Tag Archives: computational thinking

Integrating computational thinking into primary teaching

Post Syndicated from Veronica Cucuiat original https://www.raspberrypi.org/blog/integrating-computational-thinking-into-primary-teaching/

“Computational thinking is really about thinking, and sometimes about computing.” – Aman Yadav, Michigan State University

Young people in a coding lesson.

Computational thinking is a vital skill if you want to use a computer to solve problems that matter to you. That’s why we consider computational thinking (CT) carefully when creating learning resources here at the Raspberry Pi Foundation. However, educators are increasingly realising that CT skills don’t just apply to writing computer programs, and that CT is a fundamental approach to problem-solving that can be extended into other subject areas. To discuss how CT can be integrated beyond the computing classroom and help introduce the fundamentals of computing to primary school learners, we invited Dr Aman Yadav from Michigan State University to deliver the penultimate presentation in our seminar series on computing education for primary-aged children. 

In his presentation, Aman gave a concise tour of CT practices for teachers, and shared his findings from recent projects around how teachers perceive and integrate CT into their lessons.

Research in context

Aman began his talk by placing his team’s work within the wider context of computing education in the US. The computing education landscape Aman described is dominated by the National Science Foundation’s ambitious goal, set in 2008, to train 10,000 computer science teachers. This objective has led to various initiatives designed to support computer science education at the K–12 level. However, despite some progress, only 57% of US high schools offer foundational computer science courses, only 5.8% of students enrol in these courses, and just 31% of the enrolled students are female. As a result, Aman and his team have worked in close partnership with teachers to address questions that explore ways to more meaningfully integrate CT ideas and practices into formal education, such as:

  • What kinds of experiences do students need to learn computing concepts, to be confident to pursue computing?
  • What kinds of knowledge do teachers need to have to facilitate these learning experiences?
  • What kinds of experiences do teachers need to develop these kinds of knowledge? 

The CT4EDU project

At the primary education level, the CT4EDU project posed the question “What does computational thinking actually look like in elementary classrooms, especially in the context of maths and science classes?” This project involved collaboration with teachers, curriculum designers, and coaches to help them conceptualise and implement CT in their core instruction.

A child at a laptop

During professional development workshops using both plugged and unplugged tasks, the researchers supported educators to connect their day-to-day teaching practice to four foundational CT constructs:

  1. Debugging
  2. Abstraction
  3. Decomposition
  4. Patterns

An emerging aspect of the research team’s work has been the important relationship between vocabulary, belonging, and identity-building, with implications for equity. Actively incorporating CT vocabulary in lesson planning and classroom implementation helps students familiarise themselves with CT ideas: “If young people are using the language, they see themselves belonging in computing spaces”. 

A main finding from the study is that teachers used CT ideas to explicitly engage students in metacognitive thinking processes, and to help them be aware of their thinking as they solve problems. Rather than teachers using CT solely to introduce their students to computing, they used CT as a way to support their students in whatever they were learning. This constituted a fundamental shift in the research team’s thinking and future work, which is detailed further in a conceptual article

The Smithsonian Science for Computational Thinking project

The work conducted for the CT4EDU project guided the approach taken in the Smithsonian Science for Computational Thinking project. This project entailed the development of a curriculum for grades 3 and 5 that integrates CT into science lessons.

Teacher and young student at a laptop.

Part of the project included surveying teachers about the value they place on CT, both before and after participating in professional development workshops focused on CT. The researchers found that even before the workshops, teachers make connections between CT and the rest of the curriculum. After the workshops, an overwhelming majority agreed that CT has value (see image below). From this survey, it seems that CT ties things together for teachers in ways not possible or not achieved with other methods they’ve tried previously.  

A graph from Aman's seminar.

Despite teachers valuing the CT approach, asking them to integrate coding into their practices from the start remains a big ask (see image below). Many teachers lack knowledge or experience of coding, and they may not be curriculum designers, which means that we need to develop resources that allow teachers to integrate CT and coding in natural ways. Aman proposes that this requires a longitudinal approach, working with teachers over several years, using plugged and unplugged activities, and working closely with schools’ STEAM or specialist technology teachers where applicable to facilitate more computationally rich learning experiences in classrooms.

A graph from Aman's seminar.

Integrated computational thinking

Aman’s team is also engaged in a research project to integrate CT at middle school level for students aged 11 to 14. This project focuses on the question “What does CT look like in the context of social studies, English language, and art classrooms?”

For this project, the team conducted three Delphi studies, and consequently created learning pathways for each subject, which teachers can use to bring CT into their classrooms. The pathways specify practices and sub-practices to engage students with CT, and are available on the project website. The image below exemplifies the CT integration pathways developed for the arts subject, where the relationship between art and data is explored from both directions: by using CT and data to understand and create art, and using art and artistic principles to represent and communicate data. 

