that the file has been downloaded successfully
## [1] "AthenaJDBC41-1.0.1.jar"
drv <- JDBC(driverClass="com.amazonaws.athena.jdbc.AthenaDriver", fil, identifier.quote="'")

con <- jdbcConnection <- dbConnect(drv, 'jdbc:awsathena://athena.us-east-1.amazonaws.com:443/',

Verify the connection. The results returned depend on your specific Athena setup.

## <JDBCConnection>
##  [1] "gdelt"               "wikistats"           "elb_logs_raw_native"
##  [4] "twitter"             "twitter2"            "usermovieratings"   
##  [7] "eventcodes"          "events"              "billboard"          
## [10] "billboardtop10"      "elb_logs"            "gdelthist"          
## [13] "gdeltmaster"         "twitter"             "twitter3"

Create a dataset

For this analysis, you use a sample dataset combining information from Billboard and Wikipedia with Echo Nest data in the Million Songs Dataset. Upload this dataset into your own S3 bucket. The table below provides a description of the fields used in this dataset.

Field Description
year Year that song was released
songtitle Title of the song
artistname Name of the song artist
songid Unique identifier for the song
artistid Unique identifier for the song artist
timesignature Variable estimating the time signature of the song
timesignature_confidence Confidence in the estimate for the timesignature
loudness Continuous variable indicating the average amplitude of the audio in decibels
tempo Variable indicating the estimated beats per minute of the song
tempo_confidence Confidence in the estimate for tempo
key Variable with twelve levels indicating the estimated key of the song (C, C#, B)
key_confidence Confidence in the estimate for key
energy Variable that represents the overall acoustic energy of the song, using a mix of features such as loudness
pitch Continuous variable that indicates the pitch of the song
timbre_0_min thru timbre_11_min Variables that indicate the minimum values over all segments for each of the twelve values in the timbre vector
timbre_0_max thru timbre_11_max Variables that indicate the maximum values over all segments for each of the twelve values in the timbre vector
top10 Indicator for whether or not the song made it to the Top 10 of the Billboard charts (1 if it was in the top 10, and 0 if not)

Create an Athena table based on the dataset

In the Athena console, select the default database, sampled, or create a new database.

Run the following create table statement.

create external table if not exists billboard
year int,
songtitle string,
artistname string,
songID string,
artistID string,
timesignature int,
timesignature_confidence double,
loudness double,
tempo double,
tempo_confidence double,
key int,
key_confidence double,
energy double,
pitch double,
timbre_0_min double,
timbre_0_max double,
timbre_1_min double,
timbre_1_max double,
timbre_2_min double,
timbre_2_max double,
timbre_3_min double,
timbre_3_max double,
timbre_4_min double,
timbre_4_max double,
timbre_5_min double,
timbre_5_max double,
timbre_6_min double,
timbre_6_max double,
timbre_7_min double,
timbre_7_max double,
timbre_8_min double,
timbre_8_max double,
timbre_9_min double,
timbre_9_max double,
timbre_10_min double,
timbre_10_max double,
timbre_11_min double,
timbre_11_max double,
Top10 int
LOCATION 's3://aws-bigdata-blog/artifacts/predict-billboard/data'

Inspect the table definition for the ‘billboard’ table that you have created. If you chose a database other than sampledb, replace that value with your choice.

dbGetQuery(con, "show create table sampledb.billboard")
##                                      createtab_stmt
## 1       CREATE EXTERNAL TABLE `sampledb.billboard`(
## 2                                       `year` int,
## 3                               `songtitle` string,
## 4                              `artistname` string,
## 5                                  `songid` string,
## 6                                `artistid` string,
## 7                              `timesignature` int,
## 8                `timesignature_confidence` double,
## 9                                `loudness` double,
## 10                                  `tempo` double,
## 11                       `tempo_confidence` double,
## 12                                       `key` int,
## 13                         `key_confidence` double,
## 14                                 `energy` double,
## 15                                  `pitch` double,
## 16                           `timbre_0_min` double,
## 17                           `timbre_0_max` double,
## 18                           `timbre_1_min` double,
## 19                           `timbre_1_max` double,
## 20                           `timbre_2_min` double,
## 21                           `timbre_2_max` double,
## 22                           `timbre_3_min` double,
## 23                           `timbre_3_max` double,
## 24                           `timbre_4_min` double,
## 25                           `timbre_4_max` double,
## 26                           `timbre_5_min` double,
## 27                           `timbre_5_max` double,
## 28                           `timbre_6_min` double,
## 29                           `timbre_6_max` double,
## 30                           `timbre_7_min` double,
## 31                           `timbre_7_max` double,
## 32                           `timbre_8_min` double,
## 33                           `timbre_8_max` double,
## 34                           `timbre_9_min` double,
## 35                           `timbre_9_max` double,
## 36                          `timbre_10_min` double,
## 37                          `timbre_10_max` double,
## 38                          `timbre_11_min` double,
## 39                          `timbre_11_max` double,
## 40                                     `top10` int)
## 41                             ROW FORMAT DELIMITED 
## 42                         FIELDS TERMINATED BY ',' 
## 43                            STORED AS INPUTFORMAT 
## 44       'org.apache.hadoop.mapred.TextInputFormat' 
## 45                                     OUTPUTFORMAT 
## 46  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
## 47                                        LOCATION
## 48    's3://aws-bigdata-blog/artifacts/predict-billboard/data'
## 49                                  TBLPROPERTIES (
## 50            'transient_lastDdlTime'='1505484133')

Run a sample query

Next, run a sample query to obtain a list of all songs from Janet Jackson that made it to the Billboard Top 10 charts.

dbGetQuery(con, " SELECT songtitle,artistname,top10   FROM sampledb.billboard WHERE lower(artistname) =     'janet jackson' AND top10 = 1")
##                       songtitle    artistname top10
## 1                       Runaway Janet Jackson     1
## 2               Because Of Love Janet Jackson     1
## 3                         Again Janet Jackson     1
## 4                            If Janet Jackson     1
## 5  Love Will Never Do (Without You) Janet Jackson 1
## 6                     Black Cat Janet Jackson     1
## 7               Come Back To Me Janet Jackson     1
## 8                       Alright Janet Jackson     1
## 9                      Escapade Janet Jackson     1
## 10                Rhythm Nation Janet Jackson     1

Determine how many songs in this dataset are specifically from the year 2010.

dbGetQuery(con, " SELECT count(*)   FROM sampledb.billboard WHERE year = 2010")
##   _col0
## 1   373

The sample dataset provides certain song properties of interest that can be analyzed to gauge the impact to the song’s overall popularity. Look at one such property, timesignature, and determine the value that is the most frequent among songs in the database. Timesignature is a measure of the number of beats and the type of note involved.

Running the query directly may result in an error, as shown in the commented lines below. This error is a result of trying to retrieve a large result set over a JDBC connection, which can cause out-of-memory issues at the client level. To address this, reduce the fetch size and run again.

#t<-dbGetQuery(con, " SELECT timesignature FROM sampledb.billboard")
#Note:  Running the preceding query results in the following error: 
#Error in .jcall(rp, "I", "fetch", stride, block): java.sql.SQLException: The requested #fetchSize is more than the allowed value in Athena. Please reduce the fetchSize and try #again. Refer to the Athena documentation for valid fetchSize values.
# Use the dbSendQuery function, reduce the fetch size, and run again
r <- dbSendQuery(con, " SELECT timesignature     FROM sampledb.billboard")
dftimesignature<- fetch(r, n=-1, block=100)
## [1] TRUE
## dftimesignature
##    0    1    3    4    5    7 
##   10  143  503 6787  112   19
## [1] 7574

From the results, observe that 6787 songs have a timesignature of 4.

Next, determine the song with the highest tempo.

dbGetQuery(con, " SELECT songtitle,artistname,tempo   FROM sampledb.billboard WHERE tempo = (SELECT max(tempo) FROM sampledb.billboard) ")
##                   songtitle      artistname   tempo
## 1 Wanna Be Startin' Somethin' Michael Jackson 244.307

Create the training dataset

Your model needs to be trained such that it can learn and make accurate predictions. Split the data into training and test datasets, and create the training dataset first.  This dataset contains all observations from the year 2009 and earlier. You may face the same JDBC connection issue pointed out earlier, so this query uses a fetch size.

#BillboardTrain <- dbGetQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
#Running the preceding query results in the following error:-
#Error in .verify.JDBC.result(r, "Unable to retrieve JDBC result set for ", : Unable to retrieve #JDBC result set for SELECT * FROM sampledb.billboard WHERE year <= 2009 (Internal error)
#Follow the same approach as before to address this issue.

r <- dbSendQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
BillboardTrain <- fetch(r, n=-1, block=100)
## [1] TRUE
##   year           songtitle artistname timesignature
## 1 2009 The Awkward Goodbye    Athlete             3
## 2 2009        Rubik's Cube    Athlete             3
##   timesignature_confidence loudness   tempo tempo_confidence
## 1                    0.732   -6.320  89.614   0.652
## 2                    0.906   -9.541 117.742   0.542
## [1] 7201

Create the test dataset

BillboardTest <- dbGetQuery(con, "SELECT * FROM sampledb.billboard where year = 2010")
##   year              songtitle        artistname key
## 1 2010 This Is the House That Doubt Built A Day to Remember  11
## 2 2010        Sticks & Bricks A Day to Remember  10
##   key_confidence    energy pitch timbre_0_min
## 1          0.453 0.9666556 0.024        0.002
## 2          0.469 0.9847095 0.025        0.000
## [1] 373

Convert the training and test datasets into H2O dataframes

train.h2o <- as.h2o(BillboardTrain)
  |                                                                 |   0%
  |=================================================================| 100%
test.h2o <- as.h2o(BillboardTest)
  |                                                                 |   0%
  |=================================================================| 100%

Inspect the column names in your H2O dataframes.

##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"

Create models

You need to designate the independent and dependent variables prior to applying your modeling algorithms. Because you’re trying to predict the ‘top10’ field, this would be your dependent variable and everything else would be independent.

Create your first model using GLM. Because GLM works best with numeric data, you create your model by dropping non-numeric variables. You only use the variables in the dataset that describe the numerical attributes of the song in the logistic regression model. You won’t use these variables:  “year”, “songtitle”, “artistname”, “songid”, or “artistid”.

y.dep <- 39
x.indep <- c(6:38)
##  [1]  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
## [24] 29 30 31 32 33 34 35 36 37 38

Create Model 1: All numeric variables

Create Model 1 with the training dataset, using GLM as the modeling algorithm and H2O’s built-in h2o.glm function.

modelh1 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
  |                                                                 |   0%
  |=====                                                            |   8%
  |=================================================================| 100%

Measure the performance of Model 1, using H2O’s built-in performance function.