Computational thinking in the primary classroom

Aman’s work highlights the broad value of CT in education. However, to meaningfully integrate CT into the classroom, Aman suggests that we have to take a longitudinal view of the time and methods required to build teachers’ understanding and confidence with the fundamentals of CT, in a way that is aligned with their values and objectives. Aman argues that CT is really about thinking, and sometimes about computing, to support disciplinary learning in primary classrooms. Therefore, rather than focusing on integrating coding into the classroom, he proposes that we should instead talk about using CT practices as the building blocks that provide the foundation for incorporating computationally rich experiences in the classroom. 

Watch the recording of Aman’s presentation:

You can access Aman’s seminar slides as well.

You can find out more about connecting research to practice for primary computing education by watching the recordings of the other seminars in our series on primary (K–5) teaching and learning. In particular, Bobby Whyte discusses similar concepts to Aman in his talk on integrating primary computing and literacy through multimodal storytelling

Sign up for our seminars

Our 2024 seminar series is on the theme of teaching programming, with or without AI. In this series, we explore the latest research on how teachers can best support school-age learners to develop their programming skills.

On 13 February, we’ll hear from Majeed Kazemi (University of Toronto) about his work investigating whether AI code generator tools can support K-12 students to learn Python programming.

Sign up now to join the seminar:

The post Integrating computational thinking into primary teaching appeared first on Raspberry Pi Foundation.

Take part in the UK Bebras Challenge 2023 for schools

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/uk-bebras-challenge-2023/

The UK Bebras Challenge is back and ready to accept entries from schools for its annual event, which runs from 6 to 17 November.

UK Bebras 2023 logo.

More than 3 million students from 59 countries took part in the Bebras Computational Thinking Challenge in 2022. In the UK alone, over 365,000 students participated. Read on to find out how you can get your school involved.

“This is now an annual event for our Year 5 and 6 students, and one of the things I actually love about it is the results are not always what you might predict. There are children who have a clear aptitude for these puzzles who find this is their opportunity to shine!”

Claire Rawlinson, Primary Teacher, Lancashire

What is the Bebras Challenge?

Bebras is a free, annual challenge that helps schools introduce computational thinking to their students. No programming is involved, and it’s completely free for schools to enter. All Bebras questions are self-marking.

We’re making Bebras accessible by offering age-appropriate challenges for different school levels and a challenge tailored for visually impaired students. Schools can enter students from age 6 to 18 and know they’ll get interesting and challenging (but not too challenging) activities. 

Students aged 10 to 18 who do particularly well will get invited to the Oxford University Computing Challenge (OUCC).

A group of young people posing for a photo.
The winners of the Oxford University Computing Challenge 2023, with Professor Peter Millican at the OUCC Prize Day in the Raspberry Pi Foundation office.

What is the thinking behind Bebras?

We want young people to get excited about computing. Through Bebras, they will learn about computational and logical thinking by answering questions and solving problems.

Bebras questions are based on classic computing problems and are presented in a friendly, age-appropriate way. For example, an algorithm-based puzzle for learners aged 6 to 8 is presented in terms of a hungry tortoise finding an efficient eating path across a lawn; for 16- to 18-year-olds, a difficult problem based on graph theory asks students to sort out quiz teams by linking quizzers who know each other.

“This has been a really positive experience. Thank you. Shared results with Head and Head of Key Stage 3. Really useful for me when assessing Key Stage 4 options.”

– Secondary teacher, North Yorkshire

Can you solve our example Bebras puzzle?

Here’s a Bebras question for the Castors category (ages 8 to 10) from 2021. You will find the answer at the end of this blog. 

Cleaning

A robot picks up litter.

A simple drawing showing a robot and litter.
  1. The robot moves to the closest piece of litter and picks it up.
  2. It then moves to the next closest piece of litter and picks it up.
  3. It carries on in this way until all the litter has been picked up.

Question: Which kind of litter will the robot pick up last?

Four simple drawings: an apple, a cup, a can, and crumpled paper.

How do I get my school involved in Bebras?

The Bebras challenge for UK schools takes place from 6 to 17 November. Register at bebras.uk/admin to get free access to the challenge.

By registering, you also get access to the Bebras back catalogue of questions, from which you can build your own quizzes to use in your school at any time during the year. All the quizzes are self-marking, and you can download your students’ results for your mark book. Schools have reported using these questions for end-of-term activities, lesson starters, and schemes of lessons about computational thinking.


Puzzle answer

The answer to the example puzzle is:

A simple drawing of a cup.

The image below shows the route the robot takes by following the instructions:

A simple drawing showing the route a robot walks to pick up litter.

The post Take part in the UK Bebras Challenge 2023 for schools appeared first on Raspberry Pi Foundation.

UK Bebras participants in the Oxford University Computing Challenge

Post Syndicated from Chris Roffey original https://www.raspberrypi.org/blog/uk-bebras-oxford-university-computing-challenge-2022/

Today we share a guest blog from Chris Roffey, who manages the UK Bebras Challenge, a computational thinking challenge we run every year in partnership with the University of Oxford.

Bebras is a free annual challenge that helps schools introduce computational thinking to their learners through online, self-marking tasks. Taking part in Bebras, students solve accessible, interesting problems using their developing computational thinking skills. No programming is involved in taking part. The UK challenge is for school students aged 6 to 18 years old, with a special category for students with severe visual impairments.

Bebras UK logo
Bebras means ‘beaver’

Preparing the UK Bebras Challenge for schools

While UK schools take part in Bebras throughout two weeks in November, for me the annual cycle starts much earlier. May is the time of the annual Bebras international workshop where the year’s new tasks get decided. In 2022, 60 countries were represented — some online, some in person. For nearly a week, computer scientists and computing teachers met to discuss and work on the new cycle’s task proposals submitted by participating countries a little earlier.

A class of primary school students do coding at laptops.

After the workshop, in collaboration with teams from other European countries, the UK Bebras team chose its task sets and then worked to localise, copy-edit, and test them to get them ready for schools participating in Bebras during November. From September, schools across the UK create accounts for their students, with over 360,000 students ultimately taking part in 2022. All in all, more than 3 million students from 59 countries took part in the 2022/2023 Bebras challenge cycle.

An invitation to the Oxford University Computing Challenge

In this cycle, the UK Bebras partnership between the Raspberry Pi Foundation and the University of Oxford has been extended to include the Oxford University Computing Challenge (OUCC). This is an invitation-based, online coding challenge for students aged 10 to 18, offered in the UK as well as Australia, Jamaica, and China. We invited the students with the top 10% best results in the UK Bebras challenge to take part in the OUCC — an exciting opportunity for them.

In contrast to Bebras, which doesn’t require participants to do any coding, the OUCC asks students to create code to solve computational thinking problems. This requires students to prepare and challenges them to develop their computational thinking skills further. The two younger age groups, 10- to 14-year-olds, solve problems using the Blockly programming language. The older two age groups can use one of the 11 programming languages that Bebras supports, including all the most common ones taught in UK schools.

Over 20,000 Bebras participants took up the invitation to the first round of the OUCC in the third week of January. Then in March, the top 20 participants from each of the four OUCC age groups took part in the final round. The finalists all did amazingly well. In the first round, many of them had solved all the available tasks correctly, even though the expectation is that participants only try to solve as many as they can within the round’s time limit. In the final round, a few of the finalists managed to repeat this feat with the even more advanced tasks — which is, in modern parlance, literally impossible!

Celebrating together

Many of the participants are about to take school exams, so the last stage of the annual cycle — the prize winners’ celebration day— takes place when the exam period has ended. This year we are holding this celebration on Friday 30 June at the Raspberry Pi Foundation’s headquarters in Cambridge. It will be a lovely way to finish the annual Bebras cycle and I am looking forward to it immensely.

The post UK Bebras participants in the Oxford University Computing Challenge appeared first on Raspberry Pi Foundation.

Computational thinking all year round with UK Bebras

Post Syndicated from Chris Roffey original https://www.raspberrypi.org/blog/computational-thinking-resources-uk-bebras-2022/

This November, teachers across the UK helped 367,023 learners participate in the annual free UK Bebras Challenge of computational thinking.

Bebras UK logo
‘Bebras’ is Lithuanian and means ‘beaver’.

We support this challenge in the UK, together with Oxford University, and Bebras Challenges run across the world, with more than 3 million learners from schools in 54 countries taking part in 2021. Bebras encourages a love of computational thinking, computer science, and problem solving, especially among learners who haven’t yet realised they have these skills.

More and more schools are taking part in the UK Bebras Challenge

Nearly every year since 2013, more UK schools have been participating in Bebras. We think this is because for teachers, registering and entering learners is easy, the online system does all the marking automatically, and teachers receive comprehensive results that can be helpful for assessment.

A line graph showing the number of annual participants in the UK Bebras Challenge, from less than 50,000 in 2013 to over 350,000 in 2022.

The computational thinking problems within Bebras are tailored for different age groups, use clear language, and are accessible to colour-blind learners. There is also a challenge for learners with visual impairments. Teachers who run Bebras in their schools seem to love it and regularly tell colleagues about it. 