## H2OBinomialMetrics: glm
## MSE:  0.09924684
## RMSE:  0.3150347
## LogLoss:  0.3220267
## Mean Per-Class Error:  0.2380168
## AUC:  0.8431394
## Gini:  0.6862787
## R^2:  0.254663
## Null Deviance:  326.0801
## Residual Deviance:  240.2319
## AIC:  308.2319
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0   1    Error     Rate
## 0      255  59 0.187898  =59/314
## 1       17  42 0.288136   =17/59
## Totals 272 101 0.203753  =76/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.192772 0.525000 100
## 2                       max f2  0.124912 0.650510 155
## 3                 max f0point5  0.416258 0.612903  23
## 4                 max accuracy  0.416258 0.879357  23
## 5                max precision  0.813396 1.000000   0
## 6                   max recall  0.037579 1.000000 282
## 7              max specificity  0.813396 1.000000   0
## 8             max absolute_mcc  0.416258 0.455251  23
## 9   max min_per_class_accuracy  0.161402 0.738854 125
## 10 max mean_per_class_accuracy  0.124912 0.765006 155
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or ` 
## [1] 0.8431394

The AUC metric provides insight into how well the classifier is able to separate the two classes. In this case, the value of 0.8431394 indicates that the classification is good. (A value of 0.5 indicates a worthless test, while a value of 1.0 indicates a perfect test.)

Next, inspect the coefficients of the variables in the dataset.

dfmodelh1 <- as.data.frame(h2o.varimp(modelh1))
##                       names coefficients sign
## 1              timbre_0_max  1.290938663  NEG
## 2                  loudness  1.262941934  POS
## 3                     pitch  0.616995941  NEG
## 4              timbre_1_min  0.422323735  POS
## 5              timbre_6_min  0.349016024  NEG
## 6                    energy  0.348092062  NEG
## 7             timbre_11_min  0.307331997  NEG
## 8              timbre_3_max  0.302225619  NEG
## 9             timbre_11_max  0.243632060  POS
## 10             timbre_4_min  0.224233951  POS
## 11             timbre_4_max  0.204134342  POS
## 12             timbre_5_min  0.199149324  NEG
## 13             timbre_0_min  0.195147119  POS
## 14 timesignature_confidence  0.179973904  POS
## 15         tempo_confidence  0.144242598  POS
## 16            timbre_10_max  0.137644568  POS
## 17             timbre_7_min  0.126995955  NEG
## 18            timbre_10_min  0.123851179  POS
## 19             timbre_7_max  0.100031481  NEG
## 20             timbre_2_min  0.096127636  NEG
## 21           key_confidence  0.083115820  POS
## 22             timbre_6_max  0.073712419  POS
## 23            timesignature  0.067241917  POS
## 24             timbre_8_min  0.061301881  POS
## 25             timbre_8_max  0.060041698  POS
## 26                      key  0.056158445  POS
## 27             timbre_3_min  0.050825116  POS
## 28             timbre_9_max  0.033733561  POS
## 29             timbre_2_max  0.030939072  POS
## 30             timbre_9_min  0.020708113  POS
## 31             timbre_1_max  0.014228818  NEG
## 32                    tempo  0.008199861  POS
## 33             timbre_5_max  0.004837870  POS
## 34                                    NA <NA>

Typically, songs with heavier instrumentation tend to be louder (have higher values in the variable “loudness”) and more energetic (have higher values in the variable “energy”). This knowledge is helpful for interpreting the modeling results.

You can make the following observations from the results:

  • The coefficient estimates for the confidence values associated with the time signature, key, and tempo variables are positive. This suggests that higher confidence leads to a higher predicted probability of a Top 10 hit.
  • The coefficient estimate for loudness is positive, meaning that mainstream listeners prefer louder songs with heavier instrumentation.
  • The coefficient estimate for energy is negative, meaning that mainstream listeners prefer songs that are less energetic, which are those songs with light instrumentation.

These coefficients lead to contradictory conclusions for Model 1. This could be due to multicollinearity issues. Inspect the correlation between the variables “loudness” and “energy” in the training set.

## [1] 0.7399067

This number indicates that these two variables are highly correlated, and Model 1 does indeed suffer from multicollinearity. Typically, you associate a value of -1.0 to -0.5 or 1.0 to 0.5 to indicate strong correlation, and a value of 0.1 to 0.1 to indicate weak correlation. To avoid this correlation issue, omit one of these two variables and re-create the models.

You build two variations of the original model:

  • Model 2, in which you keep “energy” and omit “loudness”
  • Model 3, in which you keep “loudness” and omit “energy”

You compare these two models and choose the model with a better fit for this use case.

Create Model 2: Keep energy and omit loudness

##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:7,9:38)
##  [1]  6  7  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh2 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
  |                                                                 |   0%
  |=======                                                          |  10%
  |=================================================================| 100%

Measure the performance of Model 2.

## H2OBinomialMetrics: glm
## MSE:  0.09922606
## RMSE:  0.3150017
## LogLoss:  0.3228213
## Mean Per-Class Error:  0.2490554
## AUC:  0.8431933
## Gini:  0.6863867
## R^2:  0.2548191
## Null Deviance:  326.0801
## Residual Deviance:  240.8247
## AIC:  306.8247
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      280 34 0.108280  =34/314
## 1       23 36 0.389831   =23/59
## Totals 303 70 0.152815  =57/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.254391 0.558140  69
## 2                       max f2  0.113031 0.647208 157
## 3                 max f0point5  0.413999 0.596026  22
## 4                 max accuracy  0.446250 0.876676  18
## 5                max precision  0.811739 1.000000   0
## 6                   max recall  0.037682 1.000000 283
## 7              max specificity  0.811739 1.000000   0
## 8             max absolute_mcc  0.254391 0.469060  69
## 9   max min_per_class_accuracy  0.141051 0.716561 131
## 10 max mean_per_class_accuracy  0.113031 0.761821 157
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh2 <- as.data.frame(h2o.varimp(modelh2))
##                       names coefficients sign
## 1                     pitch  0.700331511  NEG
## 2              timbre_1_min  0.510270513  POS
## 3              timbre_0_max  0.402059546  NEG
## 4              timbre_6_min  0.333316236  NEG
## 5             timbre_11_min  0.331647383  NEG
## 6              timbre_3_max  0.252425901  NEG
## 7             timbre_11_max  0.227500308  POS
## 8              timbre_4_max  0.210663865  POS
## 9              timbre_0_min  0.208516163  POS
## 10             timbre_5_min  0.202748055  NEG
## 11             timbre_4_min  0.197246582  POS
## 12            timbre_10_max  0.172729619  POS
## 13         tempo_confidence  0.167523934  POS
## 14 timesignature_confidence  0.167398830  POS
## 15             timbre_7_min  0.142450727  NEG
## 16             timbre_8_max  0.093377516  POS
## 17            timbre_10_min  0.090333426  POS
## 18            timesignature  0.085851625  POS
## 19             timbre_7_max  0.083948442  NEG
## 20           key_confidence  0.079657073  POS
## 21             timbre_6_max  0.076426046  POS
## 22             timbre_2_min  0.071957831  NEG
## 23             timbre_9_max  0.071393189  POS
## 24             timbre_8_min  0.070225578  POS
## 25                      key  0.061394702  POS
## 26             timbre_3_min  0.048384697  POS
## 27             timbre_1_max  0.044721121  NEG
## 28                   energy  0.039698433  POS
## 29             timbre_5_max  0.039469064  POS
## 30             timbre_2_max  0.018461133  POS
## 31                    tempo  0.013279926  POS
## 32             timbre_9_min  0.005282143  NEG
## 33                                    NA <NA>

## [1] 0.8431933

You can make the following observations:

  • The AUC metric is 0.8431933.
  • Inspecting the coefficient of the variable energy, Model 2 suggests that songs with high energy levels tend to be more popular. This is as per expectation.
  • As H2O orders variables by significance, the variable energy is not significant in this model.

You can conclude that Model 2 is not ideal for this use , as energy is not significant.

CreateModel 3: Keep loudness but omit energy

##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:12,14:38)
##  [1]  6  7  8  9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh3 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
  |                                                                 |   0%
  |========                                                         |  12%
  |=================================================================| 100%
## H2OBinomialMetrics: glm
## MSE:  0.0978859
## RMSE:  0.3128672
## LogLoss:  0.3178367
## Mean Per-Class Error:  0.264925
## AUC:  0.8492389
## Gini:  0.6984778
## R^2:  0.2648836
## Null Deviance:  326.0801
## Residual Deviance:  237.1062
## AIC:  303.1062
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      286 28 0.089172  =28/314
## 1       26 33 0.440678   =26/59
## Totals 312 61 0.144772  =54/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.273799 0.550000  60
## 2                       max f2  0.125503 0.663265 155
## 3                 max f0point5  0.435479 0.628931  24
## 4                 max accuracy  0.435479 0.882038  24
## 5                max precision  0.821606 1.000000   0
## 6                   max recall  0.038328 1.000000 280
## 7              max specificity  0.821606 1.000000   0
## 8             max absolute_mcc  0.435479 0.471426  24
## 9   max min_per_class_accuracy  0.173693 0.745763 120
## 10 max mean_per_class_accuracy  0.125503 0.775073 155
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh3 <- as.data.frame(h2o.varimp(modelh3))
##                       names coefficients sign
## 1              timbre_0_max 1.216621e+00  NEG
## 2                  loudness 9.780973e-01  POS
## 3                     pitch 7.249788e-01  NEG
## 4              timbre_1_min 3.891197e-01  POS
## 5              timbre_6_min 3.689193e-01  NEG
## 6             timbre_11_min 3.086673e-01  NEG
## 7              timbre_3_max 3.025593e-01  NEG
## 8             timbre_11_max 2.459081e-01  POS
## 9              timbre_4_min 2.379749e-01  POS
## 10             timbre_4_max 2.157627e-01  POS
## 11             timbre_0_min 1.859531e-01  POS
## 12             timbre_5_min 1.846128e-01  NEG
## 13 timesignature_confidence 1.729658e-01  POS
## 14             timbre_7_min 1.431871e-01  NEG
## 15            timbre_10_max 1.366703e-01  POS
## 16            timbre_10_min 1.215954e-01  POS
## 17         tempo_confidence 1.183698e-01  POS
## 18             timbre_2_min 1.019149e-01  NEG
## 19           key_confidence 9.109701e-02  POS
## 20             timbre_7_max 8.987908e-02  NEG
## 21             timbre_6_max 6.935132e-02  POS
## 22             timbre_8_max 6.878241e-02  POS
## 23            timesignature 6.120105e-02  POS
## 24                      key 5.814805e-02  POS
## 25             timbre_8_min 5.759228e-02  POS
## 26             timbre_1_max 2.930285e-02  NEG
## 27             timbre_9_max 2.843755e-02  POS
## 28             timbre_3_min 2.380245e-02  POS
## 29             timbre_2_max 1.917035e-02  POS
## 30             timbre_5_max 1.715813e-02  POS
## 31                    tempo 1.364418e-02  NEG
## 32             timbre_9_min 8.463143e-05  NEG
## 33                                    NA <NA>
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501855569251422. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.2033898
## [1] 0.8492389

You can make the following observations:

  • The AUC metric is 0.8492389.
  • From the confusion matrix, the model correctly predicts that 33 songs will be top 10 hits (true positives). However, it has 26 false positives (songs that the model predicted would be Top 10 hits, but ended up not being Top 10 hits).
  • Loudness has a positive coefficient estimate, meaning that this model predicts that songs with heavier instrumentation tend to be more popular. This is the same conclusion from Model 2.
  • Loudness is significant in this model.