“Our pupils really enjoy [Bebras] and I find it so helpful to teach computational thinking with real-life strategies. We also find the data and information about our pupils’ performance extremely helpful.” — Teacher in London

Age-appropriate computational thinking problems

In the UK Bebras Challenge, the younger learners aged 6 to 10 usually take part in teams and have plenty of time to discuss how to solve the computational thinking problems they are presented with.

Older learners, aged 10 to 18, try to solve as many problems as they can in 40 minutes. The problems they are presented with start off easy and get increasingly difficult. The 10% of participants who solve the most problems are then invited to take part in the Oxford University Computing Challenge (OUCC), an annual programming challenge.

Year-round free resources for teachers

Although the OUCC is only open to some Bebras participants, all of the OUCC problems are archived and teachers registered with Bebras can use them to make auto-marking quizzes for all of their learners at any time of the year. Part of the goal of UK Bebras is to support teachers with free resources, and the UK Bebras online quizzes facility now has computational thinking tasks from the Bebras archive, plus auto-marking Blockly programming problems and text-based programming problems, which can be solved using commonly taught programming languages.

If you want to get a taste of Bebras, check out some of the interactive challenges that require no registration. And if you’d like to register to make quizzes for your learners and find out about next year’s challenge, you can do so at bebras.uk/admin.

The post Computational thinking all year round with UK Bebras appeared first on Raspberry Pi.

Join the UK Bebras Challenge 2022 for schools

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/uk-bebras-challenge-2022/

The UK Bebras Challenge is back and ready to accept entries from schools for its annual event from 7 to 18 November.

UK Bebras 2022 logo.

More than 3 million students from 54 countries took part in the Bebras Challenge in 2021. Read on to find out how you can get your school involved.

What is Bebras?

Bebras a free, annual challenge that helps schools introduce computational thinking to their students. No programming is involved, and it’s completely free for schools to take part. All Bebras questions are self-marking. Schools can enter students from age 6 to 18 and know they’ll get interesting and challenging (but not too challenging) activities.

“This has been a really positive experience. Thank you. Shared results with head and Head of KS3. Really useful for me when assessing KS4 options.” – Secondary teacher, North Yorkshire

We’re making Bebras accessible by offering age-appropriate challenges for different school levels, and a challenge tailored for visually impaired students.

What is the idea behind Bebras?

We want young people to get excited about computing. Through Bebras, they will learn about computational and logical thinking by answering questions and solving puzzles.

Bebras questions are based on classic computing problems and presented in friendly, age-appropriate contexts. For example, an algorithm-based puzzle for learners aged 6 to 8 is presented in terms of a hungry tortoise find an efficient eating path across a lawn; for 16- to 18-year-olds, a difficult question based on graph theory asks students to sort out some quiz teams by linking quizzers who know each other.

Can you solve the example puzzle?

Here’s a question from the 2021 challenge for the Junior category (ages 10 to 12). You’ll find the correct answer at the bottom of this blog post. 

Science Fair

  • Bebras High School is having a science fair.
  • All the events in the fair need to follow a specific order, and only one event can be held at a time.
  • The diagram below shows all the events that must be included in the flow of the science fair.
A flow chart.
  • The arrows between events indicate that the event the arrow is drawn from has to occur before the event the arrow points to. For example, ‘Social Interaction’ can only happen after both ‘Opening Speeches’ and ‘Project Presentations’ have finished.

Question: What is the correct order of events for the science fair?

How do I get my school involved?

The Bebras challenge for UK schools takes place from 7 to 18 November. Register at bebras.uk/admin to get full access to the challenge.

By registering, you also get access to the back catalogue of questions, from which you can build your own quizzes to use in your school at any time during the year. All the quizzes are self-marking, and you can download your students’ results for your mark book. Schools have reported using the back catalogue of questions for end-of-term activities, lesson starters, and schemes of lessons about computational thinking.

You can also see more of our free resources for Computing and Computer Science teachers, and find out about our newest research project, which you can get involved in if you teach primary Computing.


There are actually two possible answers to the example puzzle:

Option 1 Option 2
Chorus Performance
Preparation of Stands
Opening Speeches
Project Presentations
Social Interaction
Referee Reviews
Awarding Prizes
Preparation of Stands
Chorus Performance
Opening Speeches
Project Presentations
Social Interaction
Referee Reviews
Awarding Prizes

The post Join the UK Bebras Challenge 2022 for schools appeared first on Raspberry Pi.

The machine learning effect: Magic boxes and computational thinking 2.0

Post Syndicated from Jane Waite original https://www.raspberrypi.org/blog/machine-learning-education-school-computational-thinking-2-0-research-seminar/

How does teaching children and young people about machine learning (ML) differ from teaching them about other aspects of computing? Professor Matti Tedre and Dr Henriikka Vartiainen from the University of Eastern Finland shared some answers at our latest research seminar.