Overall, Model 3 predicts a higher number of top 10 hits with an accuracy rate that is acceptable. To choose the best fit for production runs, record labels should consider the following factors:

  • Desired model accuracy at a given threshold
  • Number of correct predictions for top10 hits
  • Tolerable number of false positives or false negatives

Next, make predictions using Model 3 on the test dataset.

predict.regh <- h2o.predict(modelh3, test.h2o)
  |                                                                 |   0%
  |=================================================================| 100%
##   predict        p0          p1
## 1       0 0.9654739 0.034526052
## 2       0 0.9654748 0.034525236
## 3       0 0.9635547 0.036445318
## 4       0 0.9343579 0.065642149
## 5       0 0.9978334 0.002166601
## 6       0 0.9779949 0.022005078
## [373 rows x 3 columns]
##   predict
## 1       0
## 2       0
## 3       0
## 4       0
## 5       0
## 6       0
## [373 rows x 1 column]
#Rename the predicted column 
colnames(dpr)[colnames(dpr) == 'predict'] <- 'predict_top10'
##   0   1 
## 312  61

The first set of output results specifies the probabilities associated with each predicted observation.  For example, observation 1 is 96.54739% likely to not be a Top 10 hit, and 3.4526052% likely to be a Top 10 hit (predict=1 indicates Top 10 hit and predict=0 indicates not a Top 10 hit).  The second set of results list the actual predictions made.  From the third set of results, this model predicts that 61 songs will be top 10 hits.

Compute the baseline accuracy, by assuming that the baseline predicts the most frequent outcome, which is that most songs are not Top 10 hits.

##   0   1 
## 314  59

Now observe that the baseline model would get 314 observations correct, and 59 wrong, for an accuracy of 314/(314+59) = 0.8418231.

It seems that Model 3, with an accuracy of 0.8552, provides you with a small improvement over the baseline model. But is this model useful for record labels?

View the two models from an investment perspective:

  • A production company is interested in investing in songs that are more likely to make it to the Top 10. The company’s objective is to minimize the risk of financial losses attributed to investing in songs that end up unpopular.
  • How many songs does Model 3 correctly predict as a Top 10 hit in 2010? Looking at the confusion matrix, you see that it predicts 33 top 10 hits correctly at an optimal threshold, which is more than half the number
  • It will be more useful to the record label if you can provide the production company with a list of songs that are highly likely to end up in the Top 10.
  • The baseline model is not useful, as it simply does not label any song as a hit.

Considering the three models built so far, you can conclude that Model 3 proves to be the best investment choice for the record label.

GBM model

H2O provides you with the ability to explore other learning models, such as GBM and deep learning. Explore building a model using the GBM technique, using the built-in h2o.gbm function.

Before you do this, you need to convert the target variable to a factor for multinomial classification techniques.

gbm.modelh <- h2o.gbm(y=y.dep, x=x.indep, training_frame = train.h2o, ntrees = 500, max_depth = 4, learn_rate = 0.01, seed = 1122,distribution="multinomial")
  |                                                                 |   0%
  |===                                                              |   5%
  |=====                                                            |   7%
  |======                                                           |   9%
  |=======                                                          |  10%
  |======================                                           |  33%
  |=====================================                            |  56%
  |====================================================             |  79%
  |================================================================ |  98%
  |=================================================================| 100%
## H2OBinomialMetrics: gbm
## MSE:  0.09860778
## RMSE:  0.3140188
## LogLoss:  0.3206876
## Mean Per-Class Error:  0.2120263
## AUC:  0.8630573
## Gini:  0.7261146
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      266 48 0.152866  =48/314
## 1       16 43 0.271186   =16/59
## Totals 282 91 0.171582  =64/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.189757 0.573333  90
## 2                     max f2  0.130895 0.693717 145
## 3               max f0point5  0.327346 0.598802  26
## 4               max accuracy  0.442757 0.876676  14
## 5              max precision  0.802184 1.000000   0
## 6                 max recall  0.049990 1.000000 284
## 7            max specificity  0.802184 1.000000   0
## 8           max absolute_mcc  0.169135 0.496486 104
## 9 max min_per_class_accuracy  0.169135 0.796610 104
## 10 max mean_per_class_accuracy  0.169135 0.805948 104
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501205344484314. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.1355932
## [1] 0.8630573

This model correctly predicts 43 top 10 hits, which is 10 more than the number predicted by Model 3. Moreover, the AUC metric is higher than the one obtained from Model 3.

As seen above, H2O’s API provides the ability to obtain key statistical measures required to analyze the models easily, using several built-in functions. The record label can experiment with different parameters to arrive at the model that predicts the maximum number of Top 10 hits at the desired level of accuracy and threshold.

H2O also allows you to experiment with deep learning models. Deep learning models have the ability to learn features implicitly, but can be more expensive computationally.

Now, create a deep learning model with the h2o.deeplearning function, using the same training and test datasets created before. The time taken to run this model depends on the type of EC2 instance chosen for this purpose.  For models that require more computation, consider using accelerated computing instances such as the P2 instance type.

  dlearning.modelh <- h2o.deeplearning(y = y.dep,
                                      x = x.indep,
                                      training_frame = train.h2o,
                                      epoch = 250,
                                      hidden = c(250,250),
                                      activation = "Rectifier",
                                      seed = 1122,
  |                                                                 |   0%
  |===                                                              |   4%
  |=====                                                            |   8%
  |========                                                         |  12%
  |==========                                                       |  16%
  |=============                                                    |  20%
  |================                                                 |  24%
  |==================                                               |  28%
  |=====================                                            |  32%
  |=======================                                          |  36%
  |==========================                                       |  40%
  |=============================                                    |  44%
  |===============================                                  |  48%
  |==================================                               |  52%
  |====================================                             |  56%
  |=======================================                          |  60%
  |==========================================                       |  64%
  |============================================                     |  68%
  |===============================================                  |  72%
  |=================================================                |  76%
  |====================================================             |  80%
  |=======================================================          |  84%
  |=========================================================        |  88%
  |============================================================     |  92%
  |==============================================================   |  96%
  |=================================================================| 100%
##    user  system elapsed 
##   1.216   0.020 166.508
## H2OBinomialMetrics: deeplearning
## MSE:  0.1678359
## RMSE:  0.4096778
## LogLoss:  1.86509
## Mean Per-Class Error:  0.3433013
## AUC:  0.7568822
## Gini:  0.5137644
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      290 24 0.076433  =24/314
## 1       36 23 0.610169   =36/59
## Totals 326 47 0.160858  =60/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.826267 0.433962  46
## 2                     max f2  0.000000 0.588235 239
## 3               max f0point5  0.999929 0.511811  16
## 4               max accuracy  0.999999 0.865952  10
## 5              max precision  1.000000 1.000000   0
## 6                 max recall  0.000000 1.000000 326
## 7            max specificity  1.000000 1.000000   0
## 8           max absolute_mcc  0.999929 0.363219  16
## 9 max min_per_class_accuracy  0.000004 0.662420 145
## 10 max mean_per_class_accuracy  0.000000 0.685334 224
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.496293348880151. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.3898305
## [1] 0.7568822

The AUC metric for this model is 0.7568822, which is less than what you got from the earlier models. I recommend further experimentation using different hyper parameters, such as the learning rate, epoch or the number of hidden layers.

H2O’s built-in functions provide many key statistical measures that can help measure model performance. Here are some of these key terms.

Metric Description
Sensitivity Measures the proportion of positives that have been correctly identified. It is also called the true positive rate, or recall.
Specificity Measures the proportion of negatives that have been correctly identified. It is also called the true negative rate.
Threshold Cutoff point that maximizes specificity and sensitivity. While the model may not provide the highest prediction at this point, it would not be biased towards positives or negatives.
Precision The fraction of the documents retrieved that are relevant to the information needed, for example, how many of the positively classified are relevant

Provides insight into how well the classifier is able to separate the two classes. The implicit goal is to deal with situations where the sample distribution is highly skewed, with a tendency to overfit to a single class.

0.90 – 1 = excellent (A)

0.8 – 0.9 = good (B)

0.7 – 0.8 = fair (C)

.6 – 0.7 = poor (D)

0.5 – 0.5 = fail (F)

Here’s a summary of the metrics generated from H2O’s built-in functions for the three models that produced useful results.

Metric Model 3 GBM Model Deep Learning Model



















1.0 1.0





1.0 1.0





0.2033898 0.1355932



AUC 0.8492389 0.8630573 0.756882

Note: ‘t’ denotes threshold.

Your options at this point could be narrowed down to Model 3 and the GBM model, based on the AUC and accuracy metrics observed earlier.  If the slightly lower accuracy of the GBM model is deemed acceptable, the record label can choose to go to production with the GBM model, as it can predict a higher number of Top 10 hits.  The AUC metric for the GBM model is also higher than that of Model 3.

Record labels can experiment with different learning techniques and parameters before arriving at a model that proves to be the best fit for their business. Because deep learning models can be computationally expensive, record labels can choose more powerful EC2 instances on AWS to run their experiments faster.


In this post, I showed how the popular music industry can use analytics to predict the type of songs that make the Top 10 Billboard charts. By running H2O’s scalable machine learning platform on AWS, data scientists can easily experiment with multiple modeling techniques and interactively query the data using Amazon Athena, without having to manage the underlying infrastructure. This helps record labels make critical decisions on the type of artists and songs to promote in a timely fashion, thereby increasing sales and revenue.

If you have questions or suggestions, please comment below.

Additional Reading

Learn how to build and explore a simple geospita simple GEOINT application using SparkR.

About the Authors

gopalGopal Wunnava is a Partner Solution Architect with the AWS GSI Team. He works with partners and customers on big data engagements, and is passionate about building analytical solutions that drive business capabilities and decision making. In his spare time, he loves all things sports and movies related and is fond of old classics like Asterix, Obelix comics and Hitchcock movies.



Bob Strahan, a Senior Consultant with AWS Professional Services, contributed to this post.



"Responsible encryption" fallacies

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/10/responsible-encryption-fallacies.html

Deputy Attorney General Rod Rosenstein gave a speech recently calling for “Responsible Encryption” (aka. “Crypto Backdoors”). It’s full of dangerous ideas that need to be debunked.

The importance of law enforcement

The first third of the speech talks about the importance of law enforcement, as if it’s the only thing standing between us and chaos. It cites the 2016 Mirai attacks as an example of the chaos that will only get worse without stricter law enforcement.

But the Mira case demonstrated the opposite, how law enforcement is not needed. They made no arrests in the case. A year later, they still haven’t a clue who did it.

Conversely, we technologists have fixed the major infrastructure issues. Specifically, those affected by the DNS outage have moved to multiple DNS providers, including a high-capacity DNS provider like Google and Amazon who can handle such large attacks easily.

In other words, we the people fixed the major Mirai problem, and law-enforcement didn’t.

Moreover, instead being a solution to cyber threats, law enforcement has become a threat itself. The DNC didn’t have the FBI investigate the attacks from Russia likely because they didn’t want the FBI reading all their files, finding wrongdoing by the DNC. It’s not that they did anything actually wrong, but it’s more like that famous quote from Richelieu “Give me six words written by the most honest of men and I’ll find something to hang him by”. Give all your internal emails over to the FBI and I’m certain they’ll find something to hang you by, if they want.
Or consider the case of Andrew Auernheimer. He found AT&T’s website made public user accounts of the first iPad, so he copied some down and posted them to a news site. AT&T had denied the problem, so making the problem public was the only way to force them to fix it. Such access to the website was legal, because AT&T had made the data public. However, prosecutors disagreed. In order to protect the powerful, they twisted and perverted the law to put Auernheimer in jail.

It’s not that law enforcement is bad, it’s that it’s not the unalloyed good Rosenstein imagines. When law enforcement becomes the thing Rosenstein describes, it means we live in a police state.

Where law enforcement can’t go

Rosenstein repeats the frequent claim in the encryption debate:

Our society has never had a system where evidence of criminal wrongdoing was totally impervious to detection

Of course our society has places “impervious to detection”, protected by both legal and natural barriers.

An example of a legal barrier is how spouses can’t be forced to testify against each other. This barrier is impervious.

A better example, though, is how so much of government, intelligence, the military, and law enforcement itself is impervious. If prosecutors could gather evidence everywhere, then why isn’t Rosenstein prosecuting those guilty of CIA torture?

Oh, you say, government is a special exception. If that were the case, then why did Rosenstein dedicate a precious third of his speech discussing the “rule of law” and how it applies to everyone, “protecting people from abuse by the government”. It obviously doesn’t, there’s one rule of government and a different rule for the people, and the rule for government means there’s lots of places law enforcement can’t go to gather evidence.

Likewise, the crypto backdoor Rosenstein is demanding for citizens doesn’t apply to the President, Congress, the NSA, the Army, or Rosenstein himself.

Then there are the natural barriers. The police can’t read your mind. They can only get the evidence that is there, like partial fingerprints, which are far less reliable than full fingerprints. They can’t go backwards in time.

I mention this because encryption is a natural barrier. It’s their job to overcome this barrier if they can, to crack crypto and so forth. It’s not our job to do it for them.

It’s like the camera that increasingly comes with TVs for video conferencing, or the microphone on Alexa-style devices that are always recording. This suddenly creates evidence that the police want our help in gathering, such as having the camera turned on all the time, recording to disk, in case the police later gets a warrant, to peer backward in time what happened in our living rooms. The “nothing is impervious” argument applies here as well. And it’s equally bogus here. By not helping police by not recording our activities, we aren’t somehow breaking some long standing tradit

And this is the scary part. It’s not that we are breaking some ancient tradition that there’s no place the police can’t go (with a warrant). Instead, crypto backdoors breaking the tradition that never before have I been forced to help them eavesdrop on me, even before I’m a suspect, even before any crime has been committed. Sure, laws like CALEA force the phone companies to help the police against wrongdoers — but here Rosenstein is insisting I help the police against myself.

Balance between privacy and public safety

Rosenstein repeats the frequent claim that encryption upsets the balance between privacy/safety:

Warrant-proof encryption defeats the constitutional balance by elevating privacy above public safety.

This is laughable, because technology has swung the balance alarmingly in favor of law enforcement. Far from “Going Dark” as his side claims, the problem we are confronted with is “Going Light”, where the police state monitors our every action.

You are surrounded by recording devices. If you walk down the street in town, outdoor surveillance cameras feed police facial recognition systems. If you drive, automated license plate readers can track your route. If you make a phone call or use a credit card, the police get a record of the transaction. If you stay in a hotel, they demand your ID, for law enforcement purposes.

And that’s their stuff, which is nothing compared to your stuff. You are never far from a recording device you own, such as your mobile phone, TV, Alexa/Siri/OkGoogle device, laptop. Modern cars from the last few years increasingly have always-on cell connections and data recorders that record your every action (and location).

Even if you hike out into the country, when you get back, the FBI can subpoena your GPS device to track down your hidden weapon’s cache, or grab the photos from your camera.

And this is all offline. So much of what we do is now online. Of the photographs you own, fewer than 1% are printed out, the rest are on your computer or backed up to the cloud.

Your phone is also a GPS recorder of your exact position all the time, which if the government wins the Carpenter case, they police can grab without a warrant. Tagging all citizens with a recording device of their position is not “balance” but the premise for a novel more dystopic than 1984.

If suspected of a crime, which would you rather the police searched? Your person, houses, papers, and physical effects? Or your mobile phone, computer, email, and online/cloud accounts?

The balance of privacy and safety has swung so far in favor of law enforcement that rather than debating whether they should have crypto backdoors, we should be debating how to add more privacy protections.

“But it’s not conclusive”

Rosenstein defends the “going light” (“Golden Age of Surveillance”) by pointing out it’s not always enough for conviction. Nothing gives a conviction better than a person’s own words admitting to the crime that were captured by surveillance. This other data, while copious, often fails to convince a jury beyond a reasonable doubt.
This is nonsense. Police got along well enough before the digital age, before such widespread messaging. They solved terrorist and child abduction cases just fine in the 1980s. Sure, somebody’s GPS location isn’t by itself enough — until you go there and find all the buried bodies, which leads to a conviction. “Going dark” imagines that somehow, the evidence they’ve been gathering for centuries is going away. It isn’t. It’s still here, and matches up with even more digital evidence.
Conversely, a person’s own words are not as conclusive as you think. There’s always missing context. We quickly get back to the Richelieu “six words” problem, where captured communications are twisted to convict people, with defense lawyers trying to untwist them.

Rosenstein’s claim may be true, that a lot of criminals will go free because the other electronic data isn’t convincing enough. But I’d need to see that claim backed up with hard studies, not thrown out for emotional impact.

Terrorists and child molesters

You can always tell the lack of seriousness of law enforcement when they bring up terrorists and child molesters.
To be fair, sometimes we do need to talk about terrorists. There are things unique to terrorism where me may need to give government explicit powers to address those unique concerns. For example, the NSA buys mobile phone 0day exploits in order to hack terrorist leaders in tribal areas. This is a good thing.
But when terrorists use encryption the same way everyone else does, then it’s not a unique reason to sacrifice our freedoms to give the police extra powers. Either it’s a good idea for all crimes or no crimes — there’s nothing particular about terrorism that makes it an exceptional crime. Dead people are dead. Any rational view of the problem relegates terrorism to be a minor problem. More citizens have died since September 8, 2001 from their own furniture than from terrorism. According to studies, the hot water from the tap is more of a threat to you than terrorists.
Yes, government should do what they can to protect us from terrorists, but no, it’s not so bad of a threat that requires the imposition of a military/police state. When people use terrorism to justify their actions, it’s because they trying to form a military/police state.
A similar argument works with child porn. Here’s the thing: the pervs aren’t exchanging child porn using the services Rosenstein wants to backdoor, like Apple’s Facetime or Facebook’s WhatsApp. Instead, they are exchanging child porn using custom services they build themselves.
Again, I’m (mostly) on the side of the FBI. I support their idea of buying 0day exploits in order to hack the web browsers of visitors to the secret “PlayPen” site. This is something that’s narrow to this problem and doesn’t endanger the innocent. On the other hand, their calls for crypto backdoors endangers the innocent while doing effectively nothing to address child porn.
Terrorists and child molesters are a clichéd, non-serious excuse to appeal to our emotions to give up our rights. We should not give in to such emotions.

Definition of “backdoor”

Rosenstein claims that we shouldn’t call backdoors “backdoors”:

No one calls any of those functions [like key recovery] a “back door.”  In fact, those capabilities are marketed and sought out by many users.

He’s partly right in that we rarely refer to PGP’s key escrow feature as a “backdoor”.

But that’s because the term “backdoor” refers less to how it’s done and more to who is doing it. If I set up a recovery password with Apple, I’m the one doing it to myself, so we don’t call it a backdoor. If it’s the police, spies, hackers, or criminals, then we call it a “backdoor” — even it’s identical technology.

Wikipedia uses the key escrow feature of the 1990s Clipper Chip as a prime example of what everyone means by “backdoor“. By “no one”, Rosenstein is including Wikipedia, which is obviously incorrect.

Though in truth, it’s not going to be the same technology. The needs of law enforcement are different than my personal key escrow/backup needs. In particular, there are unsolvable problems, such as a backdoor that works for the “legitimate” law enforcement in the United States but not for the “illegitimate” police states like Russia and China.

I feel for Rosenstein, because the term “backdoor” does have a pejorative connotation, which can be considered unfair. But that’s like saying the word “murder” is a pejorative term for killing people, or “torture” is a pejorative term for torture. The bad connotation exists because we don’t like government surveillance. I mean, honestly calling this feature “government surveillance feature” is likewise pejorative, and likewise exactly what it is that we are talking about.


Rosenstein focuses his arguments on “providers”, like Snapchat or Apple. But this isn’t the question.

The question is whether a “provider” like Telegram, a Russian company beyond US law, provides this feature. Or, by extension, whether individuals should be free to install whatever software they want, regardless of provider.