Three smiling young learners in a computing classroom.
We need to determine how to teach young people about machine learning, and what teachers need to know to help their learners form correct mental models.

Their presentation, titled ‘ML education for K-12: emerging trajectories’, had a profound impact on my thinking about how we teach computational thinking and programming. For this blog post, I have simplified some of the complexity associated with machine learning for the benefit of readers who are new to the topic.

a 3D-rendered grey box.
Machine learning is not magic — what needs to change in computing education to make sure learners don’t see ML systems as magic boxes?

Our seminars on teaching AI, ML, and data science

We’re currently partnering with The Alan Turing Institute to host a series of free research seminars about how to teach artificial intelligence (AI) and data science to young people.

The seminar with Matti and Henriikka, the third one of the series, was very well attended. Over 100 participants from San Francisco to Rajasthan, including teachers, researchers, and industry professionals, contributed to a lively and thought-provoking discussion.

Representing a large interdisciplinary team of researchers, Matti and Henriikka have been working on how to teach AI and machine learning for more than three years, which in this new area of study is a long time. So far, the Finnish team has written over a dozen academic papers based on their pilot studies with kindergarten-, primary-, and secondary-aged learners.

Current teaching in schools: classical rule-driven programming

Matti and Henriikka started by giving an overview of classical programming and how it is currently taught in schools. Classical programming can be described as rule-driven. Example features of classical computer programs and programming languages are:

  • A classical language has a strict syntax, and a limited set of commands that can only be used in a predetermined way
  • A classical language is deterministic, meaning we can guarantee what will happen when each line of code is run
  • A classical program is executed in a strict, step-wise order following a known set of rules

When we teach this type of programming, we show learners how to use a deductive problem solving approach or workflow: defining the task, designing a possible solution, and implementing the solution by writing a stepwise program that is then run on a computer. We encourage learners to avoid using trial and error to write programs. Instead, as they develop and test a program, we ask them to trace it line by line in order to predict what will happen when each line is run (glass-box testing).

A list of features of rule-driven computer programming, also included in the text.
The features of classical (rule-driven) programming approaches as taught in computer science education (CSE) (Tedre & Vartiainen, 2021).

Classical programming underpins the current view of computational thinking (CT). Our speakers called this version of CT ‘CT 1.0’. So what’s the alternative Matti and Henriikka presented, and how does it affect what computational thinking is or may become?

Machine learning (data-driven) models and new computational thinking (CT 2.0) 

Rule-based programming languages are not being eradicated. Instead, software systems are being augmented through the addition of machine learning (data-driven) elements. Many of today’s successful software products, such as search engines, image classifiers, and speech recognition programs, combine rule-driven software and data-driven models. However, the workflows for these two approaches to solving problems through computing are very different.

A table comparing problem solving workflows using computational thinking 1.0 versus computational thinking 2.0, info also included in the text.
Problem solving is very different depending on whether a rule-driven computational thinking (CT 1.0) approach or a data-driven computational thinking (CT 2.0) approach is used (Tedre & Vartiainen,2021).

Significantly, while in rule-based programming (and CT 1.0), the focus is on solving problems by creating algorithms, in data-driven approaches, the problem solving workflow is all about the data. To highlight the profound impact this shift in focus has on teaching and learning computing, Matti introduced us to a new version of computational thinking for machine learning, CT 2.0, which is detailed in a forthcoming research paper.

Because of the focus on data rather than algorithms, developing a machine learning model is not at all like developing a classical rule-driven program. In classical programming, programs can be traced, and we can predict what will happen when they run. But in data-driven development, there is no flow of rules, and no absolutely right or wrong answer.

A table comparing conceptual differences between computational thinking 1.0 versus computational thinking 2.0, info also included in the text.
There are major differences between rule-driven computational thinking (CT 1.0) and data-driven computational thinking (CT 2.0), which impact what computing education needs to take into account (Tedre & Vartiainen,2021).

Machine learning models are created iteratively using training data and must be cross-validated with test data. A tiny change in the data provided can make a model useless. We rarely know exactly why the output of an ML model is as it is, and we cannot explain each individual decision that the model might have made. When evaluating a machine learning system, we can only say how well it works based on statistical confidence and efficiency. 

Machine learning education must cover ethical and societal implications 

The ethical and societal implications of computer science have always been important for students to understand. But machine learning models open up a whole new set of topics for teachers and students to consider, because of these models’ reliance on large datasets, the difficulty of explaining their decisions, and their usefulness for automating very complex processes. This includes privacy, surveillance, diversity, bias, job losses, misinformation, accountability, democracy, and veracity, to name but a few.

I see the shift in problem solving approach as a chance to strengthen the teaching of computing in general, because it opens up opportunities to teach about systems, uncertainty, data, and society.

Jane Waite

Teaching machine learning: the challenges of magic boxes and new mental models

For teaching classical rule-driven programming, much time and effort has been put into researching learners’ understanding of what a program will do when it is run. This kind of understanding is called a learner’s mental model or notional machine. An approach teachers often use to help students develop a useful mental model of a program is to hide the detail of how the program works and only gradually reveal its complexity. This approach is described with the metaphor of hiding the detail of elements of the program in a box. 

Data-driven models in machine learning systems are highly complex and make little sense to humans. Therefore, they may appear like magic boxes to students. This view needs to be banished. Machine learning is not magic. We have just not figured out yet how to explain the detail of data-driven models in a way that allows learners to form useful mental models.

An example of a representation of a machine learning model in TensorFlow, an online machine learning tool (Tedre & Vartiainen,2021).

Some existing ML tools aim to help learners form mental models of ML, for example through visual representations of how a neural network works (see Figure 2). But these explanations are still very complex. Clearly, we need to find new ways to help learners of all ages form useful mental models of machine learning, so that teachers can explain to them how machine learning systems work and banish the view that machine learning is magic.

Some tools and teaching approaches for ML education

Matti and Henriikka’s team piloted different tools and pedagogical approaches with different age groups of learners. In terms of tools, since large amounts of data are needed for machine learning projects, our presenters suggested that tools that enable lots of data to be easily collected are ideal for teaching activities. Media-rich education tools provide an opportunity to capture still images, movements, sounds, or sense other inputs and then use these as data in machine learning teaching activities. For example, to create a machine learning–based rock-paper-scissors game, students can take photographs of their hands to train a machine learning model using Google Teachable Machine.

Photos of hands are used to train a machine learning model as part of a project to create a rock-paper-scissors game.
Photos of hands are used to train a Teachable Machine machine learning model as part of a project to create a rock-paper-scissors game (Tedre & Vartiainen, 2021).

Similar to tools that teach classic programming to novice students (e.g. Scratch), some of the new classroom tools for teaching machine learning have a drag-and-drop interface (e.g. Cognimates). Using such tools means that in lessons, there can be less focus on one of the more complex aspects of learning to program, learning programming language syntax. However, not all machine learning education products include drag-and-drop interaction, some instead have their own complex languages (e.g. Wolfram Programming Lab), which are less attractive to teachers and learners. In their pilot studies, the Finnish team found that drag-and-drop machine learning tools appeared to work well with students of all ages.

The different pedagogical approaches the Finnish research team used in their pilot studies included an exploratory approach with preschool children, who investigated machine learning recognition of happy or sad faces; and a project-based approach with older students, who co-created machine learning apps with web-based tools such as Teachable Machine and Learn Machine Learning (built by the research team), supported by machine learning experts.

Example of a middle school (age 8 to 11) student’s pen and paper design for a machine learning app that recognises different instruments and chords.
Example of a middle school (age 8 to 11) student’s design for a machine learning app that recognises different instruments and chords (Tedre & Vartiainen, 2021).

What impact these pedagogies have on students’ long-term mental models about machine learning has yet to be researched. If you want to find out more about the classroom pilot studies, the academic paper is a very accessible read.

My take-aways: new opportunities, new research questions

We all learned a tremendous amount from Matti and Henriikka and their perspectives on this important topic. Our seminar participants asked them many questions about the pedagogies and practicalities of teaching machine learning in class, and raised concerns about squeezing more into an already packed computing curriculum.

For me, the most significant take-away from the seminar was the need to shift focus from algorithms to data and from CT 1.0 to CT 2.0. Learning how to best teach classical rule-driven programming has been a long journey that we have not yet completed. We are forming an understanding of what concepts learners need to be taught, the progression of learning, key mental models, pedagogical options, and assessment approaches. For teaching data-driven development, we need to do the same.  

The question of how we make sure teachers have the necessary understanding is key.

Jane Waite

I see the shift in problem solving approach as a chance to strengthen the teaching of computing in general, because it opens up opportunities to teach about systems, uncertainty, data, and society. I think it will help us raise awareness about design, context, creativity, and student agency. But I worry about how we will introduce this shift. In my view, there is a considerable risk that we will be sucked into open-ended, project-based learning, with busy and fun but shallow learning experiences that result in restricted conceptual development for students.

I also worry about how we can best help teachers build up the knowledge and experience to support their students. In the Q&A after the seminar, I asked Matti and Henriikka about the role of their team’s machine learning experts in their pilot studies. It seemed to me that without them, the pilot lessons would not have worked, as the participating teachers and students would not have had the vocabulary to talk about the process and would not have known what was doable given the available time, tools, and student knowledge.