Telegram is a Russian company that provides end-to-end encryption. Anybody can download their software in order to communicate so that American law enforcement can’t eavesdrop. They aren’t going to put in a backdoor for the U.S. If we succeed in putting backdoors in Apple and WhatsApp, all this means is that criminals are going to install Telegram.

If the, for some reason, the US is able to convince all such providers (including Telegram) to install a backdoor, then it still doesn’t solve the problem, as uses can just build their own end-to-end encryption app that has no provider. It’s like email: some use the major providers like GMail, others setup their own email server.

Ultimately, this means that any law mandating “crypto backdoors” is going to target users not providers. Rosenstein tries to make a comparison with what plain-old telephone companies have to do under old laws like CALEA, but that’s not what’s happening here. Instead, for such rules to have any effect, they have to punish users for what they install, not providers.

This continues the argument I made above. Government backdoors is not something that forces Internet services to eavesdrop on us — it forces us to help the government spy on ourselves.
Rosenstein tries to address this by pointing out that it’s still a win if major providers like Apple and Facetime are forced to add backdoors, because they are the most popular, and some terrorists/criminals won’t move to alternate platforms. This is false. People with good intentions, who are unfairly targeted by a police state, the ones where police abuse is rampant, are the ones who use the backdoored products. Those with bad intentions, who know they are guilty, will move to the safe products. Indeed, Telegram is already popular among terrorists because they believe American services are already all backdoored. 
Rosenstein is essentially demanding the innocent get backdoored while the guilty don’t. This seems backwards. This is backwards.

Apple is morally weak

The reason I’m writing this post is because Rosenstein makes a few claims that cannot be ignored. One of them is how he describes Apple’s response to government insistence on weakening encryption doing the opposite, strengthening encryption. He reasons this happens because:

Of course they [Apple] do. They are in the business of selling products and making money. 

We [the DoJ] use a different measure of success. We are in the business of preventing crime and saving lives. 

He swells in importance. His condescending tone ennobles himself while debasing others. But this isn’t how things work. He’s not some white knight above the peasantry, protecting us. He’s a beat cop, a civil servant, who serves us.

A better phrasing would have been:

They are in the business of giving customers what they want.

We are in the business of giving voters what they want.

Both sides are doing the same, giving people what they want. Yes, voters want safety, but they also want privacy. Rosenstein imagines that he’s free to ignore our demands for privacy as long has he’s fulfilling his duty to protect us. He has explicitly rejected what people want, “we use a different measure of success”. He imagines it’s his job to tell us where the balance between privacy and safety lies. That’s not his job, that’s our job. We, the people (and our representatives), make that decision, and it’s his job is to do what he’s told. His measure of success is how well he fulfills our wishes, not how well he satisfies his imagined criteria.

That’s why those of us on this side of the debate doubt the good intentions of those like Rosenstein. He criticizes Apple for wanting to protect our rights/freedoms, and declare they measure success differently.

They are willing to be vile

Rosenstein makes this argument:

Companies are willing to make accommodations when required by the government. Recent media reports suggest that a major American technology company developed a tool to suppress online posts in certain geographic areas in order to embrace a foreign government’s censorship policies. 

Let me translate this for you:

Companies are willing to acquiesce to vile requests made by police-states. Therefore, they should acquiesce to our vile police-state requests.

It’s Rosenstein who is admitting here is that his requests are those of a police-state.

Constitutional Rights

Rosenstein says:

There is no constitutional right to sell warrant-proof encryption.

Maybe. It’s something the courts will have to decide. There are many 1st, 2nd, 3rd, 4th, and 5th Amendment issues here.
The reason we have the Bill of Rights is because of the abuses of the British Government. For example, they quartered troops in our homes, as a way of punishing us, and as a way of forcing us to help in our own oppression. The troops weren’t there to defend us against the French, but to defend us against ourselves, to shoot us if we got out of line.

And that’s what crypto backdoors do. We are forced to be agents of our own oppression. The principles enumerated by Rosenstein apply to a wide range of even additional surveillance. With little change to his speech, it can equally argue why the constant TV video surveillance from 1984 should be made law.

Let’s go back and look at Apple. It is not some base company exploiting consumers for profit. Apple doesn’t have guns, they cannot make people buy their product. If Apple doesn’t provide customers what they want, then customers vote with their feet, and go buy an Android phone. Apple isn’t providing encryption/security in order to make a profit — it’s giving customers what they want in order to stay in business.
Conversely, if we citizens don’t like what the government does, tough luck, they’ve got the guns to enforce their edicts. We can’t easily vote with our feet and walk to another country. A “democracy” is far less democratic than capitalism. Apple is a minority, selling phones to 45% of the population, and that’s fine, the minority get the phones they want. In a Democracy, where citizens vote on the issue, those 45% are screwed, as the 55% impose their will unwanted onto the remainder.

That’s why we have the Bill of Rights, to protect the 49% against abuse by the 51%. Regardless whether the Supreme Court agrees the current Constitution, it is the sort right that might exist regardless of what the Constitution says. 

Obliged to speak the truth

Here is the another part of his speech that I feel cannot be ignored. We have to discuss this:

Those of us who swear to protect the rule of law have a different motivation.  We are obliged to speak the truth.

The truth is that “going dark” threatens to disable law enforcement and enable criminals and terrorists to operate with impunity.

This is not true. Sure, he’s obliged to say the absolute truth, in court. He’s also obliged to be truthful in general about facts in his personal life, such as not lying on his tax return (the sort of thing that can get lawyers disbarred).

But he’s not obliged to tell his spouse his honest opinion whether that new outfit makes them look fat. Likewise, Rosenstein knows his opinion on public policy doesn’t fall into this category. He can say with impunity that either global warming doesn’t exist, or that it’ll cause a biblical deluge within 5 years. Both are factually untrue, but it’s not going to get him fired.

And this particular claim is also exaggerated bunk. While everyone agrees encryption makes law enforcement’s job harder than with backdoors, nobody honestly believes it can “disable” law enforcement. While everyone agrees that encryption helps terrorists, nobody believes it can enable them to act with “impunity”.

I feel bad here. It’s a terrible thing to question your opponent’s character this way. But Rosenstein made this unavoidable when he clearly, with no ambiguity, put his integrity as Deputy Attorney General on the line behind the statement that “going dark threatens to disable law enforcement and enable criminals and terrorists to operate with impunity”. I feel it’s a bald face lie, but you don’t need to take my word for it. Read his own words yourself and judge his integrity.


Rosenstein’s speech includes repeated references to ideas like “oath”, “honor”, and “duty”. It reminds me of Col. Jessup’s speech in the movie “A Few Good Men”.

If you’ll recall, it was rousing speech, “you want me on that wall” and “you use words like honor as a punchline”. Of course, since he was violating his oath and sending two privates to death row in order to avoid being held accountable, it was Jessup himself who was crapping on the concepts of “honor”, “oath”, and “duty”.

And so is Rosenstein. He imagines himself on that wall, doing albeit terrible things, justified by his duty to protect citizens. He imagines that it’s he who is honorable, while the rest of us not, even has he utters bald faced lies to further his own power and authority.

We activists oppose crypto backdoors not because we lack honor, or because we are criminals, or because we support terrorists and child molesters. It’s because we value privacy and government officials who get corrupted by power. It’s not that we fear Trump becoming a dictator, it’s that we fear bureaucrats at Rosenstein’s level becoming drunk on authority — which Rosenstein demonstrably has. His speech is a long train of corrupt ideas pursuing the same object of despotism — a despotism we oppose.

In other words, we oppose crypto backdoors because it’s not a tool of law enforcement, but a tool of despotism.

How to Automatically Revert and Receive Notifications About Changes to Your Amazon VPC Security Groups

Post Syndicated from Rob Barnes original https://aws.amazon.com/blogs/security/how-to-automatically-revert-and-receive-notifications-about-changes-to-your-amazon-vpc-security-groups/

In a previous AWS Security Blog post, Jeff Levine showed how you can monitor changes to your Amazon EC2 security groups. The methods he describes in that post are examples of detective controls, which can help you determine when changes are made to security controls on your AWS resources.

In this post, I take that approach a step further by introducing an example of a responsive control, which you can use to automatically respond to a detected security event by applying a chosen security mitigation. I demonstrate a solution that continuously monitors changes made to an Amazon VPC security group, and if a new ingress rule (the same as an inbound rule) is added to that security group, the solution removes the rule and then sends you a notification after the changes have been automatically reverted.

The scenario

Let’s say you want to reduce your infrastructure complexity by replacing your Secure Shell (SSH) bastion hosts with Amazon EC2 Systems Manager (SSM). SSM allows you to run commands on your hosts remotely, removing the need to manage bastion hosts or rely on SSH to execute commands. To support this objective, you must prevent your staff members from opening SSH ports to your web server’s Amazon VPC security group. If one of your staff members does modify the VPC security group to allow SSH access, you want the change to be automatically reverted and then receive a notification that the change to the security group was automatically reverted. If you are not yet familiar with security groups, see Security Groups for Your VPC before reading the rest of this post.

Solution overview

This solution begins with a directive control to mandate that no web server should be accessible using SSH. The directive control is enforced using a preventive control, which is implemented using a security group rule that prevents ingress from port 22 (typically used for SSH). The detective control is a “listener” that identifies any changes made to your security group. Finally, the responsive control reverts changes made to the security group and then sends a notification of this security mitigation.

The detective control, in this case, is an Amazon CloudWatch event that detects changes to your security group and triggers the responsive control, which in this case is an AWS Lambda function. I use AWS CloudFormation to simplify the deployment.

The following diagram shows the architecture of this solution.

Solution architecture diagram

Here is how the process works:

  1. Someone on your staff adds a new ingress rule to your security group.
  2. A CloudWatch event that continually monitors changes to your security groups detects the new ingress rule and invokes a designated Lambda function (with Lambda, you can run code without provisioning or managing servers).
  3. The Lambda function evaluates the event to determine whether you are monitoring this security group and reverts the new security group ingress rule.
  4. Finally, the Lambda function sends you an email to let you know what the change was, who made it, and that the change was reverted.

Deploy the solution by using CloudFormation

In this section, you will click the Launch Stack button shown below to launch the CloudFormation stack and deploy the solution.


  • You must have AWS CloudTrail already enabled in the AWS Region where you will be deploying the solution. CloudTrail lets you log, continuously monitor, and retain events related to API calls across your AWS infrastructure. See Getting Started with CloudTrail for more information.
  • You must have a default VPC in the region in which you will be deploying the solution. AWS accounts have one default VPC per AWS Region. If you’ve deleted your VPC, see Creating a Default VPC to recreate it.