The question of how we make sure teachers have the necessary understanding is key. Many existing professional development resources for teachers wanting to learn about ML seem to imply that teachers will all need a PhD in statistics and neural network optimisation to engage with machine learning education. This is misleading. But teachers do need to understand the machine learning concepts that their students need to learn about, and I think we don’t yet know exactly what these concepts are. 

In summary, clearly more research is needed. There are fundamental questions still to be answered about what, when, and how we teach data-driven approaches to software systems development and how this impacts what we teach about classical, rule-based programming. But to me, that is exciting, and I am very much looking forward to the journey ahead.

Join our next free seminar

To find out what others recommend about teaching AI and ML, catch up on last month’s seminar with Professor Carsten Schulte and colleagues on centring data instead of code in the teaching of AI.

We have another four seminars in our monthly series on AI, machine learning, and data science education. Find out more about them on this page, and catch up on past seminar blogs and recordings here.

At our next seminar on Tuesday 7 December at 17:00–18:30 GMT, we will welcome Professor Rose Luckin from University College London. She will be presenting on what it is about AI that makes it useful for teachers and learners.

We look forward to meeting you there!

PS You can build your understanding of machine learning by joining our latest free online course, where you’ll learn foundational concepts and train your own ML model!

The post The machine learning effect: Magic boxes and computational thinking 2.0 appeared first on Raspberry Pi.

Take part in the UK Bebras Challenge 2021 for schools!

Post Syndicated from Duncan Maidens original https://www.raspberrypi.org/blog/uk-bebras-challenge-2021-for-schools/

The annual UK Bebras Computational Thinking Challenge is back to provide fun, brain-teasing puzzles for schools from 8 to 19 November!

The UK Bebras Challenge 2021 runs from 8 to 19 November.

In the free Bebras Challenge, your students get to practise their computational thinking skills while solving a set of accessible, puzzling, and engaging tasks over 40 minutes. It’s tailored for age groups from 6 to 18.

“I just want to say how much the children are enjoying this competition. It is the first year we have entered, and I have students aged 8 to 11 participating in my Computing lessons, with some of our older students also taking on the challenges. It is really helping to challenge their thinking, and they are showing great determination to try and complete each task!”

– A UK-based teacher

Ten key facts about Bebras

  1. It’s free!
  2. The challenge takes place in school, and it’s a great whole-school activity
  3. It’s open to learners aged 6 to 18, with activities for different age groups
  4. The challenge is made up of a set of short tasks, and completing it takes 40 minutes
  5. The closing date for registering your school is 4 November
  6. Your learners need to complete the challenge between 8 and 19 November 2021
  7. All the marking is done for you (hurrah!)
  8. You’ll receive the results and answers the week after the challenge ends, so you can go through them with your learners and help them learn more
  9. The tasks are logical thinking puzzles, so taking part does not require any computing knowledge
  10. There are practice questions you can use to help your learners prepare for the challenge, and throughout the year to help them practice their computational thinking

Do you want to support your learners to take on the Bebras Challenge? Then register your school today!

Remember to sign up by 4 November!

The benefits of Bebras

Bebras is an international challenge that started in Lithuania in 2004 and has grown into a worldwide event. The UK became involved in Bebras for the first time in 2013, and the number of participating students has increased from 21,000 in the first year to more than half a million over the last two years! Internationally, nearly 2.5 million learners took part in 2020 despite the disruptions to schools.

On the left, a drawing of a bracelet made of stars and moons.
On the left, a bracelet design from an activity for ages 10–12. On the right, a password checker from an activity for ages 14–16.

Bebras, brought to you in the UK by us and Oxford University, is a great way to give your learners of all age groups a taste of the principles behind computing by engaging them in fun problem-solving activities. The challenge results highlight computing principles, so Bebras can be educational for you as a teacher too.

Throughout the year, questions from previous years of the challenge are available to registered teachers on the bebras.uk website, where you can create self-marking quizzes to help you deliver the computational thinking part of the curriculum for your classes.

You can register your school at bebras.uk/admin.

Learn more about our work to support learners with computational thinking.

The post Take part in the UK Bebras Challenge 2021 for schools! appeared first on Raspberry Pi.

Join the UK Bebras Challenge 2020 for schools!

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/join-uk-bebras-challenge-2020/

The annual UK Bebras Computational Thinking Challenge for schools, brought to you by the Raspberry Pi Foundation and Oxford University, is taking place this November!

UK Bebras Challenge logo

The Bebras Challenge is a great way for your students to practise their computational thinking skills while solving exciting, accessible, and puzzling questions. Usually this 40-minute challenge would take place in the classroom. However, this year for the first time, your students can participate from home too!

If your students haven’t entered before, now is a great opportunity for them to get involved: they don’t need any prior knowledge. 

Do you have any students who are up for tackling the Bebras Challenge? Then register your school today!

School pupils in a computing classroom

What you need to know about the Bebras Challenge

  • It’s a great whole-school activity open to students aged 6 to 18, in different age group categories.
  • It’s completely free!
  • The closing date for registering your school is 30 October.
  • Let your students complete the challenge between 2 and 13 November 2020.
  • The challenge is made of a set of short tasks, and completing it takes 40 minutes.
  • The challenge tasks focus on logical thinking and do not require any prior knowledge of computer science.
  • There are practice questions to help your students prepare for the challenge.
  • This year, students can take part at home (please note they must still be entered through their school).
  • All the marking is done for you! The results will be sent to you the week after the challenge ends, along with the answers, so that you can go through them with your students.

“Thank you for another super challenge. It’s one of the highlights of my year as a teacher. Really, really appreciate the high-quality materials, website, challenge, and communication. Thank you again!”

– A UK-based teacher

Support your students to develop their computational thinking skills with Bebras materials

Bebras is an international challenge that started in Lithuania in 2004 and has grown into an international event. The UK became involved in Bebras for the first time in 2013, and the number of participating students has increased from 21,000 in the first year to more than 260,000 last year! Internationally, nearly 3 million learners took part in 2019. 

Bebras is a great way to engage your students of all ages in problem-solving and give them a taste of what computing is all about. In the challenge results, computing principles are highlighted, so Bebras can be educational for you as a teacher too.

The annual Bebras Challenge is only one part of the equation: questions from previous years are available as a resource that you can use to create self-marking quizzes for your classes. You can use these materials throughout the year to help you to deliver the computational thinking part of your curriculum!

The post Join the UK Bebras Challenge 2020 for schools! appeared first on Raspberry Pi.

Embedding computational thinking skills in our learning resources

Post Syndicated from Oliver Quinlan original https://www.raspberrypi.org/blog/computational-thinking-skills-in-our-free-learning-resources/

Learning computing is fun, creative, and exploratory. It also involves understanding some powerful ideas about how computers work and gaining key skills for solving problems using computers. These ideas and skills are collected under the umbrella term ‘computational thinking’.

When we create our online learning projects for young people, we think as much about how to get across these powerful computational thinking concepts as we do about making the projects fun and engaging. To help us do this, we have put together a computational thinking framework, which you can read right now.

What is computational thinking? A brief summary

Computational thinking is a set of ideas and skills that people can use to design systems that can be run on a computer. In our view, computational thinking comprises:

  • Decomposition
  • Algorithms
  • Patterns and generalisations
  • Abstraction
  • Evaluation
  • Data

All of these aspects are underpinned by logical thinking, the foundation of computational thinking.

What does computational thinking look like in practice?

In principle, the processes a computer performs can also be carried out by people. (To demonstrate this, computing educators have created a lot of ‘unplugged’ activities in which learners enact processes like computers do.) However, when we implement processes so that they can be run on a computer, we benefit from the huge processing power that computers can marshall to do certain types of activities.

A group of young people and educators smiling while engaging with a computer

Computers need instructions that are designed in very particular ways. Computational thinking includes the set of skills we use to design instructions computers can carry out. This skill set represents the ways we can logically approach problem solving; as computers can only solve problems using logical processes, to write programs that run on a computer, we need to use logical thinking approaches. For example, writing a computer program often requires the task the program revolves around to be broken down into smaller tasks that a computer can work through sequentially or in parallel. This approach, called decomposition, can also help people to think more clearly about computing problems: breaking down a problem into its constituent parts helps us understand the problem better.

Male teacher and male students at a computer

Understanding computational thinking supports people to take advantage of the way computers work to solve problems. Computers can run processes repeatedly and at amazing speeds. They can perform repetitive tasks that take a long time, or they can monitor states until conditions are met before performing a task. While computers sometimes appear to make decisions, they can only select from a range of pre-defined options. Designing systems that involve repetition and selection is another way of using computational thinking in practice.

Our computational thinking framework

Our team has been thinking about our approach to computational thinking for some time, and we have just published the framework we have developed to help us with this. It sets out the key areas of computational thinking, and then breaks these down into themes and learning objectives, which we build into our online projects and learning resources.

To develop this computational thinking framework, we worked with a group of academics and educators to make sure it is robust and useful for teaching and learning. The framework was also influenced by work from organisations such as Computing At School (CAS) in the UK, and the Computer Science Teachers’ Association (CSTA) in the USA.

We’ve been using the computational thinking framework to help us make sure we are building opportunities to learn about computational thinking into our learning resources. This framework is a first iteration, which we will review and revise based on experience and feedback.

We’re always keen to hear feedback from you in the community about how we shape our learning resources, so do let us know what you think about them and the framework in the comments.

The post Embedding computational thinking skills in our learning resources appeared first on Raspberry Pi.