Resources that this solution creates

When you launch the CloudFormation stack, it creates the following resources:

  • A sample VPC security group in your default VPC, which is used as the target for reverting ingress rule changes.
  • A CloudWatch event rule that monitors changes to your AWS infrastructure.
  • A Lambda function that reverts changes to the security group and sends you email notifications.
  • A permission that allows CloudWatch to invoke your Lambda function.
  • An AWS Identity and Access Management (IAM) role with limited privileges that the Lambda function assumes when it is executed.
  • An Amazon SNS topic to which the Lambda function publishes notifications.

Launch the CloudFormation stack

The link in this section uses the us-east-1 Region (the US East [N. Virginia] Region). Change the region if you want to use this solution in a different region. See Selecting a Region for more information about changing the region.

To deploy the solution, click the following Launch Stack button to launch the stack. After you click the button, you must sign in to the AWS Management Console if you have not already done so.

Click this "Launch Stack" button


  1. Choose Next to proceed to the Specify Details page.
  2. On the Specify Details page, type your email address in the Send notifications to box. This is the email address to which change notifications will be sent. (After the stack is launched, you will receive a confirmation email that you must accept before you can receive notifications.)
  3. Choose Next until you get to the Review page, and then choose the I acknowledge that AWS CloudFormation might create IAM resources check box. This confirms that you are aware that the CloudFormation template includes an IAM resource.
  4. Choose Create. CloudFormation displays the stack status, CREATE_COMPLETE, when the stack has launched completely, which should take less than two minutes.Screenshot showing that the stack has launched completely

Testing the solution

  1. Check your email for the SNS confirmation email. You must confirm this subscription to receive future notification emails. If you don’t confirm the subscription, your security group ingress rules still will be automatically reverted, but you will not receive notification emails.
  2. Navigate to the EC2 console and choose Security Groups in the navigation pane.
  3. Choose the security group created by CloudFormation. Its name is Web Server Security Group.
  4. Choose the Inbound tab in the bottom pane of the page. Note that only one rule allows HTTPS ingress on port 443 from (from anywhere).Screenshot showing the "Inbound" tab in the bottom pane of the page
  1. Choose Edit to display the Edit inbound rules dialog box (again, an inbound rule and an ingress rule are the same thing).
  2. Choose Add Rule.
  3. Choose SSH from the Type drop-down list.
  4. Choose My IP from the Source drop-down list. Your IP address is populated for you. By adding this rule, you are simulating one of your staff members violating your organization’s policy (in this blog post’s hypothetical example) against allowing SSH access to your EC2 servers. You are testing the solution created when you launched the CloudFormation stack in the previous section. The solution should remove this newly created SSH rule automatically.
    Screenshot of editing inbound rules
  5. Choose Save.

Adding this rule creates an EC2 AuthorizeSecurityGroupIngress service event, which triggers the Lambda function created in the CloudFormation stack. After a few moments, choose the refresh button ( The "refresh" icon ) to see that the new SSH ingress rule that you just created has been removed by the solution you deployed earlier with the CloudFormation stack. If the rule is still there, wait a few more moments and choose the refresh button again.

Screenshot of refreshing the page to see that the SSH ingress rule has been removed

You should also receive an email to notify you that the ingress rule was added and subsequently reverted.

Screenshot of the notification email

Cleaning up

If you want to remove the resources created by this CloudFormation stack, you can delete the CloudFormation stack:

  1. Navigate to the CloudFormation console.
  2. Choose the stack that you created earlier.
  3. Choose the Actions drop-down list.
  4. Choose Delete Stack, and then choose Yes, Delete.
  5. CloudFormation will display a status of DELETE_IN_PROGRESS while it deletes the resources created with the stack. After a few moments, the stack should no longer appear in the list of completed stacks.
    Screenshot of stack "DELETE_IN_PROGRESS"

Other applications of this solution

I have shown one way to use multiple AWS services to help continuously ensure that your security controls haven’t deviated from your security baseline. However, you also could use the CIS Amazon Web Services Foundations Benchmarks, for example, to establish a governance baseline across your AWS accounts and then use the principles in this blog post to automatically mitigate changes to that baseline.

To scale this solution, you can create a framework that uses resource tags to identify particular resources for monitoring. You also can use a consolidated monitoring approach by using cross-account event delivery. See Sending and Receiving Events Between AWS Accounts for more information. You also can extend the principle of automatic mitigation to detect and revert changes to other resources such as IAM policies and Amazon S3 bucket policies.


In this blog post, I demonstrated how you can automatically revert changes to a VPC security group and have a notification sent about the changes. You can use this solution in your own AWS accounts to enforce your security requirements continuously.

If you have comments about this blog post or other ideas for ways to use this solution, submit a comment in the “Comments” section below. If you have implementation questions, start a new thread in the EC2 forum or contact AWS Support.

– Rob

5 Reasons Why AWS Leads the Cloud Market

Post Syndicated from Chris De Santis original https://www.anchor.com.au/blog/2017/10/5-reasons-aws-leads-cloud/

There is no doubt that in the cloud computing market, there is a lot of competition, but there is also a clear market leader. Amazon Web Services (AWS) leads the charge among other web services from similar tech giants such as Microsoft, IBM, and Google, but how did they get there and what’s taking so long for someone of the likes of Google to knock them off their pedestal?

5 Reasons Why AWS Leads the Cloud Market

Credit: Synergy Research Group

Recent research from Synergy Research shows that Amazon has a seemingly unbeatable lead. John Dinsdale, chief analyst at Synergy Research, told TechCrunch that, on paper, AWS is too far ahead of any competitor trying to gain a short-term advantage. The reason behind their spectacular lead is simple:

AWS was first.

If you start the race before everyone else and keep at the pace they’re running, you’re going to win, and that’s exactly what Amazon are doing. Yet, instead of sitting on their colossal market share like a throne, they’re continuing to rapidly innovate and differentiate.

Dinsdale continues to explain that AWS does five things continuously that allows them to stay on top of the cloud market:

  1. Invest considerable amounts in infrastructure
  2. Expand their fleet of services
  3. Execute it all well
  4. Grow its business with enterprises
  5. Has the full long-term backing of Amazon

What can we take from this?

Well, according to Dinsdale, the Amazon formula involves:

  • Investing in your innovation
  • Constantly broadening your product/service range
  • Perform with minimal error
  • Aim for the high-profile customers
  • Look to receive stable funding and support

The post 5 Reasons Why AWS Leads the Cloud Market appeared first on AWS Managed Services by Anchor.

Spotify Threatened Researchers Who Revealed ‘Pirate’ History

Post Syndicated from Andy original https://torrentfreak.com/spotify-threatened-researchers-who-revealed-pirate-history-171006/

As one of the members of Sweden’s infamous Piratbyrån (Piracy Bureau), Rasmus Fleischer was also one of early key figures at The Pirate Bay. Over the years he’s been a writer, researcher, debater, and musician, and in 2012 he finished his PhD thesis on “music’s political economy.”

As part of a five-person research team (Pelle Snickars, Patrick Vonderau, Anna Johansson, Rasmus Fleischer, Maria Eriksson) funded by the Swedish Research Council, Fleischer has co-written a book about the history of Spotify.

Titled ‘Spotify Teardown – Inside the Black Box of Streaming Music’, the publication is set to shine light on the history of the now famous music service while revealing quite a few past secrets.

With its release scheduled for 2018, Fleischer has already teased a few interesting nuggets, not least that Spotify’s early beta version used ‘pirate’ MP3 files, some of them sourced from The Pirate Bay.

Fleischer says that following an interview earlier this year with DI.se, in which he revealed that Spotify distributed unlicensed music between May 2007 to October 2008, Spotify looked at ways to try and stop his team’s research. However, the ‘pirate’ angle wasn’t the clear target, another facet of the team’s research was.

“Building on the tradition of ‘breaching experiments’ in ethnomethodology, the research group sought to break into the hidden infrastructures of digital music distribution in order to study its underlying norms and structures,” project leader Pelle Snickars previously revealed.

With this goal, the team conducted experiments to see if the system was open to abuse or could be manipulated, as Fleischer now explains.

“For example, some hundreds of robot users were created to study whether the same listening behavior results in different recommendations depending on whether the user was registered as male or female,” he says.

“We have also investigated on a small scale the possibilities of manipulating the system. However, we have not collected any data about real users. Our proposed methods appeared several years ago in our research funding application, which was approved by the Swedish Research Council, which was already noted in 2013.”

Fleischer says that Spotify had been aware of the project for several years but it wasn’t until this year, after he spoke of Spotify’s past as a ‘pirate’ service, that pressure began to mount.

“On May 19, our project manager received a letter from Benjamin Helldén-Hegelund, a lawyer at Spotify. The timing was hardly a coincidence. Spotify demanded that we ‘confirm in writing’ that we had ‘ceased activities contrary to their Terms of Use’,” Fleischer reveals.

A corresponding letter to the Swedish Research Council detailed Spotify’s problems with the project.

“Spotify is particularly concerned about the information that has emerged regarding the research group’s methods in the project. The data indicate that the research team has deliberately taken action that is explicitly in violation of Spotify’s Terms of Use and by means of technical methods they sought to conceal these breaches of conditions,” the letter read.

“The research group has worked, among other things, to artificially increase the number of plays and manipulate Spotify’s services using scripts or other automated processes.

“Spotify assumes that the systematic breach of its conditions has not been known to the Swedish Research Council and is convinced that the Swedish Research Council is convinced that the research undertaken with the support of the Swedish Research Council in all respects meets ethical guidelines and is carried out reasonably and in accordance with applicable law.”

Fleischer admits that part of the research was concerned with the possibility of artificially increasing the number of plays, but he says that was carried out on a small scale without any commercial gain.

“The purpose was simply to test if it is true that Spotify could be manipulated on a larger scale, as claimed by journalists who did similar experiments. It is also true that we ‘sought to hide these crimes’ by using a VPN connection,” he says.

Fleischer says that Spotify’s lawyer blended complaints together, such as correlating terms of service violations with violation of research ethics, while presenting the same as grounds for legal action.

“The argument was quite ridiculous. Nevertheless, the letter could not be interpreted as anything other than an attempt by Spotify to prevent us from pursuing the research project,” he notes.

This week, however, it appears the dispute has reached some kind of conclusion. In a posting on his Copyriot blog (Swedish), Fleischer reveals that Spotify has informed the Swedish Research Council that the case has been closed, meaning that the research into the streaming service can continue.

“It must be acknowledged that Spotify’s threats have taken both time and power from the project. This seems to be the purpose when big companies go after researchers who they perceive as uncomfortable. It may not be possible to stop the research but it can be delayed,” Fleischer says.

“Sure [Spotify] dislikes people being reminded of how the service started as a pirate service. But instead of inviting an open dialogue, lawyers are sent out for the purpose of slowing down researchers.”

Spotify Teardown. Inside the Black Box of Streaming Music is to be published by MIT Press in 2018.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

MPAA Reports Pirate Sites, Hosts and Ad-Networks to US Government

Post Syndicated from Ernesto original https://torrentfreak.com/mpaa-reports-pirate-sites-hosts-and-ad-networks-to-us-government-171004/

Responding to a request from the Office of the US Trade Representative (USTR), the MPAA has submitted an updated list of “notorious markets” that it says promote the illegal distribution of movies and TV-shows.

These annual submissions help to guide the U.S. Government’s position towards foreign countries when it comes to copyright enforcement.

What stands out in the MPAA’s latest overview is that it no longer includes offline markets, only sites and services that are available on the Internet. This suggests that online copyright infringement is seen as a priority.

The MPAA’s report includes more than two dozen alleged pirate sites in various categories. While this is not an exhaustive list, the movie industry specifically highlights some of the worst offenders in various categories.

“Content thieves take advantage of a wide constellation of easy-to-use online technologies, such as direct download and streaming, to create infringing sites and applications, often with the look and feel of legitimate content distributors, luring unsuspecting consumers into piracy,” the MPAA writes.

According to the MPAA, torrent sites remain popular, serving millions of torrents to tens of millions of users at any given time.

The Pirate Bay has traditionally been one of the main targets. Based on data from Alexa and SimilarWeb, the MPAA says that TPB has about 62 million unique visitors per month. The other torrent sites mentioned are 1337x.to, Rarbg.to, Rutracker.org, and Torrentz2.eu.

MPAA calls out torrent sites

The second highlighted category covers various linking and streaming sites. This includes the likes of Fmovies.is, Gostream.is, Primewire.ag, Kinogo.club, MeWatchSeries.to, Movie4k.tv and Repelis.tv.

Direct download sites and video hosting services also get a mention. Nowvideo.sx, Openload.co, Rapidgator.net, Uploaded.net and the Russian social network VK.com. Many of these services refuse to properly process takedown notices, the MPAA claims.

The last category is new and centers around piracy apps. These sites offer mobile applications that allow users to stream pirated content, such as IpPlayBox.tv, MoreTV, 3DBoBoVR, TVBrowser, and KuaiKa, which are particularly popular in Asia.

Aside from listing specific sites, the MPAA also draws the US Government’s attention to the streaming box problem. The report specifically mentions that Kodi-powered boxes are regularly abused for infringing purposes.

“An emerging global threat is streaming piracy which is enabled by piracy devices preloaded with software to illicitly stream movies and television programming and a burgeoning ecosystem of infringing add-ons,” the MPAA notes.

“The most popular software is an open source media player software, Kodi. Although Kodi is not itself unlawful, and does not host or link to unlicensed content, it can be easily configured to direct consumers toward unlicensed films and television shows.”

Pirate streaming boxes

There are more than 750 websites offering infringing devices, the Hollywood group notes, adding that the rapid growth of this problem is startling. Interestingly, the report mentions TVAddons.ag as a “piracy add-on repository,” noting that it’s currently offline. Whether the new TVAddons is also seen a problematic is unclear.

The MPAA also continues its trend of calling out third-party intermediaries, including hosting providers. These companies refuse to take pirate sites offline following complaints, even when the MPAA views them as blatantly violating the law.

“Hosting companies provide the essential infrastructure required to operate a website,” the MPAA writes. “Given the central role of hosting providers in the online ecosystem, it is very concerning that many refuse to take action upon being notified…”

The Hollywood group specifically mentions Private Layer and Netbrella as notorious markets. CDN provider CloudFlare is also named. As a US-based company, the latter can’t be included in the list. However, the MPAA explains that it is often used as an anonymization tool by sites and services that are mentioned in the report.

Another group of intermediaries that play a role in fueling piracy (mentioned for the first time) are advertising networks. The MPAA specifically calls out the Canadian company WWWPromoter, which works with sites such as Primewire.ag, Projectfreetv.at and 123movies.to

“The companies connecting advertisers to infringing websites and inadvertently contribute to the prevalence and prosperity of infringing sites by providing funding to the operators of these sites through advertising revenue,” the MPAA writes.

The MPAA’s full report is available here (pdf). The USTR will use this input above to make up its own list of notorious markets. This will help to identify current threats and call on foreign governments to take appropriate action.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

A security review of three NTP implementations

Post Syndicated from corbet original https://lwn.net/Articles/735211/rss

The Core Infrastructure Initiative commissioned security audits of three
network time protocol (NTP) implementations (ntpd, NTPSec, and Chrony) and
has released
the results
. “From a security standpoint (and here at the CII we
are security people), Chrony was the clear winner between these three NTP
implementations. Chrony does not have all of the bells and whistles that
ntpd does, and it doesn’t implement every single option listed in the NTP
specification, but for the vast majority of users this will not matter. If
all you need is an NTP client or server (with or without reference clock),
which is all that most people need, then its security benefits most likely
outweigh any missing features.

‘Daily Stormer’ Termination Haunts Cloudflare in Online Piracy Case

Post Syndicated from Ernesto original https://torrentfreak.com/daily-stormer-termination-haunts-cloudflare-in-online-piracy-case-170929/

Last month Cloudflare CEO Matthew Prince decided to terminate the account of controversial neo-Nazi site Daily Stormer.

“I woke up this morning in a bad mood and decided to kick them off the Internet,” he announced.

While the decision is understandable from an emotional point of view, it’s quite a statement to make as the CEO of one of the largest Internet infrastructure companies. Not least because it goes directly against what many saw as Cloudflare’s core values.

For years on end, Cloudflare has been asked to remove terrorist propaganda, pirate sites, and other controversial content. Each time, Cloudflare replied that it doesn’t take action without a court order. No exceptions.

In addition, Cloudflare repeatedly stressed that it was impossible for them to remove a website from the Internet, at least not permanently. It would only require a simple DNS reconfiguration to get it back up and running.

While the Daily Stormer case has nothing to do with piracy or copyright infringement, it’s now being brought up as important evidence in an ongoing piracy liability case. Adult entertainment publisher ALS Scan views Prince as a “key witness” in the case and wants to depose Cloudflare’s CEO to find out more about his decision.

“Mr. Prince’s statement to the public that Cloudflare kicked neo-Nazis off the internet stand in sharp contrast to Cloudflare’s testimony in this case, where it claims it is powerless to remove content from the Internet,” ALS Scan writes.

The above is part of a recent submission where both parties argue over whether Prince can be deposed or not. Cloudflare wants to prevent this from happening and claims it’s unnecessary, but the adult publisher disagrees.

“By his own admissions, Mr. Prince’s decision to terminate certain users’ accounts was ‘arbitrary,’ the result of him waking up ‘in a bad mood,’ and a decision he made unilaterally as ‘CEO of a major Internet infrastructure corporation’.

“Mr. Prince has made it clear that he is the one who determines the circumstances under which Cloudflare will terminate a user’s account,” ALS Scan adds.

For its part, Cloudflare says that the CEO’s deposition is not needed. This is backed up by a declaration where Prince emphasizes that he has no unique knowledge on the company’s DMCA and repeat infringer policies, issues that directly relate to the case at hand.

“I have no unique personal knowledge regarding Cloudflare’s DMCA policy and procedure, including its repeat infringer policies, or Cloudflare’s published Terms of Service,” Prince informs the court

Prince’s declaration

The adult publisher, however, harps on the fact that the CEO arbitrarily decided to remove one site from the service, while requiring court orders in other instances. They quote from a Wall Street Journal (WSJ) article he wrote and highlight the ‘kick off the internet’ claim, which contradicts earlier statements.

Cloudflare’s lawyers contend that the WSJ article in question was meant to kick off a conversation and shouldn’t be taken literally.

“The WSJ Article was intended as an intellectual exercise to start a conversation regarding censorship and free speech on the internet. The WSJ Article had nothing to do with copyright infringement issues or Cloudflare’s DMCA policy and procedure.

“When Mr. Prince stated in the WSJ Article that ‘[he] helped kick a group of neo-Nazis off the internet last week,’ his comments were intended to illustrate a point – not to be taken literally,” Cloudflare’s legal team adds.

The deposition of Trey Guinn, a technical employee at Cloudflare, confirms that the company doesn’t have the power to cut a site off the Internet. It further suggests that the entire removal of Daily Stormer was in essence a provocation to start a conversation around freedom of speech.

From Guinn’s deposition

Still, since the lawsuit in question revolves around terminating customers, ALS Scan wants to depose Price to find out exactly when clients are terminated, and why he decided to go beyond Couldflare’s usual policy.

“No other employee can testify to Mr. Prince’s decision-making process when it comes to terminating a user’s access. No other employee can offer an explanation as to why The Daily Stormer’s account was terminated while repeat infringers’ accounts are allowed to remain.

“In a case where Mr. Prince’s personal judgment appears to govern even over Cloudflare’s own policies and procedures, Cloudflare cannot meet its heavy burden of demonstrating why he should not be deposed,” ALS Scan’s lawyers add.

To be continued.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Natural Language Processing at Clemson University – 1.1 Million vCPUs & EC2 Spot Instances

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/natural-language-processing-at-clemson-university-1-1-million-vcpus-ec2-spot-instances/

My colleague Sanjay Padhi shared the guest post below in order to recognize an important milestone in the use of EC2 Spot Instances.


A group of researchers from Clemson University achieved a remarkable milestone while studying topic modeling, an important component of machine learning associated with natural language processing, breaking the record for creating the largest high-performance cluster by using more than 1,100,000 vCPUs on Amazon EC2 Spot Instances running in a single AWS region. The researchers conducted nearly half a million topic modeling experiments to study how human language is processed by computers. Topic modeling helps in discovering the underlying themes that are present across a collection of documents. Topic models are important because they are used to forecast business trends and help in making policy or funding decisions. These topic models can be run with many different parameters and the goal of the experiments is to explore how these parameters affect the model outputs.

The Experiment
Professor Amy Apon, Co-Director of the Complex Systems, Analytics and Visualization Institute at Clemson University with Professor Alexander Herzog and graduate students Brandon Posey and Christopher Gropp in collaboration with members of the AWS team as well as AWS Partner Omnibond performed the experiments.  They used software infrastructure based on CloudyCluster that provisions high performance computing clusters on dynamically allocated AWS resources using Amazon EC2 Spot Fleet. Spot Fleet is a collection of biddable spot instances in EC2 responsible for maintaining a target capacity specified during the request. The SLURM scheduler was used as an overlay virtual workload manager for the data analytics workflows. The team developed additional provisioning and workflow automation software as shown below for the design and orchestration of the experiments. This setup allowed them to evaluate various topic models on different data sets with massively parallel parameter sweeps on dynamically allocated AWS resources. This framework can easily be used beyond the current study for other scientific applications that use parallel computing.

Ramping to 1.1 Million vCPUs
The figure below shows elastic, automatic expansion of resources as a function of time, in the US East (Northern Virginia) Region. At just after 21:40 (GMT-1) on Aug. 26, 2017, the number of vCPUs utilized was 1,119,196. Clemson researchers also took advantage of the new per-second billing for the EC2 instances that they launched. The vCPU count usage is comparable to the core count on the largest supercomputers in the world.

Here’s the breakdown of the EC2 instance types that they used:

Campus resources at Clemson funded by the National Science Foundation were used to determine an effective configuration for the AWS experiments as compared to campus resources, and the AWS cloud resources complement the campus resources for large-scale experiments.

Meet the Team
Here’s the team that ran the experiment (Professor Alexander Herzog, graduate students Christopher Gropp and Brandon Posey, and Professor Amy Apon):

Professor Apon said about the experiment:

I am absolutely thrilled with the outcome of this experiment. The graduate students on the project are amazing. They used resources from AWS and Omnibond and developed a new software infrastructure to perform research at a scale and time-to-completion not possible with only campus resources. Per-second billing was a key enabler of these experiments.

Boyd Wilson (CEO, Omnibond, member of the AWS Partner Network) told me:

Participating in this project was exciting, seeing how the Clemson team developed a provisioning and workflow automation tool that tied into CloudyCluster to build a huge Spot Fleet supercomputer in a single region in AWS was outstanding.

About the Experiment
The experiments test parameter combinations on a range of topics and other parameters used in the topic model. The topic model outputs are stored in Amazon S3 and are currently being analyzed. The models have been applied to 17 years of computer science journal abstracts (533,560 documents and 32,551,540 words) and full text papers from the NIPS (Neural Information Processing Systems) Conference (2,484 documents and 3,280,697 words). This study allows the research team to systematically measure and analyze the impact of parameters and model selection on model convergence, topic composition and quality.

Looking Forward
This study constitutes an interaction between computer science, artificial intelligence, and high performance computing. Papers describing the full study are being submitted for peer-reviewed publication. I hope that you enjoyed this brief insight into the ways in which AWS is helping to break the boundaries in the frontiers of natural language processing!

Sanjay Padhi, Ph.D, AWS Research and Technical Computing


Amazon QuickSight Now Allows Users to Create Analyses from Dashboards and Import Custom Date Formats

Post Syndicated from Jose Kunnackal original https://aws.amazon.com/blogs/big-data/amazon-quicksight-now-allows-users-to-create-analyses-from-dashboards-and-import-custom-date-formats/

Today, we are excited to announce two new features in QuickSight that will allow increased flexibility in your interactions with visualizations and data.

Create analyses from dashboards

When we launched Amazon QuickSight in November 2016, it enabled users to quickly and easily create analyses and dashboards from their data. Analyses allows business users to slice and dice their data, whether from a direct query source or from SPICE. Dashboards allow these insights to be shared in a read-only manner across a large set of users, without the need to worry about managing authentication, scaling up servers or maintaining infrastructure.

Starting today, QuickSight will allow users to save the contents of a dashboard as an analysis within their account. As the user of a dashboard, this will allow you to create an analysis that contains all visuals from the dashboard. You may then modify the visuals, or add/delete visuals in order to customize the content to your preferences. If you are a new user of QuickSight, this also provides you the ability to start your self-service analytics journey in QuickSight with content that is highly relevant to you.

For data administrators who create and manage datasets and dashboards, this feature will reduce requests from individual users for customization/tweaks to the dashboards. When onboarding users to QuickSight for self-service analytics, this also allows administrators to provide sample dashboards that can form the basis of the user’s first analysis in QuickSight.

To be able to save dashboard content as analyses, users should have the permission to do so, together with access to the datasets that are used for the dashboard. Let’s take a look at how this works. Let’s consider Sarah, who has a business dashboard shared with her in QuickSight.

With the changes in this release, Tom, the dashboard author, has an option to allow Sarah to create analyses from this dashboard.

When enabled, this also shares the dataset with Sarah in read-only mode, so that she can explore the data further. This is done automatically when Tom enables Sarah’s ability to create analyses from the dashboard.

Once this permission is enabled, Sarah has the dataset available in her account, and also sees a new ‘Save as” option in her dashboard.

Clicking on this lets Sarah create a new analysis with all the visuals from the dashboard in her account and explore the data further!

With this release, we are also introducing the capability to view all the analyses and dashboards that access a dataset. A dataset owner can then revoke permissions to specific dashboards or analyses if needed.

Custom date formats

Today’s release also adds support for custom date formats. When importing data into QuickSight, a user can convert a non-standard datetime field into a date field by providing the format. Date formats in QuickSight are case sensitive and more details can be found in the documentation.

Learn more

To learn more about these capabilities and start using them in your dashboards, see the Amazon QuickSight User Guide.

Stay engaged

If you have questions or suggestions, you can post them on the Amazon QuickSight discussion forum.

Not an Amazon QuickSight user?

To get started for FREE, see quicksight.aws.

Skill up on how to perform CI/CD with AWS Developer tools

Post Syndicated from Chirag Dhull original https://aws.amazon.com/blogs/devops/skill-up-on-how-to-perform-cicd-with-aws-devops-tools/

This is a guest post from Paul Duvall, CTO of Stelligent, a division of HOSTING.

I co-founded Stelligent, a technology services company that provides DevOps Automation on AWS as a result of my own frustration in implementing all the “behind the scenes” infrastructure (including builds, tests, deployments, etc.) on software projects on which I was developing software. At Stelligent, we have worked with numerous customers looking to get software delivered to users quicker and with greater confidence. This sounds simple but it often consists of properly configuring and integrating myriad tools including, but not limited to, version control, build, static analysis, testing, security, deployment, and software release orchestration. What some might not realize is that there’s a new breed of build, deploy, test, and release tools that help reduce much of the undifferentiated heavy lifting of deploying and releasing software to users.

I’ve been using AWS since 2009 and I, along with many at Stelligent – have worked with the AWS Service Teams as part of the AWS Developer Tools betas that are now generally available (including AWS CodePipeline, AWS CodeCommit, AWS CodeBuild, and AWS CodeDeploy). I’ve combined the experience we’ve had with customers along with this specialized knowledge of the AWS Developer and Management Tools to provide a unique course that shows multiple ways to use these services to deliver software to users quicker and with confidence.

In DevOps Essentials on AWS, you’ll learn how to accelerate software delivery and speed up feedback loops by learning how to use AWS Developer Tools to automate infrastructure and deployment pipelines for applications running on AWS. The course demonstrates solutions for various DevOps use cases for Amazon EC2, AWS OpsWorks, AWS Elastic Beanstalk, AWS Lambda (Serverless), Amazon ECS (Containers), while defining infrastructure as code and learning more about AWS Developer Tools including AWS CodeStar, AWS CodeCommit, AWS CodeBuild, AWS CodePipeline, and AWS CodeDeploy.

In this course, you see me use the AWS Developer and Management Tools to create comprehensive continuous delivery solutions for a sample application using many types of AWS service platforms. You can run the exact same sample and/or fork the GitHub repository (https://github.com/stelligent/devops-essentials) and extend or modify the solutions. I’m excited to share how you can use AWS Developer Tools to create these solutions for your customers as well. There’s also an accompanying website for the course (http://www.devopsessentialsaws.com/) that I use in the video to walk through the course examples which link to resources located in GitHub or Amazon S3. In this course, you will learn how to:

  • Use AWS Developer and Management Tools to create a full-lifecycle software delivery solution
  • Use AWS CloudFormation to automate the provisioning of all AWS resources
  • Use AWS CodePipeline to orchestrate the deployments of all applications
  • Use AWS CodeCommit while deploying an application onto EC2 instances using AWS CodeBuild and AWS CodeDeploy
  • Deploy applications using AWS OpsWorks and AWS Elastic Beanstalk
  • Deploy an application using Amazon EC2 Container Service (ECS) along with AWS CloudFormation
  • Deploy serverless applications that use AWS Lambda and API Gateway
  • Integrate all AWS Developer Tools into an end-to-end solution with AWS CodeStar

To learn more, see DevOps Essentials on AWS video course on Udemy. For a limited time, you can enroll in this course for $40 and save 80%, a $160 saving. Simply use the code AWSDEV17.

Stelligent, an AWS Partner Network Advanced Consulting Partner holds the AWS DevOps Competency and over 100 AWS technical certifications. To stay updated on DevOps best practices, visit www.stelligent.com.

In the Works – AWS Region in the Middle East

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/in-the-works-aws-region-in-the-middle-east/

Last year we launched new AWS Regions in Canada, India, Korea, the UK, and the United States, and announced that new regions are coming to China, France, Hong Kong, Sweden, and a second GovCloud Region in the US throughout 2017 and 2018.

Middle East Region by Early 2019
Today, I am happy to announce that we will be opening an AWS Region in the Middle East by early 2019. The new Region will be based in Bahrain, will be comprised of three Availability Zones at launch, and will give AWS customers and partners the ability to run their workloads and store their data in the Middle East.

AWS customers are already making use of 44 Availability Zones across 16 geographic regions. Today’s announcement brings the total number of global regions (operational and in the works) up to 22.

UAE Edge Location in 2018
We also plan to open an edge location in the UAE in the first quarter of 2018. This will bring Amazon CloudFront, Amazon Route 53, AWS Shield, and AWS WAF to the region, adding to our existing set of 78 points of presence world-wide.

These announcements add to our continued investment in the Middle East. Earlier this year we announced the opening of AWS offices in Dubai, UAE and Manama, Bahrain. Prior to this we have supported the growth of technology education in the region with AWS Educate and have supported the growth of new businesses through AWS Activate for many years.

The addition of AWS infrastructure in the Middle East will help countries across the region to innovate, grow their economies, and pursue their vision plans (Saudi Vision 2030, UAE Vision 2021, Bahrain Vision 2030, and so forth).

Talk to Us
As always, we are looking forward to serving new and existing customers in the Middle East and working with partners across the region. Of course, the new Region will also be open to existing AWS customers who would like to serve users in the Middle East.

To learn more about the AWS Middle East Region feel free to contact our team at [email protected] .

If you are interested in joining the team and would like to learn more about AWS positions in the Middle East, take a look at the Amazon Jobs site.